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Abstract A new weak Galerkin (WG) finite element method for solving the biharmonic
equation in two or three dimensional spaces by using polynomials of reduced order is intro-
duced and analyzed. The WG method is on the use of weak functions and their weak deriv-
atives defined as distributions. Weak functions and weak derivatives can be approximated
by polynomials with various degrees. Different combination of polynomial spaces leads to
differentWG finite element methods, which makesWGmethods highly flexible and efficient
in practical computation. This paper explores the possibility of optimal combination of poly-
nomial spaces that minimize the number of unknowns in the numerical scheme, yet without
compromising the accuracy of the numerical approximation. Error estimates of optimal order
are established for the corresponding WG approximations in both a discrete H2 norm and
the standard L2 norm. In addition, the paper also presents some numerical experiments to
demonstrate the power of the WG method. The numerical results show a great promise of
the robustness, reliability, flexibility and accuracy of the WG method.
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1 Introduction

This paper will concern with approximating the solution u of the biharmonic equation

�2u = f, in �, (1.1)

with clamped boundary conditions

u = g, on ∂�, (1.2)
∂u

∂n
= φ, on ∂�, (1.3)

where � is the Laplacian operator, � is a bounded polygonal or polyhedral domain in R
d

for d = 2, 3 and n denotes the outward unit normal vector along ∂�. We assume that f, g, φ
are given, sufficiently smooth functions.

This problem mainly arises in fluid dynamics where the stream functions u of incom-
pressible flows are sought and elasticity theory, in which the deflection of a thin plate of the
clamped plate bending problem is sought [26,34,36].

Due to the significance of the biharmonic problem, a large number ofmethods for discretiz-
ing (1.1)–(1.3) have been proposed. Thesemethods include dealingwith the biharmonic oper-
ator directly, such as discretizing (1.1)–(1.3) on a uniform grid using a 13-point or 25-point
direct approximation of the fourth order differential operator [9,24]; mixed methods, that
is, splitting the biharmonic equation into two coupled Poisson equations [1,4–7,12,15,17–
20,25,27]. Also there are some other approaches to the biharmonic problems, like the confor-
mal mapping methods [11,35], integral equations [29], orthogonal spline collocation method
[8] and the fast multipole methods [23], etc.

Among these methods, finite element methods are one of the most widely used technique,
which is based on variational formulations of the equations considered. In fact, the biharmonic
equation is also one of the most important applicable problems of the finite element methods,
cf. [2,13,14,16,22,41]. The Galerkin methods, discretizing the corresponding variational
form of (1.1) is given by seeking u ∈ H2(�) satisfying

u|∂� = g,
∂u

∂n
|∂� = φ

such that

(�u,�v) = ( f, v), ∀v ∈ H2
0 (�), (1.4)

where H2
0 (�) is the subspace of H2(�) consisting of functions with vanishing value and

normal derivative on ∂�.
Standard finite element methods for solving (1.1)–(1.3) based on the variational form (1.4)

with conforming finite element require rather sophisticated finite elements such as the 21-
degrees-of-freedom of Argyris (see [3]) or nonconforming elements of Hermite type. Since
the complexity in the construction for the finite element with high continuous elements, H2

conforming element are seldom used in practice for the biharmonic problem. To avoid using
ofC1-elements, besides themixedmethods, an alternative approach, nonconforming and dis-
continuous Galerkin finite element methods have been developed for solving the biharmonic
equation over the last several decades. Morley element [28] is a well known nonconforming
element for the biharmonic equation for its simplicity. A C0 interior penalty method was
developed in [10,21]. In [30], a hp-version interior penalty discontinuous Galerkin method
was presented for the biharmonic equation.
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Recently a new class of finite element methods, called weak Galerkin(WG) finite ele-
ment methods were developed for the biharmonic equation for its highly flexible and robust
properties. The WG method refers to a numerical scheme for partial differential equations
in which differential operators are approximated by weak forms as distributions over a set of
generalized functions. This thought was first proposed in [38] for a model second order ellip-
tic problem, and this method was further developed in [31,39,40]. In [32], a weak Galerkin
method for the biharmonic equation was derived by using discontinuous functions of piece-
wise polynomials on general partitions of polygons or polyhedra of arbitrary shape.After that,
in order to reduce the number of unknowns, aC0 WGmethod [33]was proposed and analyzed.
However, due to the continuity limitation, the C0 WG scheme only works for the traditional
finite partitions, while not arbitrary polygonal or polyhedral girds as allowed in [32].

In order to realize the aim that reducing the unknown numbers and suit for general parti-
tions of polygons or polyhedra of arbitrary shape at the same time, in this paper we construct a
reduction WG scheme based on the use of a discrete weak Laplacian plus a new stabilization
that is also parameter free. The goal of this paper is to specify all the details for the reduction
WG method for the biharmonic equations and present the numerical analysis by presenting
a mathematical convergence theory.

An outline of the paper is as follows. In the remainder of the introductionwe shall introduce
some preliminaries and notations for Sobolev spaces. In Sect. 2 is devoted to the definitions
of weak functions and weak derivatives. The WG finite element schemes for the biharmonic
Eqs. (1.1)–(1.3) are presented in Sect. 3. In Sect. 4, we establish an optimal order error
estimates for the WG finite element approximation in an H2 equivalent discrete norm. In
Sect. 5, we shall drive an error estimate for the WG finite element method in the standard
L2 norm. Section 6 contains the numerical results of the WGmethod. The theoretical results
are illustrated by these numerical examples. Finally, we present some technical estimates
for quantities related to the local L2 projections into various finite element spaces and some
approximation properties which are useful in the convergence analysis in “Appendix”.

Now let us define some notations. Let D be any open bounded domain with Lipschitz
continuous boundary in R

d , d = 2, 3. We use the standard definition for the Sobloev space
Hs(D) and their associated inner products (·, ·)s,D , norms ‖ · ‖s,D , and seminorms | · |s,D
for any s ≥ 0.

The space H0(D) coincides with L2(D), for which the norm and the inner product are
denoted by ‖ · ‖D and (·, ·)D , respectively. When D = �, we shall drop the subscript D in
the norm and in the inner product notation.

The space H(div; D) is defined as the set of vector-valued functions on D which, together
with their divergence, are square integrable; i.e.,

H(div; D) =
{
v : v ∈ [L2(D)]d ,∇ · v ∈ L2(D)

}
.

The norm in H(div; D) is defined by

‖v‖H(div;D) = (‖v‖2D + ‖∇ · v‖2D
) 1
2 .

2 Weak Laplacain and Discrete Weak Laplacian

For the biharmonic equation (1.1), the underlying differential operator is the Laplacian �.
Thus, we shall first introduce a weak version for the Laplacian operator defined on a class of
discontinuous functions as distributions [32].
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Let K be any polygonal or polyhedral domain with boundary ∂K . A weak function on
the region K refers to a function v = {v0, vb, vg} such that v0 ∈ L2(K ), vb ∈ L2(∂K ), and
vg ·n ∈ L2(∂K ), where n is the outward unit normal vector along ∂K . Denote byW(K ) the
space of all weak functions on K , that is,

W(K ) = {
v = {v0, vb, vg} : v0 ∈ L2(K ), vb, vg · n ∈ L2(∂K )

}
. (2.1)

Recall that, for any v ∈ W(K ), the weak Laplacian of v = {v0, vb, vg} is defined as a
linear functional�wv in the dual space of H2(K )whose action on each ϕ ∈ H2(K ) is given
by

(�wv, ϕ)K = (v0,�ϕ)K − 〈vb,∇ϕ · n〉∂K + 〈vg · n, ϕ〉∂K , (2.2)

where (·, ·)K stands for the L2-inner product in L2(K ) and 〈·, ·〉∂K is the inner product in
L2(∂K ).

The Sobolev space H2(K ) can be embedded into the space W(K ) by an inclusion map
iW : H2(K ) → W(K ) defined as follows

iW (φ) = {φ|K , φ|∂K , (∇φ · n)n|∂K }, φ ∈ H2(K ).

With the help of the inclusionmap iW , the Sobolev space H2(K ) can be viewed as a subspace
of W(K ) by identifying each φ ∈ H2(K ) with iW (φ).

