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Abstract In this paper, we study a posteriori estimates for different numerical methods
of diffusion problems with discontinuous coefficients on anisotropic meshes, in particular,
which can be applied to vertex-centered and cell-centered finite volume, finite difference and
piecewise linear finite element methods. Based on the stretching ratios of the mesh elements,
we improve a posteriori estimates developed by Vohralík (J Sci Comput 46:397–438, 2011),
which are reliable and efficient on isotropic meshes but fail on anisotropic ones (see the
numerical results of the paper). Without the assumption that the meshes are shape-regular,
the resulting mesh-dependent error estimators are shown to be reliable and efficient with
respect to the error measured either as the energy norm of the difference between the exact
and approximate solutions, or as a dual norm of the residual, as long as the anisotropic mesh
sufficiently reflects the anisotropy of the solution. In other words, they are equivalent to the
estimates of Vohralík in the case of isotropic meshes and proved to be robust on anisotropic
meshes as well. Based on H(div)-conforming, locally conservative flux reconstruction, we
suggest two different constructions of the equilibrated fluxwith the anisotropy ofmesh,which
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is essential to the robustness of our estimates on anisotropic meshes. Numerical experiments
in 2D confirm that our estimates are reliable and efficient on anisotropic meshes.

Keywords A posteriori error estimates · Anisotropic meshes · Finite volume method ·
Finite difference method · Finite element method · Discontinuous coefficients

Mathematics Subject Classification 65N15 · 65N30

1 Introduction

In this paper, we consider the model diffusion problem with the discontinuous coefficient

{−∇ · (a∇u) = f, in Ω,

u = 0, on ∂Ω,
(1.1)

whereΩ ⊂ R
d (d = 2, 3) is a polygonal (polyhedral) domain (open, bounded, and connected

set), a ∈ L∞(Ω) is a scalar diffusion coefficient (a > 0), and f ∈ L2(Ω) is a source term.
The purpose of this paper is to derive a unified framework for a posteriori error estimates for
problem (1.1) discretized by different numericalmethods on anisotropicmeshes, in particular,
which is applied to vertex-centered finite volume, cell-centered finite volume, finite difference
and piecewise linear finite element methods.

There is a well-developed literature on a posteriori error estimation for isotropic finite
element meshes. We refer to the overview textbooks by Verfürth [33], Ainsworth and Oden
[4], and Repin [31]. Moreover, under the so-called monotonicity assumption on the discon-
tinuous coefficient a, robust estimates with respect to a have been derived by Dörfler and
Wilderotter [16], Bernardi and Verfürth [9], Petzoldt [28], Ainsworth [3], Chen and Dai [15],
or Cai and Zhang [11]. These discussions on robustness of error estimates are all done on
isotropic meshes. For the summary information on these works, see [37]. For anisotropic
meshes, based on the introduction of an alignment measure, the theory of error estimation
is much less developed but has attracted some attention. Some types of a posteriori error
estimation methods have already been generalized for anisotropic meshes by the contri-
butions from Kunert et al., such as residual error estimate, Dirichlet local problem error
estimate and Zienkiewicz-Zhu error estimate, see, e.g., [22–26] and the citations therein.
In addition, Grosman is also devoted to a posteriori error estimates on anisotropic meshes,
including hierarchical error estimator [20] and the equilibrated residual method [21]. Let us
finally mention the approach by Picasso [29] who derived an anisotropic error estimator that
depends on ∇(u − uh) where ∇u is replaced in practice by a recovered gradient ∇Ru when
applied to anisotropic adaptive refinement. It has been noted by Apel et al. [6] that the align-
ment measure can be controlled to drive anisotropic adaptive refinement in the same way.
However, the discussion on robustness of error estimates with respect to the discontinuous
coefficient a on anisotropic meshes is not mentioned.

For the finite volume method on isotropic meshes, the literature about a posteriori error
estimation is less voluminous, cf. e.g. [1,27]. Recently, Afif et al. [2] have developed a
posteriori error estimates for the vertex-centered finite volumemethod on anisotropic meshes
for the singularly perturbed reaction-diffusion problem, where a residual type error estimator
is proposed and analysed.

A new family of error estimates was recently established based onH(div)-conforming flux
reconstruction for various numerical methods by Vohralík et al., cf. [37] and the citations
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therein. These estimates are explicitly and easily computable, and moreover completely
robust with respect to the discontinuous coefficient a in problem (1.1). The ideas go back
to the Prager-Synge equality [30]. However, the estimates of Vohralík et al. can’t be applied
to the anisotropic meshes due to a (potentially unbounded) factor appearing in the lower
bound. This factor is O(1) on isotropic meshes, but it can be of size of the maximum aspect
ratio on anisotropic meshes. Furthermore, it is here shown that, these estimates developed
by Vohralík [37] fail on anisotropic meshes, see the numerical experiments in Sect. 6.1.1.

In this paper, we propose a modification for these estimates of Vohralík in [37], which
leads to robust error estimators with respect to the discontinuous coefficient a on anisotropic
meshes. Our error estimators are related to the anisotropy of the meshes, so the H(div)-
conforming flux reconstruction must be able to reflect this point. Up to now, no comparable
result is known to the authors. The upper error bound corresponding to the modification
contains an alignment measure which is in accordance with the results of Kunert [22]. We
are able to achieve reliable and efficient a posteriori error estimates on anisotropic meshes
in two different ways (using the energy norm and dual norm). As stated in [37], the energy
norm error estimates need the harmonic averaging to be used in the scheme definition, while
simultaneously aligning the discontinuities of the diffusion coefficient a with a dual mesh
formed around vertices. It is based on the observation of [18] that harmonic weighting can
insure robustness in a posteriori error estimates; the dual norm error estimates apply to any
method mentioned in this paper and require no alignment of the discontinuities and no use
of particular averages, where we need to introduce a (not local or locally computable) dual
norm of the residual. Such an approach has been pursued by Angermann [5], Verfürth [34],
Chaillou and Suri [12,13], or El Alaoui et al. [17] for other different problems.

In addition, compared with the residual error estimator [23] and Zienkiewicz-Zhu esti-
mator [25] on anisotropic meshes, our estimators keep the same advantages as the isotropic
versions derived in [37]. For the details, see [37, Remarks 4.10 and 4.12].

The rest of this paper is organised as follows. We specify our notation and give some
preliminary results in Sect. 2. In Sect. 3, we give a posteriori error estimates with the mesh
anisotropy under an abstract framework both in the energy and dual norms. Then we discuss
two different ways of constructing an equilibrated flux in the lowest-order Raviart–Thomas
space on the dual mesh associated with the original anisotropic simplicial mesh. The proofs
of the (local) efficiency and robustness are given in Sect. 4. Sections 3 and 4 present the a
posteriori error estimates in a quite general setting of conforming approximations without
requiring any particular numerical scheme. In Sect. 5, we briefly discuss the application of
the previous results to different numerical methods. A series of numerical experiments are
presented in Sect. 6. Finally, some conclusions are given in Sect. 7.

2 Preliminaries

In this section, we give the meshes description, all notation, anisotropic mesh requirements,
recall some important equivalence relations on anisotropic meshes, and describe the contin-
uous problem we should work with.

