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Abstract We introduce a new level set method to simulate motion of spirals in a crystal
surface governed by an eikonal–curvature flow equation. Our formulation allows collision
of several spirals and different strength (different modulus of Burgers vectors) of screw
dislocation centers. We represent a set of spirals by a level set of a single auxiliary function u
minus a pre-determined multi-valued sheet structure function θ , which reflects the strength
of spirals (screw dislocation centers). The level set equation used in our method for u − θ

is the same as that of the eikonal–curvature flow equation. The multi-valued nature of the
sheet structure function is only invoked when preparing the initial auxiliary function, which
is nontrivial, and in the final step when extracting information such as the height of the spiral
steps. Our simulation enables us not only to reproduce all speculations on spirals in a classical
paper by Burton et al. (Philos Trans R Soc Lond Ser A Math Phys Sci 243, 299–358, 1951)
but also to find several new phenomena.
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1 Introduction

Consistent spiral patterns are observed in many crystal growth situations. The center of a
spiral is believed to be the location where a screw dislocation in a crystal lattice terminates
on the crystal surface, while the spiral being a step (discontinuity) in the crystal height. Atoms
bond with the crystal structure with a higher probability near a step and thus results in an
evolution of the step. The dynamics of the step in this setting is well studied and traces back to
Burton et al. [1], which developed the first theoretical description for epitaxial growth. There
is a nice review paper [2] on its mathematical modelling as well as computational methods.

Consider a spiral pattern drawn by steps on a growing crystal surface. In the theory of the
crystal growth in [1], steps evolve with a normal velocity of the form

V = C − κ, (1)

where C is a constant denoting a driving force, and κ is the curvature of the curve drawn by
the steps. The Eq. (1) is sometimes called an eikonal–curvature flow equation. In [1] the Eq.
(1) is given as V = v∞(1 − ρcκ) with the velocity of straight line steps v∞ and the critical
radius ρc for the generation of two dimensional kernel from supersaturation. The curvature
term, κ , is interpreted as a result of the Gibbs-Thompson effect. The sign of curvature is
taken so that (1) is a parabolic equation. Our formulation, however, includes the case of the
negative driving force, i.e., when a crystal is melting.

The spiral crystal growth problem can be studied by direct numerical simulation using
a variety of techniques. A straight forward approach is to track the spiral by putting a set
of markers on the spiral and solve the resulting system of ODEs that determine the marker
locations in time. It is also possible to use Monte-Carlo type algorithms for simulations of
small domains.

Since the spiral dynamics generally involve merging of different spirals, implicit interface
methods can be of an attractive option. A phase field model was introduced in [19] or [20] for
spiral growth simulations. This is a diffuse interface method that requires fine grid resolution
at least in a neighborhood of the evolving spirals. Conventional level set methods [28,29,32]
(see for its foundation in mathematical analysis [10]) do not apply directly; in a typical level
set method involving a Lipschitz function, u, as the so-called level set function, the point set
{x; u(t, x) = 0} corresponds to a curve which divides the domain into two disjoint sets (the
typical example is a closed curve by itself or combining it and the boundary of the domain).
However, a spiral generally does not divide the domain into two disjoint sets. Smereka [34]
introduced a level set formulation to simulate a spiral crystal growth numerically. This is an
interesting and pioneering work simulation of evolving spirals. In his formulation a spiral is
described by two continuous auxiliary functions (level set functions), and the intersection of
the zero level sets of these two functions represents the spiral center (screw dislocation). The
dynamics of the spiral is computed by solving two partial differential equations (PDEs) that
contain discontinuous coefficients. The height function is computed by solving a Poission
equation with a Dirac-δ source concentrated along the spiral.

While the level set method in [34] is powerful to study collision of several spirals, it does
not apply when two spiral centers have different strengths—a case in which the crystal surface
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includes several screw dislocations with Burgers vectors of different magnitudes. In [25] the
first author introduced a new level set method using only one auxiliary function but using a
sheet structure function introduced by Kobayashi [20] in 1990s. The sheet structure function
reflects a helical structure formed by ordered atoms in a crystal, and thus this method enables
us to describe more general situation including multiple centers with different strengths.
While the analytic foundation for this method in [25] based on viscosity solutions [13,25] is
well-established, numerical simulation based on this idea was not yet studied or published;
among many computational issues, the construction of initial auxiliary function is not trivial.

In this paper, we propose an algorithm for computing evolving spirals by (1) based on the
level set method using a sheet structure function. Our method does compute correctly the
behavior of co-rotating spirals and spirals with different rotational orientations with possibly
different strengths. We recover all speculations for spirals given by [1] in our numerical
simulations. We also find several new phenomena.

Let us recall the level set method in [25]. A crystal surface is to be described in a bounded
domain Ω in the plane. We now assume that the surface has N (≥ 1) fixed screw dislocation
centers denoted by a j ∈ Ω ( j = 1, 2, . . . , N ), and that each center has at least one spiral
pinned to it. We shall use only one pre-determined function θ together with an additional
auxiliary function u to describe all the spirals. The function θ is not well-defined at the spiral
centers a j , so we remove an open neighborhood U j of a j from the plane and consider the
domain W = Ω\⋃N

j=1 U j . In this paper we assume that a spiral Γt at time t ≥ 0 lies on

W , and the end points of Γt always stay on the boundary ∂W of W with the orthogonality
condition,

Γt ⊥ ∂W. (2)

Thus, while Γt is not a closed curve, its image is a relatively closed point set in W . We now
introduce a sheet structure function θ , which is due to Kobayashi [20],

θ(x) =
N∑

j=1

m j arg(x − a j )

with non-zero integers m1, . . . ,m N , where m j is taken so that z = θ(x) gives the helical
structure. The constant m j quantifies the strength of the spiral center a j . Thus, the level set
formulation of Γt in [25] is given by

Γt = {x ∈ W ; u(t, x)− θ(x) = 0 with modulo 2π}.
In this formulation spirals are given by the cross-section between an auxiliary cone described
by u(t, x) and a helical surface z = θ(x). With this formulation we derive a level set equation
corresponding to motion of spirals by (1). Moreover, we construct a surface height function
from a solution of the level set equation.

While the existence of the initial data u0 for a given initial spirals Γ0 was established in
[13], construction of initial auxiliary function u0 at practical level is still difficult, because
the method requires one to take a branch of sheet structure functions whose discontinuity is
only on Γ0. In this paper, we propose simple computational approaches for constructing u0

that gives a spiral attached a single center, or more precisely a simple continuous open curve
connecting a given center to the boundary of the computational domain. We further give an
additive procedure to construct an initial auxiliary function u0 inductively with respect to
numbers of screw dislocations.

A crucial advantage of our method is the use of a single scalar equation in computation,
even for situations involving multiple centers with different strengths. In particular, our single-
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equation formulation is useful when considering evolution of several spirals associated with
one screw dislocation. With our method, it suffices to choose a suitable coefficient in front
of the argument function arg, whose origin is the screw dislocation center in our method.
Our single-equation formulation also enables us to compare the activities between a group
of screw dislocations with co-rotating single spirals and one screw dislocation with multiple
spirals. Smereka [34] treats a pair of co-rotating spirals or those with opposite rotational
orientations when the pair is far apart, i.e, the distance of the pair is larger than 2π/C in
the evolution by (1), which is the critical distance proposed by [1]. Our method is able to
examine not only a close pair of spirals but also a group of several (of course two or more)
screw dislocations.

In the paper, on the one hand we numerically verify all speculations for spirals given by
[1], on the other hand we examine some situations that are not discussed in [1]. While Burton
et al. discussed the activity of a group of screw dislocations, they did not discuss the situation
in which screw dislocation centers with different strengths co-exist on the surface. In this
paper we demonstrate simulations involving configurations such as a pair of co-rotating or
opposite oriented spirals, and several screw dislocations with different rotational orientations
and strengths. Anisotropic motion is not treated in this paper, but our formulation also can
apply to the anisotropic evolution with a smooth and strictly convex surface energy density;
see [10] for detail for a formulation of an anisotropic evolution. Anisotropic motion with
multiple spirals and bunching is a very hot topic in experiments as discussed in [33]; see also
Sect. 3.6 in the present paper.

Nevertheless, there remain some situations to which our method does not apply. While
[34] and this paper study the dynamics of the spirals formed by steps centering at a set of
dislocations, the evolution of spirals with moving centers a j = a j (t) is not modeled. Xiang et
al. [37,38] proposed another level set formulation to compute the motion of screw dislocation
in crystals. In their level set formulation, screw dislocations are implicitly represented as
the intersection of two level set functions defined in three dimensions. The evolution law
of moving centers is derived from physics and this evolution law is implemented in their
level set formulation [37,38]. One of the further difficulties for modeling the dynamics of
screw dislocations in our method resides in the need to remove neighborhoods of screw
dislocations from the surface (in numerical computations it suffices to remove one grid point
when a screw dislocation center is on the grid point). However, if the screw dislocation center
is just a single point, theoretical treatment seems to be difficult due to the singularity of θ
there. For this direction there is a work by Forcadel et al. [9] but their setting is somewhat
restrictive. Finally, our current method does not apply directly to evolution of spirals with
crystalline curvature and eikonal equation although it is often observed in experiments [33].
Imai et al. [16] presented a formulation of an evolving spiral by crystalline curvature flow
with no driving force and gave some numerical simulations as well as a proof for local
well-posedness. Ishiwata [18] presented a formulation of an evolving polygnonal spiral by
crystalline curvature flow with constant driving force, and showed the global existence and
uniqueness of a polygonal spiral curve for a given motion. The evolution of spirals with
crystalline curvature flow is one of further problems; our formulation and mathematical
results by [13,25] are available to the evolution with smooth and strictly convex anisotropic
interfacial energy. Oberman et al. [22] proposed a level set method for evolving crystalline
curvature flow. It may be possible to adapt their algorithm with the proposed representation
for spirals to simulate crystalline spiral growth.

Several interesting results on existence and behavior of spirals are obtained by approaches
based on ordinary and partial differential equations, shortly (ODE) and (PDE). In an ODE
approach several interesting self-similar spiral type solutions are constructed and classified
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in various settings (e.g. [7,8,14,17]). In a PDE approach, several results on Lyapunov or
asymptotic stability of rotating spirals are derived; see e.g. [12]. Ogiwara and Nakamura [23]
studied a diffuse interface model proposed by Kobayashi [20], and established the existence
and asymptotic stability of steadily rotating spirals. In particular, their stability result implies
that, when we consider the evolution of m spirals associated with one center, then the spiral
pattern with 1/m times rotation symmetry is asymptotic stable. This result is different from
the behavior with similar situation in our method. This phenomenon will be discussed in
detail in our forthcoming paper [26].

This paper is organized as follow: in Sect. 2 we present our proposed level set formulation
for the simulation of spiral crystal growth and the idea of using a sheet structure function
to define a spiral. In Sect. 3, we present some numerical simulations involving spirals of
different configurations.