Analogously, a weak function v = {v0, vb, vg} ∈ W(K ) is said to be in H2(K ) if it can
be identified with a function φ ∈ H2(K ) through the above inclusion map. Here the first
components v0 can be seen as the value of v in the interior and the second component vb
represents the value of v on ∂K . Denote∇v ·n by vn , then the third component vg represents
(∇v · n)n|∂K = vnn. Obviously, vg · n = ∇v · n. Note that if v 
∈ H2(K ), then vb and vg
may not necessarily be related to the trace of v0 and (∇v0 · n)n on ∂K , respectively.

For v ∈ H2(K ), from integration by parts we have

(�wv, ϕ)K = (v,�ϕ)K − 〈v,∇ϕ · n〉∂K + 〈∇v · n, ϕ〉∂K
= (v0,�ϕ)K − 〈vb,∇ϕ · n〉∂K + 〈vg · n, ϕ〉∂K .

Thus the weak Laplacian is identical with the strong Laplacian, i.e.,

�wiW (v) = �v

for smooth functions in H2(K ).
For numerical implementation purpose, we define a discrete version of theweak Laplacain

operator by approximating �w in polynomial subspaces of the dual of H2(K ). To this end,
for any non-negative integer r ≥ 0, let Pr (K ) be the set of polynomials on K with degree no
more than r .

Definition 2.1 ([32]) A discrete weak Laplacian operator, denoted by �w,r,K , is defined as
the unique polynomial �w,r,K v ∈ Pr (K ) satisfying

(�w,r,K v, ϕ)K = (v0,�ϕ)K − 〈vb,∇ϕ · n〉∂K + 〈vn · n, ϕ〉∂K , ∀ϕ ∈ Pr (K ). (2.3)

From the integration by parts, we have

(v0,�ϕ)K = (�v0, ϕ)K + 〈v0,∇ϕ · n〉∂K − 〈∇v0 · n, ϕ〉∂K .

Substituting the above identity into (2.3) yields

(�w,r,K v, ϕ)K − (�v0, ϕ)K = 〈v0 − vb,∇ϕ · n〉∂K − 〈(∇v0 − vg) · n, ϕ〉∂K , (2.4)

for all ϕ ∈ Pr (K ).
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3 Weak Galerkin Finite Element Scheme

Let Th be a partition of the domain � into polygons in 2D or polyhedra in 3D. Assume that
Th is shape regular in the sense as defined in [39]. Denote by Eh the set of all edges or flat
faces in Th , and let E0

h = Eh \ ∂� be the set of all interior edges or flat faces.
Since vn represents ∇v · n, then vn is naturally dependent on n. To ensure a single valued

function vn on e ∈ Eh , we introduce a set of normal directions on Eh as follows

Nh = {ne : ne is unit and normal to e, e ∈ Eh}. (3.1)

For any given integer k ≥ 2, T ∈ Th , denote by Wk(T ) the discrete weak function space
given by

Wk(T ) = {{v0, vb, vnne} : v0 ∈ Pk(T ), vb, vn ∈ Pk−1(e), e ⊂ ∂T }. (3.2)

By patching Wk(T ) over all the elements T ∈ Th through a common value on the interface
E0
h , we arrive at a weak finite element space Vh given by

Vh = {{v0, vb, vnne} : {v0, vb, vnne}
∣∣
T ∈ Wk(T ), ∀T ∈ Th

}
.

Denote by V 0
h the subspace of Vh constituting discrete weak functions with vanishing traces;

i.e.,

V 0
h = {{v0, vb, vnne} : {v0, vb, vnne} ∈ Vh, vb|e = 0, vn |e = 0, e ∈ ∂T ∩ ∂�}.

Denote by �h the trace of Vh on ∂� from the component vb. It is obvious that �h consists
of piecewise polynomials of degree k − 1. Similarly, denote by ϒh the trace of Vh from the
component of vn as piecewise polynomials of degree k − 1. Denote by �w,k−2 the discrete
weak Laplacian operator on the finite element space Vh computed by using (2.3) on each
element T for k ≥ 2, that is,

(�w,k−2v)|T = �w,k−2,T (v|T ) ∀v ∈ Vh . (3.3)

For simplicity, we shall drop the subscript k − 2 in the notation �w,k−2 for the discrete weak
Laplacian operator. We also introduce the following notation

(�wv,�ww)h =
∑
T∈Th

(�wv,�ww)T .

For each element T ∈ Th , denote by Q0 the L2 projection onto Pk(T ), k ≥ 2. For each
edge/face e ⊂ ∂T , denote by Qb the L2 projection onto Pk−1(e). Now for any u ∈ H2(�),
we shall combine these two projections together to define a projection into the finite element
space Vh such that on the element T

Qhu = {Q0u, Qbu, (Qb(∇u · ne))ne}.

Theorem 3.1 LetQh be the local L2 projection onto Pk−2. Then the following commutative
diagram holds true on each element T ∈ Th:

�wQhu = Qh�u, ∀u ∈ H2(T ). (3.4)

Proof For any φ ∈ Pk−2(T ), from the definition of the discrete weak Laplacian and the L2

projection
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(�wQhu, φ)T = (Q0u,�φ)T − 〈Qbu,∇φ · n〉∂T + 〈Qb(∇u · ne)ne · n, φ〉∂T
= (u,�φ)T − 〈u,∇φ · n〉∂T + 〈∇u · n, φ〉∂T
= (�u, φ)T = (Qh�u, φ),

which implies (3.4). �
The commutative property (3.4) indicates that the discrete weak Laplacian of the L2

projection of u is a good approximation of the Laplacian of u in the classical sense. This is
a good property of the discrete weak Laplacian in application to algorithm and analysis.

For any uh = {u0, ub, unne} and v = {v0, vb, vnne} in Vh , we introduce a bilinear form
as follows

s(uh, v) =
∑
T∈Th

h−1
T 〈∇u0 · ne − un,∇v0 · ne − vn〉∂T

+
∑
T∈Th

h−3
T 〈Qbu0 − ub, Qbv0 − vb〉∂T .

Weak Galerkin Algorithm 1 Find uh = {u0, ub, unne} ∈ Vh satisfying ub = Qbg and
un = Qbφ on ∂� and the following equation:

(�wuh,�wv)h + s(uh, v) = ( f, v0), ∀v = {v0, vb, vnne} ∈ V 0
h . (3.5)

Lemma 3.2 For any v ∈ V 0
h , let |||v||| be given by

|||v|||2 = (�wv,�wv)h + s(v, v). (3.6)

Then, ||| · ||| defines a norm in the linear space V 0
h .

Proof For simplicity, we shall only prove the positivity property for ||| · |||. Assume that
|||v||| = 0 for some v ∈ V 0

h . It follows that �wv = 0 on each element T, Qbv0 = vb and
∇v0 · ne = vn on each edge ∂T . We claim that �v0 = 0 holds true locally on each element
T. To this end, for any ϕ ∈ Pk−2(T ) we use �wv = 0 and the identify (2.4) to obtain

0 = (�wv, ϕ)T (3.7)

= (�v0, ϕ)T + 〈Qbv0 − vb,∇ϕ · n〉∂T + 〈vnne · n − ∇v0 · n, ϕ〉∂T
= (�v0, ϕ)T ,

where we have used the fact that Qbv0 − vb = 0 and

vnne · n − ∇v0 · n = ±(vn − ∇v0 · ne) = 0

in the last equality. The identity (3.7) implies that�v0 = 0 holds true locally on each element
T .

Next, we claim that ∇v0 = 0 also holds true locally on each element T . For this purpose,
for any φ ∈ Pk(T ), we utilize the Gauss formula to obtain

(∇v0,∇φ)T = −(�v0, φ)T + 〈∇v0 · n, φ〉∂T = 〈∇v0 · n, φ〉∂T . (3.8)

By letting φ = v0 on each element T and summing over all T we obtain
∑
T∈Th

(∇v0,∇v0)T =
∑
T∈Th

〈∇v0 · n, v0〉∂T . (3.9)
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For two elements T1, T2 ∈ Th , which share e ∈ Eh \ ∂� as a common edge, denote v10, v
2
0

the values of v in the interior of T1, T2, respectively. It follows from Qbv
1
0 = Qbv

2
0 = vb on

edge e and the fact ∇v0 · ne = vn ∈ Pk−1(e) that
〈∇v10 · nT1 , v10

〉
e + 〈∇v20 · nT2 , v20

〉
e = ± 〈

vn, v
1
0 − v20

〉
e = ± 〈

vn, Qbv
1
0 − Qbv

2
0

〉
e = 0,

where nT1 ,nT2 denote the outward unit normal vectors on e according to elements T1, T2,
respectively. This, together with∇v0 ·n = vn = 0 on the boundary edge e ∈ Eh ∩∂� implies

∑
T∈Th

〈∇v0 · n, v0〉∂T = 0.