2.1 Notation

Let {Th} be a set of triangulations which for all h > 0 consist of closed simplices (triangles
for d = 2 and tetrahedrons for d = 3) such that Ω = ⋃

K∈Th
K , and which are conforming,

i.e., if K , L ∈ Th, K �= L , then K ∩ L is either an empty set or a common vertex, edge,
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Fig. 1 Original simplicial mesh
Th , the associated dual mesh Dh ,
and the fine simplicial mesh Sh

Th

Dh

Sh

or face of K and L . We denote by Eh the set of all sides of Th , by E int
h the set of interior, by

Eext
h the set of boundary, and by EK the set of all the sides of any element K ∈ Th . We also

denote by Vh the set of all vertices of Th . Define for V ∈ Vh , TV := {L ∈ Th; L ∩ V �= ∅}.
We shall next work with the dual partitions Dh of Ω such that Ω = ⋃

D∈Dh
D and such

that each V ∈ Vh is in exactly one dual volume DV ∈ Dh . The notation VD stands inversely
for the vertex associatedwith a given D ∈ Dh . For d = 2, the dual volume DV associatedwith
V is the polygon which is obtained by connecting, for all triangles K ∈ TV , the barycentre
of K with the midpoints of its edges. An example of such a dual volume is shown in Fig. 1.
For d = 3, the dual volume DV is obtained by connecting the barycentre of each tetrahedron
K ∈ TV with the barycentres of its faces and edges. We denote by Dint

h (Dext
h ) the set of all

the dual volumes associated with the interior vertices (boundary vertices).
In addition, we need to introduce a second simplicial triangulation Sh of Ω such that

Sh := ⋃
D∈Dh

SD , where the local triangulation SD of D ∈ Dh is given by connecting the
associated vertex VD with all the vertices of the dual volume D, see Fig. 1 for d = 2. We
will use the notation Gh for all sides of Sh and Gint

h (Gext
h ) for all interior (boundary) sides of

Sh . The notation Gint
D stands for all interior sides of SD , Gext

D for all boundary sides of SD ,
and GD for Gint

D ∪ Gext
D .

Next, for K ∈ Th , nK (nσ,K ) always denotes its exterior unit normal vector (with respect
to the side σ ∈ EK ); we shall also use the notation nσ for a unit normal vector of a side
σ ∈ Eh , whose orientation is chosen arbitrarily but fixed for interior sides and coinciding
with the exterior normal of Ω for boundary sides. For a function ϕ and a side σK ,L ∈ E int

h
shared by K , L ∈ Th such that nσ points from K to L , we shall use the abbreviated notation
σ := σK ,L and define the jump operator [[·]]σ through the side σ by

[[ϕ]]σ := (ϕ|K )|σ − (ϕ|L)|σ . (2.1)

For any σ ∈ Eext
h , set [[ϕ]]σ := ϕ|σ . We associate with each K ∈ Th and each σ ∈ EK a

weight ωK ,σ such that

⎧⎨
⎩
0 ≤ ωK ,σ ≤ 1, ∀K ∈ Th, ∀σ ∈ EK ,

ωK ,σ + ωL ,σ = 1, ∀σ = σK ,L ∈ E int
h ,

ωK ,σ = 1, ∀σ ∈ Eext
h and σ ∈ EK , K ∈ Th .

(2.2)

For σ = σK ,L ∈ E int
h , the weighted average operator {{·}}ω is defined by

{{ϕ}}ω := ωK ,σ (ϕ|K )|σ + ωL ,σ (ϕ|L)|σ , (2.3)
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whereas for σ ∈ Eext
h , {{ϕ}}ω := ϕ|σ . Recall that we have denoted by a the diffusion

coefficient. Two basic choices for the weights in {{a}}ω on a side σ = σK ,L ∈ E int
h are

ωK ,σ = ωL ,σ = 1

2
, (2.4)

which corresponds to the arithmetic averaging, and

ωK ,σ = aL
aK + aL

, ωL ,σ = aK
aK + aL

, (2.5)

which corresponds to the harmonic averaging. In contrast to the arithmetic averaging (2.4),
the harmonic averaging (2.5) can lead to robust a posteriori error estimates for the error
measured in the energy norm, which we will show below. We use the abbreviated notation
{{ϕ}} = {{ϕ}}ω when ωK ,σ = ωL ,σ = 1

2 and the same type of notation also for the meshes
Dh and Sh .

We denote by (·, ·)S the L2-scalar product on S and by ‖ · ‖S the associated norm where
S ⊂ Ω; when S = Ω , the subscript will be omitted. Let |S| stand for the Lebesgue measure
of S, |σ | the (d − 1)-dimensional Lebesgue measure of σ ⊂ R

d−1, and in particular, |s|
the length of a segment s. We denote by H1(S) the Sobolev space of functions with square-
integrable weak derivatives and by H1

0 (S) its subspace of functions with vanishing traces
on ∂S. In addition, H(div, S) is the space of vector functions with square-integrable weak
divergences, i.e., H(div, S) = {q ∈ L2(S); ∇ · q ∈ L2(S)}, and 〈·, ·〉∂S stands for the
appropriate duality pairing on ∂S.

Let X0
h be a subspace of H1

0 (Ω) which consists of continuous piecewise affine functions
on the primal simplicial mesh Th with vanishing value on the boundary of Ω , i.e., X0

h :=
{vh ∈ H1

0 (Ω); vh |K ∈ P1(K ), K ∈ Th}, where P1(K ) is the space of linear polynomials on
K ∈ Th .

2.2 Anisotropic Meshes

The previous exposition is independent of the element shape. In this subsection, we describe
anisotropic elements in detail, present their notation, basic properties, some weak mesh
assumptions and equivalences on anisotropic meshes. For simplicity, we use the shorthand
notation x � y or x ∼ y instead of x ≤ cy or c1x ≤ y ≤ c2x (with constants independent
of x, y and the meshes), respectively.

Start with an arbitrary (anisotropic) tetrahedron K ∈ Th for d = 3. Enumerate its
vertices such that P0P1 is the longest edge, meas2(�P0P1P2) ≥meas2(�P0P1P3), and
meas1(P1P2) ≥ meas1(P0P2). Additionally define three pairwise orthogonal vectors pi,K
having the length hi,K := |pi,K |, see Fig. 2. Notice that h1,K ≥ h2,K ≥ h3,K , set
hmin,K := h3,K , hmax,K := h1,K and for σ ∈ EK , let

hσ,K := d|K |
|σ | ,

be the length of the height over the face σ . The three main anisotropic directions pi,K play
an important role in a posterior error estimation on anisotropic meshes. Define the matrices
AK ,CK ∈ R

3×3 by

AK := (
−→
P0P1,

−→
P0P2,

−→
P0P3) and CK := (p1,K ,p2,K ,p3,K ).

Then AK and CK can be considered as the transformation matrices which implicitly define
the so-called standard tetrahedron K̄ := A−1

K (K − P0) and the reference tetrahedron
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P0 P1

P3

P2p3,K

p1,K
p2,K

Fig. 2 Notation of tetrahedron K

P̄0 P̄1

P̄2

P̄3

P0 P1

P3

P2

Fig. 3 Standard tetrahedron K̄ (left) and reference tetrahedron K̂ (right)

K̂ := C−1
K (K − P0), respectively, see Fig. 3. Variables that are related to the standard tetra-

hedron K̄ and the reference tetrahedron K̂ are referred to with a bar and a hat, respectively,
e.g., ∇̄, v̂. The determinants of both matrices are equal, i.e., | det AK | = | detCK | = 6|K |,
and the transformed derivatives satisfy ∇̄ = A�

K∇ and ∇̂ = C�
K∇, respectively. Note in

particular that the standard tetrahedron K̄ and the reference tetrahedron K̂ are all of size
O(1). Hence, we have

‖C−1
K AK ‖ ∼ ‖A−1

K CK ‖ ∼ 1. (2.6)

For more details on both transformation matrices, refer to [23].
For the case d = 2, the notation is similar. The enumeration of the triangle K is as in the

bottom triangle �P0P1P2 of Fig. 2. Furthermore hmin,K := h2,K and AK ,CK become 2×2
matrices.

