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Abstract The shallow-water equations model hydrostatic flow below a free surface for cases
in which the ratio between the vertical and horizontal length scales is small and are used to
describe waves in lakes, rivers, oceans, and the atmosphere. The equations admit discontinu-
ous solutions, and numerical solutions are typically computed using high-resolution schemes.
For many practical problems, there is a need to increase the grid resolution locally to cap-
ture complicated structures or steep gradients in the solution. An efficient method to this
end is adaptive mesh refinement (AMR), which recursively refines the grid in parts of the
domain and adaptively updates the refinement as the simulation progresses. Several authors
have demonstrated that the explicit stencil computations of high-resolution schemes map
particularly well to many-core architectures seen in hardware accelerators such as graphics
processing units (GPUs). Herein, we present the first full GPU-implementation of a block-
based AMR method for the second-order Kurganov–Petrova central scheme. We discuss
implementation details, potential pitfalls, and key insights, and present a series of perfor-
mance and accuracy tests. Although it is only presented for a particular case herein, we
believe our approach to GPU-implementation of AMR is transferable to other hyperbolic
conservation laws, numerical schemes, and architectures similar to the GPU.
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1 Introduction

The shallow-water equations are able to accurately capture the required physics of many
naturally occurring phenomena such as dam breaks, tsunamis, river floods, storm surges,
and tidal waves. Most of these phenomena typically have some parts of the domain that
are more interesting than others. In the case of a tsunami hitting the coast, one is primarily
interested in obtaining a high-resolution solution along the coastline where the tsunami hits,
whilst a coarser grid may be sufficient to describe the long-range wave propagation out at
sea. Similarly, for dam breaks the most interesting part of the domain is downstream from
the failed dam, where one wants correct arrival times of the initial wave front and reliable
estimates of maximum water height during flooding.

Adaptive mesh refinement (AMR) [2,3] is a standard technique that was developed to
address this particular problem. The basic idea behind AMR is to recursively refine the
parts of the domain that require high resolution, and adaptively update the refinement as
the simulation progresses. By utilizing AMR and refining only the areas of interest, the
required accuracy can be achieved locally at a considerably lower cost than by increasing
the resolution of the full domain. To further accelerate the simulation, we propose to move
the hierarchical computation of the AMR method to a modern graphics processing (GPU)
architecture, which has proved to be particularly efficient for performing the type of stencil
computations that are used in high-resolution shallow-water simulators. Herein, our starting
point will be a second-order, semi-discrete, non-oscillatory, central-difference scheme that
is well-balanced, positivity preserving, and handles wet-dry interfaces and discontinuous
bottom topography [18], which we previously have shown can be efficiently implemented
on GPUs [8].

Over the last decade or so, GPUs have evolved from being purely graphics co-processors
into general-purpose many-core computing engines. Today, a GPU can significantly speed
up a wide range of applications in a multitude of different scientific areas, ranging from
simulations of protein folding to the formation of black holes [4,29,30]. Accelerators like the
GPU have been increasingly utilized in supercomputers and adopted by the high-performance
computing community as well. If one considers the Top 500 list [24], the first accelerated
systems appeared in 2008, and today over 10 % use accelerator technology.1 Compared to the
CPU, GPUs generally have much smaller caches and far less hardware logic, and focus most
hardware resources on floating point units. This enables execution of thousands to millions of
parallel threads, and “scratchpad-type” memory shared between clusters of threads enables
fast collaboration. While the CPU is optimized for latency of individual tasks, the GPU is
optimized for throughput of many similar tasks. Alongside the development of the GPU
hardware, the programming environment has been steadily growing and improving as well.
Although GPU development still is somewhat cumbersome and time-consuming, it has been
greatly simplified by more expressive high-level languages, tools such as debuggers and
profilers, and a growing development and research community utilizing GPUs [6].

Several software packages implement AMR for different problems on the CPU. Some
of the most common, free, block-based codes are PARAMESH [23], SAMRAI [15],
BoxLib [19], Chombo [10], and AMRClaw [1]. In particular, LeVeque et al. [20] describe in
detail the implementation of AMR in the GeoClaw software package to capture transoceanic
tsunamis modeled using the shallow-water equations. There are also a few papers that dis-
cuss how GPUs can be used to accelerate AMR algorithms [9,26,33,37]. To the best of our

1 On the June 2013 list, there were 43 GPU-powered machines, and 12 machines using the Intel Xeon Phi
co-processor.
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knowledge, Wang et al. [37] were the first to map an AMR solver to the GPU based on the
Enzo hydrodynamics code [35] in combination with a block-structured AMR. Here, a single
Cartesian patch in the grid hierarchy was the unit that is sent to the GPU for computing.
Schive et al. [33] present a GPU-accelerated code named “GAMER”, which is also an astro-
physics simulator implemented in CUDA. Here, the AMR implementation is based on an
oct-tree hierarchy of grid patches, in which each patch consists of eight by eight cells. The
patches are copied to the GPU for solving, and the results are copied back to the CPU again.
However, by using asynchronous memory copies and CUDA streams to solve patches at the
same refinement level in parallel, they alleviate some of the overhead connected with the
data transfer between the CPU and the GPU. Burstedde et al. [9] discuss a hybrid CPU–GPU
version of their elastic wave propagation code, dGea, in which the wave propagation solver
runs on the GPU and the AMR operations are executed on the CPU. CLAMR [26] is devel-
oped as a testbed for hybrid CPU-GPU codes using MPI and OpenCL [17] for shallow-water
simulations.

Existing AMR codes for the GPU tend to handle most of the AMR algorithm on the CPU
and only perform the stencil computations on a single or a group of Cartesian subgrids on
the GPU. This involves uploading and downloading large amounts of data, when it would be
much more efficient to keep the data on the GPU at all times. Herein, we therefore propose
to take the development one step further and move all computationally expensive parts of a
block-based AMR algorithm to the GPU.2 Our work is, to the best of our knowledge, the
first block-based AMR algorithm that has been fully implemented on the GPU, so that all
simulation data are kept in GPU memory at all times. Our work is also the first to extend
the second-order accurate Kurganov–Petrova scheme [18] to an AMR framework. Although
the discussion herein will focus on a specific high-resolution shallow-water solver, most of
the choices made in our implementation should be easily transferable to other numerical
schemes, other modern accelerators (such as the Intel Xeon Phi), and even other systems of
hyperbolic conservation laws.