2 A Level Set Formulation Using Sheet Structures

2.1 Spirals on a Plane

We consider a growing crystal surface with N (≥ 1) screw dislocations over a bounded
domain Ω ⊂ R

2. Screw dislocations typically result in discontinuities in the crystal height
that connects to the dislocations. In this paper, these discontinuities are called steps in the
crystal height. The location of the steps are spiral curves which we will model and evolve,
and in later parts of the paper, we will use ‘curves’ and ‘steps’ interchangeably in this paper.

Associated with the screw dislocations are the centers of spirals, denoted by a1, a2, . . . , aN ,
which are assumed to be stationary. For a technical reason we further assume that a (screw
dislocation) center consists a neighborhood U j of a j , and Ui ∩U j = ∅ for i 	= j . We remove
all U j from Ω , and thus set W = Ω\(⋃N

j=1 U j ). On this domain, spirals can be defined by
parameterized curves

Γ := {P(s) ∈ W ; s ∈ [0, s0]}. (3)

As we shall see later, the height of the crystal surface can be defined from the configuration
of spirals.

In this paper, we consider evolving spirals Γt in W . To guarantee the unique solvability
of the initial value problem for (1) we impose the right angle boundary condition (2) on ∂W
(see [13,25]).

As in [13] it is convenient to classify spirals into two types—a simple spiral and a con-
necting spiral—depending on the feature whether or not it touches the boundary ∂Ω of the
crystal surface Ω .

Definition 1 Let Γ be a curve given by (3) having no self intersections.

1. For a given point a ∈ Ω let U be a neighborhood of a satisfying U ⊂ Ω whose
boundary does not touch ∂Ω , and W = Ω\U . We say Γ is a Cn (n ∈ N ∪ {0}) simple
spiral associated with a ∈ Ω if

(S1) P(s) ∈ Cn([0, s0]) and |Ṗ(s)| 	= 0 for s ∈ [0, s0] if n ≥ 1, where Ṗ = d P/ds,
(S2) P(0) ∈ ∂U , P(s0) ∈ ∂Ω and P(s) /∈ ∂W for s ∈ (0, s0)

hold.
2. For given points a1, a2 ∈ Ω let U1 and U2 be neighborhoods of a1 and a2 respectively,

and W = Ω\U1 ∪ U2. Assume that U 1 and U 2 is disjoint, i.e., U 1 ∩ U 2 = ∅, and
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Ui ⊂ Ω whose boundary does not touch ∂Ω for i = 1, 2. We say Γ is a Cn connecting
spiral between a1 and a2 (or associated with a1 and a2) if (S1) and

(S2’) P(0) ∈ ∂U1, P(s0) ∈ ∂U2, and P(s) /∈ ∂W for s ∈ (0, s0)

hold.

For the case W = Ω\(⋃N
i=1 Ui )) with (mutually disjoint) neighborhoods Ui of ai for

i = 1, . . . , N , we call a connecting spiral between ai and a j simply an (i, j) connecting
spiral for simplicity.

Remark 2 Note that an (i, j) connecting spiral is also a ( j, i) connecting spiral by taking
Q(s) = P(s0 − s). However, we ignore the direction of the connection in the following
arguments.

Spirals on a plane have two orientations, one is related to the evolution and the other to
rotation with respect to a screw dislocation center. The orientation of the evolution is defined
as a continuous unit normal vector field on the curve, we denote this vector field by n.
The orientation of the rotation can be defined by the relation between the tangent and the
normal vectors of the spiral as in Definition 3. These orientations should not be confused
with rotations of the self-similar spiral structure resulted from the spiral evolution.

Definition 3 Let Γ be a C1 simple or connecting spiral associated with a ∈ Ω at P(0). Let
s in P(s) be an arclength parameter. We say that Γ has a counter-clockwise (resp. clockwise)
orientation with respect to a ∈ Ω if

n(P(s)) =
(

0 −1
1 0

)

Ṗ(s)

(

resp. −
(

0 −1
1 0

)

Ṗ(s)

)

holds for s ∈ [0, s0].
Figure 1 depicts two spirals of opposite rotational orientations.

Remark 4 If an (i, j) connecting spiral has a counter-clockwise orientation w.r.t. ai , then it
has a clockwise orientation w.r.t. a j . In fact, we set Q(s) = P(s0 − s) to obtain

n(Q(s)) = n(P(s0 − s)) =
(

0 −1
1 0

)

Ṗ(s0 − s) = −
(

0 −1
1 0

)

Q̇(s)

for s ∈ [0, s0]. Moreover, one finds that the rotational orientations for connecting spirals are
uniquely determined in spite of the direction (i, j) or ( j, i) of the connection.

We now define the generalized number of spirals associated with a center.

Definition 5 Let ai ∈ Ω be a center for i = 1, . . . , N . We define the signed number of
spirals associated with ai as

mi = m+
i − m−

i ,

where m+
i and m−

i are respectively the number of spirals which are associated with ai and
which have counter-clockwise and clockwise orientations.

Fig. 1 Two spirals with opposite
rotational orientations. The one
on the left has a
counter-clockwise orientation

123



J Sci Comput (2015) 62:831–874 837

Fig. 2 Evolution of a simple step. The step evolves by attachment of additional adatoms, and consequently
the “heigher” side of the step extends (moves) towards the space previously on the “lower” side

Physically speaking in our setting the Burgers vector is orthogonal to the plain containingΩ
and its modulus equals |mi |. We shall exclude the case mi = 0.

2.2 The Proposed Level Set Formulation

For simplicity we consider a counter-clockwise oriented spiral associated with the origin.
Let the initial step lie on the half line {(x1, 0); x1 < 0} in R

2 with height h0 > 0. From the
theory of linear elasticity, see e.g. [15], the crystal surface can be described by the graph of
a function h = h(x) which satisfies

{

h = 0 except on the step,

h has jump discontinuities with height h0 > 0 only on the step line.

Thus h(x) = (h0/2π) arg x , where arg x ∈ [−π, π) is one of branches of the argument of
x . If the step height h0 agrees with the diameter of an atom, then h should be equivalent to
(h0/2π) arg x even after the step evolves. Attachment of additional adatoms to the steps and
on top of the “lower side” of the crystal surface resulted in the movement of the step (see
Fig. 2). In other words, the space where adatoms can stay is the Riemann surface “z = arg x”,
so the step stays and evolves there. Accordingly, the location of the step could be given as the
cross-section between the auxiliary surface z = u(t, x) and the Riemann surface “z = arg x”.

To complete this idea rigorously we now introduce a covering space

X := {(x, ξ) ∈ (R2\{0})× R; (cos ξ, sin ξ) = x/|x |},
which describes the Riemann surface. The step is on X and described as the cross-section
between X and an auxiliary function z = u(t, x):

{(x, ξ) ∈ X ; ξ = u(t, x)}.
Hence we obtain the description of an evolving spiral:

{x ∈ R
2\{0}; u(t, x)− arg x ≡ 0 mod 2πZ}, n = − ∇(u − arg x)

|∇(u − arg x)| ,

where n is the orientation of the evolution. For the spirals with clockwise rotational orienta-
tion, then it suffices to change the sign in front of arg x

{x ∈ R
2\{0}; u(t, x)+ arg x ≡ 0 mod 2πZ}, n = − ∇(u + arg x)

|∇(u + arg x)| ,

since the step can climb up the helical surface z = − arg x .
As an example, one may describe an Archimedean spiral r = θ by

{x ∈ R
2; |x | − arg x ≡ 0 mod 2πZ}.
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Furthermore, recall that a symmetric double Archimedean spiral is described as r = θ and
r = θ − π for r > 0. By analogy, one finds that

{x ∈ R
2\{0}; u(t, x)− 2 arg x ≡ 0 mod 2πZ}, n = − ∇(u − 2 arg x)

|∇(u − 2 arg x)|
gives two spirals with counter-clockwise rotational orientation. Alternatively, the two spirals
can be separately defined by

{x ∈ R
2\{0}; u(t, x)− 2 arg x ≡ 0 mod 4πZ},

{x ∈ R
2\{0}; u(t, x)− 2 arg x ≡ 2π mod 4πZ}

since the term of 2 arg x continuously increases from 0 to 4π by going around the origin.
By combining the above reasoning one can construct a level set formulation for spirals

associated to screw dislocation centers a1, . . . , aN on the plane. Essentially, one has to con-
struct a pre-determined surface function denoted by θ = θ(x), whose graph is asymptotically
helical near each dislocation center. In our formulation, we consider a linear combination of
arg(x − a j ) for j = 1, . . . , N , i.e.,

∑N
j=1 m j arg(x − a j ). The coefficients m j describe the

number and rotational orientation of spirals associated with a j ; they correspond to the notion
of the signed number of spirals associated with a j in Definition 5.

We now present our level set formulation for the most general case. Let X be a covering
space of W as in [25]:

X := {(x, ξ) ∈ W × R
N ; (cos ξi , sin ξi ) = (x − ai )/|x − ai | for i = 1, . . . , N },

where ξ = (ξ1, . . . , ξN ). Consider evolving spiral curves Γt at time t > 0 on W with
orientation of evolution n.

Definition 6 Let mi ∈ Z\{0} be the signed number of spirals associated with ai . We say Γ̃
is a generalized spiral curve on X if there exists u ∈ C(W ) satisfying

Γ̃ = {(x, ξ) ∈ X; u(x)−
N∑

i=1

miξi = 0}.

Moreover, we call

Ĩ := {(x, ξ) ∈ X; u(x)−
N∑

i=1

miξi > 0},

Õ := {(x, ξ) ∈ X; u(x)−
N∑

i=1

miξi < 0}

respectively the interior and exterior sets of Γ̃ .

Thus, with the auxiliary function u : [0, T ] × W → R and a sheet structure function

θ(x) ≡
L∑

i=1

mi arg(x − ai ), (4)

spiral curves Γt on W with the orientation of the evolution denoted by n is described as

Γt = {x ∈ W ; u(t, x)− θ(x) ≡ 0 mod 2πZ}, n = − ∇(u − θ)

|∇(u − θ)| . (5)
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Fig. 3 Surface and the height
function

In the evolution of spirals on the plane, the division of interior and exterior makes sense only
locally. It is inconvenient for the level set method, in particular to determine the direction
of the evolution. The covering space we introduced enables us to determine the interior and
exterior globally in the space. In particular, the inequality in the definition of interior is related
to the Fig. 3; the term

∑N
j=1 m j ξ j means the height in the covering space. Thus the inequality

z =
N∑

j=1

m jξ j < u(t, x)

says that u roughly plays the role of the height function of the growing crystal surface as in
Fig. 3.

Naturally, in this formulation for spirals, θ has to be multiple-valued. While other choices
of multi-valued sheet structure functions are possible, our choice of θ as of the form (4) is
physically important because it helps describe the height of the crystal surface; see Sect. 2.6
for detail.