For a sub-element L ∈ Sh , analogously we introduce the anisotropic directions pi,L , the
matrix CL , and the minimal dimension hmin,L .

The following lemma states that the element K and the sub-element L ⊂ K have similar
anisotropic directions pi,K and pi,L . Mathematically this is expressed as a certain norm
equivalence. The proof can be found in [2].

Lemma 2.1 (Equivalence of CK and CL ) For any sub-element L ⊂ K, one has

|C�
K y|

Rd×d ∼ |C�
L y|

Rd×d , ∀y ∈ R
d .
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In addition to the usual conformity conditions of the mesh, the primal mesh Th should
satisfy the following anisotropic mesh requirements

1. For any given vertex V ∈ Vh , the number of elements contained in TV is bounded
uniformly.

2. The dimensions of adjacent elements must not change rapidly, i.e.,

hi,K ∼ hi,L , K ∩ L �= ∅, i = 1 . . . d.

At some places of our exposition, it is advantageous to replace the minimal anisotropic
dimension hmin,K by certain average values. For a dual volume DV with respect to the vertex
V ∈ Vh , thus define

hmin,DV :=
∑

K∈TV
hmin,K∑

K∈TV
1

.

For the common side σ of two elements K and L , set

hσ := hσ,K + hσ,L

2
, hmin,σ := hmin,K + hmin,L

2
.

The advantage is that they are no longer related to K or L but to σ . The definitions are
modified in the obvious way for boundary sides.

Note that the original term hmin,K is of comparable size as the average values since the
dimensions of adjacent elements do not change rapidly, see above. More precisely, we have

hmin,K ∼ hmin,DV ∼ hmin,L ∼ hmin,σ ∼ hmin,ρ, (2.7)

where V ∈ Vh, V ∩ K �= ∅, K ∈ Th, L ∈ SDV , σ ⊂ EK and ρ ⊂ EL .

2.3 Continuous Problem

For problem (1.1), we define a bilinear form B by

B(u, v) := (a∇u,∇v), u ∈ H1
0 (Ω), v ∈ H1

0 (Ω).

The weak formulation of problem (1.1) is to find u ∈ H1
0 (Ω) such that

B(u, v) = ( f, v), ∀v ∈ H1
0 (Ω). (2.8)

The associated energy norm is given by

‖|v ‖|:= B(v, v)
1
2 = ‖a 1

2 ∇v‖, v ∈ H1
0 (Ω), (2.9)

and dual norm (H−1-norm of the residual) given by

‖|v ‖|#:= sup
ϕ∈H1

0 (Ω)

B(v, ϕ)

‖∇ϕ‖ , v ∈ H1
0 (Ω). (2.10)

The energy and dual norms are closely related to each other, ref. [37] for the details. We will
present our a posteriori error estimates in both the energy norm and the dual one.
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2.4 Alignment Measure

From a heuristic point of view, one should stretch the elements in that direction where the
(directional) derivative of the solution shows little change. The better the primal anisotropic
mesh Th is alignedwith the anisotropy of the solution, themore accurate onewould expect the
error estimates to be. In order to quantify this alignment, we need to introduce the so-called
alignment measures m1(v, Th) and m2(v, Th) with respect to the energy and dual norms,
respectively, which originate from [22,23].

Definition 2.1 (Alignment measures) Let v ∈ H1(Ω), and {Th} be a family of triangulations
of Ω . Define the energy alignment measure m1 : H1(Ω) × {Th} → R by

m1(v, Th) :=
( ∑
K∈Th

h−2
min,K ‖a 1

2C�
K∇v‖2K

)1/2/ ‖|v ‖|, (2.11)

and dual alignment measure m2 : H1(Ω) × {Th} → R by

m2(v, Th) :=
( ∑
K∈Th

h−2
min,K ‖C�

K∇v‖2K
)1/2/‖∇v‖. (2.12)

The alignment measures satisfy the following property

1 ≤ mi (v, Th) � max
K∈Th

hmax,K

hmin,K
.

The above property implies that a mesh Th which is well aligned with an anisotropic function
v, results in small alignment measures. In practice, one almost always obtainsmi (v, Th) ∼ 1
for ’sensible’ anisotropic meshes, i.e., the alignment measures are no obstacle for reliable
error estimation. We refer to [23] for more details.

3 A Posteriori Error Estimates for Conforming Approximations

In this section, we derive a posteriori error estimates valid for arbitrary conforming approxi-
mation uh ∈ H1

0 (Ω), with the anisotropy of the meshes. Note that the results of this section
are presented generally, without a notion of any numerical scheme. For our a posteriori
error estimates of Theorem 3.2 or Corollary 3.2, we only require Assumption 3.1 which is
introduced by Vohralík in [37]. Two different constructions of the equilibrated flux th are
presented under Assumption 3.1, respectively.

In order to present the results of this section as generally as possible, we suppose that
the domain Ω is partitioned by a mesh D∗

h , consisting in general of elements in the interior

of the domain, Dint,∗
h , and elements near the boundary, Dext,∗

h (|∂Ω ∩ ∂D| �= 0 for all
D ∈ Dext,∗

h ). As shown in [37], The meshes D∗
h will differ in different types of construction

of the equilibrated flux th , and here two main possibilities exist, i.e., Dint,∗
h = Dint

h and

Dext,∗
h = Dext

h ; or Dint,∗
h = Sh and Dext,∗

h = ∅.
We shall suppose that the coefficient a(x) is a piecewise constant on the meshes Dh (or

Th). This assumption corresponds to a situation where there exist subdomains of the domain
Ω where a is constant and where the meshesDh (or Th) are conforming with respect to these
subdomains. We denote by amin,K and amax,K for all K ∈ Th the best positive constants such
that amin,K ≤ a(x) ≤ amax,K for all x ∈ K . Similar notation will be used also for D ∈ Dh ,
or else appropriate domains.
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3.1 Anisotropic Interpolation Error Estimates

In order to obtain a posteriori error estimates on anisotropic meshes, we require a global,
D∗
h-piecewise constant interpolation operator I : L2(Ω) → L2(Ω) which is defined by

Iv :=
{ |D|−1(v, 1)D, D ∈ Dint,∗

h ,

0, D ∈ Dext,∗
h .

(3.1)

Lemma 3.1 (Local interpolation error bound for I) Let v ∈ H1
0 (Ω) and D ∈ D∗

h. Then

‖v − Iv‖D � ‖C�
D∇v‖D, (3.2)

where CD|K := CK , ∀K ∈ SD.

Proof ForD∗
h = Dh , the proof is given in [2]; For the other case, by the affine transformation

and Poincaré/Friedrichs inequality (cf. [35]), the proof is standard, ref. [23] for the details.

By using the equivalence relations on anisotropic meshes, i.e., Lemma 2.1 and (2.7), we
proceed along the same lines as the proof of [2, Lemma 5.3], and easily obtain the global
interpolation error estimates.

Corollary 3.1 (Global interpolation error bounds for I) Let v ∈ H1
0 (Ω), then

∑
D∈D∗

h

amin,Dh
−2
min,D‖v − Iv‖2D � m1(v, Th)2 ‖|v ‖|2, (3.3)

∑
D∈D∗

h

h−2
min,D‖v − Iv‖2D � m2(v, Th)2‖∇v‖2. (3.4)

3.2 A Posteriori Error Estimates on Anisotropic Meshes

In order to proceed without specifying any particular numerical method, we will make an
assumption on the equilibrated flux th , which is introduced by Vohralík in [37].