It follows from Eq. (3.9) that ‖∇v0‖T = 0 on each element T . Thus, v0 = const locally on
each element and is then continuous across each interior edge e as

v0|e = Qbv0 = vb.

The boundary condition of vb = 0 then implies that v ≡ 0 on �, which completes the
proof. �

Lemma 3.3 The weak Galerkin finite element scheme (3.5) has a unique solution.

Proof Assume u(1)
h and u(2)

h are two solutions of the WG finite element scheme (3.5). It is

obvious that the difference ρh = u(1)
h − u(2)

h is a finite element function in V 0
h satisfying

(�wρh,�wv)h + s(ρh, v) = 0, ∀v ∈ V 0
h . (3.10)

By letting v = ρh in above Eq. (3.10) we obtain the following indentity

(�wρh,�wρh)h + s(ρh, ρh) = 0.

It follows from Lemma 3.2 that ρh ≡ 0, which shows that u(1)
h = u(2)

h . This completes the
proof. �

4 An Error Estimate

The goal of this section is to establish an error estimate for the WG-FEM solution uh arising
from (3.5).

First of all, let us derive an error equation for the WG finite element solution obtained
from (3.5). This error equation is critical in convergence analysis.

Lemma 4.1 Let u and uh ∈ Vh be the solution of (1.1)–(1.3) and (3.5), respectively. Denote
by

eh = Qhu − uh

the error function between the L2 projection of u and itsweakGalerkin finite element solution.
Then the error function eh satisfies the following equation

(�ωeh,�ωv)h + s(eh, v) = �u(v) (4.1)
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for all v ∈ V 0
h . Here

�u(v) =
∑
T∈Th

〈�u − Qh�u,∇v0 · n − vnne · n〉∂T (4.2)

−
∑
T∈Th

〈∇(�u − Qh�u) · n, v0 − vb〉∂T + s(Qhu, v).

Proof Using (2.4) with ϕ = �ωQhu = Qh�u we obtain

(�ωQhu,�ωv)T

= (�v0,Qh�u)T + 〈v0 − vb,∇(Qh�u) · n〉∂T − 〈(∇v0 − vnne) · n,Qh�u〉∂T
= (�u,�v0)T + 〈v0 − vb,∇(Qh�u) · n〉∂T − 〈(∇v0 − vnne) · n,Qh�u〉∂T ,

which implies that

(�u,�v0)T = (�ωQhu,�ωv)T − 〈v0 − vb,∇(Qh�u) · n〉∂T (4.3)

+〈(∇v0 − vnne) · n,Qh�u〉∂T .

Next, it follows from the integration by parts that

(�u,�v0)T = (�2u, v0)T + 〈�u,∇v0 · n〉∂T − 〈∇(�u) · n, v0〉∂T .

By summing over all T and then using the identity (�2u, v0) = ( f, v0) we arrive at
∑
T∈Th

(�u,�v0)T = ( f, v0) +
∑
T∈Th

〈�u,∇v0 · n − vnne · n〉∂T

−
∑
T∈Th

〈∇(�u) · n, v0 − vb〉∂T ,

where we have used the fact that vn and vb vanish on the boundary of the domain. Combining
the above equation with (4.3) yields

(�ωQhu,�ωv)h = ( f, v0) +
∑
T∈Th

〈�u − Qh�u, (∇v0 − vnne) · n〉∂T

−
∑
T∈Th

〈∇(�u − Qh�u) · n, v0 − vb〉∂T .

Adding s(Qhu, v) to both sides of the above equation gives

(�ωQhu,�ωv)h + s(Qhu, v)

= ( f, v0) +
∑
T∈Th

〈�u − Qh�u, (∇v0 − vnne) · n〉∂T

−
∑
T∈Th

〈∇(�u − Qh�u) · n, v0 − vb〉∂T + s(Qhu, v). (4.4)

Subtracting (3.5) from (4.4) leads to the following error equation

(�ωeh,�ωv)h + s(eh, v) =
∑
T∈Th

〈�u − Qh�u, (∇v0 − vnne) · n〉∂T

−
∑
T∈Th

〈∇(�u − Qh�u) · n, v0 − vb〉∂T + s(Qhu, v)

for all v ∈ V 0
h . This completes the derivation of (4.1). �
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The following Theorem presents an optimal order error estimate for the error function eh
in the trip-bar norm. We believe this tripe-bar norm provides a discrete analogue of the usual
H2-norm.

Theorem 4.2 Let uh ∈ Vh be the weak Galerkin finite element solution arising from (3.5)
with finite element functions of order k ≥ 2. Assume that the exact solution of (1.1)–(1.3) is
sufficiently regular such that u ∈ Hk+2(�). Then, there exists a constant C such that

|||uh − Qhu||| ≤ Chk−1 ‖u‖k+2. (4.5)

The above estimate is of optimal order in terms of the meshsize h, but not in the regularity
assumption on the exact solution of the biharmonic equation.

Proof By letting v = eh in the error Eq. (4.1), we have

|||eh |||2 = �(eh), (4.6)

where

�(eh) =
∑
T∈Th

〈�u − Qh�u, (∇e0 − enne) · n〉∂T (4.7)

−
∑
T∈Th

〈∇(�u − Qh�u) · n, e0 − eb〉∂T

+
∑
T∈Th

h−1
T 〈∇Q0u · ne − Qb(∇u · ne),∇e0 · ne − en〉∂T

+
∑
T∈Th

h−3
T 〈QbQ0u − Qbu, Qbe0 − eb〉∂T .

The rest of the proof shall estimate each of the terms on the right-hand side of (4.7). For
the first term, we use the Cauchy–Schwarz inequality and the estimates (7.5) and (7.6) in
Lemma 7.4 (see “Appendix”) with m = k to obtain

∣∣∣∣∣∣
∑
T∈Th

〈�u − Qh�u, (∇e0 − enne) · n〉∂T
∣∣∣∣∣∣

≤
⎛
⎝ ∑

T∈Th

hT ‖�u − Qh�u‖2∂T
⎞
⎠

1
2
⎛
⎝ ∑

T∈Th

h−1
T ‖∇e0 · ne − en‖2∂T

⎞
⎠

1
2

≤ Chk−1‖u‖k+1|||eh |||. (4.8)

For the second term, using Lemmas 7.4, 7.6 and 7.9 we obtain
∣∣∣∣∣∣
∑
T∈Th

〈∇(�u − Qh�u) · n, e0 − eb〉∂T
∣∣∣∣∣∣

≤
∣∣∣∣∣∣
∑
T∈Th

〈∇(�u − Qh�u) · n, Qbe0 − eb〉∂T
∣∣∣∣∣∣

+
∣∣∣∣∣∣
∑
T∈Th

〈∇(�u − Qh�u) · n, e0 − Qbe0〉∂T
∣∣∣∣∣∣
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=
∣∣∣∣∣∣
∑
T∈Th

〈∇(�u − Qh�u) · n, Qbe0 − eb〉∂T
∣∣∣∣∣∣

+
∣∣∣∣∣∣
∑
T∈Th

〈(∇(�u) − Qb(∇(�u))) · n, e0 − Qbe0〉∂T
∣∣∣∣∣∣

≤
⎛
⎝ ∑

T∈Th

h3T ‖∇(�u − Qh�u)‖2∂T
⎞
⎠

1
2

·
⎛
⎝ ∑

T∈Th

h−3
T ‖Qbe0 − eb‖2∂T

⎞
⎠

1
2

+
⎛
⎝ ∑

T∈Th

‖∇(�u) − Qb(∇(�u))‖2∂T
⎞
⎠

1
2

·
⎛
⎝ ∑

T∈Th

‖e0 − Qbe0‖2∂T
⎞
⎠

1
2

≤ Chk−1 ‖u‖k+2|||eh |||, (4.9)

where the Hk+2-norm of u is used because the estimate in Lemma 7.9 is not optimal in terms
of the mesh parameter h.

