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Abstract Discontinuous Galerkin (DG) and central DG methods are two related families
of finite element methods. They can provide high order spatial discretizations that are often
combined with explicit high order time discretizations to solve initial boundary value prob-
lems. In this context, it has been observed that the central DG method allows larger time
steps, especially for schemes with high accuracy. In this paper, we estimate bounds for the
DG and central DG spatial operators for the linear advection equation. Based on these esti-
mates and Kreiss-Wu theory, we obtain time step conditions to ensure the numerical stability
of the DG and central DG methods when the methods are combined with locally stable time
discretizations. In particular, for a fixed time discretization, the time step allowed for the DG
method is proportional to h/k2, while the time step allowed for the central DG method is
proportional to h/k, where h is the spatial mesh size and k > 0 is the polynomial degree of
the discrete space of the spatial discretization. In addition, the analysis provides new insight
into the role of a parameter in the central DG formulation. We verify our results numerically,
and we also discuss extensions of our analysis to some related discretizations.

Keywords Discontinuous Galerkin · Central discontinuous Galerkin · Locally stable ·
Operator bound · Time step · CFL

1 Introduction

Since their introduction in 1973 [11], discontinuous Galerkin (DG) methods have undergone
extensive development for many applications. This development reflects a variety of attractive
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properties of the methods. For example, DG methods can be systematically designed to have
any order of accuracy. They are natural candidates for adaptive simulations through local
approximations or local meshing. Being compact, the methods are highly efficient in parallel
computations, such as on many-core CPUs and more recently on GPUs. The methods have
provable results in terms of stability, error estimates, and conservation for many linear and
nonlinear problems. With their excellent dispersive and dissipative properties, DG methods
also perform well in long-term computations, such as in the simulation of wave phenomena.

However, with higher accuracy, DG spatial discretizations coupled with explicit time
discretizations can encounter relatively restrictive conditions on the time step size necessary to
ensure numerical stability (see [14], or Theorem 11 in Sect. 3.3). This restriction is especially
pronounced when the methods are compared with finite difference spatial discretizations with
the same designed accuracy, and it is closely related to the spectral properties of the DG spatial
operator. Various strategies have been proposed in order to improve this situation. In [14],
a co-volume mesh filter was introduced, while in [1], flux modifications were explored. By
requiring the DG solution in a cell satisfy additional conservation constraints in adjacent
cells, a new DG method was formulated in [13] with an improved time step condition for
conservation laws.

Central DG methods, as a family of high order methods closely related to DG methods, are
observed to allow larger time steps than DG methods under numerical stability restrictions
(except when the schemes are first order accurate) [9,10]. Such methods involve two copies
of the numerical solution defined on overlapping meshes. In this paper, we will show that it
is exactly the use of two approximations on two overlapping meshes that reduces the spatial
operator norm and therefore the allowable time step restriction when the method is further
coupled with a time discretization. Indeed, the co-volume mesh filter strategy in [14] also
relies on the use of overlapping meshes. Central DG methods, though less flexible than DG
methods, do not need numerical fluxes. They also share many properties of DG methods,
such as high order accuracy, flexibility in local approximations, and compactness. Moreover,
by exploiting the presence of two numerical solutions, central DG discretizations can provide
opportunities to design new methods. One example is the exactly divergence free methods
of arbitrary accuracy in MHD simulations [8].

There are various frameworks to study the time step conditions for methods of lines
approaches (see [7] and references therein). In this paper, we follow Kreiss and Wu’s analysis
[5,6]. We first establish the operator bounds of DG and central DG spatial discretizations for
an advection equation in Sect. 3.2. In particular, we prove that the norm of the DG spatial
operator grows at most quadratically with k, while the norm of the central DG operator
grows at most linearly with k. In both cases, k is the polynomial degree of the discrete spaces
associated with the spatial operator, and it is related to the accuracy order of the scheme.
By applying Kreiss-Wu theory, we obtain time step conditions in Sect. 3.3 that ensure the
numerical stability of the fully discrete schemes found by pairing the spatial discretizations
with locally stable temporal methods. In addition, our analysis also provides new insight into
the role of a parameter, τmax, in the central DG method (see Sect. 3.4). In Sect. 4, we conduct
a set of numerical experiments to verify our theoretical results, to gain better understanding
of τmax, to further examine the values of the constants in the inverse inequalities used in
our analysis, to investigate the maximum stable time steps with standard Runge–Kutta time
discretizations, and to compare the computational efficiencies of the DG and central DG
methods. Finally, in Sect. 5, we discuss the extension of our analysis to a couple of related
discretizations.
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2 Formulations of DG and Central DG Methods

Consider the one-dimensional linear advection equation,

ut + aux = 0, x ∈ (0, 1), (1)

where a > 0, with an initial condition u(x, 0) = u0(x) for x ∈ � = [0, 1] and periodic
boundary conditions. The focus of this paper is to study two numerical methods for solving
equation (1): the DG and central DG methods [2,9]. These methods are spatially discrete,
and they can be further coupled with temporal discretizations to form fully discrete schemes.