2.3 Defining the Spirals on the Plane

Once we obtain u by solving the evolution equation corresponding (1)–(2), which is (6)–(8)
in Sect. 2.4, we can extract the evolving spirals by (5). In practice the level sets

⋃
n∈Z

{x ∈
W ; u(t, x) − θ(x) = 2πn} with fixed branch of θ(x) in drawn. However, spurious zero
level sets in u(t, x) − θ(x) appear over the branch cuts in the definition of θ(x). To see
this and how to remove these unwanted artifacts, consider the simple case of a single spiral
centered at the origin, with θ(x) = arg x . Recall that arg x whose range is [−π, π), has a
2π jump discontinuity on the left x-axis of the xy-plane, and thus u − θ also has such jump
discontinuity, which implies the spurious zero level sets (see the dashed line in Fig. 4). We
see that on the plane, spurious zero level sets of u − θ will always exist no matter which
branch of arg x is chosen. However, we can avoid the spurious level sets if we look at different
branches of arg x in different parts of the plane. In Fig. 4, we show a situation in which the
right half of the left subfigure is combined with the left half of the right subfigure. In other
words, we now divide the domain W into two subdomains W0 = {(x1, x2) ∈ W ; x1 ≤ 0}
and W1 = {(x1, x2) ∈ W ; x1 ≥ 0}. Next, we denote θ± as the branches of arg x such that
θ− ∈ [−π, π) and θ+ ∈ [0, 2π), and we draw the level sets in each half domain W0 and W1

with θ+ and θ−, respectively, i.e., as

Γt =
[
⋃

n∈Z

{x ∈ W0; u(t, x)− θ+(x) = 2πn}
]

∪
[
⋃

n∈Z

{x ∈ W1; u(t, x)− θ−(x) = 2πn}
]

.
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Fig. 4 Spurious zero level set for a single spiral. If we fix a branch of arg x as arg x ∈ [−π, π), then the
spurious zero level set appears on the left x-axis (dashed line) as the left figure. Even if we choose other branch
of arg x (for example arg x ∈ [0, 2π)) to remove the spurious line, it still stays on the other location (dashed
line) in the plane as the right figure

Fig. 5 The location of the spurious zero level sets of θ (dashed line) for extractingΓt in W0 (left), W1 (center)
and W2 (right)

When there are two centers on Ω , say a1 = (a1
1, a2

1) and a2 = (a1
2, a2

2) (a1
1 < a1

2), then
θ has two line segments of spurious zero level sets since θ is defined with linear addition of
arg(x − a1) and arg(x − a2). To avoid the 2π jump discontinuity of them, we divide W into
three subregions;

W0 ={(x1, x2) ∈ W ; x1 ≤ a1
1},

W1 ={(x1, x2) ∈ W ; a1
1 ≤ x1 ≤ a1

2},
W2 ={(x1, x2) ∈ W ; x1 ≥ a1

2}.
In each region we choose the appropriate branch of θ1 = arg(x − a1) and θ2 = arg(x − a2)

similarly as θ± for the case of one spiral discussed above. We denote these chosen branches
of θ±

j accordingly as θ±
j , j = 1, 2. With these functions, we then define the three branches

of θ :

– In W0 we define θ with θ+
j for j = 1, 2.

– In W1 we define θ with θ−
1 and θ+

2 .
– In W2 we define θ with θ−

j for j = 1, 2.

See Fig. 5 for an illustration of this construction. Then, we can extract the spirals without the
spurious zero level set.

We now summarize the procedure discussed above for general cases. N -centers a j =
(a1

j , a2
j ) ( j = 1, 2, . . . , N ) are on Ω . Without loss of generality, we assume that
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•
•

•
Wj

aj

aj+1

aj+2

•aj−1

Fig. 6 Branch cuts of Θ̂ j

a1
1 < a1

2 < · · · < a1
N . We decompose W into the union of vertical strips W j , separated

by the centers and extract Γ in each strip. We set

W j =
⎧
⎨

⎩

{x = (x1, x2) ∈ W ; x1 ≤ a1
1} if j = 0,

{x = (x1, x2) ∈ W ; a1
j ≤ x1 ≤ a1

j+1} if j = 1, . . . , N − 1,
{x = (x1, x2) ∈ W ; x1 ≥ a1

N } if j = N .

Let Θ̂−
j : ⋃N

i= j Wi → [−π, π) and Θ̂+
j : ⋃ j−1

i=0 Wi → [0, 2π) be the corresponding smooth

branches of arg(x − a j ), and define Θ̂ j : W j → R by

Θ̂ j (x) =
j∑

i=1

mi Θ̂
−
i (x)+

N∑

i= j+1

mi Θ̂
+
i (x) for j = 0, . . . , N .

We here note that
∑0

i=1 mi Θ̂
−
i (x) = ∑N

i=N+1 mi Θ̂
+
i (x) ≡ 0. Hence, Θ̂ j is smooth in

W j (see Fig. 6), and the spiral Γt can be unambiguously defined there and pieced together
strip-by-strip as follows:

Γt =
N⋃

j=0

(Γt ∩ W j ) =
N⋃

j=0

k̂ j⋃

k=−k̂ j

{x ∈ W j ; u(t, x)− Θ̂ j (x) = 2πk},

where k̂ j is the smallest integer satisfying maxW j
|u(t, ·)− Θ̂ j | < 2π k̂ j .

2.4 Dynamics

Although our formulation (5) includes a multi-valued function θ , it is essentially the same
as a level set formulation by a smooth branch of w = u − θ locally. Thus we have

n = − ∇(u − θ)

|∇(u − θ)| , V = ut

|∇(u − θ)| , κ = −div
∇(u − θ)

|∇(u − θ)| .

The Eqs. (1) and (2) are represented as follows (see [10] for details);

ut − |∇(u − θ)|
{

div
∇(u − θ)

|∇(u − θ)| + C

}

= 0 in (0, T )× W, (6)

〈ν,∇(u − θ)〉 = 0 on (0, T )× ∂W, (7)
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where ν is the outer unit normal vector field of ∂W . Precisely speaking, the system (1)–(2)
is formally equivalent to (6)–(7) only on spirals. The main idea of a level set method is to
consider the system (6)–(7) not only on spirals but also on whole W .

For a simulation of the evolution we choose u0 ∈ C(W ) satisfying

Γ0 = {x ∈ W ; u0(x)− θ(x) ≡ 0 mod 2πZ}
for a given initial curve Γ0, and solve the initial-boundary value problem (6), (7) and

u|t=0 = u0. (8)

to describe evolutions of spirals.
Much analysis of (6)–(7) has been done; the mathematical framework of our proposed

approach is complete. In [25] the first author established a comparison principle for viscosity
solutions of (6)–(7), which implies the uniqueness of solutions, and the existence of a time-
global solution for a continuous initial datum u0. Goto et al. [13] obtained the comparison
principle of interior and exterior sets on X, and thus the uniqueness of level sets Γt with
respect to an initial curve Γ0 is established. They also construct a continuous initial data u0

such that (5) holds for a given Γ0. Note that it is nontrivial to construct a suitable auxiliary
function u0 for a given initial spiral Γ0 which is quite different from conventional level
set approach [3,6,10]. Furthermore, it is rather easy to see [3,5,6], [10] that the viscosity
solutions of the regularized problem

ut − |∇(u − θ)|
{

div
∇(u − θ)

√
ε2 + |∇(u − θ)|2 + C

}

= 0 (9)

converges locally uniformly to the viscosity solution of (6)–(7). In a later section we present
numerical simulations based on (9).

2.5 Initialization

For a given bunch of spirals Γ it is nontrivial to find u ∈ C(W ) satisfying

Γ = {x ∈ W ; u(x)− θ(x) ≡ 0 mod 2πZ}. (10)

Goto et al. [13] show the existence of u ∈ C(W ) satisfying (10). However, their method
is difficult to carry out in practical level. In fact, they first construct θΓ which is a smooth
branch of θ with branch-cut line on Γ . Next, they mollify it with linear interpolation in very
thin tubular neighborhood around of Γ . Thus, the difficulties lie in the construction of θΓ
and the choice of tubular neighborhood. In particular, the second step is crucial since that the
width of neighborhood depends on the size of removed neighborhoods around a j . In fact,
the method of [13] would construct initial data with |∇(u − θ)| = O(
x−1) if the diameter
of removed neighborhood is O(
x), where 
x is a spatial lattice span.

In this subsection, we shall give a practical way to construct smoother u for a class of
simple spirals centering at the origin. Next, we give an additive way of constructing u from
those of simpler spirals. In particular, we shall give a practical way to construct u for any
initial configuration whose curve segmentations consist of straight lines. Furthermore, we
shall consider here only the case for a single simple spiral with counter-clockwise orientation
with respect to the origin, i.e. when θ(x) = arg x since the data v for Γ with θ(x) = − arg x
is given by v = −ũ which is the data for {(x1,−x2) ∈ W ; (x1, x2) ∈ Γ }.
Spreading Spiral Associated with the Origin. Let Γ be given by

Γ = {r(cos ξ(r), sin ξ(r)) ∈ W ; r ∈ [r0, R]}
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Fig. 7 Connecting line

with a continuous function ξ ∈ C([r0, R]), where R, r0 > 0 are constants. We have assumed
that W = Ω\Br0(0). In this case we set u as

u(x) := ξ(|x |).
In particular, a line {r(cosα, sin α); r ∈ [r0, R]} for an angle constant α is given by u(x) = α

Connecting Straight Line Between Two Centers. The above idea for a line enables us to
find that

u(x) = π for x ∈ W

gives a connecting line

Γ = {σa1 + (1 − σ)a2 ∈ W ; σ ∈ [0, 1]}
between two centers a1, a2 ∈ Ω . In fact, let L = {σa1 + (1 − σ)a2 ∈ R

2; σ ∈ R} = {x ∈
R

2; (x − a1) · pL = 0}, where pL ∈ S1 satisfying pL · (a2 − a1) = 0. Set

W1 = {x ∈ W ; (x − a1) · pL > 0}, W2 = {x ∈ W ; (x − a1) · pL < 0}.
See Fig. 7 for an illustration of this situation. Then we have W 1 ∪ W 2 = W , W 1 ∩ W 2 =

L ∩W . If x ∈ W1, then arg(x −a1)−arg(a2 −a1) ∈ (0, π) and arg(x −a1)−arg(a2 −a1) ∈
(0, π) which implies

arg(x − a1)− arg(x − a2) 	≡ π mod 2πZ on W1.

The above is also obtained similarly for x ∈ W2 with the interval (π, 2π) for the difference
of angles instead of (0, π). Moreover, we find

arg(x − a1)− arg(x − a2) ≡
{

0 on L ∩ W ∩ Γ c,

π on Γ

}

mod 2πZ.

Thus u ≡ π gives the above Γ by (10).
General Simple Spiral. Here we propose a way to construct u ∈ C(W ) for a general
simple spiral curve Γ = {P(s); s ∈ [0, �]} associated with the origin. We may assume that
W = BR(0)\Br0(0) without loss of generality. Let ρ(s) and η(s) satisfy

P(s) = ρ(s)(cos η(s), sin η(s)) for s ∈ [0, �].
Correspondingly, we have the curves

Γ̂k := {(ρ(s), η(s)+ 2πk); s ∈ [0, �]},

123



844 J Sci Comput (2015) 62:831–874

Fig. 8 Spiral curve on the polar plane

in the polar plane. Note that Γ̂k has no self intersections nor intersections with each other or
themselves, and we can define the domains Ek enclosed by Γ̂k ∪ C1,k ∪ Γ̂k+1 ∪ C2,k , where

C1,k = {(r0, ξ); ξ ∈ [η(0)+ 2πk, η(0)+ 2π(k + 1)]},
C2,k = {(R, ξ); ξ ∈ [η(�)+ 2πk, η(�)+ 2π(k + 1)]}.