The third and fourth terms can be estimated by using the Cauchy–Schwarz inequality and
the estimates (7.7) and (7.8) in Lemma 7.4 as follows

∣∣∣∣∣∣
∑
T∈Th

h−1
T 〈∇Q0u · ne − Qb(∇u · ne),∇e0 · ne − en〉∂T

∣∣∣∣∣∣
≤ Chk−1‖u‖k+1|||eh ||| (4.10)

and
∣∣∣∣∣∣
∑
T∈Th

h−3
T 〈QbQ0u − Qbu, Qbe0 − eb〉∂T

∣∣∣∣∣∣
≤ Chk−1‖u‖k+1|||eh |||. (4.11)

Substituting (4.8)–(4.11) into (4.6) gives

|||eh |||2 ≤ Chk−1 ‖u‖k+2|||eh |||,

which implies (4.5) and hence completes the proof. �

5 Error Estimates in L2

In this section, we shall establish some error estimates for all three components of the error
function eh in the standard L2 norm.

First of all, let us derive an error estimate for the first component of the error function eh
by applying the usual duality argument in the finite element analysis. To this end, we consider
the problem of seeking ϕ such that

�2ϕ = e0, in �, (5.1)

ϕ = 0, on ∂�,

∂ϕ

∂n
= 0, on ∂�.
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Assume that the dual problem has the H4 regularity property in the sense that the solution
function ϕ ∈ H4 and there exists a constant C such that

‖ϕ‖4 ≤ C‖e0‖. (5.2)

Theorem 5.1 Let uh ∈ Vh be the weak Galerkin finite element solution arising from (3.5)
with finite element functions of order k ≥ 2. Let k0 = min{3, k}. Assume that the exact
solution of (1.1)–(1.3) is sufficiently regular such that u ∈ Hk+2(�) and the dual problem
(5.1) has the H4 regularity. Then, there exists a constant C such that

‖u0 − Q0u‖ ≤ Chk+k0−2‖u‖k+1, (5.3)

which means we have a sub-optimal order of convergence for k = 2 and optimal order of
convergence for k ≥ 3.

Proof Testing (5.1) by error function e0 and then using the integration by parts gives

‖e0‖2 = (�2ϕ, e0)

=
∑
T∈Th

(�ϕ,�e0)T +
∑
T∈Th

〈∇(�ϕ) · n, e0〉∂T −
∑
T∈Th

〈�ϕ,∇e0 · n〉∂T

=
∑
T∈Th

(�ϕ,�e0)T +
∑
T∈Th

〈∇(�ϕ) · n, e0 − eb〉∂T

−
∑
T∈Th

〈�ϕ, (∇e0 − enne) · n〉∂T ,

where we have used the fact that en and eb vanishes on the boundary of the domain �. By
letting u = ϕ and v0 = eh in (4.3), we can rewrite the above equation as follows

‖e0‖2 = (�wQhϕ,�weh)h +
∑
T∈Th

〈(∇(�ϕ) − ∇(Qh�ϕ) · n, e0 − eb〉∂T

−
∑
T∈Th

〈�ϕ − Qh�ϕ, (∇e0 − enne) · n〉∂T .

Next, by letting v = Qhϕ, from the error equation (4.1), we have

(�wQhϕ,�weh)h =
∑
T∈Th

〈(�u − Qh�u, (∇Q0ϕ) · n − Qb(∇ϕ · ne)ne · n〉∂T

−
∑
T∈Th

〈∇(�u − Qh�u) · n, Q0ϕ − Qbϕ〉∂T

− s(eh, Qhϕ) + s(Qhu, Qhϕ).

Combining the two equations above gives

‖e0‖2 =
∑
T∈Th

〈(∇(�ϕ) − ∇(Qh�ϕ) · n, e0 − eb〉∂T

−
∑
T∈Th

〈�ϕ − Qh�ϕ, (∇e0 · ne − en) · n〉∂T
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+
∑
T∈Th

〈(�u − Qh�u, (∇Q0ϕ) · n − Qb(∇ϕ · ne)ne · n〉∂T

−
∑
T∈Th

〈∇(�u − Qh�u) · n, Q0ϕ − Qbϕ〉∂T

− s(eh, Qhϕ) + s(Qhu, Qhϕ). (5.4)

From the Cauchy–Schwarz inequality and Lemma 7.4, we can estimate the six terms on
the right-hand side of the identity above as follows.

For the first term, it follows from Lemmas 7.4, 7.9 and the fact k0 = min{k, 3} ≤ 3 that

∣∣∣∣∣∣
∑
T∈Th

〈(∇(�ϕ) − ∇(Qh�ϕ)) · n, e0 − eb〉∂T
∣∣∣∣∣∣

≤
⎛
⎝ ∑

T∈Th

h3T ‖∇(�ϕ) − ∇(Qh�ϕ)‖2∂T
⎞
⎠

1
2
⎛
⎝ ∑

T∈Th

h−3
T ‖Qbe0 − eb‖2∂T

⎞
⎠

1
2

+
⎛
⎝ ∑

T∈Th

‖∇(�ϕ) − Qb∇(�ϕ)‖2∂T
⎞
⎠

1
2
⎛
⎝ ∑

T∈Th

‖e0 − Qbe0‖2∂T
⎞
⎠

1
2

≤
⎛
⎝ ∑

T∈Th

h3T ‖∇(�ϕ) − ∇(Qh�ϕ)‖2∂T
⎞
⎠

1
2

|||eh |||

+ Cλ

⎛
⎝ ∑

T∈Th

‖∇(�ϕ) − Qb∇(�ϕ)‖2∂T
⎞
⎠

1
2

· h− 1
2 ‖e0‖

+ C

⎛
⎝ ∑

T∈Th

‖∇(�ϕ) − Qb∇(�ϕ)‖2∂T
⎞
⎠

1
2

· h 3
2 |||eh |||

≤ Chk0−1(‖ϕ‖k0+1 + hδk0,2‖ϕ‖4)|||eh ||| + Cλh
1
2 ‖ϕ‖4 · h− 1

2 ‖e0‖
+ Chk0−

5
2 (‖ϕ‖k0+1 + hδk0,2‖ϕ‖4) · h 3

2 |||eh |||
≤ Chk0−1‖ϕ‖4|||eh ||| + Cλ‖ϕ‖4‖e0‖. (5.5)

For the second term, it follows from (7.3) with m = k0 that

∣∣∣∣∣∣
∑
T∈Th

〈�ϕ − Qh�ϕ, (∇e0 · ne − en) · n〉∂T
∣∣∣∣∣∣

≤
⎛
⎝ ∑

T∈Th

hT ‖�ϕ − Qh�ϕ‖2∂T
⎞
⎠

1
2
⎛
⎝ ∑

T∈Th

h−1
T ‖∇e0 · ne − en‖2∂T

⎞
⎠

1
2

≤ Chk0−1‖ϕ‖k0+1|||eh ||| ≤ Chk0−1‖ϕ‖4|||eh |||. (5.6)
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As to the third term, it follows from Cauchy–Schwarz inequality and Lemma 7.4 that

∣∣∣∣∣∣
∑
T∈Th

〈�u − Qh�u, (∇Q0ϕ) · n − Qb(∇ϕ · ne)ne · n〉∂T
∣∣∣∣∣∣

≤
⎛
⎝ ∑

T∈Th

hT ‖�u − Qh�u‖2∂T
⎞
⎠

1
2
⎛
⎝ ∑

T∈Th

h−1
T ‖(∇Q0ϕ) · n − Qb(∇ϕ · ne)‖2∂T

⎞
⎠

1
2

≤ Chk−1‖u‖k+1h
k0−1‖ϕ‖k0+1 ≤ Chk+k0−2‖u‖k+1‖ϕ‖4. (5.7)

For the forth term, by using Lemma 7.3, we have

∣∣∣∣∣∣
∑
T∈Th

〈∇(�u − Qh�u) · n, Q0ϕ − Qbϕ〉∂T
∣∣∣∣∣∣

≤
⎛
⎝ ∑

T∈Th

h3T ‖∇(�u − Qh�u)‖2∂T
⎞
⎠

1
2
⎛
⎝ ∑

T∈Th

h−3
T ‖Q0ϕ − ϕ‖2∂T

⎞
⎠

1
2

≤ Chk−1(‖u‖k+1 + hδk,2‖u‖4)ht0−1‖ϕ‖k0+1

≤ Chk−1(‖u‖k+k0−2 + hδk,2‖u‖4)‖ϕ‖4. (5.8)