Assumption 3.1 (Equilibrated flux) Suppose that there is a flux th ∈ H(div,Ω), arbitrary
but such that

(∇ · th, 1)D = ( f, 1)D, ∀D ∈ Dint,∗
h .

With the above preparations, we can now present our mesh-dependent error estimators.

Theorem 3.2 (Energy norm a posteriori error estimate)Let u be theweak solution of problem
(1.1) and uh ∈ H1

0 (Ω) be arbitrary. Let Assumption 3.1 hold. Then

‖|u − uh ‖|� m1(u − uh, Th)
{ ∑

D∈D∗
h

(η2R,D + η2DF,D)
}1/2

, (3.5)

where the diffusive flux estimator ηDF,D is given by

ηDF,D := hmin,D‖C−1
D (a

1
2 ∇uh + a− 1

2 th)‖D, D ∈ D∗
h, (3.6)

and the residual estimator ηR,D by

ηR,D := a
− 1

2
min,Dhmin,D‖ f − ∇ · th‖D, D ∈ D∗

h . (3.7)
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Proof Set ϕ := u − uh ∈ H1
0 (Ω). Similar to the proof of [37, Theorem 4.1], for an arbitrary

t ∈ H(div,Ω), we have

B(u − uh, ϕ) ≤ |( f − ∇ · t, ϕ)| + |(a∇uh + t,∇ϕ)|. (3.8)

Set t = th . Using Assumption 3.1, the interpolation error estimate (3.3), and the definition
(2.9) of the energy norm, we have

|( f − ∇ · th, ϕ)| = |( f − ∇ · th, ϕ − Iϕ)|
�

( ∑
D∈D∗

h

η2R,D

)1/2( ∑
D∈D∗

h

amin,Dh
−2
min,D‖ϕ − Iϕ‖2D

)1/2

� m1(ϕ, Th) ‖|ϕ ‖|
( ∑

D∈D∗
h

η2R,D

)1/2
. (3.9)

For the second term in (3.8), according to Lemma 2.1 and (2.7) it holds that

|(a∇uh + th,∇ϕ)| = |
∑
D∈D∗

h

(C−1
D (a

1
2 ∇uh + a− 1

2 th), a
1
2C�

D∇ϕ)|

� m1(ϕ, Th) ‖|ϕ ‖|
( ∑

D∈D∗
h

η2DF,D

)1/2
. (3.10)

The proof is complete.

The proof of the following corollary is completely similar.

Corollary 3.2 (Dual norm a posteriori error estimate) Let the assumptions of Theorem 3.2
be verified. Then

‖|u − uh ‖|#� m2(u − uh, Th)
{ ∑

D∈D∗
h

(η2R,D + η2DF,D)
}1/2

, (3.11)

where the diffusive flux estimator ηDF,D is given by

ηDF,D := hmin,D‖C−1
D (a∇uh + th)‖D, D ∈ D∗

h, (3.12)

and the residual estimator ηR,D by

ηR,D := hmin,D‖ f − ∇ · th‖D, D ∈ D∗
h . (3.13)

Remark 3.1 It is possible that the alignmentmeasuresm1(u−uh, Th) andm2(u−uh, Th) can
be approximated numerically in an efficientway, e.g., by replacing∇u by a recovered gradient
∇Ruh of uh such as an approximate L2-projection of ∇uh onto the space of continuous
piecewise linear functions. See numerical results in Tables 2, 3, 5 and 6 in Sect. 6 and
reference [23] for the discussion of the alignment measure, where the approximation of
m1(u − uh, Th) is denoted by mR

1 (u − uh, Th).

According to Theorem 3.2 and Corollary 3.2, we need to construct a (finite-dimensional)
equilibrated flux th ∈ H(div,Ω) such that Assumption 3.1 holds. More precisely, we will
define it in the lowest-orderRaviart–Thomas–Nédélec spaceRTN(Sh)over thefine simplicial
mesh Sh introduced by Sect. 2.1, following the ideas presented in [37]. For more details on
the space RTN(Sh), we refer to Brezzi and Fortin [10] or Roberts and Thomas [32].
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3.3 Constructions of the Equilibrated Flux th

Wehere show twodifferentways of constructing an equilibratedflux th satisfyingAssumption
3.1. in order to continue our work as generally as possible, we will henceforth make an
additional assumption on the numerical solution, introduced also by Vohralík in [37].

Assumption 3.3 (General local conservativity of the numerical scheme) Assume that uh ∈
X0
h and that, for Dh defined in Sect. 2.1, there holds

− 〈{{a∇uh · nD}}ω, 1〉∂D = ( f, 1)D, ∀D ∈ Dint
h . (3.14)

3.3.1 Construction of th by Direct Prescription

Following [37], the simplest construction of th ∈ RTN(Sh) is given by

th · nσ := −{{a∇uh · nσ }}ω, ∀σ ∈ Gh, (3.15)

that is, we merely prescribe the degrees of freedom of th by a simple (weighted) average of
the normal components of the discontinuous approximate flux ∇uh over those sides of the
fine simplicial mesh Sh . Note that, according to (3.15) and the Green theorem, Assumption
3.1 is immediately obtained from Assumption 3.3. We here takeD∗

h = Dh , i.e.,Dint,∗
h = Dint

h

and Dext,∗
h = Dext

h .
This construction of th has been fully discussed by Vohralík in [37]. In general, this

construction may lead to the fact that the residual estimators ηR,D are not higher-order
terms as is pointed out in [18,37] and may dominate the diffusive flux ones ηDF,D , since
Assumption 3.3 in this case only holds on the dual volumes D ∈ Dint

h and not on each
K ∈ Sh . As a consequence, the effectivity index may not approach the optimal value of
one (see the numerical experiments in Sect. 7.2.1 of [37]). This inconvenience also exists
on anisotropic meshes (see the numerical experiments in Sect. 6). The approach of the next
subsection should improve this drawback.

3.3.2 Construction of th by Mixed Finite Element Approximations of Local
Neumann/Dirichlet Problems

We set, for a given dual volume D ∈ Dh ,

RTNN(SD) := {qh ∈ RTN(SD); qh · nσ = −{{a∇uh · nσ }}ω, ∀σ ∈ Gint
h ∩ ∂D}, (3.16)

which is a space of Raviart–Thomas–Nédélec vector functions over the simplicial submesh
SD of the dual volume D whose normal fluxes are given by −{{a∇uh · nσ }}ω on ∂D\∂Ω .
As in the previous subsection (also see [37]), the same process implies that Assumption 3.1
holds with Dint,∗

h = Dint
h . More than that, as we will see below, one of the properties of the

approach of this subsection is that we will eventually define such th that Assumption 3.1 will
hold more specifically with Dint,∗

h = Sh and Dext,∗
h = ∅.

Let fh be given by ( f, 1)K /|K | for all K ∈ Sh . In order to reflect the mesh dependence
of the error estimators, we define th ∈ RTN(Sh) by solving on each D ∈ Dh the following
mesh-dependent minimization problem

th |D := arg inf
qh∈RTNN(SD),∇·qh= fh

‖hmin,DC
−1
D (a

1
2 ∇uh + a− 1

2 qh)‖D . (3.17)
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Note that, since f − ∇ · th = f − fh , the residual estimator (3.7) will be very small,
and eventually disappear when f = fh (see numerical experiments in Sect. 6.1.2). The
equilibrated flux th defined by (3.17) minimizes the diffusive flux estimator (3.6).