2 Shallow-Water Simulations on the GPU

We have developed our AMR code based on an existing GPU-accelerated shallow-water
simulator [5,8] that has been thoroughly tested, verified, and validated both on synthetic test
cases and against measured data. The simulator is written in C++ and CUDA [27] and has
a clean and simple API, which makes it possible to set up and execute a simulation using
about 5–10 lines of code. A brief overview of this simulator and its mathematical model will
be given in this section. For a complete description, we refer the reader to [8,31,32]. A set
of best practices for harnessing the power of GPUs for this type of simulation can be found
in [7].

2.1 Mathematical Model

The shallow-water equations are derived by depth-averaging the Navier–Stokes equations.
By adding a bed shear-stress friction term to the standard shallow-water equations, we get
the model used in our simulator. In two dimensions on differential form it can be written as:

2 It should be noted that some parts of the code, such as launching kernels on the GPU, is necessarily performed
on the CPU.
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Here, h is the water depth and hu and hv are the discharges along the abscissa and ordi-
nate, respectively. Furthermore, g is the gravitational constant, B is the bottom topography
measured from a given datum, and Cz is the Chézy friction coefficient.

Our numerical scheme is based on the semi-discrete, second-order, central scheme by
Kurganov and Petrova [18], which has been extended to include physical friction terms [8].
The spatial discretization of the scheme is well-balanced, positivity preserving, and handles
wet-dry interfaces and discontinuous bottom topography. In semi-discrete form it can be
written as:

d Qi j

dt
= H f (Qi j ) + HB(Qi j ,∇ B) − [

F(Qi+1/2, j ) − F(Qi−1/2, j )
]

−[
G(Qi, j+1/2) − G(Qi, j−1/2)

] = H f (Qi j ) + R(Q)i j . (2)

Here, Qi j is the vector of conserved variables averaged over the grid cell centered at
(iΔx, jΔy), HB is the bed slope source term, H f is the bed-shear stress source term, and
F and G represent numerical fluxes along the abscissa and ordinate, respectively. The fluxes
are calculated explicitly, based on one-sided point-values Qi±1/2, j and Qi, j±1/2 evaluated
from a piecewise-linear reconstruction from the cell averages with slopes limited by the non-
linear, generalized minmod function [22,25,34,36]. The bed-slope source term HB is also
calculated explicitly, and the discretization is designed carefully to ensure that the numerical
fluxes exactly balance the bed-slope source term for a lake at rest. Finally, to avoid numerical
problems with dry states, the scheme uses a mass-conservation equation formulated using
water elevation rather than water depth.

To evolve the solution in time, one can choose between the simple first-order, forward Euler
method and a second-order, total-variation-diminishing Runge–Kutta method. The friction
source term, H f , is discretized semi-implicitly, which gives rise to the following numerical
scheme for forward Euler time integration

Qk+1
i j =

(
Qk

i j + Δt R(Qk)i j

)
/ (1 + Δtα) , (3)

in which Δt is the time-step size and α is the semi-implicit friction source term. The two steps
in the Runge–Kutta method are on the same form. For a detailed derivation of the numerical
scheme, we refer the reader to [8,18].

2.2 Shallow-Water Simulations on Cartesian Grids

The execution model of the GPU is perfectly suited for working with structured grids since
the GPUs have been designed mainly to calculate the color values of regularly spaced pixels
covering the computer screen. Conceptually, we “replace” the screen with a computational
domain and the colored points by cells (see Fig. 1). By structuring the computations so that
every cell can be solved independently, we can solve for all cells in parallel.

The shallow-water simulator uses four CUDA kernels to evolve the solution one time step:
1: while t < T do
2: for k=1:order do
3: Flux: reconstruct piecewise continuous solution, compute F , G, and HB(Qi j ,∇ B),
4: and compute upper bound on wave speeds
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Fig. 1 Domain decomposition and variable locations. The global domain is padded a© to fit an integer number
of CUDA blocks, and global ghost cells b© are used for boundary conditions. Each block c© has local ghost
cells d© that overlap with other blocks to satisfy the data dependencies dictated by the stencil e©. Our data
variables Q, R, HB , and H f are given at grid cell centers f©, and B is given at grid cell corners g©

5: if k==1 then
6: Max time step: use parallel reduction to find global limit on time step Δt
7: end if
8: Time integration: evolve solution forward in time
9: Boundary condition: update all global boundary conditions

10: end for
11: t = t + Δt
12: end while

The flux kernel is also responsible for finding an upper bound on the maximum speed of
propagation per CUDA block, which will be used to limit the time step according to the CFL
condition. After the flux kernel has determined an upper bound, the max time-step kernel
finds the global limiting factor using a parallel reduction [13]. In the boundary-conditions
kernel, each of the four global boundaries may use different boundary conditions. Executing
all four CUDA kernels once constitutes one full time step if we use forward Euler for time
integration. With second-order Runge–Kutta, all kernels are executed twice, except for the
max time-step kernel, which needs only be executed in the first substep. To enable maximal
utilization of the GPU accelerator, the simulation data are kept on the GPU at all times. Even
when interactive visualization is switched on, the simulation data are simply copied from
CUDA memory space to OpenGL memory space, never leaving GPU memory.

3 Adaptive Mesh Refinement

The simulator discussed in the following has two novel components: formulation of the
Kurganov–Petrova scheme in an AMR framework, and efficient implementation of this frame-
work on a GPU many-core system. In this section we will give algorithmic and implementa-
tion details, focusing mainly on challenges related to the many-core GPU implementation.
The basic AMR data structure is a sequence of nested, logically rectangular meshes [2]
on which balance law (1) is discretized as in (2). There are two main strategies for local
refinement: A cell-based strategy will refine each cell based on a given refinement criteria,
whereas a block-based strategy will group cells together and refine collections of cells. We
have chosen a block-based strategy, which we will refer to as tile-based since we operate in
two dimensions. The tile-based approach has several advantages over the cell-based AMR
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(a) (b)

Fig. 2 The AMR grid hierarchy with two levels of refinement and four grids in total, including the root grid.
Each grid node is connected to a separate simulator instance that internally uses the domain decomposition
shown in Fig. 1. a Logical grid layout for AMR. b Simulator hierarchy

and is, in particular, a good fit for the GPU architecture with regards to cache locality and
memory access patterns. It also fits nicely with using ghost cells to handle boundary condi-
tions. To reduce the overhead of the regridding algorithm, one will typically want to extend
the refinement area so that waves can propagate for a few time steps before they reach the
boundaries of a newly added patch. In other words, padding of new refined areas is necessary,
and this comes automatically when using tiles. An advantage of using cell-based refinement
is a finer granularity, but this can also be achieved with tile-based refinement by adjusting
the size of the tiles. The tiles could consist of as little as one cell, and the tile size should be
adjusted according to the necessary degree of granularity and efficiency for each simulation
scenario. It should also be noted that although the refinement is tile-based, criteria for refining
are enforced on the cell-level.

