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Abstract It is known that interpolation with radial basis functions of the same shape can
guarantee a nonsingular interpolation matrix, whereas little was known when one uses various
shapes. In this paper, we prove that functions from a class of compactly supported radial
basis functions are convex on a certain region; based on this local convexity and other local
geometrical properties of the interpolation points, we construct a sufficient condition which
guarantees diagonally dominant interpolation matrices for radial basis functions interpolation
with different shapes. The proof is constructive and can be used to design algorithms directly.
Numerical examples show that the scheme has a low accuracy but can be implemented
efficiently. It can be used for inaccurate models where efficiency is more desirable. Large
scale 3D implicit surface reconstruction problems are used to demonstrate the utility and
reasonable results can be obtained efficiently.
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1 Introduction

Recent advances in radial basis function (RBF) theory have demonstrated the usefulness of
RBFs for scattered data approximation in high dimensional spaces. RBFs are useful in the
design of mesh-free methods [8,18,19], for global optimisation [11] and computer aided
design [7,12,14,20,23,27,28]. It has for long been established that certain types of RBFs
guarantee non-singular interpolation matrices provided the interpolating points are distinct
[21]. There is no doubt that such a guaranteed solvability is one of the convincing reasons
why methods based on RBFs continue to attract much attention. As is well known—and
as we shall describe—the current solvability of the RBF interpolation problem depends on
the symmetry property of the interpolation matrix; it requires that the centres of the basis
functions are the interpolating points and that the basis functions are of the same scale. In
practice it is often desirable to define/use RBF approximation/interpolation with different
shapes—different scales or different bases. However, for RBF interpolation with different
shape parameters, previous results say little on the issue of solvability. To make this more
clear, the reader is invited to see how the previous proof works for the case of using radial
basis functions of the same scale.

Consider the radial basis function (RBF) interpolation problem in high dimensional spaces:
given observations f1, f2, . . . , fn on a set of points X = {xi ∈ R

d : i = 1, . . . n}, find an
approximation of the form s(x) = ∑n

i=1 α jφ j (x) to an unknown function f (x) such that

s(xk) = fk, for 1 ≤ k ≤ n, (1)

where φ j (x) = Φ(x − x j ) = ϕ(‖x − x j‖). Equation (1) results in a linear system Aα = f ,

where f = ( f1, f2, . . . , fn)T and

A =

⎛

⎜
⎜
⎜
⎝

Φ(x1 − x1) Φ(x1 − x2) · · · Φ(x1 − xn)
Φ(x2 − x1) Φ(x2 − x2) · · · Φ(x2 − xn)
...

...
. . .

...

Φ(xn − x1) Φ(xn − x2) · · · Φ(xn − xn)

⎞

⎟
⎟
⎟
⎠

.

If Φ has an integrable Fourier transform Φ̂, then Φ can be recovered from Φ̂ by the Fourier
inversion formula [28, p. 67]

Φ(x) = 1
√

(2π)d

∫

Rd
Φ̂(ω)eix

T ωdω. (2)

For any β ∈ C
n , consider the following quadratic form

βH Aβ =
n∑

k=1

n∑

j=1

β j β̄kΦ(xk − x j ) = 1
√

(2π)d

n∑

k=1

n∑

j=1

β j β̄k

∫

Rd
Φ̂(ω)ei(xk−x j )

T ωdω. (3)

Separate ei(xk−x j )
T ω as eix

T
k ωe−ixTj ω, then

n∑

k=1

n∑

j=1

β j β̄ke
i(xk−x j )

T ω =
n∑

j=1

β j e
−ixTj ω

n∑

k=1

β̄ke
ixTk ω =

∣
∣
∣
∣
∣
∣

n∑

j=1

β j e
−ixTj ω

∣
∣
∣
∣
∣
∣

2

. (4)
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Therefore it follows that

βH Aβ = 1
√

(2π)d

∫

Rd
Φ̂(ω)

∣
∣
∣
∣
∣
∣

n∑

j=1

β j e
−ixTj ω

∣
∣
∣
∣
∣
∣

2

dω. (5)

If Φ̂ > 0, then the interpolation matrix A is symmetric and positive definite. Such functions
with positive Fourier transform are called positive definite functions. It is obvious that positive
definite radial basis functions ϕ(‖ · ‖) guarantee invertible interpolation matrices. One of the
most famous positive definite radial basis functions is the Gaussian e−ε2‖x‖2

2 , with Fourier

transform 1
(
√

2ε)d
e
− ‖ω‖2

4ε2 . Also included in this class are inverse multiquadrics, truncated

power functions, Wu and Wendland compactly supported radial basis functions. See [30]
[28, p. 76, p. 80, p. 128] for details.

A natural generalization of a positive definite function is a conditional positive defi-
nite function. A conditional positive definite function is a continuous function which guar-
antees the quadratic form βH Aβ is positive on a subspace, where β ∈ C

n/{0} satisfies
∑n

j=1 β j p(x j ) = 0 for any distinct point set X and all complex-valued polynomials, p(x),
of degree less than m. For such conditional positive definite functions, one can prove that a
modified approximation

s(x) =
n∑

j=1

α jφ j (x) +
Q∑

k=1

γk pk(x) (6)

with lower order polynomial constraints is solvable under certain conditions;

n∑

j=1

α j pk(x j ) = 0, for 1 ≤ k ≤ Q, (7)

where pk, 1 ≤ k ≤ Q is a linear independent basis of the space of polynomials of degree less
than m, πm−1(R

d). The approximation (6) together with the polynomial constraints results
in a saddle point system (

A P
PT 0

)(
α

γ

)

=
(

f
0

)

(8)

If P is full rank, and the quadratic form αH Aα is positive on the null space of PT , i.e.
{α : PTα = 0}, then the saddle point system (8) has a unique solution [28, p. 117]. Whether
P is full rank still depends on the point set X for πm−1(R

d) with m > 1, whereas Micchelli
proves that αH Aα is positive on the null space of PT is always true for all conditional
positive definite functions of order m on any data set X [21]. His proof in fact also depends
on the condition that the quadratic form (5) is positive on the null space of PT , which
as a consequence requires that the basis functions are of the same scale according to (4).
See [21, p. 17] for details.