Define RTNN,0(SD) as a subspace of RTNN(SD) but with the normal flux condition
qh · nσ = 0 on σ ∈ Gint

h ∩ ∂D for the functions qh from this space. Let P∗
0(SD) be spanned

by piecewise constants on SD with varnishing mean on D when D ∈ Dint
h ; when D ∈ Dext

h ,
the mean value condition is not imposed. Then it is easy to show (cf. [19]) that (3.17) is
equivalent to finding th ∈ RTNN(SD) and ψh ∈ P

∗
0(SD) such that

{
(h2min,DC

−�
D C−1

D (a−1th + ∇uh),qh)D − (ψh,∇ · qh)D = 0, ∀qh ∈ RTNN,0(SD),

(∇ · th, ϕh)D = ( f, ϕh)D, ∀ϕh ∈ P
∗
0(SD).

(3.18)
The existence and uniqueness of a solution to the above system are standard, cf. [37].

The above presentation is done in the energy norm (2.9) setting. For the dual norm (2.10),
we only need to replace (h2min,DC

−�
D C−1

D (a−1th + ∇uh),qh)D by (h2min,DC
−�
D C−1

D (th +
a∇uh),qh)D in (3.18).

For more information about constructions of the equilibration flux th , like local minimiza-
tion and its improvement [14,37], which can be similarly extended to anisotropic meshes.
Here we do not repeatedly describe the process.

4 Efficiency and Robustness of the a Posteriori Error Estimates

Recalling the two kinds of constructions of the equilibrated flux th , we should prove the (local)
efficiency and robustness of our estimates on anisotropic meshes without the assumption that
Th is shape-regular. We still proceed as generally as possible, without the definition of any
particular numerical method. We firstly focus on the equilibrated flux th obtained by the
direct prescription of Sect. 3.3.1 and present a robust energy norm (2.9) result in case of
discontinuities aligned with the dual meshes Dh and use of harmonic averaging. Then the
robustness in the dual norm (2.10) without any special requirement is proven. Similar results
are given for the construction of th by the local Neumann/Dirichlet problems in Sect. 3.3.2.
In fact, we show that our estimators represent, up to a generic constant, local lower bounds
for the usual residual ones of Kunert [23] on anisotropic meshes.

4.1 Construction of th by the Direct Prescription of Sect. 3.3.1

We firstly consider the energy norm (2.9) seting and then the dual norm (2.10) one.

Theorem 4.1 (Local efficiency and robustness of the energy norm estimate with the har-
monic weighting by the direct prescription) Let a be piecewise constant onDh, f a piecewise
polynomial of degree m on Sh, u the weak solution of problem (1.1), and uh ∈ X0

h satisfy
Assumption 3.3 with the harmonic averaging weights (2.5). Let th be given by (3.15), ηDF,D

by (3.6), ηR,D by (3.7), and D∗
h = Dh in Theorem 3.2. Then, for each D ∈ Dh, there holds

ηDF,D � ‖|u − uh ‖|TVD
, (4.1)

ηR,D � ‖|u − uh ‖|TVD
. (4.2)

Proof Theproof ofTheorem4.1 is decomposed into twoparts: the local efficiencies of the two
estimators are obtained by considering the anisotropic finite element meshes, respectively.

I. Local efficiency of the diffusive flux estimator
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Recall the affine transformation matrix AK defined in Sect. 2.2 and for each given
qh ∈ RTN(K ), define the corresponding function q̄h ∈ RTN(K̄ ) via the usual Piola trans-
formation [10,32] such that

qh = AK

det AK
q̄h, ∇̄ = A�

K∇, |σ |qh · nσ,K = |σ̄ |q̄h · nσ̄ ,K̄ , (4.3)

which, together with (2.6), implies the following estimate

‖C−1
K qh‖2K = | det AK |‖C

−1
K AK

det AK
q̄h‖2K̄

�
|K̄ |
|K |

∑
σ̄∈EK̄

‖q̄h · nσ̄ ,K̄ ‖2σ̄

= |K̄ |
|K |

∑
σ∈EK

|σ |
|σ̄ | ‖qh · nσ,K ‖2σ

�
∑

σ∈EK

h−1
σ,K ‖qh · nσ ‖2σ ,

i.e.,
‖C−1

K qh‖2K �
∑

σ∈EK

h−1
σ,K ‖qh · nσ ‖2σ . (4.4)

Let now K be an arbitrary element in the simplicial mesh SD of a given dual volume
D ∈ Dh and set qh = a∇uh + th . Together with (5.3) in the proof of [37, Lemma 5.2], the
inequality (4.4) implies that

h2min,K ‖C−1
K (a

1
2 ∇uh + a− 1

2 th)‖2K = a−1
K h2min,K ‖C−1

K qh‖2K
� a−1

K h2min,K

∑
σ∈EK∩Gint

h

h−1
σ,K ‖ωL ,σ [[a∇uh · nσ ]]‖2σ .

(4.5)

Considering a fixed σ = σK ,L ∈ EK ∩ Gint
h , the proof of the estimate

hmin,K h
− 1

2
σ,K ‖[[a∇uh · nσ ]]‖σ �

∑
M∈{K ,L}

a
1
2
M ‖|u − uh ‖|M

is standard, refer to the proof of [23, Theorem2].Recall from [23] that, as also in [22] the proof
uses the side and element bubble functions, the anisotropic inverse and trace inequalities, and
the equivalence of norms on finite dimensional spaces (the assumption that f is a piecewise
polynomial). Therefore we do not repeat the proof itself. It then follows that

ωL ,σa
− 1

2
K hmin,K h

− 1
2

σ,K ‖[[a∇uh · nσ ]]‖σ �
∑

M∈{K ,L}
ωL ,σa

− 1
2

K a
1
2
M ‖|u − uh ‖|M .

Following the final part in the proof of [37, Lemma 5.2] and noting the equivalence (2.7), we
obtain

η2DF,D �‖|u − uh ‖|2TVD
,

which is (4.1).
II. Local efficiency of the residual estimator
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By (4.3), we have, for any fixed qh ∈ H(div, K ),

∇ · qh = 1

det AK
∇̄ · q̄h . (4.6)

Set qh = a∇u + th . Considering a fixed dual volume D ∈ Dh , by the standard argument we
get, for any K ∈ SD ,

‖ f − ∇ · th‖K = ‖∇ · qh‖K
= | det AK | 12 ‖ 1

det AK
∇̄ · q̄h‖K̄

� | det AK |− 1
2 ‖q̄h‖K̄

= ‖A−1
K qh‖K

� ‖C−1
K qh‖K .

In the above inequality, we have used the equivalence of norms on finite dimensional spaces,
because of the assumption that f is a piecewise polynomial. Then it holds that

‖ f − ∇ · th‖D � a
1
2
max,D‖C−1

D (a
1
2 ∇u + a− 1

2 th)‖D .

The remaining part is completely similar to the proof of [37, Lemma 5.3].

Next we consider a posteriori estimate in the dual norm (2.10), without any restriction on
the distribution of the discontinuities (a can be piecewise constant on Th or on Dh) and type
of averaging (both arithmetic and harmonic averaging are allowed) in Assumption 3.3.