We begin with notation. Let 0 = x 1
2
< x 3

2
< · · · < xN+ 1

2
= 1 be a partition of�. Setting

x j = 1
2 (x j− 1

2
+ x j+ 1

2
), we define I j = (x j− 1

2
, x j+ 1

2
) and I j+ 1

2
= (x j , x j+1) so that {I j } j

and {I j+ 1
2
} j provide two overlapping meshes for �. In addition, let h j = x j+ 1

2
− x j− 1

2
,

hmin = minN
j=1 h j , and h = maxN

j=1 h j . Associated with these meshes, we introduce two
finite dimensional discrete spaces,

U k
h = {v : v|I j ∈ Pk(I j ), ∀ j}, V k

h = {v : v|I
j+ 1

2
∈ Pk(I j+ 1

2
), ∀ j},

where Pk(I ) is the set of polynomials of degree less than or equal to k over an interval
I . Note that functions in U k

h and V k
h are possibly discontinuous at mesh points. We denote

v±(x) = limε→0+ v(x ± ε), and define the average {·} and jump [·] as

{v} = 1

2

(
v− + v+)

, [v] = v+ − v− .

The semi-discrete version of the DG method for (1) is given as follows: find uh(·, t) ∈ U k
h

such that, for any ϕ ∈ U k
h and all j ,

∫

I j

∂t uhϕdx =
∫

I j

auh∂xϕdx − auh
−
j+ 1

2
ϕ−

j+ 1
2

+ auh
−
j− 1

2
ϕ+

j− 1
2
, (2)

where f̂ (u−, u+) = au− is the upwind numerical flux which is monotone [2] and approxi-
mates the flux function f (u) = au at grid points. By summing (2) over j , we have

∫

�

∂t uhϕdx =
∫

�

Ldg,k(uh)ϕdx (3)

where the spatial operator Ldg,k : U k
h → U k

h of the DG method with the upwind flux satisfies

∫

�

Ldg,k(w)ϕdx = a
∑

j

⎛

⎜
⎝

∫

I j

w∂xϕdx − w−
j+ 1

2
ϕ−

j+ 1
2

+ w−
j− 1

2
ϕ+

j− 1
2

⎞

⎟
⎠ . (4)

The semi-discrete version of the central DG method, on the other hand, is defined as
follows: find uh(·, t) ∈ U k

h and vh(·, t) ∈ V k
h such that, for any ϕ ∈ U k

h , any ψ ∈ V k
h , and

all j ,
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∫

I j

∂t uhϕdx = 1

τmax

∫

I j

(vh − uh)ϕdx

+
∫

I j

avh∂xϕdx − avh j+ 1
2
ϕ−

j+ 1
2

+ avh j− 1
2
ϕ+

j− 1
2
, (5a)

∫

I
j+ 1

2

∂tvhψdx = 1

τmax

∫

I
j+ 1

2

(uh − vh)ψdx

+
∫

I
j+ 1

2

auh∂xψdx − auh j+1ψ
−
j+1 + auh jψ

+
j , (5b)

where τmax > 0 is a parameter which is customarily taken as an upper bound of the time step
allowed for numerical stability restrictions [9,10]. We will further examine τmax in Sects. 3.4
and 4.4. By summing (5) over j , we have

∫

�

(∂t uhϕ + ∂tvhψ) dx =
∫

�

Lτmax
cdg,k(uh, vh) ·

(
ϕ

ψ

)
dx

where

Lτmax
cdg,k(w, v) =

(
Lτmax,(1)

cdg,k (w, v),Lτmax,(2)
cdg,k (w, v)

)T : U k
h × V k

h → U k
h × V k

h (6)

denotes the spatial operator of the central DG method, defined as
∫

�

Lτmax,(1)
cdg,k (w, v)ϕdx = 1

τmax

∫

�

(v − w)ϕdx

+a
∑

j

⎛

⎜
⎝

∫

I j

v∂xϕdx − v j+ 1
2
ϕ−

j+ 1
2

+ v j− 1
2
ϕ+

j− 1
2

⎞

⎟
⎠ , (7a)

∫

�

Lτmax,(2)
cdg,k (w, v)ψdx = 1

τmax

∫

�

(w − v)ψdx

+a
∑

j

⎛

⎜⎜
⎝

∫

I
j+ 1

2

w∂xψdx − w j+1ψ
−
j+1 + w jψ

+
j

⎞

⎟⎟
⎠ . (7b)

Unlike the DG method, the central DG method does not require a numerical flux because
the two numerical solutions are defined to be piecewise smooth with respect to the two
meshes.