See Fig. 8 for an illustration. For the construction of a desired u, it suffices to construct
ϕ ∈ C([r0, R]× (R/2πZ)) on the polar plane satisfying ϕ(r, ξ)− ξ ≡ 0 mod 2πZ only on
Γ̂k . Thus, we solve the following simple boundary value problem for ϕ:

⎧
⎪⎪⎨

⎪⎪⎩


r,ξ ϕ(r, ξ) = 0 for (r, ξ) ∈ E0,

ϕ(r0, ξ) = η(0) for (r0, ξ) ∈ C1,0,

ϕ(R, ξ) = η(�) for (R, ξ) ∈ C2,0,

ϕ(ρ(s), η(s)+ 2πk) = η(s) for s ∈ [0, �] and k = 0, 1,

(11)

where
r,ξ = ∂2/∂r2 +∂2/∂ξ2. We then extend ϕ to [r0, R]×R with ϕ(r, ξ+2π) = ϕ(r, ξ)
for ξ ∈ R.

Finally, we define
u(x) = ϕ(|x |,Arg(x)), (12)

where Arg(x) ∈ [0, 2π) is the principal value of arg(x), is a function satisfying (10). In fact,
ψ(r, ξ) := ϕ(r, ξ)− ξ still satisfies


r,ξψ = 0 in Ek,

and thus ψ attains its maximum or minimum on ∂Ek = Γ̂k ∪ Γ̂k+1 ∪ C1,k ∪ C2,k by the
maximum principle [30]. Moreover, from the last condition in (11) we have

ψ(r, ξ) = −2πk for (r, ξ) ∈ Γ̂k,

i.e., ψ is not a constant. Then we have

−2π(k + 1) < ψ < −2πk in Ek,

and thus

u(x)− arg(x) ≡ ϕ(|x |,Arg(x))− Arg(x) = ψ(|x |,Arg(x)) ≡ 0 mod 2πZ

only on Γ . One may consider solving (11), which is typically defined on an irregular domain,
by a suitable boundary integral method, e.g. [21], and evaluate u directly on a Cartesian grid,
and thus bypass the need of interpolating ϕ that is discretized in the polar coordinates.
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We present a example of the initial data constructed with the above for

(r(s), η(s)) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(s, 0) if 0 ≤ s ≤ 1

4
,

(
1

4
,−2π

(

s − 1

4

))

if
1

4
< s ≤ 1

2
,

(

s − 1

4
,−π

2

)

if
1

2
< s ≤ 3

4
,

(
1

2
,−2π

(

s − 1

2

))

if
3

4
< s ≤ 1,

(

s − 1

2
,−π

)

if 1 < s ≤ 5

4
,

(
3

4
,−2π

(

s − 3

4

))

if
5

4
< s ≤ 3

2
,

(

s − 3

4
,−3π

2

)

if s >
3

2
.

(13)

See Fig. 9.

Fig. 9 Construction of initial data for a general simple spiral. The figure on top left is a curve given in (13),
whose horizontal and vertical axis mean η and r , respectively. The top right one is the solution of (11) for
(13). The bottom figures are a graph of u (left) defined by (12) and its level set with our formulation (right),
respectively
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Union of Spirals. Let uN and u be functions describing ΓN and Γ which contain many
spirals and one spiral with sheet structure functions θN and θ , respectively, i.e,

ΓN = {x ∈ W ; uN (x)− θN (x) ≡ 0 mod 2πZ},
Γ = {x ∈ W ; u(x)− θ(x) ≡ 0 mod 2πZ}.

Assume that ΓN ∩ Γ = ∅. We propose an inductive way to construct uN+1 describing the
union ΓN+1 = ΓN ∪ Γ as

ΓN+1 = {x ∈ W ; uN+1(x)− θN+1(x) ≡ 0 mod 2πZ} (14)

with θN+1 = θN + θ .
We first define

vN (x) := �N (x)+ 2πkN (x)+ πH1(λN [uN (x)− (�N (x)+ 2πkN (x))]),
for a positive constant λ ∈ [1/π,∞); here

H1(σ ) =
⎧
⎨

⎩

−1 if σ ≤ −1,
σ if − 1 < σ < 1,
+1 if σ ≥ 1,

(15)

�N is a branch of θN whose branch-cut line is the union of {a + (x1, 0); x1 ≥ 0} for the all
centers a contained in ΓN , and kN : W → Z is a function satisfying

−π ≤ uN (x)− (ΘN (x)+ 2πkN (x)) < π for x ∈ W .

We also define

v(x) := Θ(x)+ 2πk(x)+ πH1(λ[u(x)− (Θ(x)+ 2πk(x))])
with the same manner of vN . Then, vN is continuous and satisfy

ΓN = {x ∈ W ; vN (x)− θN (x) ≡ 0 mod 2πZ},
and also v, θ and Γ satisfy the same relation. Choosing λN , λ > 0 so that

{x ∈ W ; |vN (x)− (ΘN (x)+ 2πkN (x))| < π}
∩ {x ∈ W ; |v(x)− (Θ(x)+ 2πk(x))| < π} = ∅

we will have a continuous function uN+1(x) = vN+1(x)+ v(x)+π that satisfies (14). Note
that the above stil works well even if Γ contains many spirals.
A Brief Summary on Initialization Procedures. The methods proposed in the previous
subsections describe how one could construct continuous initial data for the auxiliary function
u for the following cases:

– A straight line connecting two centers,
– A general simple spiral,
– The union of two spiral curves, which are separately given.

With the ability to take unions of spiral curves, we have a method for constructing continuous
initial data for a large class of spirals.

123



J Sci Comput (2015) 62:831–874 847

2.6 Evaluating the Height Function

It is of great interest to predict the growth rate of the crystal surface. Burton et al. [1] calculate
the growth rate of the surface with a single center by calculating the angle velocity of the
rotating spiral. In this paper, we consider a general case that involve multiple centers. We
construct a surface height function h(t, x) fromΓt and obtain the mean growth height H(t; t0)
of the surface in [t0, t] as

H(t; t0) = 1

|W |
∫

W
(h(t, x)− h(t0, x))dx,

and the growth rate R(t) as

R(t) = d

dt
H(t; t0) = 1

|W |
∫

W
ht (t, x)dx .

We construct h(t, x) from the approximation by the theory of dislocations as in [15]. Here
we assume that the vertical displacement of the surface by screw dislocations is small enough,
and there is no horizontal displacement. Then, from the linear elasticity theory h satisfies


h = −h0divδΓt n, (16)

where h0 is a unit height of steps, and δΓt is the delta measure concentrated on Γt . Instead
of solving (16) with a Neumann boundary condition as in [34], we solve it analytically and
derive an explicit formula for h. Let θΓt be the branch of θ given by (4) whose discontinuity
is only on Γt . By a direct calculation we observe that

h(t, x) = h0

2π
θΓt (17)

is a solution to (16). Since the jump of θΓt is −2π in the direction of the normal, the multiplier
h0/2π in front of θΓt is necessary so that (17) solves (16). Hence, h(t, x) can be evaluated
conveniently from the solution u of (6)–(7) as described in the following. Let k(t, x) ∈ Z be
such that

−π ≤ u(t, x)− (Θ(x)+ 2πk(t, x)) < π,

where Θ(x) = ∑N
j=1 m jΘ j (x) and Θ j : W → [0, 2π) is a principal value of arg(x − a j ).

Then,

h(t, x) = h0

2π
[Θ(x)+ 2πk(t, x)+ πϑ(u(t, x)− (Θ(x)+ 2πk(t, x)))] .

is our desired function to describe the height of the crystal surface, where ϑ is the Heaviside
function, i.e., ϑ(σ) = 1[0,∞)(σ ) − 1(−∞,0)(σ ); here 1J (σ ) denotes the indicator function
for J ⊂ R.

3 Numerical Simulations

In this section we present a few results of numerical experiments.
We set the domainΩ = [−1, 1]2, uniform grid spacing δ = 10−2. We choose the time step

span τ = δ2/4 for numerical simulations in this section except calculating the growth rate
by a single spiral in Sect. 3.2, and errors between stationary and numerical solutions under
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inactive pair Sect. 3.4; for these cases we choose τ = δ2/10. The lattice points are denoted
by (tk, xi, j ) = (τk, δi, δ j) for −100 ≤ i, j ≤ 100. In this section we use the equation

V = v∞(1 − ρcκ) (18)

instead of (1) for consistency with [1]. The corresponding level set equation is given in

ut − v∞|∇(u − θ)|
{

ρcdiv
∇(u − θ)

|∇(u − θ)| + 1

}

= 0 in (0, T )× W. (19)

Note that v∞ denotes the evolution speed of a straight line, and ρc denotes the critical
radius such that a disc shrinks if its radius is less than ρc. Solving (1) with C = 1/ρc, and
rescaling t to v∞ρct , one obtains the dynamics of spirals prescribed in (18).

3.1 Discretization

In this paper we solve (6)–(7) with a typical explicit finite difference scheme; see e.g. [28,
36,39]. We shall give only a few remarks which are rather special to our problem.

One of the specific difficulties is in treating the sheet structure function θ when we apply
finite differencing to the terms u−θ in (6) or (7). The function θ will be evaluated numerically
in a neighborhood of each branch-cut line of arg(x − a j ) so that it is smooth there and we
do not perform finite difference across the projected discontinuity of arg(x − a j ).

Writing w = u − θ formally, the Eq. (6) appears in the form

ut − v∞I − v∞ρcII = 0,

I = |∇w|,
II = |∇w|div

∇w
|∇w| .

More precisely, we denote

I =
√

|∂̃xw|2 + |∂̃yw|2,
II =

√

|∂̂xw|2 + |∂̂yw|2 div
∇w
|∇̄w|

with wk
i, j = w(tk, xi, j ) on a lattice (tk, xi, j ) with uniform grid spacing δ > 0 in the x- and

the y-dimensions. If v∞ > 0, |∂̃xw| and |∂̂xw| are discretized differently as follows:

|∂̃xw| = max
{

max
{
∂̃+

x w, 0
}
,− min

{
∂̃−

x w, 0
}}
,

|∂̂xw| =
{

max{|∂+
x w|, |∂−

x w|} if |∂◦
xw| � 1,

|∂◦
xw| otherwise,

∂±
x w =w

k
i±1, j − wk

i, j

±δ , ∂◦
xw = wk

i+1, j − wk
i−1, j

2δ
,

∂̃±
x w =w

k
i±1, j − wk

i, j

±δ
∓ 1

2
μ

(
wk

i±2, j − 2wk
i±1, j + wk

i, j

δ2 ,
wk

i+1, j − 2wk
i, j + wk

i−1, j

δ2

)

,

μ(p, q) =
{

p if |p| < q,
q otherwise.
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If v∞ < 0, then ∂̃wx is discretized by

|∂̃xw| = max
{
− min

{
∂̃+

x w, 0
}
,max

{
∂̃−

x w, 0
}}
.