To explain the AMR algorithm, we first need to introduce the grid hierarchy (see Fig. 2)
and establish some terms that will be used consistently for the rest of the paper. Each grid
is linked to an instance of the simulator presented in Sect. 2. For a standard simulation on
a single grid, we will have one simulator instance linked to one grid (see Fig. 1). This is
referred to as the root grid in an AMR context, and the root grid is the only grid that covers
the full simulation domain. For a two-level AMR simulation, the root will also have a vector
of children, each of them covering some part of the domain with twice the resolution of the
root grid. For more than two levels this becomes recursive, so that all grids, except the root
grid and the grids with the highest resolution (leaf node grids), have one parent grid, and one
or more children.

In addition to the tree of simulation grids, there are two main components to the AMR
algorithm: the time integration and the regridding. The time integration evolves the solution
in time on the parent grid, sets the boundary cells, and initiates the time integration on all
descendants of the current simulator instance. The regridding process, on the other hand,
adaptively creates and destroys children recursively based on the chosen refinement criteria.

3.1 Time Integration

The time-integration function evolves the solution on the current grid up to the current time
t on the parent grid. In doing so, the last time step must often be reduced to reach t exactly
(see Fig. 3). No grid on refinement level � can be integrated in time before all grids on levels
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Fig. 3 Different time-step sizes Δt�i for grids at different refinement levels �. Global time synchronization

occurs after every root time step. This means that the simulation time at root level after time step Δt0
0 will be

identical to the simulation time at refinement level 1 after time step Δt1
1 , and simulation time on refinement

level 2 after time step Δt2
3 , and so on. Notice that the time-step sizes in the same refinement level are slightly

different due to the CFL condition

0, 1, . . . , � − 1 are at least one time step ahead of level �. Except for this restriction, every
grid may be integrated in parallel, independently of all other grids. The time-step size is
computed independently on each child grid to ensure optimal computational efficiency for
the update on each subgrid. That is, subgrids containing slowly propagating waves can be
updated using larger time steps than subgrids on the same level that contain fast waves. The
resulting AMR time integration can be outlined in five steps (starting with � = 0):

1. Take one time step of length Δt� on the grid(s) at level �.
2. Determine ghost-cell values on level � + 1 grids: Values at time t are known from last

time the grid was updated and values at time t + Δt� can be reconstructed from the
most recent solution on the parent grid. (For spatial interpolation, we reconstruct values
in the same way as for calculating the numerical fluxes.) Values at intermediate times
t +Δt�+1

0 , t +Δt�+1
0 +Δt�+1

1 , . . . are computed using linear time interpolation between
the known values at time t and t + Δt�. See also Fig. 3.

3. Perform time integration on all level � + 1 grids to bring these grids up to the current
time on the level � grid by running this time integration algorithm recursively.

4. For any grid cell at level � that is covered by a level � + 1 grid, replace the solution in
this cell by an average of the values from the cells in the level � + 1 grid that covers this
cell.

5. Adjust the values in cells that interface a different grid to maintain conservation of mass.

Figure 4 illustrates one simulation cycle for one grid using this algorithm. Here, function
➀ represents a reset of AMR data before a new cycle of time steps, while kernels ➁ to ➇

represent one CUDA kernel each. We will go through each step, with emphasis on what is
special for AMR. A thorough explanation of kernels ➂–➅ for non-AMR simulations can be
found in [8].

Before a simulator instance can start updating its grid, the solution on all parent grids
must be one time step ahead. That is, for all simulator instances that do not hold the root
grid we can assume that there is a coarser solution available from the end-time t p

i at the
parent grid that can be used to interpolate boundary conditions on the child grid. To prepare
for the next time steps on the child grid, the reset AMR data function (function ➀) resets
the accumulated fluxes across the child–parent interface and the accumulated time-step sizes
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Fig. 4 Conceptual overview of all CUDA kernels used to evolve the solution from time t p
i−1 to t p

i . In the
pre-step stage, function ➀ resets all AMR data for the local solve and sets the boundary values for the start of
the current time-step series at time t p

i−1 to the boundary values used at the end of the previous time-step series.
Kernel ➁ computes the boundary values to be used at the end of the current time-step series using the solution
from the parent grid at time t p

i . In the first substep, kernel ➂ calculates F , G, and HB , kernel ➃ finds the

maximum Δtc , kernel ➄ calculates α and Qk+1, and kernel ➅ enforces boundary conditions on Qk+1. For
all other than the root grid, the boundary values are a linear interpolation between the reconstructed solutions
on the parent grid at times t p

i−1 and t p
i . Last, kernel ➆ replaces the parent solution by the child solution where

they overlap, while kernel ➇ maintains conservation of mass. As indicated in the figure, Substeps 1 and 2 are
repeated until the solution on the current grid has been advanced to the same time level tc = t p

i as the parent
grid

(a) (b)

Fig. 5 Visualization of the calculations done by the init-boundaries kernel (a) and the downsample kernel
(b). The black dots are input, the encircled black dots are output, and the black lines are the reconstructed
surface. a Kernel ➁: 1D minmod reconstruction. b Kernel ➆: averaging from level � to level � − 1 in 1D

to zero. The pointers to the two arrays containing initial and end-time boundary values are
swapped so that the solution at the end of the last computed step on the parent grid (at time
t p
i−1) becomes the initial solution for the sequence of time steps on the current child grid.

The array holding boundary data at time t p
i is set in the init-boundaries kernel (kernel ➁) by

reconstructing the parent solution from time t p
i and then evaluating the point values at the

center points of the child boundary cells (see Fig. 5a). For the root grid, the boundary data
are obtained from the boundary conditions of the problem.