If the interpolation points and the basis function centres are different, or the basis functions
in (1) are in different scales or different kinds of functions, the formula (4) does not hold.
An example of the latter case, using different kinds of radial basis function, is the unsym-
metrical collocation method for solving partial differential equations (PDEs) [16], where
the author uses basis functions of different scales or different combinations at each centre.
Such an unsymmetrical collocation method works most of the time, but singularity still can
occur for some cases because there is no theory to guarantee the unsymmetrical collocation
matrix is always invertible. For complicated real applications, many are eager for an adaptive
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refinement scheme, arranging more data where it should be, to reduce the total computing
complexity. In this case, one also wants to use radial basis functions with different scales for
the locally clustered points; if two basis function centres are too close to each other, the cor-
responding two columns of the system matrix A are nearly linearly dependent, and thus the
matrix can be ill-conditioned. Whereas if such two basis functions employ different scales or
are different, then the conditioning may be improved [10]. The eagerness of using radial basis
functions with different scales dates back to the 1970s [13], whereas few practical results for
large data sets were obtained. There are papers which discuss how to choose various shape
parameters both numerically [3,6,9,15,17,22,32] and theoretically [1,3]. In particular in [1],
Bozzini et al. use matrix perturbation arguments, concluding that if the scales do not vary
a lot across the domain, then interpolation with various scales can result in a non-singular
interpolation matrix. The threshold of variation of the scales depends on the estimation of
the smallest eigenvalue of an interpolation matrix with the same scale [1, Theorem 2]; such a
dependence limits the utility of the method, but see the recent paper [2]. Solvability for more
cases remains to be established for general radial basis functions.

We focus on compactly supported radial basis functions [28,30]. Sufficient conditions
to guarantee a unique solution to the RBF interpolation problem with different shapes are
supplied. The conditions only depend on a local convexity of the underlying basis functions,
and a local geometric property of a neighbourhood of each centre. Information on both of
these aspects are easy to obtain. Algorithms can be implemented efficiently, whereas the
error estimate for such a scheme is unclear at moment and some numerical examples show
that the scheme may not guarantee good approximation quality, there is still some posibility
to construct a realistic local refinement scheme according to this approach. At moment, the
scheme can be used in inaccurate models, like some difficult 3D surface reconstruction model,
where efficiency is more important and high resolution is not crucial. When it is applied on
the Stanford scanning repository data sets, reasonable results can be obtained.

Here we share our results, so that others may find a better solution and improvement. We
first introduce notation and preliminaries in Sect. 2 and then present the main results in Sect. 3.
We further discuss several issues related to the main results in Sect. 4 and put algorithms and
numerical results in Sects. 5 and 6 respectively. Finally we give some conclusions in Sect. 7.

2 Convexity of Compactly Supported Radial Basis Functions

Let f (r) ∈ C2[a, b], if f ′(r) < 0 and f ′′(r) ≥ 0, then f (r) is convex on (a, b). (We suppose
a linear function with negative slope is convex in this paper.) This section focuses on one
popular class of compactly supported radial basis function—Wendland functions.

A Wendland function φd,k is obtained through the following integral operator

I (φ)(r) :=
∫ ∞

r
tφ(t)dt. (9)

The Wendland function φd,k is defined as

φd,k = I kφ	d/2
+k+1, (10)

where φ�(r) = max{(1 − r)�, 0} and 	·
 is the floor operator. Here, φd,k(‖x‖) is a compactly
supported radial basis function and φd,k ∈ C2k(Rd). The operator I was introduced to
construct compactly supported radial basis functions [30]. An inversion like operator D was
also introduced to simplify computations for high dimensional Fourier transforms of radial
functions [30] [28, p. 121]:
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Dφ(r) = −1

r
φ′(r) for φ ∈ C2(R) and r > 0. (11)

It is known that DI φ = φ and IDφ = φ [28, p. 121]. Applying the formula (11), we can
get the following properties of functions defined in (9).

Lemma 1 If φ ∈ L1[0,∞) is a non-negative function, then,

1. d
drI

kφ(r) = −rI k−1φ(r) ≤ 0, for k ≥ 1;

2. d2

dr2 I
kφ(r) = r2I k−2φ(r) − I k−1φ(r), for k ≥ 2.

Proof Since φ is non-negative, by the definition of the operator I in (9), I kφ(r) is positive.
Employing the formula (11), we can get

−1

r

d

dr
I kφ(r) = DI kφ(r) = I k−1φ(r) ≥ 0.

Reformulating the equation we can obtain

d

dr
I kφ(r) = −rI k−1φ(r) ≤ 0,

for k ≥ 1. The second part holds because

d2

dr2 I
k = d

dr
(−rI k−1φ(r)) = r2I k−2φ(r) − I k−1φ(r).

��
The first part of Lemma 1 demonstrates that Wendland functions are non-increasing on

[0, 1], and the second part gives a recurrence formula to compute the second derivative of a
Wendland function.

Lemma 2 If φ(r) is a continuous and monotonically decreasing function on [0, 1], which
satisfies φ(0) > 0 and φ(1) = 0, then for the function

f (r) = r2φ(r) −
∫ 1

r
tφ(t)dt,

there exists a positive number γ ∈ (0, 1) such that f (r) ≥ 0 on [γ, 1].
Proof Since φ is a monotonically decreasing function on [0, 1], then for any t ∈ (r, 1),
0 < φ(t) < φ(r). By the Cauchy–Schwarz inequality,

∫ 1

r
tφ(t)dt ≤

(∫ 1

r
t2dt

)1/2 (∫ 1

r
φ2(t)dt

)1/2

≤
√

1 − r3

3

(
φ(r)

√
1 − r

)
≤ φ(r)

√
1 − r3

3
.