Theorem 4.2 (Global efficiency and robustness of the dual norm estimate by the direct
prescription) Let f be a piecewise polynomial of degree m on Sh, u the weak solution of
problem (1.1), and uh ∈ X0

h satisfy Assumption 3.3 with any weight satisfying (2.2). Let th
be given by (3.15), ηDF,D by (3.12), ηR,D by (3.13), and D∗

h = Dh in Corollary 3.2. Then
there holds { ∑

D∈D∗
h

(η2R,D + η2DF,D)
}1/2

�‖|u − uh ‖|# . (4.7)

Proof Following the same arguments in process of proving (4.1) and (4.2) (also see the proof
of [37, Theorem 5.4]), we have∑
D∈Dh

(η2DF,D+η2R,D) �
∑
K∈Sh

h2min,K ‖ f +∇·(a∇uh)‖2K +
∑

σ∈Gint
h

h2min,σ h
−1
σ ‖[[a∇uh ·nσ ]]‖2σ ,

(4.8)
which means that the present estimates represent a lower bound for the residual ones on
anisotropic meshes given by Kunert in [23]. The rest of the proof is based on the tools from
[23] and the process is analogous to the standard technique given by Verfürth [33], i.e., by
means of bubble functions, also ref. [22]. The only differences here are the anisotropicweights
of the residual norms, and the use of anisotropic inverse inequalities for bubble functions.
for more details, we refer to [23]. Therefore, without the proof we directly state that

( ∑
K∈Sh

h2min,K ‖ f + ∇ · (a∇uh)‖2K
) 1

2 � ‖|u − uh ‖|#, (4.9)

( ∑
σ∈Gint

h

h2min,σ h
−1
σ ‖[[a∇uh · nσ ]]‖2σ

) 1
2 � ‖|u − uh ‖|#, (4.10)
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which implies that (4.7) holds.

4.2 Construction of th by the Local Neumann/Dirichlet Problem of Sect. 3.3.2

We focus here on the equilibrated flux th defined in Sect. 3.3.2 by (3.18). As in the previous
subsection, we first consider the energy norm (2.9) and then pass to the dual norm (2.10).

Theorem 4.3 (Local efficiency and robustness of the energy norm estimate with the har-
monic weighting by the local Neumann/Dirichlet problem) Let a be piecewise constant on
Dh, f a piecewise polynomial of degree m on Sh, u the weak solution of problem (1.1), and
uh ∈ X0

h satisfy Assumption 3.3 with the harmonic averaging weights (2.5). Let th be given

by (3.18), ηDF,D by (3.6), ηR,D by (3.7), and Dint,∗
h = Sh and Dext,∗

h = ∅ in Theorem 3.2.
Then, for each D ∈ Dh, there holds

ηR,K � a
− 1

2
min,K hmin,K ‖ f − fh‖K , ∀K ∈ SD, (4.11)

ηDF,D �‖|u − uh ‖|TVD
, (4.12)

where fh is the piecewise average over Sh, i.e., fh |K = |K |−1( f, 1)K , K ∈ Sh.

Proof The result (4.11) is an immediate consequence of the second term of (3.18). It thus
remains to prove (4.12).

For a given D ∈ Dh , we need a hybridized version of (3.18), cf. [10,32]. Therein, the first
term of (3.18) is replaced by

(h2min,DC
−�
D C−1

D (a−1th + ∇uh),qh)D − (ψh,∇ · qh)D +
∑
K∈SD

〈qh · nK , λh〉∂K

= 0, ∀qh ∈ RTN∗
N,0(SD),

whereRTN∗
N,0(SD) is the same space asRTNN,0(SD) of Sect. 3.3.2with, however, no normal

trace continuity constraint. λh is the Lagrange multiplier, a piecewise constant function on
the sides GD (set λh = 0 on ∂Ω). Thus we are able to set qh = th + a∇uh in the above
equation, which leads to

‖hmin,DC
−1
D (a

1
2 ∇uh + a− 1

2 th)‖2D = (ψh, fh + ∇ · (a∇uh))D −
∑

σ∈Gint
D

〈[[a∇uh · nσ ]], λh〉σ

−
∑

σ∈Gext
D ∩Gint

h

〈(a∇uh · nD)|D−{{a∇uh · nD}}ω, λh〉σ ,

(4.13)

since th ∈ RTNN(SD) and ∇ · th = fh by (3.18).
Similarly to the approach of [37] and [36] (cf. also [7,8]), we define a postprocessing

ψ̃h ∈ M(SD) of ψh such that

− a∇ψ̃h = h2min,DC
−�
D C−1

D (th + a∇uh), ∀K ∈ SD, (4.14)

(ψ̃h, 1)K
|K | = ψh |K , ∀K ∈ SD, (4.15)

〈ψ̃h, 1〉σ
|σ | = λh |σ , ∀σ ∈ GD, (4.16)

where M(SD) is a space of particular piecewise polynomials on SD of total degree ≤ 2.
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If D ∈ Dint
h , then (ψh, 1)D = 0, as ψh ∈ P

∗
0(SD), see (3.18). Observing (4.15), we have

(ψ̃h, 1)D/|D| = 0, i.e., the mean value of ψ̃h over D vanishes. If D ∈ Dext
h , then λh = 0 on

∂D∩ ∂Ω , and (4.16) implies that 〈ψ̃h, 1〉σ /|σ | = 0, i.e., the mean value of ψ̃h over the sides
lying in ∂Ω vanishes. Thus for both D ∈ Dint

h and D ∈ Dext
h , using the Poincaré/Friedrichs

inequality (cf. [35]), similarly to the proof of (3.2) (ref. [23]) we obtain

‖ψ̃h‖D � ‖C�
D∇ψ̃h‖D . (4.17)

We should also use the anisotropic trace inequality [23], i.e., for any K sharing a side σ ∈ GD ,
it holds that

‖v‖2σ � h−1
σ (‖v‖2K + ‖C�

K∇v‖2K ), ∀v ∈ H1(K ). (4.18)

Recalling (4.5), the harmonic averaging (2.5) and the equivalence (2.7), the above results
imply that

h2min,D‖C−1
D (a

1
2 ∇uh + a− 1

2 th)‖2D
= (ψ̃h, fh + ∇ · (a∇uh))D −

∑
σ∈Gint

D

〈[[a∇uh · nσ ]], ψ̃h〉σ

−
∑

σ∈Gext
D ∩Gint

h

〈(a∇uh · nD)|D − {{a∇uh · nD}}ω, ψ̃h〉σ

� ‖ψ̃h‖D‖ fh + ∇ · (a∇uh)‖D
+

( ∑
K∈SD

∑
σ∈EK∩Gint

h

h−1
σ ‖[[a∇uh · nσ ]]‖2σ

) 1
2
(‖ψ̃h‖2D + ‖C�

D∇ψ̃h‖2D)
1
2

� ‖C�
D∇ψ̃h‖D

{
‖ fh + ∇ · (a∇uh)‖D +

( ∑
K∈SD

∑
σ∈EK∩Gint

h

h−1
σ ‖[[a∇uh · nσ ]]‖2σ

) 1
2
}
.

Therefore we obtain

hmin,D‖C−1
D (a

1
2 ∇uh + a− 1

2 th)‖D
� a

− 1
2

min,Dhmin,D

{
‖ fh + ∇ · (a∇uh)‖D +

( ∑
K∈SD

∑
σ∈EK∩Gint

h

h−1
σ ‖[[a∇uh · nσ ]]‖2σ

) 1
2
}
.

(4.19)

Then by the standard argument in the proof of Theorem 4.1 (also cf. [23] and [37]), we
complete the proof.

For completeness, we also give the corresponding result in the dual norm (2.10), without
any restriction on the distribution of discontinuities or type of averaging in Assumption 3.3.
The proof is an easy consequence of the previous results.