Once the data structures holding boundary data is properly set, we can evolve all children
to time tc = t p

i : Kernels ➂ to ➅ in the two Runge–Kutta substeps are oblivious to the AMR
grid hierarchy and treat each grid as if it were a single-grid simulation, with only minor
adaptations for AMR. Kernel ➂, flux-calculation, uses a standard quadrature rule to compute
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the fluxes across all cell faces. In each quadrature point, a numerical flux function is used
to determine the interface flux from one-sided point values reconstructed from cell averages
in neighboring cells. The contributions from all quadrature points are accumulated and the
result is multiplied with the correct weight in the Runge–Kutta integration.3 This kernel also
finds the limiting factor for the time-step size per CUDA block. Kernel ➃, max time step,
then reduces the per-block limiting factor to a global value, and computes the maximum
time step based on the CFL-condition of the system. This time step is then added to the
accumulated time tc for the current child grid. Then, kernel ➄, time integration, advances
the solution in time and accumulates the fluxes going across the interface to the parent grid,
multiplied with the time-step size. On the root grid, kernel ➅, boundary condition, works as
normal, executing the prescribed boundary condition for the domain. For all other grids, this
kernel interpolates linearly between the two arrays containing boundary data prepared from
the parent solution as described above, using the accumulated time as the input variable. If
Euler time integration is used, the second substep is simply omitted, and in kernel ➂ we do
not multiply the fluxes with 0.5. The time-integration process is repeated until tc = t p

i (see
Figs. 3, 4). Now, the new solution must be communicated back to the parent grid. In kernel
➆, downsample, the solution in the child grid is averaged down to the resolution of the parent
grid (see Fig. 5b) and used to replace the solution in the parent grid where this grid overlaps
with the child grid.

The flux-correction kernels in ➇ finally ensure conservation of mass by modifying the
values of cells interfacing a different grid. For grids at the same refinement level, the flux
correction computes the corrected flux across a shared interface using

Fcorr(Qi+1/2, j ) = 1

2Δt

(∑
Δt L F(QL

i+1/2, j ) +
∑

Δt R F(Q R
i+1/2, j )

)
,

Δt =
∑

Δt L =
∑

Δt R .

Here, variables with superscript L and R denote that the variable is taken from the left-
and right-hand side of the interface, respectively. The sums represent the accumulated fluxes
computed on each side of the interface, weighted with their respective time-step sizes, and
the corrected flux is then used to adjust the variables in the adjacent cells. For an interface
between a parent and a child grid, on the other hand, we assume that the flux computed on
the child grid is the most correct. We therefore correct the flux only in the parent grid using

Fcorr(Qi+1/2, j ) = 1

Δt

∑(
Δtc F(Qc

i+1/2, j ) + Δtc F(Qc
i+1/2, j+1)

)
,

in which superscript c denotes the child grid. The sums represent the accumulated fluxes for
the two cells in the child grid that interface with a single cell in the parent grid. (Note that
we have to take into account the difference in grid cell size between the child and parent grid
when computing the corrected flux.)

3.2 Regridding

The regridding process is performed after a given number of time steps on every grid from
the root grid to a prescribed refinement level. The time intervals and grid depth should be set
according to the problem type (dam break, river flood, tsunami, etc.) and refinement criteria.

3 Here, we use a midpoint integration rule, central-upwind numerical flux, and a piecewise-linear reconstruc-
tion with slopes limited by a generalized minmod function, see [18] for details. The weight is 0.5 for both
steps of the particular stability-preserving, second-order Runge–Kutta scheme used herein. If other schemes
are used, this weight must be altered accordingly.
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Fig. 6 Showing eight different overlapping configurations and how they are treated. For all configurations,
the middle bounding box is the existing one. The dotted lines show how new proposed bounding boxes are
repartitioned and the overlapping part, marked with ’X’, is discarded

We do not perform refinement on a cell-per-cell basis, but rather we consider tiles of 32 × 32
cells. Tile size may be adjusted to better suit the problem type and domain size. The process
starts by running the refinement-check kernel that checks all cells in each tile against the
given refinement criteria. After a shared-memory reduction, using 32 × 4 CUDA threads per
tile, the kernel outputs the number of cells that fulfilled the refinement criteria per tile to the
refinement map. This makes it possible to demand that a certain fraction of the cells must
fulfill the refinement criteria before a tile is refined. Setting this number low gives better
accuracy, but lower efficiency, and vice versa. All new child grids have twice the resolution
of the parent grid.

Determining the coordinates of new child grids is the only part of the algorithm performed
on the CPU. First, we download the refinement map, which contains one value per tile.
Using the vector of existing child grids, we mask out every tile already overlaid with a child
grid in the refinement map to avoid generating new grids that include already refined tiles.
Nevertheless, we may end up with overlapping grids in some cases, and this needs to be
handled after we have made the proposed bounding boxes for new child grids. The new
bounding boxes are checked against existing bounding boxes, and any overlap is categorized
as one of nine different configurations. The first eight are handled as shown in Fig. 6, and the
ninth corresponds to complete overlap. It should be noted that this step constitutes a negligible
portion of the runtime, and though it is possible to implement on the GPU, it is better suited
to the serial execution model of the CPU. The refinement map is also used to remove child
grids that are no longer required. Since the physical quantities have already been averaged
onto the parent grid by the downsample kernel, the child grid can simply be removed and the
simulator instance deactivated without side effects. It should also be straightforward, though
not yet implemented, to include the double-tolerance adaptive strategy proposed recently
[21], which aims to optimize the overall numerical efficiency by reducing the number of
child grids whilst preserving the quality of the numerical solution.

To initialize a new child grid, we copy and edit the initialization parameters of the parent
grid; grid size (Δx , Δy), current simulation time, and all four boundary conditions are set
to their correct values. All initial conditions (i.e., the physical variables and bathymetry)
remain unset, so no data is uploaded to the GPU when the new child-grid simulator instance
is constructed. Each new simulator instance also creates its own CUDA stream to enable
concurrent execution of grids. The bathymetry can be initialized using texture memory,
enabling the use of efficient hardware interpolation. The initial conditions are reconstructed
from previous cell-averaged values using the generalized minmod limiter, and the array with
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initial boundary data is filled by running the init-boundary kernel described earlier.4 In the
case of complete overlap of existing subgrids, the solutions from the existing subgrids are
simply copied into the new child grid. Last, we update the neighborhood information for the
new simulator instance with any abutting grids at the same refinement level and add it to the
vector of children.