As to the fifth term, we also use the Cauchy–Schwarz inequality and Lemma 7.4 to obtain

|s(eh, Qhϕ)| ≤
∣∣∣∣∣∣
∑
T∈Th

h−1
T 〈∇e0 · ne − en,∇Q0ϕ · ne − Qb(∇ϕ · ne)〉∂T

∣∣∣∣∣∣

+
∣∣∣∣∣∣
∑
T∈Th

h−3
T 〈Qbe0 − eb, QbQ0ϕ − Qbϕ〉∂T

∣∣∣∣∣∣
≤ Chk0−1‖ϕ‖4|||eh |||. (5.9)

The last term can be estimated as follows

|s(Qhu, Qhϕ)| ≤
∣∣∣∣∣∣
∑
T∈Th

h−1
T 〈(∇Q0u · ne − Qb(∇u · ne), (∇Q0ϕ · ne − Qb(∇ϕ · ne)〉∂T

∣∣∣∣∣∣

+
∣∣∣∣∣∣
∑
T∈Th

h−3
T 〈QbQ0u − Qbu, QbQ0ϕ − Qbϕ〉∂T

∣∣∣∣∣∣
≤ Chk−1‖u‖k+1h

k0−1‖ϕ‖k0+1

≤ Chk+k0−2‖u‖k+1‖ϕ‖4. (5.10)

Substituting all the six estimates into (5.4) we obtain

‖e0‖2 ≤ Chk+k0−2(‖u‖k+1 + hδk,2‖u‖4)‖ϕ‖4
+Chk0−1‖ϕ‖4|||eh ||| + Cλ‖ϕ‖4‖e0‖.
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Using the regularity estimate (5.2) and choosing constant λ such that Cλ‖ϕ‖4 < 1
2‖e0‖, we

arrive at

‖e0‖ ≤ Chk0−1|||eh ||| + Chk+k0−2(‖u‖k+1 + hδk,2‖u‖4)
≤ Chk+k0−2‖u‖k+2.

Together with the H2 error estimate (4.5) we have the desired L2 error estimate (5.3). �
In order to study the error estimates on edges, we shall introduce the edge-based L2 norm

here. To keep the consistency of order, the edge-based L2 norm is different from the standard
L2 norm.

Definition 5.2 For any function v defined on the edges Eh ,

‖v‖2Eh =
∑
e∈Eh

he‖v‖2L2(e),

where he is the measure of edge e ∈ Eh .

Next, we shall derive the estimates for the second and third components of the error
function eh .

Theorem 5.3 Let uh ∈ Vh be the weak Galerkin finite element solution arising from (3.5)
with finite element functions of order k ≥ 2. Let k0 = min{k, 3}. Assume that the exact
solution of (1.1)–(1.3) is sufficiently regular such that u ∈ Hk+2(ω) and the dual problem
(5.1) has the H4 regularity property. Then, there exists a constant C such that

‖ub − Qbu‖Eh ≤ Chk+k0−2‖u‖k+2, (5.11)

‖un − Qb(∇u0 · ne)‖Eh ≤ Chk+k0−3‖u‖k+2. (5.12)

Proof It is obvious that

‖eb‖2L2(e) ≤ 2(‖Qbe0‖2L2(e) + ‖Qbe0 − eb‖2L2(e)).

Summing over all edges, we have

‖ub − Qbu‖2Eh =
∑
e∈Eh

he‖ub − Qbu‖2L2(e)

≤ 2

⎛
⎝∑

e∈Eh
he‖Qbe0‖2L2(e) +

∑
e∈Eh

he‖Qbe0 − eb‖2L2(e)

⎞
⎠

≤ C

⎛
⎝ ∑

T∈Th

hT ‖Qbe0‖2L2(∂T )
+

∑
T∈Th

hT ‖Qbe0 − eb‖2L2(∂T )

⎞
⎠ . (5.13)

We shall discuss the two terms separately. For the first part, by applying the trace inequality
(7.1), the inverse inequality (7.2) and the error estimate for e0 in Theorem 5.1, we have

∑
T∈Th

hT ‖Qbe0‖2L2(∂T )
≤

∑
T∈Th

hT ‖e0‖2L2(∂T )

≤ C
∑
T∈Th

(
‖e0‖2L2(T )

+ h2T ‖∇e0‖2L2(T )

)
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≤ C
∑
T∈Th

‖e0‖2L2(T )

≤ Ch2k+2k0−4‖u‖2k+2. (5.14)

For the second part, we use the trip-bar norm to handle the second part.
∑
T∈Th

hT ‖Qbe0 − eb‖2L2(∂T )
≤ h4

∑
T∈Th

h−3
T ‖Qbe0 − eb‖2L2(∂T )

≤ h4|||eh |||2 (5.15)

≤ Ch2k+2k0−4‖u‖2k+2.

Combining the above two estimates gives the desired error estimate (5.11).
Similarly, we establish the error estimates for en .

‖en‖2Eh =
∑
e∈Eh

he‖en‖2L2(e)

≤ C

⎛
⎝ ∑

T∈Th

hT ‖∇e0 · ne‖∂T +
∑
T∈Th

hT ‖∇e0 · ne − en‖∂T

⎞
⎠

≤ C

⎛
⎝ ∑

T∈Th

hT ‖∇e0‖∂T + h2
∑
T∈Th

h−1
T ‖∇e0 · ne − en‖∂T

⎞
⎠

≤ C

⎛
⎝ ∑

T∈Th

‖∇e0‖T + h2|||eh |||
⎞
⎠

≤ C

⎛
⎝ ∑

T∈Th

h−2
T ‖e0‖T + h2|||eh |||

⎞
⎠

≤ C
(
h2k+2k0−6 + h2k

)
‖u‖2k+2. (5.16)

Thus, we have

‖en‖Eh ≤ Chk+k0−3‖u‖k+2,

which completes the proof. �

6 Numerical Results

In this section, we would like to report some numerical results for the weak Galerkin finite
element method proposed and analyzed in previous sections. Here we use the following finite
element space

Ṽh = {v = {v0, vb, vnne}, v0 ∈ P2(T ), vb, vn ∈ P1(e), T ∈ Th, e ⊂ Eh}.
For any given v = {v0, vb, vnne} ∈ Ṽh and ϕ ∈ P0(T ), we compute the discrete weak
Laplacian �wv on each element T as a function in P0(T ) as follows

(�wv, ϕ)T = (v0,�ϕ)T − 〈vb,∇ϕ · n〉∂T + 〈vnne · n, ϕ〉∂T ,

which could be simplified as

(�wv, ϕ)T = 〈vnne · n, ϕ〉∂T .
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Table 1 Errors and orders of Example 6.1 in H2 and L2 with k = 2

h |||uh − Qhu||| Order ‖u0 − Q0u‖ Order

3.74355e−01 3.69061e−01 4.29897e−02

1.91955e−01 1.89785e−01 9.59493e−01 1.11418e−02 1.94801

9.56362e−02 1.01110e−01 9.08440e−01 2.97175e−03 1.90660

4.78382e−02 5.57946e−02 8.57728e−01 8.08649e−04 1.87773

2.20971e−02 3.00721e−02 8.91700e−01 2.14457e−04 1.91483

1.10485e−02 1.55286e−02 9.53498e−01 5.49264e−05 1.96512

Table 2 Errors and orders of Example 6.1 in L2 and L∞ for eb with k = 2

h ‖Qbu − ub‖Eh Order ‖Qbu − ub‖∞ Order

3.74355e−01 1.21967e−01 1.18101e−01

1.91955e−01 3.12884e−02 1.91858 3.27686e−02 1.84964

9.56362e−02 8.39049e−03 1.89880 8.84728e−03 1.88901

4.78382e−02 2.28623e−03 1.87578 2.39957e−03 1.88246

2.20971e−02 6.06514e−04 1.91436 6.33868e−04 1.92052

1.10485e−02 1.55351e−04 1.96501 1.62044e−04 1.96780

The error for the weak Galerkin solution is measured in six norms defined as follows:

|||eh |||2 =
∑
T∈Th

(∫

T
|�wvh |2dT + h−1

T

∫

∂T
|(∇v0) · ne − vn |2ds

+ h−3
T

∫

∂T
(Qbv0 − vb)

2ds

)
(A discrete H2 norm)

‖Q0v − v0‖2 =
∑
T∈Th

∫

T
|Q0v − v0|2dT (Element based L2 norm)

‖Qbv − vb‖2Eh =
∑
e∈Eh

he

∫

e
|Qbv − vb|2ds (Edge based L2 norm for vb)

‖Qbv − vn‖2Eh =
∑
e∈Eh

he

∫

e
|Qbv − vn |2ds (Edge based L2 norm for vn)

‖Qbv − vb‖∞ = max
e∈Eh

{|Qbv − vb|} (Edge based L∞ norm for vb)

‖Qbv − vn‖∞ = max
e∈Eh

{|Qb(∇u0 · ne) − vn |} (Edge based L∞ norm for vn)

Example 6.1 Consider the biharmonic problem (1.1)–(1.3) in the square domain� = (0, 1)2.
It has the analytic solution u(x) = x2(1 − x)2y2(1 − y)2, and the right hand side function
f in (1.1) is computed to match the exact solution. The mesh size is denoted by h = 1/n.
Table 1 shows that the convergence rates for the WG-FEM solution in the H2 and L2 norms
are of order O(h) and O(h2) when k = 2, respectively.