Therefore

f (r) ≥
⎛

⎝r2 −
√

1 − r3

3

⎞

⎠ φ(r) = h(r)φ(r). (12)

Compute h′(r) = 2r +
√

3r2

2
√

1−r3 > 0 on (0, 1). On the other hand, h(0) = −√
1/3 and

h(1) = 1 > 0. Therefore, according to the intermediate value theorem for continuous
functions, there must exists a positive number γ ∈ (0, 1), such that h(γ ) = 0 and h(r) > 0
on (γ, 1). Thus f (r) ≥ 0 on [γ, 1]. ��
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Theorem 1 For any Wendland Function φd,k defined above, there exists a positive real
number q ∈ [0, 1), such that φd,k is convex on [q, 1].
Proof If k = 0, φd,0 = (1 − r)	d/2
+1, then

φ′
d,0(r) = −1(	d/2
 + 1)(1 − r)	d/2
 < 0

on (0, 1). If d = 1, φ′′
1,0(r) = 0, otherwise

φ′′
d,0(r) = (−1)2(	d/2
 + 1)(	d/2
)(1 − r)	d/2
−1 ≥ 0.

Thus φd,0(r) is convex on [0, 1].
For k = 1, φd,1(r) = ∫ 1

r t (1 − t)	d/2
+1+1dt ,

φ′
d,1(r) = −r(1 − r)	d/2
+2 ≤ 0 in(0, 1),

φ′′
d,1(r) = (1 − r)	d/2
+1 ((	d/2
 + 3)r − 1) .

Let q = 1
	d/2
+3 , then φ′′

d,1(r) ≥ 0 on [q, 1].
For k ≥ 2, according to Lemma 1, φ′

d,k(r) ≤ 0 and

φ′′
d,k(r) = r2I k−2φ�(r) − I k−1φ�(r),

where � = 	d/2
 + k + 1, and φ�(r) = (1 − r)�+. Define ϕ(r) = I k−2φ�(r), then ϕ(r) is a
decreasing and non-negative function on [0, 1]. Note that

I k−1φ�(r) =
∫ 1

r
tϕ(t)dt.

Employing Lemma 2, there exists a positive 0 < γ < 1, such that φ′′
d,k(r) is positive on

[γ, 1]. Let q = γ , which finishes the proof. ��
Lemma 3 For anyWendland functionφd,k(r), there exists a positive numberm anda positive
constant c such that for r ∈ (δ1, 1), φd,k(r) ≤ c(1 − r)m.

Proof Sinceφd,k vanishes at 1, thusφd,k = (1−r)m p(r)on [0, 1], where p(r) is a polynomial
with non-zeros on [0, 1]. Let c = maxr∈[0,1] p(r), since φd,k is on [0, 1), thus c > 0. ��

3 Main Results

Let N (x j , n j ) ⊂ X = {x1, x2, . . . , xN } ⊂ R
d , be the set of the n j nearest neighbouring

points to x j , where x j /∈ N (x j , n j ). For each N (x j , n j ), define

r j = min
xk∈N (x j ,n j )

‖xk − x j‖ and R j = max
xk∈N (x j ,n j )

‖xk − x j‖. (13)

It is obvious that N (x j , n j ) ⊂ B(x j , R j )\B(x j , r j ), where B(x, R) is a Euclidean ball
with center x and radius R. Further, define

q j = r j
R j

, and m j = 1

n j R j

∑

xk∈N (x j ,n j )

‖xk − x j‖. (14)

It is easy to find that 0 < q j ≤ m j ≤ 1, the equalities holding only when all of the points
in N (x j , n j ) are located on the same sphere with x j as center (including the special case
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q
j

x
j

1

(a)
0 q m 1

0

1

φ(q)

φ(m)

y
m

(b)

Fig. 1 a Illustrates a ‘scaled’ neighbourhood of x j with 10 neighbouring points. b Illustrates a Wendland

function which is convex in (q, 1). One can see that ym
φ(q)

= 1−m
1−q holds, which is used to prove Theorem 2

n j = 1). The quantities q j and m j are associated with the particular geometric property of
N (x j , n j ): the points in N (x j , n j ) are located in B(x j , R j )\B(x j , r j ), and can be viewed
as distributed on the sphere ‖x j − x‖2 = m j R j on average. Such a local geometric property
only depends on the relative distances between x j and points in N (x j , n j ) (see Fig. 1a for
an illustration).

Denote the radial basis functions ϕ(‖x‖) with different scales, ε j , as φε j (x) = ϕ(ε j‖x‖),
for 1 ≤ j ≤ n. The corresponding approximation to (1) is written as

s(x) =
N∑

j=1

α jφε j (x) (15)

and the corresponding interpolation matrix on the data set X with {φε j }nj=1 is denoted as
Aφε j ,X

.

Theorem 2 Let φ(r) be a univariate compactly supported radial basis function on [0, 1]
which is convex on [q, 1] and satisfies φ(0) = 1. X = {x1, x2, . . . , xN } is a scattered data
set in R

d . For a set N (x j , n j ) of n j nearest neighbouring points, R j is defined by (13) and
q j and m j are defined by (14). If for every x j ∈ X , there is a set N (x j , n j ) of n j nearest

neighbouring points which satisfies q j ≥ q and m j > 1 − 1−q
φ(q)n j

, then the interpolation

matrix Aφε j ,X
= φ(ε j‖xi − x j‖)1≤i, j≤N is non-singular when ε j ≥ 1/R j .

Proof For xk ∈ N (x j , n j ), define dkj = ‖xk−x j‖
R j

. Since q j = r j
R j

≥ q , then for each k and
j , dkj ≥ q j ≥ q . Suppose now yk j is defined so that the points (dkj , yk j ) are located on the

straight line which passes through (q, φ(q)), and (1, 0), then yk j = 1−dk j
1−q φ(q) (see Fig. 1 for

an illustration). Since dkj ∈ (q j , 1) ⊂ [q, 1] and φ is convex on [q, 1], then yk j ≥ φ(dkj ). It
follows that

∑

xk∈N (x j ,n j )

yk j = φ(q)

1 − q

∑

xk∈N (x j ,n j )

(1 − dkj ) = n jφ(q)

1 − q
(1 − m j ) ≤ 1, (16)
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under the stated assumption that m j > 1− 1−q
φ(q)n j

. This proves that when the scale parameter
ε j is taken as ε j = 1/R j then for each j we must have

1 −
∑

xk∈N (x j ,n j )

φ(dkj ) = φ(0) −
∑

xk∈N (x j ,n j )

φ(ε j‖xk − x j‖2) > 0.