To have proper nesting, Berger and Colella [2] require that a child grid starts and ends
at the corner of a cell in the parent grid, and that there must be at least one level � − 1 cell
in some level � − 1 grid separating a grid cell at level � from a cell at level � − 2 in the
north, east, south, and west directions, unless the cell abuts the physical boundary of the
domain. These minimum requirements also apply in our GPU code. In addition, we require
that no interface between a parent and a child grid, or two child grids at the same refinement
level, crosses each other, and on the root grid (� = 0), we require three cells between the
global domain boundary and all level � > 0 grids. Without a three-cell margin, one of the
steps (parent-child flux correction) of the AMR algorithm interferes with the global wall
boundary condition. This last requirement is not imposed by the numerical scheme, but is an
assumption introduced to simplify the current implementation of global boundary conditions
that should be removed when the simulator is moved beyond its current prototype stage.

3.3 Optimizations

It is well known that a key challenge of executing an AMR simulation is to ensure proper load
balancing when work is distributed unevenly among processors. In our work, we have not
addressed scheduling, as this is automatically handled by the underlying CUDA runtime and
driver. However, in the next section we report the result of several numerical experiments we
have conducted to assess the overhead of our approach. In the rest of the section, we instead
focus on other types of optimizations that can improve the computational efficiency.

As we have seen, each grid except the root grid depends on its parent to supply the
necessary boundary conditions. If we consider Fig. 2, this means each grid only depends
on its parent grid to complete one time step before its solution can be evolved up to the
same time as its parent. Furthermore, this means that we may run simulations on all grids
simultaneously, as long as this one dependency if fulfilled. This task parallelism is handled
by using streams and events in CUDA. Each simulator instance has its own stream, in which
kernels and memory transfers are issued and executed in order. The synchronization with
other simulators is done by issuing events. This synchronization is implemented in the main
AMR step function:
1: while getCurrentT ime() < parent_time do
2: regrid();
3: step(parent_time);
4: cudaEventRecord(main_step_complete, stream);
5: stepChildGrids();
6: end while

assuming that ’parent_time’ is passed as an argument from the parent grid. In the code above,
regrid() checks the current grid hierarchy, and performs regridding based on the current
simulation settings of refinement criteria, regridding frequency, etc. After the step(...)-
function the grid associated with the current simulator instance is advanced in time, and its

4 Only the array containing boundary values for the end of the time-step series is filled in the initialization.
The boundary values for the start of the time-step series is simply set to be the end-values from the previous
time-step series.
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child grids can then be treated next. If the current grid is the root grid, we only perform one
time step. For all other grids than the root grid, we do time stepping until the grid has reached
the same advanced time as its parent grid. In the last case, the child grids of the current grid
need to be updated between each time step. The integration of child grids also requires similar
synchronization:
1: function stepChildGrids
2: for 1 → number_of _child_grids do
3: cudaStreamWaitEvent(child_grids[i]->stream, main_step_complete);
4: ...
5: // calling the main AMR step function
6: child_grids[i]->step(getCurrentTime());
7: ...
8: cudaEventRecord(child_grids[i]->child_steps_complete, child_grids[i]->stream);
9: cudaStreamWaitEvent(stream, child_grids[i]->child_steps_complete);

10: ...
11: end for
12: end function
Moreover, it is necessary with additional synchronization within each simulation as described
above.

To avoid unnecessary computations it is possible to exit early in dry cells, since the
solution will remain constant throughout the whole time step unless the cell is neighbor to a
wet cell [8]. Likewise, one can reduce the memory footprint if data values are not stored before
they actually contribute in the simulation using a sparse-domain algorithm [31]. These code
optimizations have not been included in the AMR implementation, and hence all performance
results report the time it takes to simulate every cell in the domain. Some minor adaptations
have been made to the simulator described in [8], the most noteworthy being the switch from
saving the sum of net fluxes and source term as a vector R(Q)i j [see (2)], to saving them
separately and postponing the computation of R(Q)i j to the time integration kernel.

Because each child grid has twice the resolution of its parent, one should in principle
use two time steps on the child grid for each time step on the parent grid. However, since
the maximum time step allowed by the CFL condition is computed for each time step, and
estimates of maximum eigenvalues (local wave-propagation speed) tend to increase with
increasing resolution, the allowed step sizes tend to decrease with increasing refinement
level. Because we need to synchronize the time between grids at different refinement levels
(see Fig. 3), we limit the size of the last time step so that all grids at level � + 1 will exactly
hit the current time of level � after some number of time steps. Sometimes this leads to very
small last time steps. This is unfortunate since very small time steps cost exactly the same as
larger time steps, without significantly advancing the solution in time. By reducing the CFL
target a few percent below its maximum allowed value, we are able to avoid many of these
small time steps, and thus increase the efficiency of the overall scheme (see Results 4.6).

A feature called dynamic parallelism has been introduced in the most recent versions of
CUDA GPUs. Dynamic parallelism enables a kernel running on the GPU to launch further
kernels on the GPU without any CPU involvement, thereby improving performance. One
proposed use of dynamic parallelism has been AMR [16], as it enables the GPU to adaptively
refine the simulation domain. In cell-based AMR codes, the construction and deletion of grids
is highly dynamic, and will therefore benefit greatly from dynamic parallelism. However, our
simulator is tile-based, and the overhead connected with the regridding process is already
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only a small fraction of the run time. The impact of using dynamic parallelism will therefore
be negligible, and restrict the simulator to only execute on the most up-to-date CUDA GPUs.

4 Results

How to best report the performance and accuracy of a tile-based AMR code is not self-evident.
There are many parameters to consider, e.g., refinement criteria, tile size, minimum child grid
size, regridding frequency, and maximum levels of refinement. We have constructed eight
tests and examples, and the results will be presented in separate sections below.

Our results show that the time integration consumes the majority of the computational time
and the time spent on refinement checks and regridding is negligible. The time integration is
made up of four kernels, some of them very computationally intensive. The refinement check,
on the other hand, is a single, relatively simple kernel and is generally not performed every
time step, typically only every 50th or 100th time step. Likewise, the regridding procedure is
typically performed on a very small fraction of the global domain. This means that whereas
the choice of refinement and regridding parameters will significantly impact the accuracy of
the simulation, the hardware utilization of the AMR algorithm will not depend on whether
patches are introduced adaptively or statically. Hence, all tests, except those noted, have been
run on a statically refined grid with a tile-size of 32 × 32 cells (measured in the parent grid).