Table 2 shows that the errors and orders of Example 6.1 in L2 and L∞ for eb. The numerical
results are in consistency with theory for these two cases.

Table 3 shows that the errors and orders of Example 6.1 in L2 and L∞ for en . The numerical
results are in consistency with theory for these two cases.
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Table 3 Errors and orders of Example 6.1 in L2 and L∞ for en with k = 2

h ‖Qb(∇u · ne) − un‖Eh Order ‖Qb(∇u · ne) − un‖∞ Order

3.74355e−01 1.18286e−01 5.28497e−02

1.91858e+00 3.12884e−02 1.91858 1.51029e−02 1.80707

9.56362e−02 8.39049e−03 1.89880 7.33970e−03 1.04103

4.78382e−02 2.28623e−03 1.87578 3.41617e−03 1.10334

2.20971e−02 6.06514e−04 1.91436 1.18287e−03 1.53009

1.10485e−02 1.55351e−04 1.96501 3.30602e−04 1.83912

Table 4 Errors and orders of example 6.1 in H2 and L2 with k = 3

h |||uh − Qhu||| Order ‖u0 − Q0u‖ Order

3.74355e−01 1.17819e−01 4.56114e−03

1.91955e−01 3.56257e−02 1.72558 4.16403e−04 3.45334

9.56362e−02 1.00915e−02 1.81977 3.55158e−05 3.55145

4.78382e−02 2.56977e−03 1.97343 2.30985e−06 3.94259

2.20971e−02 6.44317e−04 1.99580 1.44990e−07 3.99378

1.10485e−02 1.61222e−04 1.99873 9.07702e−09 3.99759

Table 5 Errors and orders of example 6.1 in L2 and L∞ for eb with k = 3

h ‖Qbu − ub‖Eh Order ‖Qbu − ub‖∞ Order

3.74355e−01 8.34847e−03 1.15414e−02

1.91955e−01 8.06272e−04 3.37217 1.08014e−03 3.41753

9.56362e−02 7.89345e−05 3.35254 9.02080e−05 3.58181

4.78382e−02 5.19889e−06 3.92438 5.93961e−06 3.92481

2.20971e−02 3.26604e−07 3.99259 3.72799e−07 3.99390

1.10485e−02 2.04554e−08 3.99699 2.33003e−08 3.99998

Table 6 Errors and orders of example 6.1 in L2 and L∞ for en with k = 3

h ‖Qb(∇u · ne) − un‖Eh Order ‖Qb(∇u · ne) − un‖∞ Order

3.74355e−01 5.23031e−02 1.15371e−01

1.91858e+00 8.83906e−03 2.56493 1.96390e−02 2.55449

9.56362e−02 1.50030e−03 2.55865 3.59916e−03 2.44799

4.78382e−02 1.89000e−04 2.98878 4.60320e−04 2.96695

2.20971e−02 2.33468e−05 3.01709 5.56932e−05 3.04707

1.10485e−02 2.89988e−06 3.00916 6.86324e−06 3.02054
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Table 7 Errors and orders of Example 6.2 in H2 and L2 with k = 2

h |||uh − Qhu||| Order ‖u0 − Q0u‖ Order

3.74355e−01 3.51847e+01 4.18608e+00

1.91955e−01 1.79831e+01 9.68306e−01 1.06553e+00 1.97403

9.56362e−02 9.36621e+00 9.41104e−01 2.74735e−01 1.95546

4.78382e−02 4.90899e+00 9.32039e−01 7.07013e−02 1.95823

2.20971e−02 2.51557e+00 9.64541e−01 1.79112e−02 1.98087

1.10485e−02 1.26858e+00 9.87671e−01 4.49750e−03 1.99367

Table 8 Errors and orders of Example 6.2 in L2 and L∞ for eb with k = 2

h ‖Qbu − ub‖Eh Order ‖Qbu − ub‖∞ Order

3.74355e−01 1.15398e+01 1.10028e+01

1.91955e−01 2.99335e+00 1.94679 2.97577e+00 1.88654

9.56362e−02 7.75705e−01 1.94818 7.77671e−01 1.93603

4.78382e−02 1.99884e−01 1.95635 2.00300e−01 1.95700

2.20971e−02 5.06547e−02 1.98039 5.07058e−02 1.98194

1.10485e−02 1.27205e−02 1.99354 1.27268e−02 1.99428

Table 9 Errors and orders of Example 6.2 in L2 and L∞ for en with k = 2

h ‖Qb(∇u · ne) − un‖Eh Order ‖Qb(∇u · ne) − un‖∞ Order

3.74355e−01 1.15398e+01 4.02986e+00

1.91955e−01 2.99335e+00 1.94679 1.26437e+00 1.67231

9.56362e−02 7.75705e−01 1.94818 4.40635e−01 1.52076

4.78382e−02 1.99884e−01 1.95635 1.74400e−01 1.33718

2.20971e−02 5.06547e−02 1.98039 5.22660e−02 1.73846

1.10485e−02 1.27205e−02 1.99354 1.37655e−02 1.92482

Table 10 Errors and orders of example 6.2 in H2 and L2 with k = 3

h |||uh − Qhu||| Order ‖u0 − Q0u‖ Order

3.74355e−01 9.17084e+00 3.37369e−01

1.91955e−01 2.46720e+00 1.89418 2.77383e−02 3.60438

9.56362e−02 6.52418e−01 1.91900 2.14578e−03 3.69231

4.78382e−02 1.65736e−01 1.97691 1.36946e−04 3.96982

2.20971e−02 4.16442e−02 1.99270 8.50154e−06 4.00974

1.10485e−02 1.04302e−02 1.99734 5.29568e−07 4.00484
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Table 11 Errors and orders of example 6.2 in L2 and L∞ for eb with k = 3

h ‖Qbu − ub‖Eh Order ‖Qbu − ub‖∞ Order

3.74355e−01 5.34596e−01 7.40358e−01

1.91955e−01 4.42882e−02 3.59346 6.53790e−02 3.50132

9.56362e−02 3.79823e−03 3.54353 5.37615e−03 3.60418

4.78382e−02 2.44771e−04 3.95582 3.54304e−04 3.92351

2.20971e−02 1.51601e−05 4.01308 2.24297e−05 3.98151

1.10485e−02 9.43450e−07 4.00619 1.40631e−06 3.99543

Table 12 Errors and orders of example 6.2 in L2 and L∞ for en with k = 3

h ‖Qb(∇u · ne) − un‖Eh Order ‖Qb(∇u · ne) − un‖∞ Order

3.74355e−01 3.44921e+00 8.19181e+00

1.91858e+00 5.38035e−01 2.68049 1.42296e+00 2.52529

9.56362e−02 7.93752e−02 2.76094 2.26764e−01 2.64963

4.78382e−02 9.99040e−03 2.99007 3.26867e−02 2.79442

2.20971e−02 1.23394e−03 3.01727 4.33160e−03 2.91573

1.10485e−02 1.52755e−04 3.01398 5.50588e−04 2.97585

In Tables 4, 5 and 6 we investigate the same problem for k = 3. Table 4 shows that the
convergence rates for the WG-FEM solution in the H2 and L2 norms are of order O(h2) and
O(h4). Tables 5 and 6 show the errors and orders in L2 and L∞ for eb and en , which are also
consistent with theoretical conclusions.