3 Main Results: Operator Bounds, Time Step Conditions, and the Parameter τmax

In this section, we will establish the main results in Theorems 5 and 7 to estimate bounds on
the DG and central DG spatial operators for the linear advection equation. Based on these
estimates and Kreiss–Wu theory, we will obtain sufficient time step conditions in Theorem 11
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for the numerical stability of the DG and central DG spatial discretizations coupled with
locally stable time discretizations. In addition, we will examine the parameter τmax in the
central DG method from the perspective of accuracy and stability.

3.1 Polynomial Inverse Inequalities

We begin with several lemmas providing inverse inequalities for polynomials on a bounded
domain. Inequalities of this kind are commonly used in numerical analysis, such as for finite
element methods. For the present work, it is important to systematically track, as tightly
as possible, the explicit dependence of the estimates on the degree k of the polynomial. In
particular, Lemmas 1 and 3 bound the L2 norm of the derivative of a polynomial by the L2

norm of the polynomial itself, and Lemmas 2 and 4 bound the point value of a polynomial
by the L2 norm of the polynomial. Lemmas 3 and 4 differ from Lemmas 1 and 2 in that the
functions in the upper bounds are defined on relatively larger intervals than the functions
being estimated.

In our analysis, we use the Legendre polynomials {L j } j , which are normalized to satisfy
L j (±1) = (±1) j [12]. Recall that {L j }k

j=0 forms an orthogonal basis for Pk([−1, 1]) with

∥∥L j
∥∥

L2([−1,1]) =
√

2

2 j + 1
, ∀ j ≥ 0, (8)

and ∥∥L j
∥∥

L∞([−1,1]) = 1, ∀ j ≥ 0. (9)

Lemma 1 (Markov’s inequality). There exists a positive constant C1 ≤ √
3 such that

∥∥∥∥
d p

dx

∥∥∥∥
L2([−1,1])

≤ C1k2‖p‖L2([−1,1]) (10)

for any p ∈ Pk([−1, 1]) and any nonnegative integer k.

Proof See [14]. 
�

Lemma 2 There exists a positive constant C2 ≤
√

2
2 such that

|p(x)| ≤ C2(k + 1)‖p‖L2([−1,1]) (11)

for any p ∈ Pk([−1, 1]), any x ∈ [−1, 1], and any nonnegative integer k.

Proof We can represent any given p ∈ Pk([−1, 1]) uniquely as p(x) = ∑k
j=0 α j L j (x). By

applying the Cauchy-Schwarz inequality and the properties of the Legendre polynomials in
(8) and (9), we find that
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|p(x)| ≤
k∑

j=0

∣
∣α j

∣
∣
∣
∣L j (x)

∣
∣ ≤

k∑

j=0

∣
∣α j

∣
∣ =

k∑

j=0

⎛

⎝
∣
∣α j

∣
∣

√
j + 1

2

√

j + 1

2

⎞

⎠

≤
⎛

⎝
k∑

j=0

j + 1

2

⎞

⎠

1
2
⎛

⎝
k∑

j=0

∣
∣α j

∣
∣2

j + 1
2

⎞

⎠

1
2

=
√

2

2
(k + 1)

⎛

⎝
k∑

j=0

∣
∣α j

∣
∣2∥∥L j

∥
∥2

L2([−1,1])

⎞

⎠

1
2

=
√

2

2
(k + 1)‖p‖L2([−1,1])

for any x ∈ [−1, 1], so the result follows. 
�

Lemma 3 (Bernstein’s inequality). For any s ∈ [0, 1), there exists a positive constant

C3,s ≤
√

3 + s

1 − s2

such that ∥∥∥∥
d p

dx

∥∥∥∥
L2([−s,s])

≤ C3,sk‖p‖L2([−1,1]) (12)

for any p ∈ Pk([−1, 1]) and any nonnegative integer k.