We have run the simulator with both first-order forward Euler time integration and second-
order Runge–Kutta integration. The Runge–Kutta time integration will give overall better
hardware utilization and hence improve results on the efficiency tests as we get a higher
compute-to-“AMR-overhead” ratio. Friction terms are neglected for simplicity, unless stated
otherwise in the description. The performance tests were run on a node with an Intel i7 3930k
CPU @ 3.2 GHz, 32 GB RAM, 64-bit Windows 8, and a GeForce 780 GTX graphics card
using CUDA 5.5. All other tests were run on a node with an Intel i7 2657M CPU @ 1.6
GHz, 8 GB RAM, 64-bit Linux, and a GeForce GT 540M graphics card using CUDA 5. All
simulations are run using single-precision arithmetic.

4.1 Verification

In this test, we will use an analytic solution to verify the accuracy of the original simulator
and its new AMR version with different levels of refinement. To this end, we will use the
SWASHES code [11] to compute a steady-state reference solution for a transcritical flow
with a shock over a bathymetry with a single bump [12]. The domain, as depicted in Fig. 7,
is 25 m × 20 m with a bathymetry given by:

B(x) =
{

0.2 − 0.05(x − 10)2, if 8 m < x < 12 m,

0, else.
(4)

For the AMR code, a new bathymetry is generated for each refinement level to avoid
introducing errors due to interpolation or extrapolation. Water elevation is initially set to
0.33 m. Wall boundary conditions are imposed at y = 0 m and y = 20 m. At x = 0 m
we have an inflow boundary with a fixed discharge of 0.18 m2/s in the positive x-direction
and at x = 25 m we have an outflow boundary with a fixed water elevation at 0.33 m. All
simulations are run using first-order Euler time integration until they reach steady state.
The AMR algorithm will generate small fluxes in the y-direction across interfaces between
grids at different refinement levels, and hence longer simulation times are required before
the steady state is reached. Since the SWASHES reference solution is in 1D, we extract an
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Fig. 7 The SWASHES test
setup. The dotted lines indicate
the bump in the bathymetry

1D solution from our 2D solution, which is simply a line going through the middle of the
domain in the x-direction. From the results, shown in Fig. 8, we see that the AMR simulator
captures the shock with increasing accuracy for each level of refinement. Furthermore, the
AMR solution, in which we only refine a small area around the shock, is almost identical to
the global refinement solution of matching resolution.

Using the same setup, we now compare the computational time for the original simulator
and the AMR simulator, with resolution set so that the child grids with highest resolution
in the AMR simulation runs have the same resolution as the grid in the no-AMR simulation
runs. The level-1 child grid is offset by three cells from the x = 0 m boundary, and the
level-2 child grid is offset two cells from the boundary of the first child grid. To make the
comparison fair, we fit as many tiles as possible into each of the two levels of child grids in
the y-direction. In the x-direction, the grid with the highest resolution is just wide enough
to capture the bump and the shock, and its parent grid is just wide enough to contain it. All
test runs reach steady state. Results are shown in Fig. 9. The AMR simulations are clearly
faster than the original simulator, and the discrepancy is increasing. This is caused by the
increasing ratio of cells outside the area of interest (the shock) over the total number of grid
cells.

Considering both accuracy and efficiency, we have shown that the AMR-simulation gives
the same results for less computation, and several times faster (3.4 times for the highest
resolution). In this test, the domain size has been constant at 20 m × 25 m, and the resolution
has been variable. For cases where the area of interest is of fixed size, but the rest of the
domain is increased, e.g., if the area of interest is far away from the event origin, the use of
AMR will have an even bigger impact on simulation efficiency.

4.2 Child Grid Overhead

Maintaining several simulator instances to represent different subgrid patches may represent a
significant computational overhead that may potentially slow down the simulation. In this test,
we will therefore measure the added overhead in time stepping connected with an increasing
number of child grids. More specifically, we measure the performance in terms of cell updates
per second, increase the number of child grids for each test run, and normalize with regards
to the single fastest run. To this end, we consider a rectangular domain represented on a
root grid with 4,096 × 512 cells. Initial water elevation is set to 11 m in the left half of the
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Fig. 9 Comparison of wall-clock time for simulation runs with and without AMR. All test runs have been
normalized with regards to the single slowest run. The AMR code is over three times faster for larger domain
sizes

10.0 m

B = 0 m

10
.0

m

11
.0

m

(a)

h = 1.0 m

h = 0.1 m, B = 0 m

100.0 m

10
0.

0
m

20.0 m

(b)

Fig. 10 Dam break setups used in the tests: the left figure shows a cross-section of the domain (which is
80 m along the intersected dimension), and the right figure shows a top-view of the domain. The dotted lines
indicate the location of the dams that are instantaneously removed at simulation start. a Dam break. b Circular
dam break

domain and 10 m in the right half (see Fig. 10a). Wall boundary conditions are used and all
tests are run for 2 min of wall-clock time using first-order Euler time integration. The first
series of test runs is performed with abutting child grids, centered in the domain, consisting of
256×256 cells (measured in the root grid) laid out so that each new child grid interfaces with
the previously added child grid along one full edge. The second set of test runs is performed
with a two-cell margin in the root grid between child grids. Results are shown in Fig. 11.
The difference between the two setups is negligible, showing that the flux correction between
neighboring children is efficient. For a total of 15 subgrids, the performance drops to roughly
93 % of peak. Kepler-generation GPUs [28] from NVIDIA contain new features for more
efficient execution of concurrent kernels, which should decrease this overhead even more.

This test clearly shows that a strategy for minimizing the number of child grids on each
level of refinement is important. The current prototype uses a relatively simple strategy
for merging neighboring subgrid patches. However, since this is the only operation that is
performed on the CPU and it is well separated from the rest of the simulator code, one can

123



J Sci Comput (2015) 63:23–48 39

Fig. 11 Total time stepping overhead connected with an increasing number of added child grids. For the
abutting test runs, each new child grid is added next to the last added child grid so that the two grids interface
each other along one full edge. All test runs have been normalized with regards to the single fastest run

easily substitute it by more advanced methods that can be found in generic grid generators.
Note that it is the total overhead during time stepping (refinement check is not performed)
that is measured in this test. Child grid initialization cost is addressed in the next section.