Example 6.2 Consider the biharmonic problem (1.1)–(1.3) in the square domain� = (0, 1)2.
It has the analytic solution u(x) = sin(πx) sin(πy), and the right hand side function f in
(1.1) is computed accordingly.

The numerical results are presented in Tables 7, 8, 9, 10, 11 and 12 which confirm the
theory developed in previous sections.

Acknowledgments We gratefully acknowledge Professor Junping Wang for presenting this problem and
giving us many valuable suggestions. The authors also thank the anonymous referees and editor for their
careful reading of the manuscript and their valuable comments to improvement the work.

7 Appendix: L2 Projection and Some Technical Results

In this section, we shall present some technical results for the L2 projection operators with
respect to the finite element space Vh . These results are useful for the error estimates of the
WG finite element method.

Lemma 7.1 ([39]) (Trace Inequality) Let Th be a partition of the domain � into polygons
in 2D or polyhedra in 3D. Assume that the partition Th satisfies the assumptions (A1), (A2),
and (A3) as specified in [39]. Then, there exists a constant C such that for any T ∈ Th and
edge/face e ∈ ∂T , we have
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‖θ‖p
e ≤ Ch−1

T (‖θ‖p
T + h p

T ‖∇θ‖p
T ), (7.1)

where θ ∈ H1(T ) is any function.

Lemma 7.2 ([39]) (Inverse Inequality) Let Th be a partition of the domain � into polygons
or polyhedra. Assume that Th satisfies all the assumptions (A1)–(A4) as specified in [39].
Then, there exists a constant C(n) such that

‖∇ϕ‖T ≤ C(n)h−1
T ‖ϕ‖T , ∀T ∈ Th (7.2)

for any piecewise polynomial ϕ of degree n on Th.

7.1 Approximation Properties

The following lemma provides some approximation properties for the projection operators
Qh and Qh .

Lemma 7.3 ([32]) Let Th be a finite element partition of � satisfying the shape regularity
assumptions. Then, for any 0 ≤ s ≤ 2 and 2 ≤ m ≤ k we have

∑
T∈Th

h2sT ‖u − Q0u‖2s,T ≤ Ch2(m+1)‖u‖2m+1, (7.3)
∑

T∈Th
h2sT ‖�u − Qh�u‖2s,T ≤ Ch2(m−1)‖u‖2m+1. (7.4)

Lemma 7.4 Let 2 ≤ m ≤ k, ω ∈ Hm+2(�). There exists a constant C such that the
following estimates hold true:

⎛
⎝ ∑

T∈Th

hT ‖�ω − Qh�ω‖2∂T
⎞
⎠

1
2

≤ Chm−1‖ω‖m+1, (7.5)

⎛
⎝ ∑

T∈Th

h3T ‖∇(�ω − Qh�ω)‖2∂T
⎞
⎠

1
2

≤ Chm−1(‖ω‖m+1 + hδm,2‖ω‖4), (7.6)

⎛
⎝ ∑

T∈Th

h−1
T ‖∇(Q0ω) · ne − Qb(∇ω · ne)‖2∂T

⎞
⎠

1
2

≤ Chm−1‖ω‖m+1, (7.7)

⎛
⎝ ∑

T∈Th

h−3
T ‖QbQ0ω − Qbω‖2∂T

⎞
⎠

1
2

≤ Chm−1‖ω‖m+1, (7.8)

⎛
⎝ ∑

T∈Th

‖∇(�ω) − Qb(∇(�ω))‖2∂T
⎞
⎠

1
2

≤ Chm− 3
2 ‖ω‖m+2. (7.9)

Here δi, j is the usual Kronecker’s delta with value 1 when i = j and value 0 otherwise.

Proof To derive (7.5), we use the trace inequality (7.1) and the estimate (7.4) to obtain
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∑
T∈Th

hT ‖�ω − Qh�ω‖2∂T

≤ C
∑
T∈Th

(
‖�ω − Qh�ω‖2T + h2T ‖∇ (�ω − Qh�ω) ‖2T

)

≤ Ch2m−2‖ω‖2m+1.

As to (7.6), we use the trace inequality (7.1) and the estimate (7.4) to obtain
∑
T∈Th

h3T ‖∇ (�ω − Qh�ω) ‖2∂T

≤ C
∑
T∈Th

(
h2T ‖∇(�ω − Qh�ω)‖2T + h4T ‖∇2(�ω − Qh�ω)‖2T

)

≤ Ch2m−2
(
‖ω‖2m+1 + h2δm,2‖ω‖24

)
.

As to (7.7), we have from the definition of Qb, the trace inequality (7.1), and the estimate
(7.3) that

∑
T∈Th

h−1
T ‖∇(Q0ω) · ne − Qb(∇ω · ne)‖2∂T

≤
∑
T∈Th

h−1
T ‖(∇Q0ω − ∇ω) · ne‖2∂T

≤ C
∑
T∈Th

(
h−2
T ‖∇Q0ω − ∇ω‖2T + ‖∇Q0ω − ∇ω‖21,T

)

≤ Ch2m−2‖ω‖2m+1.

Notice that Qb is a linear bounded operator, we use the definition of Qb and the trace
inequality (7.1) to obtain

∑
T∈Th

h−3
T ‖QbQ0ω − Qbω‖2∂T

≤
∑
T∈Th

(
h−4
T ‖Q0ω − ω‖2T + h−2

T ‖∇(Q0ω − ω)‖2T
)

≤ Ch2m−2‖ω‖2m+1.

To derive (7.9), we use the trace inequality (7.1) and the estimate (7.4) to obtain
∑
T∈Th

‖∇(�ω) − Qb(∇(�ω))‖2∂T

≤ C
∑
T∈Th

(
h−1
T ‖∇(�ω) − Qb(∇(�ω))‖2T + hT ‖∇(∇(�ω) − Qb(∇(�ω)))‖2T

)

≤ Ch2m−3‖ω‖2m+2.

This completes the proof of (7.9), and hence the lemma. �
7.2 Technical Inequalities

The goal here is to present some technical estimates useful for deriving error estimates for
the WG finite element scheme (3.5).
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Lemma 7.5 There exists a constant C such that, for any v = {v0, vb, vnne} ∈ Vh, the
following holds true

∑
T∈Th

‖�v0‖2T ≤ C |||v|||2. (7.10)

Proof From the identity (2.4) with φ = �v0 we have

‖�v0‖2T = (�wv,�v0)T − 〈Qbv0 − vb,∇(�v0) · n〉∂T + 〈(∇v0 − vnne) · n,�v0〉∂T .

Thus, using the Cauchy–Schwarz inequality, trace inequality, and the inverse inequality we
obtain

‖�v0‖2T ≤ ‖�wv‖T ‖�v0‖T + ‖Qbv0 − vb‖∂T ‖∇(�v0) · n‖∂T

+‖(∇v0 − vnne) · n‖∂T ‖�v0‖∂T

≤ C(‖�wv‖T ‖�v0‖T + h
− 1

2
T ‖Qbv0 − vb‖∂T ‖∇(�v0) · n‖T

+ h
− 1

2
T ‖(∇v0 − vnne) · n‖∂T ‖�v0‖T )

≤ C(‖�wv‖T ‖�v0‖T + h
− 3

2
T ‖Qbv0 − vb‖∂T ‖�v0‖T

+ h
− 1

2
T ‖(∇v0 − vnne) · n‖∂T ‖�v0‖T ).

Hence,

‖�v0‖2T ≤ C(‖�wv‖2T + h−3
T ‖Qbv0 − vb‖2∂T + h−1

T ‖(∇v0 − vnne) · n‖2∂T ),

which verifies the inequality (7.10). �
Lemma 7.6 ([37], Lemma 10.4) There exists a constant C such that, for any v ∈ V 0

h , we
have the following Poincaré inequality:

‖v0‖2 ≤ C

⎛
⎝ ∑

T∈Th

‖∇v0‖2T + h−1
∑
T∈Th

‖Qbv0 − vb‖2∂T
⎞
⎠. (7.11)

The following lemma provides an estimate for the term
∑

T∈Th
‖∇v0‖2T . Note that v0 is a

piecewise polynomial of degree k ≥ 2. Thus, Lemma 7.7 is concerned only with piecewise
polynomials; no boundary condition is necessary.