That is: the interpolation matrix Aφε j ,X
is diagonally dominant and thus non-singular. For

the case ε j ≥ 1/R j , it follows because

g(ε) := φ(0) −
∑

xk∈N (x j ,n j )

φ(ε‖xk − x j‖2) (17)

is a decreasing function on ε. ��
Remark 1 If n j = 1, then q j = m j = 1 > 1 − 1−q

φ(q)n j
, Theorem 2 always holds. In this case

the interpolation matrix is a diagonal matrix, and of course non-singular. However, this case
is not of interest. For n j = 2, then the non-zero off-diagonal elements are always smaller
than 1 if ε j = 1/R j , even if N (x j , 2) does not satisfy the condition. When q j < q , the
nearest point is too close to x j and the two basis functions are more likely to correlate with
each other.

Example 1 Consider the Wendland function φ3,1(r) = (1−r)4+(4r+1); its convex interval is

[0.25, 1]. Consider a point x j on the equally spaced mesh in R
2 ; see Fig. 2a for illustration.

Let R j = 1 for N (x j , n j ), n j = 5, 6, 7, 8. q j =
√

2
2 > 0.25, m j =

√
2

4 + 1
2 ≈ 0.8536 for

n j = 8.

1 − 1 − 0.25

8φ3,1(0.25)
≈ 0.8519 < m j .

Therefore on the equally spaced mesh in R
2, N (x j , n j ) for n j ≤ 8 satisfy Theorem 2. This

also illustrates that on a equally spaced mesh, the radii for a compact support basis function
which satisfies Theorem 2 is proportional to the underlying grid size.

Theorem 3 Let φ be a compactly supported Wendland radial basis function, for any set of
distinct points X = {xk ∈ R

d , k = 1, 2, . . . , n.}, there exist scale parameters ε j , such that
each column of the interpolation matrix Aφε j ,X

= φ(ε j‖xi −x j‖2)1≤i, j≤n is strictly column
diagonally dominant and each column has at least 3 non-zero elements.

Proof For given x j , let

ρ1 = min
i �= j

‖xi − x j‖, ρm+1 = min‖xk−x j‖>ρm
‖xk − x j‖, for m > 1,

and

N (ρ) := #{xk : 0 < ‖xk − x j‖ < ρ}.
be the number of points whose distance to x j smaller than ρ, then for any δ > 0 such that
ρ1 + δ < ρ2, we have N (ρ1) = N (ρ1 + δ). According to Lemma 3, we have

∑

xk∈N (x j ,N (ρ))

φ

(‖xk − x j‖
ρ

)

≤ cN (ρ)

(

1 − ρ1

ρ

)m

. (18)

If N (ρ1) ≥ 2, let ρ = δ + ρ1 ≤ ρ2, and force the right hand side in (16) to be less than one,
we get
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(a) (b)

Fig. 2 Two examples for the supports of basis functions which satisfy a diagonal dominant condition. a On
an equally spaced regular mesh. b On a mesh filled by isosceles triangles

δ ≤ ρ1T

1 − T
= δ∗, where T =

(
1

cN (ρ1)

)1/m

.

Then for any 0 < δ < min{δ∗, ρ2 − ρ1}, the shape parameter ε j = 1
ρ1+δ

can make the j th
column have N (ρ1) + 1 non-zero elements and column diagonally dominant.

For the case N (ρ1) = 1, let ρ := ρ2 + δ < ρ3, then

∑

xk∈N (x j ,N (ρ))

φ

(‖xk − x j‖
ρ

)

≤ φ

(
ρ1

ρ1 + δ

)

+ c(N (ρ2) − 1)φ

(
ρ2

ρ2 + δ

)

≤ φ

(
ρ1

ρ1 + δ

)

+ c(N (ρ2) − 1)

(
δ

ρ2 + δ

)m

≤ φ

(
ρ1

ρ1 + δ

)

+ c(N (ρ2) − 1)

(
δ

ρ2 + δ

)

:= f (δ).

Thus f (0) = φ(
ρ1
ρ2

) < 1 and f (δ) is a monotonically increasing function. Suppose f (δ) ≤ 1
has solutions on (0, δ∗) for some δ∗. Then for any 0 < δ min{δ∗, ρ3 − ρ2}, the choice
ε j = 1

ρ2+δ
makes the column have N (ρ2)+1 non-zero elements whilst keeping the diagonal

dominance condition. ��
Remark 2 Theorem 3 indicates that a point set X satisfying the Theorem is a sufficient
but not necessary condition to guarantee a non-singular interpolation matrix with RBFs of
different shapes.

Example 2 Consider a mesh which consists of isosceles triangles as illustrated in Fig. 2b.
Since N (ρ1) = 6,N (x j , n j ) for n j ≤ 6 satisfy a diagonal dominant condition but they result
in interpolation matrices with only one non-zero element in column j . For N (ρ2) = 12, let

ρ2 = R j = 1, where R j corresponds to N (x j , n j ) for n j = 7 to 12, then q j =
√

3
3 > 0.25

and 1−6∗φ3,1(q j ) ≈ 0.3664 > 0. Therefore, when using φ3,1 with radius as ρ2, a diagonal
dominant condition can also be guaranteed. The largest n j such that N (x j , n j ) satisfies
Theorem 2 is 8.
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Fig. 3 The second derivatives of Wendland function φd,k (r) for d = 1, 3, 5 and k = 1, 2. The root of φ′′
d,k (r)

in (0,1) is the exactly tight bound of q

Remark 3 Both Example 1 and Example 2 illustrate that the radii of the basis functions which
can guarantee a diagonal dominant interpolation matrix is a relative value to the mesh size.