The terms |∂̃yw|, |∂̂yw| are defined analogously as above.
The curvature term div(∇w/|∇̄w|) is discretized as

div
∇w
|∇̄w| =1

δ

⎛

⎝ ∂+
x w√

ε2 + (∂+
x w)

2 + (∂̄+
y w)

2
− ∂−

x w√
ε2 + (∂−

x w)
2 + (∂̄−

y w)
2

+ ∂+
y w

√
ε2 + (∂̄+

x w)
2 + (∂+

y w)
2

− ∂−
y w

√
ε2 + (∂̄−

x w)
2 + (∂−

y w)
2

⎞

⎠

with a small parameter ε > 0, where ∂̄±
x w is discretized as

∂̄±
x w = (wk

i+1, j±1 + wk
i+1, j )− (wk

i−1, j±1 + wk
i−1, j )

4δ
.

The term ∂̄±
y w is also defined analogously as above.

We now discuss the treatment of Neumann boundary condition for the boundary of a small
region U that contains the spiral center. We consider two idealized situations. The first one
being that U corresponds to a disc centering at a grid node xi, j with a radius that is smaller
than δ/2. The second situation corresponds to U being a disc with a small radius which is
independent of the grid spacing. In the first situation, we assign different fictitious values to
wi, j depending on the finite difference stencil used in discretizing the PDE at a grid node
nearby xi, j , assuming that xi, j is in the computational domain. More precisely, if the PDE
is discretized on xi−1, j , then we assign the fictitious value of wi, j to be wi−1, j . The other
fictitious values of wi, j are assigned accordingly. All the simulations in this paper use such
treatment for the Neumann condition, except a part of simulations in Sect. 3.4. We remark,
however, that this approach results in relatively larger error in the front propagation speed
near the spiral center.

In the second idealized situation, we further assume that the mesh size δ is smaller than the
radius of U , and that explicit time stepping such as forward Euler or some explicit Runge–
Kutta method is used to time discretization. In this setting, we may consider ∂U as an implicit
interface, and extend the values of w outside of U following the approach which is called
“velocity extension” in the level set method literature; see e.g. [28], or more specifically [4].
This situations appear in a part of simulations in Sect. 3.4 if we see the numerical accuracy of
our method by converging to the stationary solution under an inactive pair with independently
chosen centers with respect to δ.

3.2 Single Center with Multiple Spirals

One of advantages over the Smereka’s formulation is that it is easy to treat the situation there
is one center with multiple spirals. This situation is described by

Γt := {x ∈ W ; u(t, x)− mθ0(x) ≡ 0 mod 2πZ}
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Fig. 10 Motion of triple spirals associated with the origin by V = 5(1 − 0.03κ). Each profile is at t =
0, 0.1250, 0.250 and t = 0.50 from top left to bottom right

with θ0(x) = arg x and m ∈ Z\{0}. Here we have assumed that the center is the origin. The
dynamics is given by

ut − v∞|∇(u − mθ0)|
{

ρcdiv
∇(u − mθ0)

|∇(u − mθ0)| + 1

}

= 0 in (0, T )× W,

〈ν,∇(u − mθ0)〉 = 0 on (0, T )× ∂W.

Then we find evolving |m| spirals as Γt = ⋃|m|−1
k=0 Γk,t and

Γk,t = {x ∈ W ; u(t, x)− mθ0(x) ≡ 2πk mod 2π |m|Z}.
To describe this situation by Smereka’s formulation we need 2|m| auxiliary function and thus
system of 2|m| equations.

Figure 10 is the evolution of triple spirals associated with the origin by

V = 5(1 − 0.03κ) (i.e., v∞ = 5, ρc = 0.03).

The initial curve is chosen as

Γ0 =
3⋃

i=1

{

r

(

cos
2(i − 1)

3
π, sin

2(i − 1)

3
π

)

; r > 0

}

.

In this case we choose u0(x) ≡ 0.
We verify the numerical accuracy of the height function defined in Sect. 2.6 by the com-

puted crystal surface with a single spiral. We set N = 1, a1 = 0 and θ(x) = arg x . Figure 11
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Fig. 11 Graphs of the mean growth height H(t; 0) by a single screw dislocation with normal velocity (20)
and h0 = 1. The dashed line is the approximating line with respect to the data for t ∈ [0.3, 1]. The holizontal
and vertical axes correspond to time t and the growth heights H(t; 0), respectively

presents the graphs of H(t; 0) for a single spiral under

V = 6(1 − ρcκ) (20)

withρc = 0.04 and 0.08 and h0 = 1 on the domain W = Ω\Bδ/2(0), where δ is the numerical
grid spacing size. One finds that the height of the evolving crystal surface increases linearly
for t ≥ 0.3 in the all simulations we examined. Thus, the growth rate of the surface should be
the slope of the approximating line on the time interval [0.3, 1] or calculating R(t) defined in
Sect. 2.6. In this paper we present only the approximating line of these case, then we obtain

ρc = 0.04 : H(t; 0) ≈ 7.947102t − 0.918626,

ρc = 0.08 : H(t; 0) ≈ 3.961880t − 0.381085,

so that the growth rates are 7.947102 if ρc = 0.04, and 3.961880 if ρc = 0.08.
Burton et al. [1] pointed out that the growth rate of a crystal surface by a single rotating

spiral evolving under (18) is given as

RS = ω

2π
h0 = ω1v∞h0

2πρc
,

where ω = ω1v∞/ρc is the angular velocity of the spiral. Burton et al. calculated ω1 = 1/2
with rough approximation of the spiral. Ohara and Reid [24] numerically calculated a more
accurate value of ω1 with ODE model and obtain ω1 = 0.330958061 . . .. We tabulate RS ,
the slope R� of the approximating line calculated by the data on [0.3, 1] with δ = 1/100,
and the relative errors e�S = |R� − RS |/RS for δ = 1/100, 1/200 and 1/400.

ρc RS R� e�S

(δ = 1/100) δ = 1/100 δ = 1/200 δ = 1/400

0.040 7.901042 7.947102 0.005830 0.002902 0.001064

0.080 3.950521 3.961880 0.002875 0.001056 0.000349

Note that we remove the neighborhood Bδ/2(0) around the center which vanishes as δ → 0.
One finds that the relative errors decrease for smaller δ and also for larger ρc: with a rescaling
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x �→ r x for r > 0 (18) is represented as

V = rv∞(1 − rρcκ),

and thus the radius of the center becomes relatively smaller for larger values of ρc. We next
tabulate log2(e�S(δ)/e�S(δ/2)) of the above.

ρc δ log2(e�S(δ)/e�S(δ/2))

0.04 1/100 1.006448

1/200 1.447549

0.08 1/100 1.444952

1/200 1.597311

One can find the decay order of e�S(δ) with δ = 2−p/100 is over 1.0 in the above cases. We
refer the readers to the forthcoming paper [27] for the more details and extensive study of
the evolution of the surface.

3.3 Co-rotating Spirals

Consider the case of N screw dislocations with the same rotational orientations. We say such
a case simply co-rotating spirals. To describe this situation we consider (6)–(7) with

θ(x) = m
N∑

i=1

mi arg(x − ai ),

where mi ∈ N is the number of spirals associated with ai , and m ∈ {±1} is the constant chosen
by the rotational orientations, i.e., m = 1 if the orientations all spirals are counter-clockwise,
and m = −1 if those are clockwise.

Note that there are no connecting spirals for co-rotating case. Then, if Γ0 is the union of
lines, Γ0 is given as

Γ0 =
N⋃

i=1

mi⋃

j=1

Li, j , (21)

Li, j = {ai + r(cosαi, j , sin αi, j ) ∈ W ; r > 0}, (22)

where αi, j ∈ R is a constant.
A simplest but nontrivial situation is the case of N = 2, m1 = m2 = 1 andΓ0 = L1,1∪L2,1

is given by

L1,1 = {a1 + r(a1 − a2) ∈ W ; r > 0}, L2,1 = {a2 + r(a2 − a1) ∈ W ; r > 0}
with counter-clockwise orientation. In this case θ and u0 are of the form

θ(x) = arg(x − a1)+ arg(x − a2),

u0(x) ≡ 0.
(23)
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Fig. 12 The simulation of co-rotating spirals by (24) and (23) at time t = 0, t = 0.05, t = 0.1, t = 0.5 from
top left to bottom right

Note that we set θ(x) = − arg(x − a1) − arg(x − a2) instead of the above if the rotational
orientations of the curve are clockwise. Figure 12 is the simulation with

{
a1 = (−0.35, 0), a2 = (0.35, 0),

V = 5(1 − 0.02κ) (v∞ = 5, ρc = 0.02).
(24)

We also obtain the surface height function from a solution of the level set equation with the
method in Sect. 2.6 (see Fig. 13).

One of advantages of our method is that our method enables us to set different numbers
of spirals for several centers, i.e., describing the situations for more general cases of m and
mi . Such situation seems to be impossible to treat by Smereka’s approach. We now assume
that an initial curve is given by (21) and (22) with counter-clockwise orientation. Then, from
the additive construction we first choose ui, j ∈ C(W ) satisfying

Li, j = {x ∈ W ; ui, j (x)− arg(x − ai ) = 0 mod 2πZ},

and one observe that ui, j (x) ≡ αi, j from the initialization of a line step in Sect. 2.5. Next,
we modify ui, j as

vi, j (x) = Θi (x)+ 2πki, j (x)+ πH1(λi, j
{
ui, j (x)− (Θi (x)+ 2πki, j (x))

}
), (25)
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Fig. 13 The profile of the surface
at t = 0.5 from Fig. 12, which is
reconstructed from the numerical
solution of the level set equation

with constants λi, j > 1/π , where H1 is a function defined as (15), Θi : W → [0, 2π) is a
principal value of arg(x − ai ), and ki, j : W → Z is a function satisfying

− π ≤ ui, j (x)− (Θi (x)+ 2πki, j (x)) < π for x ∈ W . (26)

Here we choose λi, j as

�i1, j1 ∩�i2, j2 = ∅ whenever (i1, j1) 	= (i2, j2), (27)

where
�i, j = {x ∈ W ; |vi, j (x)− (Θi (x)+ 2πki, j (x))| < π}. (28)

Then, we set

u0(x) =
N∑

i=1

mi∑

j=1

(vi, j (x)+ π)− π. (29)

Note that vi, j ∈ C(W ) and satisfies

Li, j = {x ∈ W ; vi, j (x)− arg(x − ai ) ≡ 0 mod 2πZ}
if λi, j > 1/π . The condition (27) is a sufficient condition to give an initial curve by u0. Here
is an example of simulation of general situation in Fig. 14 and its reconstructed surface in
Fig. 15 with (24) and

θ(x) = arg(x − a1)+ 2 arg(x − a2),

L1,1 ={a1 + r(cosπ, sin π); r > 0},
L2,1 ={a2 + r(cos(−π/3), sin(−π/3)); r > 0},
L2,2 ={a2 + r(cos(π/3), sin(π/3)); r > 0}.