Proof See [14]. 
�

Lemma 4 For any s ∈ [0, 1), there exists a positive constant

C4,s ≤ 4

√
3

π
(1 − s2)−

1
4

such that
|p(±s)| ≤ C4,s

√
k + 1‖p‖L2([−1,1]) (13)

for any p ∈ Pk([−1, 1]) and any nonnegative integer k.

Proof Our argument is similar to the one used in [14], and it will provide a relatively
tighter bound. We can again represent any given p ∈ Pk([−1, 1]) uniquely as p(x) =∑k

j=0 α j L j (x). Recall the Stieltjes’ bound [12] for the Legendre polynomial L j (x), given
by

∣∣L j (±s)
∣∣ ≤ 4

√
2

π

(
1 − s2)− 1

4 j−
1
2 , ∀ s ∈ [0, 1), ∀ j ≥ 1.

Since j− 1
2 ≤

√
3
2 ( j + 1

2 )
− 1

2 for any j ≥ 1, the Stieltjes’ bound can be relaxed to

∣∣L j (±s)
∣∣ ≤ 4

√
3

π

(
1 − s2)− 1

4

(
j + 1

2

)− 1
2

, ∀ s ∈ [0, 1), ∀ j ≥ 0. (14)
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By applying the bound in (14), the Cauchy-Schwarz inequality, and the properties of
Legendre polynomials in (8) and (9), we find that

|p(±s)| ≤
k∑

j=0

∣
∣α j

∣
∣
∣
∣L j (±s)

∣
∣

≤ 4

√
3

π

(
1 − s2)− 1

4

k∑

j=0

∣
∣α j

∣
∣
(

j + 1

2

)− 1
2

≤ 4

√
3

π
(1 − s2)−

1
4
√

k + 1

⎛

⎝
k∑

j=0

∣
∣α j

∣
∣2 1

j + 1
2

⎞

⎠

1
2

= 4

√
3

π
(1 − s2)−

1
4
√

k + 1‖p‖L2([−1,1])

for any s ∈ [0, 1), and this completes the proof. 
�
The inverse inequalities in Lemmas 1–4 hold for polynomials of arbitrary degree, and the

constants C1, C2, C3,s , and C4,s in the upper bounds are independent of k. The universality
of these constants is essential for establishing the theoretical bounds for the DG and central
DG spatial operators of arbitrary order. In practice, sharper inverse inequalities can often be
derived for each fixed k. This will be investigated numerically in Sect. 4.1.

3.2 Estimation of the Operator Bounds

In this section, we will establish bounds for the DG and central DG spatial operators for the
linear advection equation (1). To make the presentation of the proofs concise, we will assume
the use of uniform meshes. The estimates for general meshes will be given in Remark 8.

Theorem 5 For the DG spatial operator Ldg,k defined in (4) with the upwind numerical flux,
the following estimate holds:

∥∥Ldg,k
∥∥ := sup

w,ϕ∈V k
h

w,ϕ �=0

∫
�

Ldg,k(w)ϕdx

‖w‖L2(�)‖ϕ‖L2(�)

= sup
w∈V k

h
w �=0

∥∥Ldg,k(w)
∥∥

L2(�)

‖w‖L2(�)

≤ a

(
2C1

k2

h
+ 4C2

2
(k + 1)2

h

)
. (15)

The constants C1 and C2 are given in Lemmas 1 and 2, and they are positive and independent
of a, k, and h.

Proof Let w, ϕ ∈ U k
h be arbitrary. First, by applying the triangle and Cauchy-Schwarz

inequalities, we have

∫

�

Ldg,k(w)ϕdx ≤ a
∑

j

⎛

⎜
⎝

∫

I j

|w∂xϕ|dx +
∣∣∣∣w

−
j+ 1

2
ϕ−

j+ 1
2

∣∣∣∣ +
∣∣∣∣w

−
j− 1

2
ϕ+

j− 1
2

∣∣∣∣

⎞

⎟
⎠

≤ a
∑

j

(
‖w‖L2(I j )

‖∂xϕ‖L2(I j )
+

∣∣∣∣w
−
j+ 1

2

∣∣∣∣

∣∣∣∣ϕ
−
j+ 1

2

∣∣∣∣ +
∣∣∣∣w

−
j− 1

2

∣∣∣∣

∣∣∣∣ϕ
+
j− 1

2

∣∣∣∣

)
.
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Then, by using Lemmas 1 and 2 scaled from [−1, 1] to I j , we find that

∫

�

Ldg,k(w)ϕdx ≤ a
∑

j

(
2C1

k2

h
‖w‖L2(I j )

‖ϕ‖L2(I j )

+2C2
2
(k + 1)2

h

(
‖w‖L2(I j )

+ ‖w‖L2(I j−1)

)
‖ϕ‖L2(I j )

)
.