Finally, we conclude that interpolation matrices constructed from Theorems 2 and 3 have
an nice property which can guarantee (incomplete) LU factorizations. Matrices with such
a property are called H-matrices. An H-matrix is a generalization of an M-matrix. A real
matrix A = (ai, j )1≤,i, j≤n with ai, j ≤ 0 for all i �= j is an M-matrix if A is non-singular and
A−1 is a non-negative matrix. A matrix A is an H-matrix if its comparison matrix M (A) is
an M-matrix, where the comparison matrix M (A) = (αi, j )1≤i, j,≤n is defined by

αi,i := |ai,i |, and αi, j := −|ai, j | for i �= j, (1 ≤ i, j ≤ n).

H-matrices can guarantee stable incomplete factorization pre-conditioners [26].

Theorem 4 The interpolations matrices in Theorems 2 and 3 are H-matrices.

Proof Theorems 2 and 3 guarantee the underlying interpolation matrix strictly diagonally
dominant. The result follows due to an established result: if a matrix is is either a strictly
diagonally dominant or an irreducibly diagonally dominant matrix, then A is an H-matrix
[25, p. 92, Theorem 3.27]. ��

4 Further Discussion

4.1 Estimation of the Lower Bound of the Convex Interval

A more accurate estimation on the threshold q for the convex interval [q, 1] can supply a
more tight lower bound on m j . For Wendland function φd,0, we can take q = 0; for φd,1,
q = 1

	d/2
+3 . In both cases q is minimal. It is easy to see that the lower bound of the convex
interval φd,1 becomes smaller as d increases. This is also true for φd,2 when d = 1, 3, 5.
See Fig. 3. Though neither Theorem 2 nor Lemma 2 indicates there is only one root for
φ′′
d,k(r) = 0 for k ≥ 2, this is true for the case k = 2 and d = 1, 3, 5. It is possible that φ′′

d,k
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Table 1 Estimations of the
convex interval for Wendland
functions

Smoothness Function Convex interval

C0 φ1,0 = (1 − r)+ [0, 1]
C2 φ1,1 = (1 − r)3+(3r + 1) [ 1

3 , 1]
C4 φ1,2 = (1 − r)5+(8r2 + 5r + 1) [0.2760, 1]
C0 φ3,0 = (1 − r)2+ [0, 1]
C2 φ3,1 = (1 − r)4+(4r + 1) [ 1

4 , 1]
C4 φ3,2 = (1 − r)6+(35r2 + 18r + 3) [0.2356, 1]
C0 φ5,0 = (1 − r)3+ [0, 1]
C2 φ5,1 = (1 − r)5+(5r + 1) [ 1

5 , 1]
C4 φ5,2 = (1 − r)7+(16r2 + 7r + 1) [0.2056, 1]

(a) (b)

Fig. 4 A demonstration of radial basis function with different supports for non-uniform grid. aN (x j , 6) for
a distort grid. b N (x j , 7) for a FEM mesh

at most has only one zero in (0, 1). The estimations of the threshold q for several Wendland
function in Table 1 are computed by Mathematica.

4.2 Sharper Bound for m j and Eigenvalue Distribution

From Fig. 1, as one might predict, the lower bound of m j in Theorem 2, 1 − 1−q
n j q

, can be far

from tight in most cases. For a tighter bound of m j , one can use
1−q j
n j q j

in (16). One even can
verify the diagonal dominance by “brute force”—evaluate φ(ε j‖xk − x j‖) directly, but this
involves more computations, every time changing the support or the size of the neighbourhood
means that one has to re-evaluate the function. However, even if only a part of the centres are
checked according to Theorem 2, it can save a lot of computations when adaptively choosing
the support.

In either case, one can guarantee that the smallest eigenvalue of the interpolation matrix
is bounded significantly away from the origin. The diagonal dominance indicates that μ =
‖Aφε j ,X

‖1 < 2. According to the classical Gerschgorin disc theorem [25, p. 16], all the
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(a) TriDisc1 data set (b) TriDisc2 data set
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Fig. 5 Data sets, interpolation matrices, and eigenvalues distribution for TriDisc problem. The blue circles
in (e) and (f) are eigenvalues, and the blue dashed lines are the boundaries of the convex hull of all the
eigenvalues. a TriDisc1 data set. b TriDisc2 data set. c TriDisc1 interpolation matrix. d TriDisc2 interpolation
matrix. e TriDisc1 eigenvalues. f TriDisc2 eigenvalues
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Table 2 Information of several test problems by Algorithm 2

Prob A Eig Bounds n j Scale range (R j )

size nnz λmax|λ|min
≤ Re(λ) ≥ min max mean min max mean max/min

HC 252 1,704 4.0 0.45 6 8 6.7 0.1095 0.3568 0.2275 3.3

T1 117 989 7.6 0.23 6 14 8.5 0.2163 0.4 0.2824 1.8

T2 2,050 18,350 10.8 0.17 4 14 9.0 3.8e−4 0.1515 5.0e−2 391.9

B4 1,351 9,911 10.7 0.17 3 16 7.3 3.5e−3 1.6e−2 1.0e−2 4.6

B3 5,643 42,825 8.8 0.20 3 17 7.6 1.6e−3 8.7e−3 5.3e−3 5.6

B2 24,425 183,988 12.0 0.15 3 21 7.5 1.3e−4 4.2e−3 2.6e−3 32.2

B1 105,615 740,493 18.9 0.10 3 21 7.0 5.8e−6 2.9e−3 1.2e−3 510.3

D3 15,563 117,362 10.1 0.18 3 24 7.5 2.6e−4 5.8e−3 3.51-3 22.0

D2 68,830 512,376 14.1 0.13 3 19 7.4 1.5e−4 3.4e−3 1.7e−3 22.2

D1 300,298 2,136,353 13.3 0.14 2 24 7.1 2.1e−5 2.3e−3 7.9e−4 109.8

eigenvalues of the interpolation matrix are located in a disc with center (1, 0) and radius
μ − 1. The upper bound on the ratio of the largest eigenvalue to the smallest is μ

2−μ
.

4.3 The Range of R j and n j

For local refinements, the value R j for N (x j , n j ) can vary a lot (see Fig. 4b for an illustra-
tion). The ratio of the largest support to the smallest support can be on a order of hundred,
for example, for the mesh in Fig. 5b. Table 2 shows that the range of the value of R j can vary
by up to hundreds, while the mean of n j may have a pattern.