4.3 Child Grid Initialization Cost

While the previous test measured the total overhead connected with child grids, this test
measures only the initialization cost. We use a global domain of 100 m × 100 m and a root
grid of 1,024 × 1,024 cells. Initial conditions are a circular dam break in the center of the
domain with a radius of 10 m, in which the water elevation is set to 1.0 m, and 0.1 m in the
rest of the domain (see Fig. 10b). Wall boundary conditions are used and we simulate the
wave propagation of the dam break using first-order Euler time integration. The wave does
not reach the domain boundaries, thus new child grids are added throughout the simulation
run. Refinement check is performed every 50th time step, the minimum child grid size is set
to three tiles, and all cells in which |u|+ |v| > 1.0×10−4 are flagged for refinement. Results
are shown in Fig. 12.

It is clear from the results that the subgrid initialization cost is low. After close to 100
subgrids have been added, the accumulated subgrid initialization time still constitutes only
0.3 % of the total run time. Furthermore, we see that the refinement check kernel is fast,
and that the inherently serial overlap testing performed by the CPU constitutes the bulk
time usage. The accumulated subgrid initialization time is steadily increasing due to the
initial conditions of the particular problem we are simulating; as the radius of the circu-
lar wave is increasing, the number of new added subgrids per refinement check is also
increasing.

4.4 Efficiency

In this test, we compare the efficiency of the original simulator with different simulations
with the AMR simulator using a single child grid covering a varying area of the global

123



40 J Sci Comput (2015) 63:23–48

Fig. 12 The cost of child grid initialization given in percentage of total run time. This is connected with the
total number of added subgrids, shown as the dashed line

100 m × 100 m domain. The global domain is the same as used in the previous test (see
Fig. 10b). Initial conditions are a circular dam break in the center of the domain with a radius
of 10 m, in which the water elevation is set to 1.0 m, and 0.1 m in the rest of the domain.
Wall boundary conditions are used and we simulate the wave propagation of the dam break
up to time 10 s using first-order Euler time integration. Results are shown in Fig. 13. As
expected, the efficiency of the hardware utilization increases as an increasing percentage
of the domain is covered by the child grid. Likewise, increasing the number of cells in the
root grid improves the performance and eventually leads to full utilization of the computing
potential of the GPU. From this test we conclude that the overhead associated with a single
child grid is small (max 5 % for one million cells or more) and diminishing as the child grid
covers an increasing portion of the root grid and as the number of total cells increases.

For the first of the 39 %-coverage runs we have compared the total mass of the initial
conditions with the total mass after 10 s (389 simulation steps on the root grid) of simulation.
The relative change in total mass is less than 10−6. For more details on the mass conservation
properties of the original numerical scheme, see [5].

4.5 Shock Tracking

In this test, we will demonstrate that the regridding algorithm is capable of tracking propa-
gating waves. We mark all cells in which max

(|hi+1, j − hi, j |, |hi, j+1 − hi, j |
)

> 0.1 m for
refinement, in which hi, j is the average water depth in the grid cell centered at (iΔx, jΔy).
The domain is as in the previous test (see Fig. 10b). Initial conditions are a circular dam
break in the center of the domain with a radius of 10 m, in which the water elevation is set
to 1.0 m, and 0.1 m in the rest of the domain. The root grid is 512 × 512 cells, a refinement
check is performed every 10th time step, and the minimum child grid size is set to one tile
to accurately track the shock. The test is run using second-order accurate Runge–Kutta time
integration until it reaches seven seconds simulation time.

Figure 14 shows a comparison between single-grid simulations and AMR simulations
using different grid resolutions. In both cases, we see that the solutions converge toward the
front-tracking reference solution as the grid resolution is increased. Furthermore, the use of
AMR clearly improves the accuracy of the solution, also on the root grid.
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Fig. 13 Comparison between single-grid simulation and AMR simulations using a single child grid covering
a varying fraction of the global domain. All test runs have been normalized with regards to the single fastest
run. There is an overhead connected with using AMR, but the overhead becomes negligible for larger domain
sizes

(a) (b)

Fig. 14 Cross section plot of water elevation values (m) as a function of radius (m) from the center of the
circular dam after 7 s of simulation time. Single-grid simulations and AMR simulations for different grid
resolutions are compared. The AMR solutions are given in the root grid resolution. The reference solution is
provided by a high-resolution (5,000 grid cells) radial simulation using a front-tracking code [14] with double
precision. a No AMR. b AMR

Figure 15a shows that the refinement closely follows the leading shock. The adept reader
will notice that there are visible anomalies in the solution. These anomalies are caused by
the initialization of new child domains. By initializing a child grid over an existing shock,
the inevitable interpolation errors are severely magnified at the location of the shock, which
leaves a “ghost” impression of the shock in the solution. These errors are alleviated by
simply making sure that child domains are initialized in smooth parts of the solution, thereby
minimizing the interpolation errors. One example of this strategy is illustrated in Fig. 15b, in
which the anomalies are reduced dramatically. Both of these simulations have a large number
of child grids. The number of child grids can be dramatically reduced, however, by simply
combining multiple neighboring child grids.

Next, we investigate the radial symmetry of the AMR simulator. Figure 16 shows the
radial symmetry 7 s into the simulation. We can see that the single-grid simulation with 5122

cells, as expected, is more smeared than the reference solution, especially close to the sharp
shock. The 1,0242 single-grid simulation, on the other hand, captures the shock much better.
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Fig. 15 Emulated Schlieren visualization is used to demonstrate how the refinement follows the shock,
enabling a more accurate capturing. Both figures are after 7 s of simulation time, and the root grid resolution
is 512 × 512 cells. Notice the ripples in the solution without padding, which have been significantly reduced
when padding is added. a Without padding. b With padding

In both simulations, however, we see that there is a slight radial dissymmetry, shown by the
vertical spread of the points. When we then go to the AMR simulations, we see that these
simulations have a larger radial dissymmetry. This is as expected, as selectively refining parts
of the domain will inevitably reduce the radial symmetry. For the simulation in which the
child domains are initialized on the shock, however, there is a large non-physical dissymmetry
(clearly visible approximately 25 m from the center of the domain). When we initialize child
domains before the shock arrives, however, these anomalies disappear. Even though there
still is a larger radial dissymmetry than for the non-AMR simulations, we also see that the
shock is captured with the resolution of the high-resolution single-grid simulation.