To give an initial datum u0 for Γ0 = ⋃2
i=1

⋃mi
j=1 Li, j we set

α1,1 = π, α2,1 = −π
3
, α2,2 = π

3
, λ1,1 = λ2,1 = λ2,2 = 3

π
.
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Fig. 14 Co-rotating spirals with different numbers of spiral steps for each screw dislocations at t = 0 on top
left, t = 0.08, t = 0.16, t = 0.24 on bottom right

Remark 7 When the curves have clockwise orientations, we set ũi, j = −ui, j to obtain
Li, j = {x ∈ W ; ũi, j (x)− θ−

i (x) ≡ 0 mod 2πZ} with θ−
i = − arg(x −ai ) and set ũi, j and

the principal value �−
i (x) of θ−

i (x) instead of ui, j and �i in (25)–(28) to obtain u0 as (29).

One advantage of our method over the Smereka’s method [34] is that our method is able to
verify activity of group of screw dislocations and compare it with a single screw dislocation
with multiple steps.

Burton et al. [1, §9] pointed out that the activity of co-rotating spirals depends on the
distance of the centers. They first consider the case of a pair of co-rotating spirals, and
pointed out that the activity of a co-rotating pair is indistinguishable from that of one screw
dislocation if the centers are far apart, and, however, should be twice of one screw dislocation
if the distance of the centers is much less than ρc, i.e., |a1 − a2| � ρc for the pair of centers
a1 and a2. They also pointed out that the profile of co-rotating spirals would be effectively
two symmetric branches of the complete Archimedean spirals, r = 2ρcθ and r = 2ρc(θ+π)
in the limiting case as |a1 − a2| → 0 where r, θ are the variables in the polar coordinates.
By considering the spirals associated with a1 and a2 defined by the Archimedeans r = 2ρcθ

and 2ρc(θ + π), they observed that the spirals did not collide with each other if and only if
|a1 − a2| < 2πρc (see Fig. 16). Thus they discuss the activities and the profiles of spirals
according to the centers being “close” (|a1 − a2| < 2πρc) or “far apart” (|a1 − a2| ≥ 2πρc).
The authors [27] investigate and revise the estimate of activity by [1]. It turns out that
more accurate critical distance of the “close” pair seems to be πρc/ω1 with the coefficient
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Fig. 15 Reconstructed surface at
t = 0.24 from the numerical
solution in Fig. 14

ω1 = 0.330958061... which is the angular velocity ω = ω1v∞/ρc of a rotating spiral
calculated by Ohara and Reid [24]. Note that Burton et al. [1] obtained ω1 = 1/2 from the
approximation of a rotating spiral with the Archimedean spiral r = 2ρcθ .

Here we present a few simulations that verify the two cases discussed in [1]. In Fig. 17 we
show three simulations involving respectively two spirals associated with a single center at
(0, 0), two spirals each associated with one of the two centers at (±0.02, 0), and to (±0.2, 0).
The evolution equation is

V = 5(1 − 0.02κ), (30)

i.e., ρc = 0.02. We choose

u0(x) = 0

for all the case. Figure 12 shows a simulation for the farthest case with the same equation as
the simulations in Fig. 17.

The simulation presented in the middle column corresponds to the case |a1−a2| = 0.04 <
πρc/ω1. In the setup of the simulation we take a1 and a2 as close as possible, so that there are
three grid points between the pair to see the performance of the proposed method for spirals
with centers that are closely positioned on the grid level. Even though we cannot say that this
pair falls into the regime |a1 −a2| � ρc, our simulations show that the corresponding profile
is significantly different from the case in which the pair consists of centers at (±0.2, 0). A
crucial difference is that the curve includes some concave points. One observes that the line
tracking points where the curve is concave almost agrees with the locus of intersections and
forms an S-shape.

Remark 8 In [27] we shall discuss the growth rate of the surface for the case of centers
(±0.02, 0) is very close to the case of a single center with double spirals, and the case
(±0.2, 0) is caught up by a single spiral case.

Burton et al. [1] observed by a heuristic argument that a set of centers on one line plays
a role of a single center with multiple activity when the distances between two neighboring
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Fig. 16 Two archimedeans: r = 2ρcθ centering at a1 = (−α, 0) and its half turn r = 2ρc(θ + π) centering
at a2 = (α, 0). In these figures ρc = 1/2, α = 1 in the top figure, and α = 5 in the bottom figure, respectively

centers on the line is less than πρc/ω1. Such a set is called a group (or system) of centers (or
co-rotating spirals). They also presented formulae predicting the activities between a group
of co-rotating spirals and a single one (see Remark 9).

We verify the difference of profiles between some cases of systems by N (≥ 2) co-rotating
spirals. Figure 18 is a results of simulations on 4 centers (±a, 0), (±b, 0)(a > b > 0) with
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Fig. 17 Comparison of co-rotating spirals by distances of pairs, and single center with two branches. The
pictures are a single center with two branches, at (±0.02, 0) and (±0.2, 0) from left to right, and t = 0, 0.08,
0.16 and 0.24 from top to bottom

counter-clockwise orientations. The evolution equation is (30). The first examination is with
a = 0.06 and b = 0.02 the second one is a = 0.15, b = 0.11. According to [1, §9] the first
one should be regarded as one group of four centers, and the second one should be two pairs.

In these tests we define the initial curve Γ0 = L1 ∪ L2 ∪ L3 ∪ L4 to be

L1 ={a1 + (−r, 0); r > 0}, a1 = (−a, 0),

L2 ={a2 + (0,−r); r > 0}, a2 = (−b, 0),

L3 ={a3 + (0, r); r > 0}, a3 = (b, 0),

L4 ={a4 + (r, 0); r > 0}, a4 = (a, 0).

Here we have used the simple notations Li instead of Li,1 since each center has a single line.
Here and hereafter we will use similar notations αi , λi instead of αi,1, λi,1 if Γ0 is given
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Fig. 18 Comparison of profiles of spirals at time t = 0 (top) and t = 0.5 (bottom) by four co-rotating
centers. The normal velocity is described in (30). The left one is with (±0.06), (0.02, 0), and the right one is
(±0.15, 0.11)

by (21) and (22), and each the center has a single line. In these numerical experiments we
choose θ = ∑4

i=1 arg(x − ai ), and

α1 = π, α2 = −π/2, α3 = π/2, α4 = 0, and λi = 4/π for i = 1, 2, 3, 4

to construct u0 as (29). The normal velocity of the evolution is (30).

Remark 9 1. The growth height and rate in Sect. 2.6 enables us to find the essential differ-
ence between the case (±0.06, 0), (±0.02, 0) and (±0.15, 0), (±0.11, 0). According to
[1, §9], the resultant activity of a group of N co-rotating spirals is N/(1 + l(2πρc)

−1)

times that of a single spiral if the group is on a line whose length is l. The above multi-
plicity formula is revised by [27] as N/(1 + l(πρc/ω1)

−1) times that of a single spiral.
The growth rate obtained by our examination implies that the numerical growth rate by
co-rotating screw dislocations at (±0.15, 0), (±0.11, 0) is closer to the case of two pairs
of dislocations with line length 0.04 than that by the group of 4 screw dislocations with
line length 0.30. We shall discuss this subject in one of our forthcoming paper [27].

2. There is no explicit definition of activity of a group of screw dislocations in [1]. A
reasonable definition of the activity of a group is the growth rate of the surface around
the group.

3. There is a quantity which is called the “strength” of a group in [1]. The strength should
be defined as the sum of the all signed numbers of spirals associated with centers joined
in the group.

We conclude this section by examining a more general group of co-rotating spirals, for
which Burton et al. [1] discussed heuristically. As we mentioned above, if the distance of a
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Fig. 19 Evolution of surface by a general group of 6 centers at t = 0, 0.5, 0.505, 0.510, 0.515, 0.520

co-rotating pair is less than πρc/ω1, then the pair is effectively a single center which has two
branches of spirals. We call such a situation as a group of two centers. Moreover, if a third
center in the domain is also less than πρc/ω1 distance to the closest center in the pair, then
these three centers, which are not assumed to be on one line, are also regarded as a single
center with three branches of spirals. Similarly we call them as a group of three centers. When
a center is located sufficiently closely to a group of N −1 centers such that the distance of the
center and the group is less than πρc/ω1, then we call these centers as a group of N centers.
For example, centers in the left figures of Fig. 18 generate a group of 4 centers, and those in
the right figures generate two pairs (not a group of 4 centers).

In general, however, the group of centers may develop a pit in the surface of the crystal.
We consider a group of centers which are at a1 = (0.16, 0), a2 = (0.08, 0.15), a3 =
(−0.08, 0.15), a4 = (−0.16, 0), a5 = (−0.08,−0.15), and a6 = (0.08,−0.15). Set the
initial lines as

Li = {ai + r(cosπ(i − 1)/3, sin π(i − 1)/3); r > 0} for i = 1, 2, 3, 4, 5, 6,

and evolve Γ0 = ∪6
i=1Li with

V = 5(1 − 0.05κ).

Figure 19 shows the profile of the spirals at t = 0, 0.5, 0.505, 0.510, 0.515, 0.520, and Fig. 20
shows the surface at t = 0.520. In this case we choose αi = π(i − 1)/3 and λi = 6/π for
i = 1, 2, 3, 4, 5, 6 to construct u0 as (29). Note that

|ai+1 − ai | =
{

0.16 for i = 2, 5,
0.17 otherwise

and thus these centers form a group of N centers in the setting prescribed above. Therefore
these centers are regarded as an effective single center. Actually the profile of spirals in Fig. 19
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Fig. 20 The surface at t = 0.520
in Fig. 19

is very close to that of single center with six branches. However, one finds a closed curve
inside of the group at t = 0.520. This curve is generated by rotating spirals which touch
the centers of their neighboring spirals at some time during the evolution. Thus this curve
describes the boundary of a pit in the surface. Because of the driving force and the curvature
of the boundary, the pit disappears in a short time. However, the height of the surface at where
the pit used to be remains lower than the surrounding.

3.4 Pair of Screw Dislocations with Opposite Rotational Orientations

Consider a pair of spirals with opposite rotational orientations. For simplicity we say that
such a pair an opposite pair. This case is described by our formulation with

θ(x) = m(m1 arg(x − a1)− m2 arg(x − a2)),

where m1,m2 ∈ N are numbers of spirals associated with a1 and a2, respectively, and
m ∈ {±1} is a constant defining the rotational orientations, i.e., m = 1 (resp. m = −1) if the
spirals associated with a1 are counter-clockwise (resp. clockwise) and thus those associated
with a2 are clockwise (resp. counter-clockwise) orientations.