4.4 Accuracy

It is known that stationary interpolation with compactly supported positive definite kernels
does not provide uniform convergence, because it violates the Strang-Fix condition [29,31].
The Strang-Fix condition is a necessary and sufficient condition for stationary interpolation
with compactly supported function to achieve uniform local L p convergence [24, Thm 1].
(Stationary interpolation keeps the support size propositional to the mesh size; on regular
mesh this corresponds to the basis function covers a fixed stencil). Making each basis function
cover as many as the neighbouring points will do better than using a smaller support. Keeping
the diagonal dominance leads to efficiency but also leads to a smaller support than usual
cases when each basis function covers more than 25 to 50 nearest neighbouring points. The
approximation quality would not be high. See an example in Fig. 6.

5 Algorithm and Implementation

One might think that it is cumbersome to find a set of nearest neighbouring points satisfy-
ing the local geometric property described above. In fact a very brief code can achieve the
aim: one possible Matlab function to find the largest n j satisfying Theorem 2 with a set
of k (k ≥ n j ) nearest points is given in Algorithm 1. Together with the k nearest neigh-
bouring points searching algorithm (eg. knnsearch in the Matlab statistics toolbox), a
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Fig. 6 Error functions on an 85 × 85 mesh on polar coordinates and the test function (f). b Uses the diagonal
dominant condition for each basis center, other case use k nearest neighbouring points for each center. Where
maxerr and rmserr are the infinity norm and the root-mean-square error. a 5 Nearest points, b average 8.5
nearest points, c 10 nearest points, d 16 nearest points, e 40 nearest points, f Test function

program to generate the interpolation matrix with differently scaled RBFs can be written as in
Algorithm 2.

Note that the cumsum takes k operations, calculating mj and qj takes k and 3k oper-
ations, calculating RHS takes 4k operations plus k evaluations; the find steps only need
2k comparisons and k logical operations. Suppose k is a number less than 100, the total
operation count is at most O(k2). If an initial set of k neighbouring points is supplied for
each point, then the total operation count to calculate the entries for the interpolation matrix
is at most O(Nk2). Further, for each point, this procedure can run independently which is
suitable for parallel computing( by replacing the serial for loop in Algorithm 2). The set up
of the kd-tree structure takes takes O(dN log(N )) time [28, p. 240], and finding the k nearest
neighbouring points can be done in O((log N + k)N ) time [28, p. 248] by a generalized
kd-tree or bd-tree search. Such causal analysis shows that when N is large, the timing for
generating the interpolation matrix is shorter than the time for nearest neighbourhood search.
A comparison of the time for the knnsearch (knn) and that for checking the diagonal
dominance condition is listed in Table 3.

6 Numerical Verification

Two data sets from adaptive finite element refinement on three quarters of a disc are used
as the first examples to verify the theory; the data sets are referred to as TriDisc1 (T1)
and TriDisc2 (T2) respectively. We then apply the procedures to implicit curve/surface
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Algorithm 1 A Matlab function to check Theorem 2
function[dsto,mnj,G]=checkt(dst,q,rbf)
%% A Matlab function to find a neighbourhood satisfying theorem
%IN: dst:distance of k nearest neighbouring points in increasing order
%     rbf: a function handle
%       q: the lower bound of the convex interval of rbf
%OUT:dsto: the elements of the interpolation matrix within current center
%     mnj: the largest number of nj satisfying the theorem
%       G: G=[r_j, R_j, q_j, mj, lower bounds of eigenvalue]
k=length(dst)-1;            % the number of neighbours
dst2=dst(2:end);            % remove the center itself;
cs=cumsum(dst2);            % cumsum
n1j=[1:k]’;                 % column vector of nj
mj=cs./(n1j.*dst2);         % mj as a vector of k
qj=dst2(1)./dst2;           % qj as a vector of k
RHS=1-(1-qj)./(n1j.*rbf(qj));
mask=find(mj>RHS &qj>q);    % satisfy mj> RHS and qj>q
if ˜isempty(mask)
     mnj=max(mask);         % find the maximum nj
else
     mnj=2;                 % otherwise mnj=2
end
dsto=[1; rbf(dst2(1:mnj)/dst2(mnj))];
G=[dst2(1), dst2(idx),qj(mnj), mj(mnj), 1-sum(dsto(2:end))];

Algorithm 2 A Matlab function to generate the interpolation matrix
function[A,R,mnj]=mkA(dsites,rbf,npts,q)
% IN    :   dsites: the interpolation points
%           rbf: the radial basis functions
%           npts: the initial number of neighbour points
%           q: the lower bound of the convex interval of rbf
% OUT   :   A:  the interpolation matrix
%           R:  The radials of each basis functions
%           nj: the numbers of neighbouring points of the jth basis
%                 function
% Requires package: statistics toolbox:knnsearch
NN=length(dsites);
[idx,dist]=knnsearch(dsites,dsites,’k’,npts,’NSMethod’,’kdtree’);
idx=idx’;dist=dist’;
 A=spalloc(NN,NN,NN*npts);s=zeros(NN,5);mnj=uint32(ones(NN,1));
 for k=1:NN
      [dst,mnj(k),G]=checkt(dist(:,k),q,rbf);
      R(k)=G(2);A(idx(1:mnj(k)+1,k),k)=dst;
 end

construction problems, demonstrating that the presented algorithms can solve very large
scale real applications. For the 3D surface construction problem, we consider the Stan-
ford bunny model and Stanford dragon model in the Stanford3D scanning repository.1 The
Stanford bunny (bunny.tar.gz) consists of 35947, 8171, 1889 and 453 points. The Stan-
ford dragon (dragon_recon.tar.gz) is a larger model; only three low resolution data
sets are used, the data sets with 100250, 22998 and 5205 vertices. The test problems are
named as Bunny453 (B4), Bunny1889 (B3), Bunny8171 (B2), Bunny35947 (B1),