We have also run this test without flux correction (both parent–child and child–child)
and with a fixed time-step size in an attempt to reduce the radial dissymmetry even more.
However, the results from these test runs showed no significant difference from the AMR-run
with padding. After 10 s of simulation time, the AMR shock-tracking without padding is over
2.2 times faster than using the highest resolution for the whole domain, at the expense of a
few minor artifacts in the solution.

4.6 Optimization: Effect of Reducing Δt

In this test, we will investigate the effect of reducing the time-step size on a parent grid to
avoid very small time steps on its children. The computational setup is as in the previous test
(see Fig. 10b). One child grid covering 25 % of the root grid is used, and the shock never
travels out of this child grid during the simulation runs, which are run up to time 1 s using
second-order Runge–Kutta time integration. Different factors for limiting Δt , so that the
Courant number stays below its maximal value, have been tested. A representative subset of
the tested factors are shown in Fig. 17. Considering that the areas of the solution with the
highest velocities typically are the same areas one wants to refine, these results are promising.
However, we have only tested using one level of refinement, and it is not trivial to implement
this strategy for more than one level of refinement. This optimization is also highly problem
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Fig. 17 Comparison of wall-clock time for simulation runs with and without limit on root Δt . All time values
represent the best performance of five consecutive runs, and are normalized with respect to the simulation run
without limit on Δt for each domain size

dependent, and further investigation should try to define some factor or range of factors that
is proven viable in a broader selection of test setups.

Although further investigation is necessary, some preliminary conclusions can be made.
We see that a domain of a certain size (more than 65,000 cells in this example) is necessary
before the Δt-limiting produces stable results, and that the stability of the optimization also
seems dependent on the size of the limiting factor. The optimal size of the limiting factor
would be such that the last very small step on the child grid is completely eliminated, but no
larger. Considering that all time-step sizes are varying throughout the simulation, and that
some child time-step series will not even have a very small last time step, this is a challenging
task to accomplish. It seems likely that this needs to be an auto-tuned parameter, adjusted
after a certain number of time steps, analog to the early-exit parameter discussed in [8].

4.7 Malpasset Dam Break

In a previous publication [8], we demonstrated that the non-AMR version of the simulator
was capable of accurately simulating the first 4,000 s of the Malpasset dam break in southern
France. In this example, we will demonstrate that the AMR code is able to cope with such
realistic real-world scenarios including complex bathymetry, bed shear-stress friction, and
high velocities. For this particular example, increasing the resolution locally will not neces-
sarily lead to more accurate predictions: there is already a high level of uncertainty in the
bathymetry, and using the resolution of the mesh that is already available (which has been
manually reconstructed from maps) gives simulation results that are close to the measured
high water levels and front arrival times. Instead, the purpose is to demonstrate that the AMR
method correctly adapts the resolution by adding new child grids to follow the advancing
flood wave as it passes through the complex bathymetry.

The lower part of Fig. 18 shows the simulation when the flooding has reached the city of
Fréjus, and as we can see, the child grids completely cover the flood. To ensure refinement once
water enters dry areas, we flag cells for refinement when the water level exceeds 1×10−4 m.
Initially, the water is contained in the dam visible in the upper child grid, wall boundaries are
used, the Manning friction coefficient is set to 0.033, and second-order accurate Runge–Kutta
time integration is used. A refinement check is performed every 50th time step, the minimum
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Fig. 18 Visualization of water velocity in the 1959 Malpasset dam break case. Child grids are added dynam-
ically to cover the flood as it progresses

child grid size is set to three tiles, and one level of refinement is used. The speedup varies
throughout the simulation run, but never drops below 2.7. If we let the simulation run to
time 20 min, the AMR solver runs four times faster than the original simulator. After 30 min,
a quite large fraction of the global domain has been covered by child grids (as depicted in
Fig. 18), and the speedup has dropped to 3.6 times.

4.8 Improved Spatial Resolution

For many real-world cases, e.g., tsunamis and storm surges, one is interested in following the
incoming waves on a hierarchy of scales, from the open ocean to the coastland and connected
river systems, swamplands, etc. In such cases, it would be too computationally demanding
to compute the long-range wave propagation out at sea with the fine resolution required to
provide accurate prediction of what happens when the waves hit the coastline. Use of AMR is
one possible solution to this problem. By increasing spatial resolution locally, the simulator
is able to capture more details in both the bathymetry and the conserved quantities in areas
of particular interest, and at the same time preserve the interaction between local and global
wave phenomena in a better and more efficient way than if the two were computed using
different models or simulations.

To illustrate this point, we consider the prediction of the local wave pattern around a narrow
breakwater whose width straddles the resolution of the model used to predict the incoming
waves from the surrounding ocean. That is, we consider the waves inside a small 250 m ×
200 m region that represents a small area of a much larger coastline area. The breakwater
is represented as a bump in the bathymetry and generated procedurally. The central part
narrows to 1 m, and is therefore a subgrid feature in the 64 × 64 cell coarse grid. For the
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Fig. 19 The figure represents a small section of a much larger domain. AMR is used to increase resolution
in parts of the domain that hold a subgrid feature representing a narrow breakwater. The breakwater structure
cannot be represented at the root grid resolution without AMR, which leads to erroneous simulation results.
The subgrid, indicated by the red rectangle, covers 32 × 32 cells in the root grid. a Without AMR. b With
AMR

AMR simulation, we use one child grid covering 32 × 32 cells of the root grid, offset by 16
cells from the global boundary in both spatial dimensions.

As we can see in Fig. 19, because of insufficient resolution, the original simulator fails to
properly model the narrow portion of the breakwater. In the AMR simulation, however, the
narrow part is present, and dramatically changes the solution.

5 Conclusions

In this article, we have implemented a tile-based AMR algorithm using a well-balanced,
high-resolution finite-volume scheme so that it runs fully on a GPU. The resulting simulator
conserves mass and has simple shock-tracking capability. The AMR implementation has
been thoroughly tested and verified using analytical solutions, synthetic dam breaks, and real
data from the Malpasset dam break. The results show that the code has excellent hardware
utilization and that the accuracy on the child grids with the highest resolution (herein, we
use at most three levels in total) is close to what would be obtained on a grid with full global
refinement. The simulator has been carefully designed using modern software principles so
that the code should be easy to use and understand and that simulations should be fast to
setup and run.
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