Finally, by applying the Cauchy–Schwarz inequality again, we see that
∫

�

Ldg,k(w)ϕdx ≤ a

(
2C1

k2

h
+ 4C2

2
(k + 1)2

h

)
‖w‖L2(�)‖ϕ‖L2(�).

Therefore, we have

∥
∥Ldg,k(w)

∥
∥

L2(�)
≤ a

(
2C1

k2

h
+ 4C2

2
(k + 1)2

h

)
‖w‖L2(�)

and hence the estimate (15). 
�
Remark 6 An estimate identical to (15) can be found if the upwind numerical flux is replaced
by the central numerical flux in the DG formulation. That is, if we define the DG operator by

∫

�

Ldg,k(w)ϕdx = a
∑

j

⎛

⎜
⎝

∫

I j

w∂xϕdx − {w} j+ 1
2
ϕ−

j+ 1
2

+ {w} j− 1
2
ϕ+

j− 1
2

⎞

⎟
⎠

instead of by (4), the same estimate follows. Other numerical fluxes lead to similar estimates
as well.

Theorem 7 For the central DG spatial operator Lτmax
cdg,k defined in (6) and (7), the following

estimate holds:

∥∥∥Lτmax
cdg,k

∥∥∥ := sup
w,ϕ∈U k

h , v,ψ∈V k
h

w or v �=0, ϕ or ψ �=0

∫
�

Lτmax,(1)
cdg,k (w, v)ϕdx + ∫

�

Lτmax,(2)
cdg,k (w, v)ψdx

(‖w‖2
L2(�)

+ ‖v‖2
L2(�)

)
1
2 (‖ϕ‖2

L2(�)
+ ‖ψ‖2

L2(�)
)

1
2

= sup
w∈U k

h , v∈V k
h

w or v �=0

⎛

⎜⎜
⎝

∥∥∥Lτmax,(1)
cdg,k (w, v)

∥∥∥
2

L2(�)
+

∥∥∥Lτmax,(2)
cdg,k (w, v)

∥∥∥
2

L2(�)

‖w‖2
L2(�)

+ ‖v‖2
L2(�)

⎞

⎟⎟
⎠

1
2

≤ 2

τmax
+ a

(
4C3, 1

2

k

h
+ 4C2

4, 1
2

k + 1

h

)
. (16)

The constants C3, 1
2

and C4, 1
2

are given in Lemmas 3 and 4 with s = 1
2 , and they are

positive and independent of a, k, and h.

Proof Let w, ϕ ∈ U k
h and v,ψ ∈ V k

h be arbitrary, and consider the notation for the sub-
intervals

J j = (x j− 1
4
, x j+ 1

4
), J j+ 1

2
= (x j+ 1

4
, x j+ 3

4
),
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with x j± 1
4

= 1
2 (x j ± x j− 1

2
). By applying the Cauchy-Schwarz inequality to (7a), we have

∫

�

Lτmax,(1)
cdg,k (w, v)ϕdx ≤ 1

τmax
‖v − w‖L2(�)‖ϕ‖L2(�)

+a

∣
∣
∣
∣
∣
∣
∣

∑

j

⎛

⎜
⎝

∫

I j

v∂xϕdx − v j+ 1
2
ϕ−

j+ 1
2

+ v j− 1
2
ϕ+

j− 1
2

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣
. (17)

We can estimate the second term on the right, which is denoted as 
, by first integrating by
parts over (x j− 1

2
, x j− 1

4
) and (x j+ 1

4
, x j+ 1

2
) and then recombining the appropriate terms. In

doing so, we find that


 :=
∑

j

⎛

⎜
⎝

∫

I j

v∂xϕdx − v j+ 1
2
ϕ−

j+ 1
2

+ v j− 1
2
ϕ+

j− 1
2

⎞

⎟
⎠

=
∑

j

⎛

⎜⎜
⎝

x
j− 1

4∫

x
j− 1

2

v∂xϕdx +
x

j+ 1
4∫

x
j− 1

4

v∂xϕdx +
x

j+ 1
2∫

x
j+ 1

4

v∂xϕdx − v j+ 1
2
ϕ−

j+ 1
2

+ v j− 1
2
ϕ+

j− 1
2

⎞

⎟⎟
⎠

=
∑

j

⎛

⎜⎜
⎝

∫

J j

v∂xϕdx −
∫

J
j+ 1

2

∂xvϕdx − v j+ 1
4
ϕ j+ 1

4
+ v j− 1

4
ϕ j− 1

4

⎞

⎟⎟
⎠ . (18)