Corollary 4.1 (Global efficiency and robustness of the dual norm estimate by the Local
Neumann/Dirichlet problem) Let f be a piecewise polynomial of degree m on Sh, u the weak
solution of problem (1.1), and uh ∈ X0

h satisfy Assumption 3.3 with any weight satisfying

(2.2). Let th be given by (3.18), ηDF,D by (3.12), ηR,D by (3.13), and Dint,∗
h = Sh and

Dint,∗
h = ∅ in Corollary 3.2. Then there holds

{ ∑
D∈D∗

h

(η2R,D + η2DF,D)
}1/2

�‖|u − uh ‖|# . (4.20)
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Remark 4.1 (The alignment between the meshes and discontinuous coefficient a) From The-
orems 4.1 and 4.3 we know that, in order to get robust energy norm error estimates, the dif-
fusion coefficient a has to be piecewise constant onDh . However, if we would first construct
a simplicial mesh Th of Ω and then a dual mesh Dh as in Sect. 2.1, it would be very diffi-
cult to keep the dual mesh aligned with the discontinuity, especially for adaptive refinement.
A possible solution is to first define the dual mesh Dh and then the primal one Th , just as
presented in [37].

On the other hand, if a is piecewise constant on the primal mesh Th (it is easy to keep the
primal mesh aligned with the discontinuity) but harmonic averaging (2.5) has been used in
the interior sides of each D ∈ Dh , one has the local efficiency directly on each dual volume
D ∈ Dh and not on the patch TVD which is larger than D. Recalling the proof of Theorem
4.1, in this case it gives

ηDF,D � ‖|u − uh ‖|D, (4.21)

ηR,D �
amax,D

amin,D
‖|u − uh ‖|D . (4.22)

Similarly, the final upper bound of Theorem 4.3 changes from (4.12) to (4.22).
Note that Theorem 4.2 or Corollary 4.1 give full robustness with respect to the discontinu-

ities in a without any restriction on the distribution of the discontinuities (it can be piecewise
constant on Th or on Dh) or type of averaging (both arithmetic and harmonic averaging is
allowed) in Assumption 3.3. However, these results are established in the dual norm ‖| · ‖|#
and one only has global (and not local) efficiency. For similar discussion, also see [37].

5 Application of the Error Estimates and Efficiency Results to Different Numerical
Methods

In the previous sections, we have presented the a posteriori error estimates and their efficiency
generally, without any notion of a particular numerical scheme. Here, we should briefly
describe how the results of Sects. 3 and 4 can be applied to the different numerical methods,
such as the finite volume-type, finite difference and finite element methods. The definitions
and their mutual relations of these numerical methods are summarized by Vohralík in [37],
thus we do not need to list them.

For the finite volume-type and finite difference methods, the discussion is identical to that
in [37, Sect. 6]. Next we only focus on the finite element method.

First, the finite element method can be written equivalently in the form of Assumption
3.3 when both a and f are piecewise constants on the mesh Th (cf. [37]). For general f ,
following [37] we have.

Theorem 5.1 (Energy norm a posteriori error estimate for the finite element method) Let u
be the weak solution of problem (1.1) and uh its finite element approximation; Let ũ be the
weak solution of problem (1.1)with f replaced by fh and ũh its finite element approximation.
Then

‖|u − uh ‖|�‖| ũ − ũh ‖| +(m1(u − ũ, Th) + m1(uh − ũh, Th))
( ∑
K∈Th

η2osc,K

) 1
2
, (5.1)

where

ηosc,K := a
− 1

2
min,K hmin,K ‖ f − fh‖K , K ∈ Th .
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Proof Following the proof of [37, Theorem6.1], The anisotropic version of Poincaré inequal-
ity (4.17) and the definition of alignment measure yields (5.1).

We proceeds similarly for the dual norm setting.

Corollary 5.1 (Dual norm a posteriori error estimate for the finite element method) Let u be
the weak solution of problem (1.1) and uh its finite element approximation; Let ũ be the weak
solution of problem (1.1)with f replaced by fh and ũh its finite element approximation. Then

‖|u − uh ‖|#�‖| ũ − ũh ‖|# +(m2(u − ũ, Th) + m2(uh − ũh, Th))
( ∑
K∈Th

η2osc,K

) 1
2
, (5.2)

where

ηosc,K := hmin,K ‖ f − fh‖K , K ∈ Th .

Note that, the alignment measures m1(v, Th) and m2(v, Th) have been introduced in
Definition 2.1 to measure how good anisotropic mesh Th is aligned with an anisotropic
function v. Hence, it is reasonable to believe that, for whichever conforming approximation,
i.e., ũ, uh or ũh ,

m1(u − uh, Th) ∼ m1(u − ũ, Th) ∼ m1(uh − ũh, Th) ∼ m1(ũ − ũh, Th) ∼ 1,

and

m2(u − uh, Th) ∼ m2(u − ũ, Th) ∼ m2(uh − ũh, Th) ∼ m2(ũ − ũh, Th) ∼ 1,

as long as the anisotropic mesh Th sufficiently reflects the anisotropy of the solution.
When a is piecewise constant on Dh , to obtain a posteriori error estimate, one can define

the equilibrated flux th as stated in [37, Sect. 6.3]. While separating the oscillations with
respect to f as in Theorem 5.1, robustness can then be proved as in Theorem 5.1.

For more information on the energy norm estimates and dual norm ones of the various
numerical methods, we refer to [37, Tables 1 and 2].

6 Numerical Experiments

In this section, we present the results of several numerical experiments and study the asymp-
totic behaviour of the error estimators on anisotropic meshes. Two different examples will
be considered such that we focus on the robustness with respect to the anisotropy of the
mesh and the discontinuous coefficients, respectively. In the following two subsections, for
convenience we only present the results for the energy norm error estimates.

6.1 The Diffusion Problem with the Constant Coefficient

We first consider the problem (1.1) with the constant coefficient, where Ω = (0, 1) × (0, 1),
a = 2/(k2 + 1), f = 2π2 sin(kπx) sin(πy) and k > 0. Hence the exact solution is
u = sin(kπx) sin(πy) and shown in the left part of Fig. 4, from which we can easily see that
the exact solution varies significantly in the x-axis direction with k � 1, which requires the
anisotropic meshes in order to reflect the variation.

In order to be convenient for comparison, we first present the numerical results of the error
estimates of Vohralík [37] on the anisotropic meshes. Then, we present the numerical results
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Fig. 4 The exact solution with k = 20 (left) and the anisotropic mesh (30 × 5) (right)

Table 1 The meshes on different levels

Mesh k 1 2 3 4 5 6 7

m × n 64 × 13 160 × 14 256 × 15 640 × 16 1,024 × 17 2,536 × 18 4,048 × 19

Max aspect ratio 12.34 28.51 42.71 97.74 151.72 355.93 539.74

Table 2 The alignment measure for the finite volume method with the constant coefficient

Mesh k 1 2 3 4 5 6 7

m1(u − uh ,Th) 1.43 1.42 1.42 1.42 1.44 1.64 1.96

mR
1 (u − uh ,Th) 1.41 1.41 1.42 1.43 1.44 1.64 1.94

Table 3 The alignment measure for the finite element method with the constant coefficient

Mesh k 1 2 3 4 5 6 7

m1(u − uh ,Th) 1.41 1.42 1.42 1.43 1.44 1.65 1.96

mR
1 (u − uh ,Th) 1.43 1.41 1.42 1.43 1.45 1.64 1.94

of our estimators under the same conditions. By comparison, our estimators are shown to be
reliable and efficient on anisotropic meshes.