A simple nontrivial example is

θ(x) = arg(x − a1)− arg(x − a2) (31)

with Γ0 as follows

(A) Γ0 = {σa1 + (1 − σ)a2 ∈ W ; σ ∈ (0, 1)},
(B) Γ0 = L1∪L2, Li = {ai +r(cosαi , sin αi ) ∈ W ; r > 0} for given constants α1, α2 ∈ R.

Case (A) is already mentioned in Sect. 2.4 and thus we set

u0(x) = π. (32)

123



862 J Sci Comput (2015) 62:831–874

Fig. 21 The evolution of an opposite pair by (24) with initial line (A) at time t = 0, t = 0.05, t = 0.1,
t = 0.5 from top left to bottom right

Case (B) is similar to the situation discussed in Sect. 3.3. If α1 = arg(a1 − a2) and α2 =
arg(a2 − a1) then we set

u0(x) = 0.

Figure 21 shows a simulation involving an opposite pair belonging to Case (A), and Fig. 22
shows the profile of the surface at time t = 0.5, which is reconstructed from the solution u.
In the simulation, we set θ and u0 as (31) and (32), respectively. In Fig. 21, one sees that the
spiral curve changes from an open curve to a closed one, and then to an open curve again;
it also splits into different connected pieces when the curve intersects itself. All of these
phenomena are computed effortlessly by the proposed method.

To set up a configuration belonging to Case (B), we first set u1 = α1 and u2 = −α2 to
obtain

L1 ={x ∈ W ; u1(x)− θ+
1 (x) ≡ 0 mod 2πZ},

L2 ={x ∈ W ; u2(x)− θ−
2 (x) ≡ 0 mod 2πZ}

with θ±
i (x) = ± arg(x − ai ) for i = 1, 2. We next set

u0(x) =v1(x)+ v2(x)+ π,

v1(x) =�+
1 (x)+ 2πk1(x)+ πH1(λ1{u1 − (�+

1 (x)+ 2πk1(x))}),
v2(x) =�−

2 (x)+ 2πk2(x)+ πH1(λ2{u2 − (�−
2 (x)+ 2πk2(x))})
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Fig. 22 The profile of the surface
at t = 0.5 from Fig. 21, which is
reconstructed from the numerical
solution of the level set equation

as in (25), where �±
i is the principal value of θ±

i , i.e., ± arg(x − ai ) for i = 1, 2. Here
ki : W → Z is a function satisfying (26) with ui, j = ui , vi, j = vi , ki, j = ki for i = 1, 2. The
coefficients λi are constants satisfying (27) with �i, j = �i for i = 1, 2, i.e., �1 ∩�2 = ∅.

If an opposite pair a1 and a2 have m1 and m2 spirals, respectively, then it is convenient
for construction of u0 to make groups of simple and connecting spirals for an initial curve.
Hence we define Γ0 by

Γ0 =
⎛

⎝
m̃1⋃

j=1

L1, j

⎞

⎠ ∪
⎛

⎝
m̃2⋃

j=1

L2, j

⎞

⎠ ∪
( nc⋃

n=1

Lc,n

)

,

L1, j ={x ∈ W ; u1, j (x)− θ+
1 (x) ≡ 0 mod 2πZ},

L2, j ={x ∈ W ; u2, j (x)− θ−
2 (x) ≡ 0 mod 2πZ},

Lc,n ={x ∈ W ; uc,n(x)− (θ+
1 (x)+ θ−

2 (x)) ≡ 0 mod 2πZ}

with uc,n, u1, j , u2, j ∈ C(W ). Here L1, j and L2, j denote simple spirals associated with a1

and a2, respectively, and Lc,n denotes connecting spirals, so the numbers nc, m̃1, and m̃2 ∈ N

of each spirals satisfy m̃1 + nc = m1 and m̃2 + nc = m2. For connecting spirals Lc,n we
also introduce modified initial data vc,n and slope sets�c,n , which is similar as (25) and (28)
respectively, of the form

vc,n(x) =Θ+
1 (x)+Θ−

2 (x)+ 2πkc,n(x)

+ πH1(λc,n{uc,n − (Θ+
1 (x)+�−

2 (x)+ 2πkc,n(x))}),
�c,n ={x ∈ W ; |vc,n(x)− (Θ+

1 (x)+Θ−
2 (x)+ 2πkc,n(x))| < π},

(33)

where λc,n > 1/π is a constant and kc,n : W → Z is such that

−π ≤ uc,n(x)− (Θ+
1 (x)+Θ−

2 (x)+ 2πkc,n(x)) < π for x ∈ W .
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For construction of initial data u0 ∈ C(W ) similarly as (29) we choose λ1, j , λ2, j and λc,n

such that

�c,n ∩�i, j = ∅, �c,n1 ∩�c,n2 = ∅ if n1 	= n2,

in addition to (27) for n, n1, n2 and (i, j). Then, we set

u0(x) =
nc∑

n=1

vc,n(x)+
m̃1∑

j=1

v1, j (x)+
m̃2∑

j=1

ṽ2, j (x)+ (nc + m̃1 + m̃2 − 1)π

and obtain

Γ0 = {x ∈ W ; u0(x)− θ(x) ≡ 0 mod 2πZ}
with θ(x) = m1 arg(x − a1)− m2 arg(x − a2). If we consider the opposite rotational orien-
tations of the above, then we change a1 and a2 and do above.

We have two examples of simulations. The first one is for the same initial curve as Fig. 12,
but L2,1, L2,2 have the clockwise orientations (see Fig. 23). In this case we set

u1,1 ≡ π, u2,1 ≡ −π
3
, u2,2 ≡ π

3
, λ1,1 = λ2,1 = λ2,2 = 3

π

Fig. 23 Simulation of a single spiral associated with a1 = (−0.35, 0)with the counter-clockwise orientations,
and two spirals associated with a2 = (0.35, 0) with clockwise orientations. The evolution equation is (24),
i.e., v∞ = 5 and ρc = 0.02. The above figures are profiles of spirals at t = 0, 0.05, 0.1 and 0.2 from top left
to bottom right
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Fig. 24 Simulation of similar case as Fig. 23 started from single connecting line and single simple line
associated with a2. The equation, and times of each profiles are same as Fig. 23

and set

u0(x) = v1,1(x)+ v2,1(x)+ v2,2(x)+ 2π.

The second one is by a connecting lines and a simple spiral line associated with a2, i.e.,

Γ0 =Lc ∪ L2,

Lc ={σa1 + (1 − σ)a2 ∈ W ; σ ∈ (0, 1)},
L2 ={a2 + (r, 0) ∈ W ; r > 0}.

(See Fig. 24.) In this case we set uc ≡ π and u2 ≡ 0 to obtain

Lc = {x ∈ W ; uc(x)− (θ+
1 (x)+ θ−

2 (x)) ≡ 0 mod 2πZ},
L2 = {x ∈ W ; u2(x)− θ−

2 (x) ≡ 0 mod 2πZ},
and set

u0(x) = vc(x)+ v2(x)+ π

with λc = λc,1 = π/2 and λ2 = λ2,1 = π/2.
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Fig. 25 Evolution of a step attached to an inactive pair of screw dislocations. In the subfigures, the solid
curves correspond to the evolving spiral at t = 0 (left) and t = 1 (right). The dashed arc is a part of the
stationary circle. The simulated spiral curve becomes stationary around the dashed arc

Inactive Pair of Screw Dislocations

Burton et al. [1] pointed out that, when a pair of screw dislocations a1 and a2 with opposite
rotational orientations satisfies |a1 −a2| < 2ρc, then no growth occurs. They call such a pair
inactive pair. Figures 25 show two profiles of an evolving spiral by

V = 6(1 − 0.25κ), (34)

i.e., (18) with v∞ = 6, κ = 0.25, a1 = (−0.20, 0), and a2 = (0.20, 0) at t = 0 (left figure)
and t = 1 (right one). Since |a1 − a2| = 0.40 < 0.50 = 2ρc the situation is the evolution
under an inactive pair.

One observes that the circle {|x | = ρc} is a stationary curve under (18). Thus, a part of
the circle through a1 and a2 should be a stationary spiral for our case if spirals are always
pinned the screw dislocations and the Neumann boundary conditions are compatible. The
first author proves the existence of two stationary spirals connected to the inactive pair with
our level set formulation in [26]. For the centers a1 = (−a, 0), a2 = (a, 0) with a > 0, and
the domain W = Ω\(Br (a1) ∪ Br (a2)), the curves

S̃1 := {(0,−b)+ ρc(cos σ, sin σ); σ ∈ [π/2 − σ̃1, π/2 + σ̃1]},
S̃2 := {(0, b)+ ρc(cos σ, sin σ); σ ∈ [π/2 − σ̃2, π/2 + σ̃2]},

should be stationary under (18) for b = √
ρ2

c + r2 − a2 and σ̃1, σ̃2 > 0 are constants
depending on a, ρc and r so that S̃ j ⊥ ∂W holds for j = 1, 2. Formally, if r → 0 then S̃1

and S̃2 converge to

S1 := {(0,−
√
ρ2

c − a2)+ ρc(cos σ, sin σ); σ ∈ [π/2 − σ1, π/2 + σ1]},
S2 := {(0,

√
ρ2

c − a2)+ ρc(cos σ, sin σ); σ ∈ [π/2 − σ2, π/2 + σ2]},
where σ1, σ2 > 0 are constants depending on a and ρc.

We now present two kinds of examination on the performance of our numerical method
for evolving spirals attached to an inactive pair of centers with velocity as defined in (34). In
our simulations, we set the initial configuration to

Γ0 = {σa1 + (1 − σ)a2; σ ∈ (0, 1)}, (35)

123



J Sci Comput (2015) 62:831–874 867

where the centers are fixed to a1 = (−0.20, 0) and a2 = (0.20, 0) with opposite rotational
orientations, and thus the pair is an inactive pair. In these simulations we set

θ = arg(x − a1)− arg(x − a2)

and compare the numerical solutions to S1 or S̃1.
We shall use the height functions, defined in Sect. 2.6, corresponding to S̃1 (resp. S1) to

quantify the accuracy of our method. We denote the height functions h̃1 (resp. h1) whose
discontinuities are only on S̃1 (resp. S1) with the constant for step height h0 = 1. Let u(t, x) be
a viscosity solution of (19) and (7) with u(0, x) = u0(x) = −π ; i.e. {x ∈ W ; u0(x)−θ(x) ≡
0 mod 2πZ} = Γ0, with Γ0 defined in (35). We shall use h for the height function defined
by u and θ with the constant h0 = 1. Then by a suitable translation of h̃1 to h̃1 + K with
some constant K , we consider the function

Ẽ(t) = 1

|W |
∫

W
|h(t, x)− h̃1(x)|dx .

Here K is chosen so that Ẽ(0) is approximately the measure of the enclosed domain by Γ0

and S̃1. We define E(t) using h1 in the same manner.
We present some results on the numerical accuracy of our method for such setting. In the

first examination, we set r = δ/2, where δ is the size of the grid spacing. In this case, the
center disc Br (a j ) ( j = 1, 2) vanishes as δ → 0, and correspndingly S̃1 → S1. Then spirals
should be stopped around S1. Thus in this case we examine the error function E between S1

and the computed stationary spiral.
Figure 26 is the graph of E(t) with δ = 1/100, 1/200 and 1/400. One finds that E(t) is

under 0.2 % and become smaller as δ decreases. We also tabulate the value of E(1; δ) and
its decay ratio log2(E(1; δ)/E(1; δ/2)) below:
Although θ has very strong singularity at a1 and a2, one can find that the difference between
numerical solutions and S1 decreases when we choose smaller δ.