By applying the triangle and Cauchy–Schwarz inequalities, we see that

|
| ≤
∑

j

⎛

⎜⎜
⎝

∫

J j

|v∂xϕ|dx +
∫

J
j+ 1

2

|∂xvϕ|dx +
∣∣∣v j+ 1

4
ϕ j+ 1

4

∣∣∣ +
∣∣∣v j− 1

4
ϕ j− 1

4

∣∣∣

⎞

⎟⎟
⎠

≤
∑

j

(
‖v‖L2(J j )

‖∂xϕ‖L2(J j )
+‖∂xv‖L2(J

j+1
2
)‖ϕ‖L2(J

j+1
2
)+||v j+1

4
||ϕ j+1

4
+||v j−1

4
||ϕ j−1

4

)
.

We can now apply the inverse inequalities to the terms with derivative and point values.
By first using Lemmas 3 and 4 scaled from [−1, 1] to either I j− 1

2
, I j , or I j+ 1

2
and then

applying Cauchy–Schwarz inequality again, we find that

|
| ≤
∑

j

(
2C3, 1

2

k

h
‖v‖L2(J j )

‖ϕ‖L2(I j )
+ 2C3, 1

2

k

h
‖v‖L2(I

j+ 1
2
)‖ϕ‖L2(J

j+ 1
2
)

+2C2
4, 1

2

k + 1

h
‖v‖L2(I

j+ 1
2
)‖ϕ‖L2(I j )

+ 2C2
4, 1

2

k + 1

h
‖v‖L2(I

j− 1
2
)‖ϕ‖L2(I j )

)

≤
(

4C3, 1
2

k

h
+ 4C2

4, 1
2

k + 1

h

)
‖v‖L2(�)‖ϕ‖L2(�). (19)
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Now, we can combine (17) and (19), and have
∫

�

Lτmax,(1)
cdg,k (w, v)ϕdx ≤ 1

τmax
‖v − w‖L2(�)‖ϕ‖L2(�)

+a

(
4C3, 1

2

k

h
+ 4C2

4, 1
2

k + 1

h

)
‖v‖L2(�)‖ϕ‖L2(�).

Similarly, by applying the same procedure to (7b), we have
∫

�

Lτmax,(2)
cdg,k (w, v)ψdx ≤ 1

τmax
‖w − v‖L2(�)‖ψ‖L2(�)

+a

(
4C3, 1

2

k

h
+ 4C2

4, 1
2

k + 1

h

)
‖w‖L2(�)‖ψ‖L2(�).

By combining these two estimates and using the Cauchy-Schwarz inequality once more, we
have
∫

�

(
Lτmax,(1)

cdg,k (w, v)ϕ + Lτmax,(2)
cdg,k (w, v)ψ

)
dx

≤
(

2

τmax
+4aC3,12

k

h
+4aC2

4, 1
2

k+1

h

) (
‖w‖2

L2(�)
+‖v‖2

L2(�)

) 1
2
(
‖ϕ‖2

L2(�)
+‖‖ψ2

L2(�)

) 1
2
.

and hence the estimate in (16). 
�
Remark 8 The estimates in Theorems 5 and 7 are given for uniform meshes. One can follow
the proofs to establish the operator bounds of Ldg,k and Lτmax

cdg,k when the meshes are more
general. These estimates are given below with the details omitted:

∥∥Ldg,k
∥∥ ≤ a

(
2C1

k2

hmin
+ 4C2

2
(k + 1)2

hmin

)
, (20)

∥∥∥Lτmax
cdg,k

∥∥∥ ≤ 2

τmax
+ a

((
2C3, 1

2
+ 2C3,�

) k

hmin
+ 4C4, 1

2
C4,�

k + 1

hmin

)
. (21)

Here C3,� := max j C3,s
j+ 1

2
, C4,� := max j

(
C4,s

j+ 1
2
,C4,1−s

j+ 1
2

)
, where s j+ 1

2
= 1

1+ρ
j+ 1

2

,

with the parameter ρ j+ 1
2

= min(h j ,h j+1)
max(h j ,h j+1)

characterizing the local mesh regularity. The esti-

mates in (20) and (21) will reduce to those in Theorems 5 and 7 when the mesh is uniform.
In “Appendix 2”, we illustrate that the local mesh regularity does not affect dramatically the
upper bound of the central DG spatial operator.

3.3 Implication for Time Steps in the Fully Discrete Schemes

The bounds on the DG and central DG operators in Sect. 3.2 provide provable time step
restrictions for numerical stability when these spatial discretizations are combined with a
particular class of time discretizations, namely, the locally stable methods.