We consider the case k = 100. As shown in the right part of Fig. 4, we construct a
sequence ofm×n meshes withm uniform subintervals in the x-axis direction and n uniform
subintervals in the y-axis direction. The corresponding mesh information is listed in Table 1.

On the kind of meshes, the vertex- and cell-centered finite volume methods are equivalent
[37], and so are here called the finite volume method. Tables 2 and 3 present the alignment
measures for the finite volume and element methods on different meshes, respectively, where
m1(u−uh, Th) = m2(u−uh, Th) since a is a constant onΩ . The small size of the alignment
measures further indicates that the meshes are well adapted to the exact solution; hence
efficient error estimation is to be expected.
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6.1.1 The Error Estimates Developed by Vohralík

A posteriori error estimates developed by Vohralík are very successful for various numerical
methods on isotropic meshes [37]. However, they fail on anisotropic meshes as shown in this
subsection.

Let the assumptions of Theorem 3.2 be verified. Vohralík gives the following energy norm
error estimate

‖|u − uh ‖|≤ ζ,

where

ζ :=
⎧⎨
⎩

∑
D∈D∗

h

(ζR,D + ζDF,D)2

⎫⎬
⎭

1/2

,

the diffusive flux estimator ζDF,D is given by

ζDF,D := ‖a 1
2 ∇uh + a− 1

2 th‖D, D ∈ D∗
h,

and the residual estimator ζR,D is given by

ζR,D := mD,a‖ f − ∇ · th‖D, D ∈ D∗
h,

where

m2
D,a := CP,D

h2max,D

amin,D
, D ∈ Dint,∗

h , m2
D,a := CF,D,∂Ω

h2max,D

amin,D
, D ∈ Dext,∗

h ,

with CP,D the constant from the Poincaré inequality and CF,D,∂Ω the constant from the
Friedrichs inequality. Let

ζDF :=
⎧⎨
⎩

∑
D∈D∗

h

ζ 2
DF,D

⎫⎬
⎭

1/2

,

ζR :=
⎧⎨
⎩

∑
D∈D∗

h

ζ 2
R,D

⎫⎬
⎭

1/2

.

In order to construct the equilibrated flux th , Vohralík suggests four different ways (cf.
[37]). As an example, here we only present the numerical results for one of them correspond-
ing to the direct prescription (3.15) given by the finite volume approximation on anisotropic
meshes, see Fig. 5. For the others, the conclusions are similar.

From Fig. 5 (here and below the effectivity index is given by the rate between the error
estimate and the exact error), we see that, both the diffusive flux and residual estimators by
the direct prescription are not efficient for the finite volume method on anisotropic meshes.
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Fig. 10 The exact solution with k1 = 1 and k2 = 15 (left) and the anisotropic mesh (32 × 8) (right)

6.1.2 Our Error Estimates

Let

η :=
⎧⎨
⎩

∑
D∈D∗

h

(η2R,D + η2DF,D)

⎫⎬
⎭

1/2

,

ηDF :=
⎧⎨
⎩

∑
D∈D∗

h

η2DF,D

⎫⎬
⎭

1/2

,

ηR :=
⎧⎨
⎩

∑
D∈D∗

h

η2R,D

⎫⎬
⎭

1/2

,

where ηDF,D and ηR,D are given by (3.6) and (3.7), respectively.
Figures 6, 7, 8 and 9 show that our estimators are reliable and efficient for the twonumerical

methods on anisotropic meshes, since the corresponding alignment measures are always
equivalent to 1 from Tables 2 and 3.

In Figs. 6 and 8, we present the results of estimates by the direct prescription (3.15) for the
two numerical methods, respectively. Compared with the diffusive flux term ηDF, the residual
one ηR represents a dominant contribution to the error estimates by the direct prescription
(3.15). In Figs. 7 and 9, The consequences are reversed for the error estimates by the local
Neumann/Dirichlet mixed finite element problems (3.18). Hence, the numerical results and
theoretical estimates are consistent.

6.2 The Diffusion Problem with Discontinuous Coefficients

Next we consider the problem (1.1) with the discontinuous coefficient a on Ω = Ω1 ∪ Ω2

whereΩ1 = (−1, 0)×(−1, 1) andΩ2 = (0, 1)×(−1, 1). Let a = 2/(k2+1)where k = k1
on Ω1 and k = k2 on Ω2. The right hand side is chosen such that u = sin(kπx2) sin(πy) is
the exact solution, which is shown in the left part of Fig. 10. From that we can easily see that
the exact solution varies significantly in the x-axis direction (x > 0) with k2 � 1, which
also requires the anisotropic meshes in order to reflect the variation.

123



394 J Sci Comput (2015) 64:368–400

Table 4 The meshes on different levels

Mesh k 1 2 3 4 5 6 7

m × n 77 × 26 174 × 28 271 × 30 656 × 32 1,041 × 34 2,554 × 36 4,067 × 38

Max aspect ratio 12.34 28.51 42.71 97.74 151.72 355.93 539.74

Table 5 The alignment measure for the finite volume method with discontinuous coefficients

Mesh k 1 2 3 4 5 6 7

m1(u − uh ,Th) 1.57 1.42 1.42 1.42 1.43 1.50 1.60

mR
1 (u − uh ,Th) 1.42 1.41 1.42 1.43 1.44 1.51 1.60

Table 6 The alignment measure for the finite element method with discontinuous coefficients

Mesh k 1 2 3 4 5 6 7

m1(u − uh ,Th) 1.63 1.42 1.42 1.43 1.44 1.50 1.60

mR
1 (u − uh ,Th) 1.43 1.42 1.42 1.43 1.44 1.51 1.60

We consider the case k1 = 1 and k2 = 100. As shown in the right part of Fig. 10, we
construct a sequence of m × n meshes with m1 uniform subintervals on Ω1 and m2 uniform
subintervals on Ω2 in the x-axis direction and n uniform subintervals in the y-axis direction
wherem1 = n/2 andm2 = m−m1. The correspondingmesh information is listed in Table 4.
Tables 5 and 6 present the alignment measures for the finite volume and element methods on
different meshes, respectively.

Strictly speaking, these meshes do not satisfy our assumption on the alignment between
the discontinuous coefficient a and the dual meshDh , whereas a is piecewise constant on the
primal mesh Th . According to Remark 4.1, in this case one has the local efficiency directly
on each dual volume D ∈ Dh . Finally, these meshes also yield similar numerical results,
which are shown in Figs. 11, 12, 13 and 14. From that, we confirm the robustness of the error
estimators with the discontinuous coefficient on anisotropic meshes.

7 Conclusions

We consider the error estimation based on flux reconstruction for conforming discretizations
of diffusion problems with discontinuous coefficients, and provide robust a posteriori error
estimates on anisotropic meshes, which is essentially regarded as generalizations of the
estimates from [37] on anisotropic meshes.

The resulting error estimators are new, and robustwith respect to discontinuous coefficients
on anisotropic meshes. Our main contribution is the anisotropic character of the estimators
such that we can apply them on anisotropic meshes, since the isotropic versions from [37]
are invalid on anisotropic meshes.

The proofs of the upper and lower error bounds are more technical in the anisotropic
setting. Especially in the proof of the local lower bound, we rigorously analyze the effect of
anisotropy of the mesh by introducing the usual Piola transformation for the vector-valued
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functions (see the proofs of Theorems 4.1 and 4.3), which is the first attempt in the proof of
efficiency on anisotropic meshes. For the isotropic case, we can completely omit it, see [37].

Acknowledgments We would like to thank the anonymous referee for his helpful suggestions.
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