1 http://graphics.stanford.edu/data/3Dscanrep/.
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Table 3 Timing results (in seconds) for C/C++ implementation

Prob. N knn Check Sparse ilu gmres R1 (‰) R2 (‰)

B4 1,351 0.0130 0.0002 0.0015 0.0007 0.0054 3.28 1.05

B3 5,643 0.0543 0.0009 0.0068 0.0031 0.0169 4.50 1.21

B2 24,425 0.2576 0.0040 0.0342 0.0162 0.0726 4.50 1.15

B1 105,615 1.2357 0.0180 0.1546 0.0801 0.4029 3.73 1.05

D3 15,563 0.1641 0.0027 0.0213 0.0087 0.0543 4.29 1.19

D2 68,830 0.7776 0.0119 0.1023 0.0495 0.2118 4.55 1.15

D1 300,298 3.5881 0.0521 0.5041 0.2335 0.9574 4.37 1.09

The results illustrate that checking the diagonal dominant condition takes little time in the whole process
of scattered data approximation. Column knn is the data querying time by knnsearch in Matlab; column
sparse is the time for generating sparse matrices by sparse in Matlab, this process is not necessary in a pure
C/C++ environment; column ilu and column gmres is the time for linear solver; column check is the time for
the C/C++ implementation to check the diagonal dominance condition; column R1 is the ratio of the time for
check over the time for linear solver; column R2 is the ratio of the time for check over the time for linear
solver and data querying

Table 4 Error for the test function with increasing support

Error Methods
I II

8.5 5 10 16 32 40

MAX error 0.173 0.623 0.224 0.113 0.059 0.058

RMS-error 0.042 0.223 0.043 0.020 0.016 0.015

Dragon5205 (D3), Dragon22998 (D2) and Dragon-100250 (D1) respectively. To
illustrate the method for 3D surface construction with radial basis functions, a 2D para-
metric heart curve (HC) is also considered. In all of the problems, the Wendland function
φ3,1 = (1 − r)4+(4r + 1) is employed. A collection of the results related to our theorems are
put together in Table 2, more information is detailed as follows.

6.1 TriDisc Problem

The data set TriDisc1 is generated by the following Matlab code

[˜,p,e,t]=adaptmesh(’cirsg’,’cirsb’,1,0,0,’maxt’,100,...
’tripick’,’pdeadworst’,’ngen’,inf);TriDisc1=p’;

The data set TriDisc2 is generated similarly by replacing the parameter 100 by 3,000.
Figure 5 illustrates the data sets, the structure of the interpolation matrices, and the eigenvalue
distribution of the two interpolation matrices.

We interpolate the following test function

(
x2 + y2)1/3

cos

(
2 atan2(y, x)

3

)

(19)

on the data set TriDisc1 with two approaches and investigate the error behavior. One
approach is to use the diagonally dominant condition described here, which results in an
interpolation matrix with average non-zero elements 8.5 per column. In the other approach,
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we just use make each basis function cover its k-nearest points, where k = 5, 10, 16, 32, 40.
The error function is evaluation on N = 85×85 points in the domain. Both the infinity norm
and the root-mean-square error (RMS-error) are listed in Table 4. The root-mean-square error
is defined as

RMS-error =
√
√
√
√ 1

N

N∑

i=1

|s(xi ) − f (xi )|2.

For the case the case when more than 10 nearest points for each basis function are used in
Table 4, the underlying interpolation matrix is not diagonally dominant and could be singular.
The method which keeps the diagonal dominance performance slightly better than the case
when using 10 nearest points, but its approximation quality is low.

6.2 Implicit Curve/Surface Reconstruction

Here we consider a realistic problem which allows low resolution schemes: constructing an
implicit surface. An implicit surface/curve can be viewed as a zero level set of a function
f (x), where f (x) satisfies

⎧
⎪⎨

⎪⎩

f (x) = 0 if x on the curve/surface;
f (x+) > 0 if x+ off the curve/surface (outside);

f (x−) < 0 if x− off the curve/surface (inside).

Given a point set on the curve/surface and associated normal information, the artificial
off-surface points x+ and x− are easily obtained. Such a scheme is popular in reconstructing
complicated 3D objects, see [4]. Because x+ and x− are artificial and f (x+) and f (x−)

can be any positive and negative number, and usually the supplied normal directions are
approximated, inaccurate or measured with some noise. So a low resolution interpolant is
enough and efficiency is of more concern in practice.

We first illustrate the procedure by an implicit curve construction problem and then show
the method which guarantees diagonal dominance condition can solve large scale 3D surface
reconstruction problems very efficiently with satisfactory results.

6.2.1 Illustration in 2D

Consider the following heart curve
{
x(t) = √

2(sin(t) − cos(t));
y(t) = −√

2(sin(t) + cos(t)(1 + sin(t))),
(20)

which is modified from an example in [8, p. 257]. 84 points on the curve are sampled by
setting {ti }84

i=1 equally spaced in [0, 2π ]. These points themselves are not equally spaced, see
the small blue circles in Fig. 7a, c. The off curve artificial points are constructed as follows
x± = x ± .75δxnx, where nx is the normalised normal direction at x and δx is the distance
from x to its nearest neighbour on the curve; the ratio .75 can be any scalar not far from 1.
Figure 7a illustrates the support of each each basis function, the support is found by Algorithm
1. Figure 7b demonstrates that the eigenvalues of the interpolation matrix are located in the
black circle by the diagonal dominance condition. The red curve in Fig. 7c and the zero level
set in Fig. 7d is the reconstructed result.
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Fig. 7 Reconstruction of an implicit curve. The blue + points are artificial off-curve point constructed by
related normal information. The black circles in (a) are the supports for the basis functions corresponding to
red + centres. b Demonstrates that the eigenvalues of the interpolation matrix are located in the black circle.
The red curve in (c) and the 0 level set in (d) is the reconstructed curve

6.2.2 3D Surface Reconstruction

The normal information are computed by thenormalsply from the packageply.tar.gz
provided by Greg Turk.2 The artificial computed points are constructed by x± = x± .5δxnx.
Suppose dsites are the points in the cloud and normals is the corresponding calculated
normal information. The 3D surface construction problem can be solved by the following
framework described in Matlab code Algorithm 3, in which the function name and linear
solver are chosen randomly; basically, it includes four steps: preparing data, generating linear
systems, solving linear systems and post-precessing. The details of the post-precessing part
can be find in [33].