Definition 9 An ODE solver, either one-step or multi-step, is locally stable if there exists
R > 0 such that the half circle

H = {z ∈ C : |z| < R, Re(z) > 0}
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is included within the region of the absolute stability of the method. The largest such value
of R for an ODE solver is its stability radius.

While the first-order and second-order Runge-Kutta (RK) methods are not locally sta-
ble, the standard three-stage, third-order and four-stage, fourth-order RK methods are, with
stability radii R3 = √

3 and R4 = 2.615, respectively. Many higher-order methods are
not locally stable, but the fifth-order, seven-stage Dormand–Prince RK method is a notable
exception [5].

We first recall a result by Kreiss and Wu and then provide the stable time step restrictions
for the DG and central DG methods.

Theorem 10 Consider a well-posed initial boundary value problem. Let the problem be
semi-discretized by a stable scheme with a spatial operator L such that

Ut = L(U ),
and let the resulting semi-discrete scheme be fully-discretized by a locally stable scheme with
stability radius R. If the time step t satisfies

‖tL‖ < R,
then the fully-discrete scheme is stable.

Proof See [6]. 
�
Theorem 11 When the DG spatial discretization given in (4) with polynomial degree k is
combined with a locally stable time discretization with stability radius R, the overall method
is stable if the time step t satisfies

a
t

h
<

R
2C1k2 + 4C2

2 (k + 1)2
. (22)

Similarly, when the central DG spatial discretization given in (6) and (7) with polynomial
degree k is combined with a locally stable time discretization with stability radius R, the
overall method is stable if the time step t satisfies

a
t

h
<

R

2h (aτmax)
−1 +

(
4C3, 1

2
k + 4C2

4, 1
2
(k + 1)

) . (23)

Proof The results follow immediately from Theorems 5, 7, and 10 and the L2 stability of
the semi-discrete versions of the DG and central DG methods [2,10]. 
�
Remark 12 For the linear advection equation (1) with a general constant a ∈ R, estimates
similar as (22) and (23) can be obtained, with a being replaced by |a|. In addition, one can
combine the operator bounds in Remark 8 to obtain sufficient conditions for the stable time
step size on general meshes.

When we combine a DG or central DG spatial discretization with a given locally stable
time discretization, Theorem 11 shows that the DG method admits time steps of O( h

k2 ) while

the central DG method (with τmax = ∞) admits time steps of O( h
k ), where k is the polynomial

degree of the spatial discretization. This result implies that central DG methods allow larger
time steps due to numerical stability consideration for schemes especially with high spatial
accuracy. In practice, non-locally stable time discretizations are often paired with DG and
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Table 1 Bound for at
h based on (22) in Theorem 11 for DG spatial discretizations with polynomial degree

k coupled with the ν-th order RK method

k = 0 k = 1 k = 2 k = 3 k = 4

ν = 3 0.866 0.151 0.0673 0.0384 0.0249

ν = 4 1.308 0.228 0.0102 0.0580 0.0376

For each k, the constants C1 and C2 are replaced with C̃1,k and C̃2,k in Table 3

Table 2 Bound for at
h based on von Neumann analysis [3] for DG spatial discretizations with polynomial

degree k coupled with the ν-th order RK method

k = 0 k = 1 k = 2 k = 3 k = 4

ν = 3 1.25 0.40 0.20 0.13 0.08

ν = 4 1.39 0.46 0.23 0.14 0.10

Table 3 Constants in the inverse inequalities (10)–(13) derived by solving eigenvalue problems for each
given k

k C̃1,k C̃2,k C̃3, 1
2 ,k

C̃4, 1
2 ,k

0 0 0.707 0 0.707

1 1.732 0.707 1.225 0.661

2 0.968 0.707 0.685 0.551

3 0.725 0.707 0.741 0.629

4 0.609 0.707 0.837 0.626

5 0.544 0.707 0.697 0.578

6 0.502 0.707 0.804 0.619

7 0.473 0.707 0.820 0.618

8 0.451 0.707 0.762 0.587

9 0.435 0.707 0.839 0.615

10 0.423 0.707 0.831 0.614

central DG methods, and while our analytical results do not address these schemes, we will
investigate them numerically in Sect. 4.3.