0
0 0.2 0.4 0.6 0.8 1

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

Fig. 26 The graphs of E(t) for δ = 1/100(�), 1/200(◦) and 1/400(�). The holizontal and vertical axis are
time t and error ratio E(t), respectively
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δ E(1; δ) log2(E(1; δ)/E(1; δ/2))
0.04 0.0020064205 0.518042545140238

0.02 0.0014011209 0.253632181543363

0.01 0.0011752350 0.612290793919637

0.005 0.0007687884 0.474963020936055

0.0025 0.0005531319 –

0.0001
0.001 0.01 0.1

0.001

0.01

Fig. 27 The graph of E(1; δ) for δx = 1/400, 1/200, 1/100, 1/50 and 1/25 on a log-logscale. The parallel
dashed and dotted lines mean y = 0.028x0.8 and y = 0.036x0.8, respectively . The holizontal and vertical
axis are δ and error ratio E(1; δ), respectively

We next choose fixed r = 0.12 independent of δ. The stationary curve is S̃1 in this case,
and we compare our numerical results with S̃1. In Fig. 27 one can find 0.028δ0.8 ≤ E(1; δ) ≤
0.036δ0.8 for 1/400 ≤ δ ≤ 1/50.

Remark 10 Burton et al. [1, §9, Appendix B] give an interesting observation on the growth
of a crystal surface by an opposite pair a1 and a2:

1. |a1 − a2| < 2ρc: the pair have no influence on the growth of the surface (they call the
two centers an inactive pair);

2. |a1 − a2| < 3ρc: the growth rate of the surface is monotonically increasing with respect
to the distance of the pair, and become larger than the case of single spirals;

3. |a1 − a2| is sufficiently large: the growth rate of the surface decreases with respect to
|a1 − a2|, and converges to the single one exponentially fast as |a1 − a2| → ∞.

The proposed method may be used to discover the existence of an inactive pair, the relation
between the distance of the pair and the growth rate. From the second results on the above
we observe that the growth rate attains its maximum when the distance of the pair is around
4ρc. In [26] we prove rigorously the existence of an inactive pair and of curves which play
the role of upper bound on the evolution of steps.
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Fig. 28 Evolution of spirals by close and far opposite pairs. The figures are profiles of spirals at t =
0, 0.25, 0.5, 0.75, 1.0 and 1.5

3.5 Coarsening

According to Remark 10, if there exist several opposite pairs on a surface, then the growth
resulting from the closest pair would dominate so that the surface forms one large mountain
that peaks around the closest pair. Schulze and Kohn [31] approximate this phenomenon by
proposing a Hamilton–Jacobi equation with discontinuous source terms at points of dislo-
cations. For a rigorous treatment of such Hamilton–Jacobi equation see a recent work by
Hamamuki and the third author [11].

Figure 28 shows the evolution of two opposite pairs and the emergence of a mountain
peaking near the pair on the upper left corner of the domain. The parameters in the evolution
equation, the center locations, and θ used in the simulation are given by

V = 20(1 − 0.01κ) (v∞ = 20, ρc = 0.01),

a1 = (−0.65, 0.6), a2 = (−0.6, 0.65), a3 = (−0.1,−0.7), a4 = (0.7, 0.1),

θ(x) = − arg(x − a1)+ arg(x − a2)+ arg(x − a3)− arg(x − a4).

In constructing the initial data we first set

u1 = u2 = π,

θ1(x) = − arg(x − a1)+ arg(x − a2), θ2(x) = arg(x − a3)− arg(x − a4)
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to obtain

L1 ={σa1 + (1 − σ)a2 ∈ W ; σ ∈ (0, 1)}
={x ∈ W ; u1(x)− θ1(x) ≡ 0 mod 2πZ},

L2 ={σa3 + (1 − σ)a4 ∈ W ; σ ∈ (0, 1)}
={x ∈ W ; u2(x)− θ2(x) ≡ 0 mod 2πZ}.

We next modify u1 and u2 to obtain u0 in a similar fashion as in (33). We set

vi (x) = Θi (x)+ 2πki (x)+ πH1(λi [ui (x)− (Θi (x)+ 2πki (x))]),

where Θi is a smooth branch of θi , and ki : W → Z is similar as in (33). In this simulation
we choose λi = 3/(2π) to obtain

2⋂

i=1

{x ∈ W ; |vi (x)− (Θi (x)+ 2πki (x))| < π} = ∅,

and set u0(x) = v1(x) + v2(x) + π . In the simulation, we find annual ring around a1 and
a2, and spirals around a3 and a4 at t = 0.25 in Fig. 28. We observe that the annual rings
dominate the surface as the time evolves (see the profile at t = 1.5 Fig. 28).

3.6 More General Situation

In this subsection, we examine a more complex situation in which the number and the
rotational orientation of the spirals connecting to each screw dislocation are independently
given. Figure 29 shows the evolution of a set of spirals connecting to six screw dislocations.
The evolution equation, location of centers, and θ are as follows;

V = 5(1 − 0.03κ) (v∞ = 5, ρc = 0.03),

a1 = (−0.6,−0.5), a2 = (−0.4, 0.2), a3 = (−0.2, 0.5),

a4 = (0,−0.4), a5 = (0.2, 0), a6 = (0.4, 0.5),

θ(x) = − arg(x − a1)+ 3 arg(x − a2)+ 2 arg(x − a3)

+ arg(x − a4)− 3 arg(x − a5)− 2 arg(x − a6).

In this case all spirals associated with a2, a3 and a4 have the counter-clockwise orientations,
those of a1, a5 and a6 have the clockwise orientations, and a1, a2, . . ., a6 have 1, 3, 2, 1, 3,
and 2 spirals, respectively. The initial curve is given as Γ0 = ⋃7

j=1 L j , and

L1 ={ta1 + (1 − t)a2; t ∈ (0, 1)},
L2 ={a2 + t (−1, 0); t > 0},
L3 ={ta2 + (1 − t)a5; t ∈ (0, 1)},
L4 ={ta3 + (1 − t)a5; t ∈ (0, 1)},
L5 ={ta4 + (1 − t)a5; t ∈ (0, 1)},
L6 ={ta3 + (1 − t)a6; t ∈ (0, 1)},
L7 ={a6 + t (1, 0); t > 0}.
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Fig. 29 Evolution of multiple spirals connecting to six centers with multiple spirals by V = 5(1−0.03κ). Top
left, top right, bottom left and bottom right figures are level sets at time t = 0, 0.05, 0.2, and 0.5, respectively

To construct u0 ∈ C(W ) satisfying Γ0 = {x; u0(x)− θ(x) ≡ 0 mod 2πZ} we describe
L j = {x ∈ W ; u j (x)− θ j (x) ≡ 0 mod 2πZ} with

u1 = u2 = u3 = u4 = u5 = u6 ≡ π, u7 ≡ 0,

θ1(x) = − arg(x − a1)+ arg(x − a2),

θ2(x) = arg(x − a2),

θ3(x) = arg(x − a2)− arg(x − a5),

θ4(x) = arg(x − a3)− arg(x − a5),

θ5(x) = arg(x − a4)− arg(x − a5),

θ6(x) = arg(x − a3)− arg(x − a6),

θ7(x) = − arg(x − a6).

We next construct a modified initial data vi from ui and introduce a slope set�i similarly as
in previous sections, i.e., set

vi (x) =�i (x)+ 2πki (x)+ πH1(λi {ui (x)− (�i (x)+ 2πki (x))})
�i ={x ∈ W ; |vi (x)− (�i (x)+ 2πki (x))| < π},
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where Θi is a smooth branch of θi , ki : W → Z is such that

−π ≤ ui (x)− (�i (x)+ 2πki (x)) < π for x ∈ W ,

and λi > 1/π is a constant satisfying �i ∩ � j = ∅ for i, j provided that i 	= j . For
calculation in Fig. 29 we choose

λ1 = λ2 = 5

π
, λ3 = λ4 = 10

π
, λ5 = λ6 = λ7 = 3

π
.

We set the initial data as

u0(x) =
7∑

i=1

vi (x)+ 6π.

In this simulation, the surface around a2 and a4 grows the fastest. It is due to the fact that
the surface near a screw dislocation with m spirals evolves (grows) with m times the rate of
that near a screw dislocation with a single spiral.

As one anticipates, if the pair is close, then it looks like a closed loop or island formation.
Recently, there is an interesting experimental work on anisotropic evolution with bunching
[33] which points out that there is a situation that a close pair generates a single spiral while
a single spiral becomes a loop due to anisotropy and bunching. Our present formulation does
not include bunching so their experimental result does not contradict to our results. Although
it is very likely to explain their phenomenon in our framework with bunching, further study
is necessary.

4 Conclusion

We have introduced a flexible level set formulation for modeling multiple spirals that possibly
have different rotational orientations. Our formulation embeds a set of spirals as the zero level
set of the difference of an explicitly defined sheet structure function and an auxiliary function,
which is computed numerically. As the first author [25] or Goto et al. [13] studied, our model
has the potential to verify the dynamical behavior of spirals rigorously.

The crucial idea of our formulation comes from a sheet structure function due to Kobayashi
[20]. The sheet structure function is a linear combination of arguments with respect to the
centers of screw dislocations in the domain. Our formulation had been studied in [25] or [13],
however there were no explanations on the coefficients from physical view points in those
papers. In this paper, we clarify how the coefficients in the linear combination are determined
from a given physical configuration. We also give a simple and practical way to construct
initial auxiliary functions.

Our formulation requires only a single equation model for evolution of spirals by (1)–(2).
In this regard, our formulation is more computationally tractable. We have verified the results
in Burton et al. [1] as well as in [34]. Furthermore, we presented our simulations involving
multi-centers and multi-spirals configurations and non-trivial merging. Such situations seem
to pose computational challenges for other approaches, including the one proposed in [34].
We point out here that in a forthcoming paper [26], we shall discuss the existence of what
we called inactive pairs (pairs of stationary spirals).

Our model can easily be generalized to describe anisotropic evolution of spirals, and thus it
can describe the evolution with interlacing patterns. Finally, our formulation has the potential
to be generalized to model moving or nucleation of spiral centers. From the view point of
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physical experiments it is required to construct a system which implies an evolution or a flow
of the concentration of atoms on the surface or in environment phase. To know the exact
mechanism of generation of hollow cores we have to construct a formulation of spirals with
tip motion. To adjoin our method to the above situations, we need additional modelings. (See
[35] for an interlacing pattern or a hollow core.)

Acknowledgments The authors are grateful to Professor Robert V. Kohn for bringing the paper [33] to
their attention. The authors are also grateful to anonymous referees for valuable suggestions to improve the
presentation of this paper.
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