2 http://www.cc.gatech.edu/projects/large_models/ply.html.
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Algorithm 3 A framework for 3D surface reconstruction with Radial basis functions
rbf=@(r) (1-r).ˆ4.*(4*r+1);
[dsites,rhs]=scan3Drhs(dsites,normals,.5); % prepare data
[A,R]=mkA(dsites,rbf,npts,.25);  % generate interpolation  matrix
[sol,flag,reves,iter, resvec]=gmres(A,rhs,50,1e$-$13); % A*sol=rhs
%%%%% ---- post-precessing----%%%%
neval=200;[epoints,xe,ye,ze]=eva_pts(dsites,neval);
Pf=spevaluation(dsites,epoints,R,rbf,sol); % sparse evaluation
scan3Dplot(xe,ye,ze,Pf,neval);           %visualiztion

Table 5 Information of several test problems

Prob N GMRES ILU(0)-GMRES

time iters ilu gmres total iters

B4 1,351 0.056699 26 0.000474 0.032375 0.032849 8

B3 5,643 0.137854 29 0.001891 0.043237 0.045128 8

D3 15,563 0.205449 24 0.005438 0.078885 0.084323 8

B2 24,425 0.468109 30 0.008712 0.097339 0.106051 8

D2 68,830 1.431795 30 0.031673 0.235703 0.267376 8

B1 105,615 2.096634 30 0.041696 0.297057 0.338753 7

D1 300,298 6.521828 32 0.160924 1.149587 1.310511 9

6.3 Conditioning

Three ways are used to verify that the interpolation matrix is very well conditioned. First, the
lower bounds of the real part of the eigenvalue are calculated when checking the diagonal
dominance: Re(λ) ≥ min j {1 − ∑

i ai j }. Second, we observe the convergence history of
GMRES methods without preconditioning. Third, Matlab condest is used for the largest
sparse matrices in this paper; which returns a number between 5 to 13. It should be pointed
out that the condest(A,2) can estimate the condition number to within a factor of 2,
whilst condest(A,4) which gives a more accurate estimate returns a number around 12.

ILU(0) preconditioning for GMRES is also considered. The performance for the Stanford
bunny and Stanford dragon problems are listed in Table 5. The restarted GMRES(50) are
used, while all the problem are terminated in 32 iterations without any preconditioning.

The eigenvalues for two relatively small models are calculated. It turns out that the eigen-
value distribution of the two problem share similar features, all the eigenvalues are clustered
in a very small disc with center (1, 0) (see Fig. 8), and the convergence history for GMRES
without preconditioning are similar. For large problems, it is not easy to calculate all of the
eigenvalues of the interpolation matrix, but the convergence histories for GMRES are similar;
see Fig. 8e for the largest problem in this paper. A GMRES solution approach for globally
supported radial basis function is discussed in [5].

6.4 Efficiency

The Matlab implementation in Algorithms 1 and 2 is inefficient for large scale problems
due to the long loop in Algorithm 2. Indeed the algorithms here do not guarantee at least 3
elements per column as described in Theorem 3. Procedures to guarantee Theorem 3 would
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Fig. 8 a,bThe distribution of eigenvalues, the blue circles are eigenvalues and the blue polygon are the convex
hull of the eigenvalues. c–e The convergence history of GMRES and preconditioned GMRES methods. f The
time of solving the interpolation linear systems resulted by Algorithm 2, mkA with GMRES solver without
any preconditioning is linearly dependent on the dimensional of the linear system. where c = 1.2168e−05

require several if or while branches, which are inefficient in Matlab. If C/C++ is used, an
algorithm based on Theorem 3 works efficiently. To illustrate the efficiency, timing results are
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(a)  Bunny453 (b)  Bunny1889

(c)  Bunny8171 (d)  Dragon5205

Fig. 9 Surface reconstruction from 3D Scanning Repository

presented in Table 3, where we report the time for knnsearch in Matlab (based on kd-tree)
to search for the 20 nearest neighbourhood for each point, the time for the check procedure,
and the command sparse(row,col,val) in Matlab to generate a sparse matrix, and the
time for ilu and gmres. The check procedure is a Matlab wrapper function with C/C++
kernel function which checks the diagonal dominance condition in Theorem 3 and prepares
row, col and val for the sparse function. If experiments are carried out outside of
the Matlab environment, the sparse function is not necessary. The results are presented
to demonstrate that checking the theorem and generating the interpolation matrix takes a
relatively small fraction of the overall time. Details of the C/C++ implementation will be
published in an ongoing software package.

Figure 9 shows the reconstruction results for the Stanford bunny model and the Stanford
dragon model.

7 Conclusion

The main results establishing solvability of the equations for interpolation with radial basis
functions generally employ Fourier Transforms and Bochner’s theorem. As such they can
only apply to RBFs with identical shape parameter. In this manuscript, we provide some
sufficient conditions for invertibility of the interpolation equations for Wendland functions

123



J Sci Comput (2015) 63:862–884 883

with differing shape. The same idea can also be applied to other compactly supported basis
functions which have a fast decay property, for instance the Wu functions. The idea might
be useful for the Gaussian with some modification. For using globally supported radial basis
function with different scales the reader is redirected to [2]

Numerical examples show the scheme is very efficient for large scale problems but with a
lower accuracy. It can can be used when the efficiency is of great concern and a high resolution
scheme is not necessary. Examples are given which demonstrate the utility. Our motivation
and further consideration is how to combine such a scheme with a proper local refinement
scheme and multi-step strategies, thus an error estimate for such a scheme is crucial for wider
applications and need to be further considered.

Acknowledgments We thank the referees for valuable advice and suggestion on presenting the results in a
more illustrative way, in particular, for one referee who pointed out the fact in Lemma 3, which simplifies the
proof in Theorem 3.
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