Lemma 7.7 Let ϕ be any piecewise polynomial of degree k ≥ 2 on each element T . Denote
by ∇hϕ and �hϕ the gradient and Laplacian of ϕ taken on each element. Then, for any
ε > 0, there exists a constant C such that

‖∇hϕ‖2 ≤ ε‖ϕ‖2 + Cε−1‖�hϕ‖2

+Cε−1h−1

⎛
⎝∑

e∈Eh

∫

e

(
∂ϕL

∂nL
+ ∂ϕR

∂nR

)2

ds

⎞
⎠ (7.12)

+Ch−1

⎛
⎝∑

e∈Eh

∫

e
(QbϕR − QbϕL)2ds

⎞
⎠ .

Here ϕL is the trace of ϕ on e as seen from the “left” or the opposite direction of ne. If e is
a boundary edge, then the trace from the outside of � is defined as zero.
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Proof On each element T , we have
∫

T
|∇ϕ|2dT = −

∫

T
ϕ�ϕ dT +

∫

∂T

∂ϕ

∂n
ϕ ds

= −
∫

T
ϕ�ϕdT +

∫

∂T

∂ϕ

∂n
Qbϕ ds.

Summing over all T ∈ Th , we have

‖∇hϕ‖2 = −
∫

�

ϕ�hϕdT +
∑
T∈Th

∫

∂T

∂ϕ

∂n
Qbϕ ds. (7.13)

Using the identity aLbL + aRbR = (aL + aR)bL + aR(bR − bL) we obtain

∑
T∈Th

∫

∂T

∂ϕ

∂n
Qbϕ ds =

∑
e∈Eh

∫

e

(
∂ϕL

∂nL
QbϕL + ∂ϕR

∂nR
QbϕR

)
ds

=
∑
e∈Eh

∫

e

(
∂ϕL

∂nL
+ ∂ϕR

∂nR

)
QbϕLds

+
∑
e∈Eh

∫

e

∂ϕR

∂nR
(QbϕR − QbϕL)ds.

Thus, from the Cauchy–Schwarz inequality we have

∣∣∣∣∣∣
∑
T∈Th

∫

∂T

∂ϕ

∂n
Qbϕ ds

∣∣∣∣∣∣
≤

⎛
⎝∑

e∈Eh

∫

e

(
∂ϕL

∂nL
+ ∂ϕR

∂nR

)2

ds

⎞
⎠

1
2
⎛
⎝∑

e∈Eh

∫

e
|QbϕL |2 ds

⎞
⎠

1
2

+
⎛
⎝∑

e∈Eh

∫

e

∣∣∣∣
∂ϕR

∂nR

∣∣∣∣
2

ds

⎞
⎠

1
2
⎛
⎝∑

e∈Eh

∫

e
(QbϕR − QbϕL)2ds

⎞
⎠

1
2

.

(7.14)

Next, we use the trace inequality (7.1) and the inverse inequality (7.2) to obtain
∫

e
|QbϕL |2 ds ≤

∫

e
|ϕL |2 ds

≤ C

[
h−1

∫

T
ϕ2dT + h

∫

T
|∇ϕ|2dT

]

≤ Ch−1
∫

T
ϕ2dT, (7.15)

and

∫

e

∣∣∣∣
∂ϕR

∂nR

∣∣∣∣
2

ds ≤ C

[
h−1

∫

T
|∇ϕ|2dT + h

∫

T
|∇2ϕ|2dT

]

≤ Ch−1
∫

T
|∇ϕ|2dT . (7.16)
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Substituting (7.15) and (7.16) into (7.14) yields

∣∣∣∣∣∣
∑
T∈Th

∫

∂T

∂ϕ

∂n
Qbϕ ds

∣∣∣∣∣∣
≤ Ch− 1

2 ‖ϕ‖
⎛
⎝∑

e∈Eh

∫

e

(
∂ϕL

∂nL
+ ∂ϕR

∂nR

)2

ds

⎞
⎠

1
2

+Ch− 1
2 ‖∇hϕ‖

⎛
⎝∑

e∈Eh

∫

e
(QbϕR − QbϕL)2ds

⎞
⎠

1
2

. (7.17)

Substituting (7.17) into (7.13) gives

‖∇hϕ‖2 ≤ ‖�hϕ‖ ‖ϕ‖ + Ch− 1
2 ‖ϕ‖

⎛
⎝∑

e∈Eh

∫

e

(
∂ϕL

∂nL
+ ∂ϕR

∂nR

)2

ds

⎞
⎠

1
2

+Ch− 1
2 ‖∇hϕ‖

⎛
⎝∑

e∈Eh

∫

e
(QbϕR − QbϕL)2ds

⎞
⎠

1
2

,

which, through an use of Young’s inequality, implies the desired estimate (7.12). This com-
pletes the proof. �
Lemma 7.8 There exists a constant C such that for any v = {v0, vb, vnne} ∈ V 0

h the
following Poincaré type inequality holds true

‖∇hv0‖ ≤ C |||v|||. (7.18)

In addition, we have the following estimate

‖∇hv0‖ ≤ λh−1‖v‖ + Ch|||v|||, (7.19)

where λ is a positive constant.

Proof The first component v0 is a piecewise polynomial of degree k ≥ 2. Using the estimate
(7.12) in Lemma 7.7 we have

‖∇hv0‖2 ≤ ε‖v‖2 + Cε−1‖�hv0‖2

+Cε−1h−1

⎛
⎝∑

e∈Eh

∫

e

(
∂v0L

∂nL
+ ∂v0R

∂nR

)2

ds

⎞
⎠

+Ch−1

⎛
⎝∑

e∈Eh

∫

e
(Qbv0R − Qbv0L)2ds

⎞
⎠. (7.20)

By inserting vnne · n in each integrand we obtain

∑
e∈Eh

∫

e

(
∂v0L

∂nL
+ ∂v0R

∂nR

)2

ds ≤ C
∑
T∈Th

‖∇v0 · ne − vn‖2∂T .

Similarly, by inserting vb

∑
e∈Eh

∫

e
(Qbv0R − Qbv0L)2ds ≤ C

∑
T∈Th

‖Qbv0 − vb‖2∂T .
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Substituting the above two inequalities into (7.20) yields

‖∇hv0‖2 ≤ ε‖v‖2 + Cε−1‖�hv0‖2 + Ch−1
∑
T∈Th

‖Qbv0 − vb‖2∂T

+Cε−1h−1
∑
T∈Th

‖∇v0 · ne − vn‖2∂T . (7.21)

Using the Poincaré inequality (7.11) and the estimate (7.10) we arrive at

‖∇hv0‖2 ≤ εC‖∇hv‖2 + Cε−1|||v|||2,
which leads to the inequality (7.18) for sufficiently small ε.

Finally, by setting ε = λh−2 in (7.21) we arrive at

‖∇hv0‖2 ≤ λh−2‖v‖2 + Ch2|||v|||2,
where λ is a positive constant. This verifies the inequality (7.19), and hence completes the
proof of the lemma. �

Lemma 7.9 There exists a constant C such that for any v = {v0, vb, vnne} ∈ V 0
h one has

∑
T∈Th

∫

∂T
(v0 − Qbv0)

2ds ≤ Ch|||v|||2 (7.22)

and

∑
T∈Th

∫

∂T
(v0 − Qbv0)

2ds ≤ Cλh−1‖v‖2 + Ch3|||v|||2. (7.23)

Proof From the trace inequality (7.1) and the inverse inequality (7.2), we have
∫

∂T
(v0 − Qbv0)

2ds ≤ Ch
∫

T
|∇v0|2dT .

Summing over all T ∈ Th yields

∑
T∈Th

∫

∂T
(v0 − Qbv0)

2ds ≤ Ch
∑
T∈Th

∫

T
|∇v0|2dT, (7.24)

which, combined with (7.18) and (7.19), completes the proof of the lemma. �

Remark 7.1 The estimate (7.22) in Lemma 7.9 is sufficient for us to derive an optimal order
error estimate for the WG finite element solution arising from (3.5). But the estimate (7.22)
is sub-optimal in terms of the mesh parameter h. We conjecture that the following inequality
holds true

∑
T∈Th

∫

∂T
(v0 − Qbv0)

2ds ≤ Ch3 |||v|||2. (7.25)

However, with the current mathematical approach, we are unable to verify the validity of
(7.25). This estimate is then left to interested readers or researchers as an open problem.
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