The bounds on t obtained in Theorem 11 provide sufficient conditions for the numer-
ical stability of the fully discrete methods. Naturally, they are no larger than the necessary
conditions obtained from von Neumann analysis. We present some sufficient and necessary
bounds in Tables 1 and 2, where DG discretizations in space with the polynomial degree k are
coupled with the third-order and fourth-order RK methods in time. In particular, the bounds
for at

h in Table 1 are based on Theorem 11 and the later results of Table 3, while those in
Table 2 are taken from [3].

3.4 The Parameter τmax in the Central DG Methods

When central DG methods were introduced [9], they were first given in a fully discrete
formulation from which the semi-discrete schemes were proposed. This is different from the

123



544 J Sci Comput (2015) 62:532–554

standard procedure to derive method of lines approaches for initial boundary value problems.
The derivation of central DG methods particularly suggests that the parameter τmax is an upper
bound of the time step allowed for the stability. Related to this, when the error estimate was
established in [10] for the semi-discrete central DG methods, an assumption, τmax = O(h),
was made. On the other hand, by itself, the semi-discrete central DG method is less suggestive,
leading to an understanding of τmax simply as a parameter in (0,∞] whose choice should be
governed by the stability and accuracy of the overall scheme. With the result in Theorem 11,
we can gain additional insight into the role and choice of τmax.

At first glance, it might seem that τmax = ∞ would be a good choice as the resulting
scheme will become parameter free, and the theoretically estimated upper bound for the time
step in (23) can also be larger. However, when τmax = ∞ and k is odd, we numerically observe
kth order spatial accuracy for the central DG method. In comparison, when τmax = O(h),
an optimal (k + 1)th order spatial accuracy is observed for all k. Motivated by this, and also
to balance the stability, accuracy, and computational efficiency of the overall methods, we
require that the terms in the central DG operator in (7) make comparable contributions to the
operator bound in Theorem 7, hence the time step restriction in Theorem 11. More succinctly,
we require that

2

τmax
∼ a

(
4C3, 1

2

k

h
+ 4C2

4, 1
2

k + 1

h

)
. (24)

From (24), we see that τmax = O( h
k ), which confirms the previous assumption in [10] that

τmax = O(h) for a fixed k. We consider a particular choice of τmax, denoted as τ ∗
max and

defined below,

τ ∗
max := h

2a(C3, 1
2
k + C2

4, 1
2
(k + 1))

. (25)

With this choice, the two terms on both sides of (24) are equal. Note that in general ‖Lτ
∗
max

cdg,k‖ ≤
2‖L∞

cdg,k‖, and the strict inequality often holds due to cancelation because all the terms in
central DG spatial operator contribute collectively to the operator bound. In Sect. 4.4, we
will further examine the parameter τmax numerically.

4 Numerical Results

In this section, we will present a set of numerical experiments to verify the theoretical results
in Sect. 3, to examine the estimates in Sects. 3.1 and 3.2 in closer detail, to report the maximum
time step allowed for stability when standard Runge–Kutta time discretizations are used, to
investigate the effect of τmax on the actual performance of the central DG method, and to
compare the computational efficiencies of the DG and central DG methods. Uniform meshes
are considered when needed.

4.1 The Constants in the Polynomial Inverse Inequalities (10)–(13)

Each of the inverse inequalities in Sect. 3.1 holds for all k, with generic constants such
as C1,C2,C3,s , and C4,s in the upper bound independent of k. Such results are crucial for
systematically establishing bounds for DG and central DG spatial operators of arbitrary order
of accuracy. They are also important for revealing the essential difference in the dependence
of these bounds on the polynomial degree k, namely, the quadratic dependence for the DG
operator and the linear dependence for the central DG operator.
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Table 4 Constants in inverse inequalities (10)–(13) derived analytically for all k

C1 C2 C3, 1
2

C4, 1
2

1.732 0.707 2.976 4.200

On the other hand, the estimates in Lemmas 1–4 are not necessarily sharp for each indi-
vidual polynomial degree k. For example, when k = 0 and s = 1

2 , the right-hand side of (13)
is almost six times as large as the left-hand side. This lack of sharpness follows from the use
of (14), which provides the desired dependence on k at the expense of a larger bound. To
illustrate the lack of sharpness, we compute the constants in each of the inequalities (10)–(13)
for any given k, and the results are reported in Table 3. These constants are denoted in the
form of C̃ with the appropriate subscripts, and each can be obtained to any desired accuracy
by finding the largest eigenvalue of a (k + 1) × (k + 1) symmetric positive semi-definite
matrix, as illustrated in “Appendix 1”.

In Table 3, C̃2,k is for the estimate as in (11) with x = ±1, while C̃3, 1
2 ,k

and C̃4, 1
2 ,k

are for

the estimates as in (12)–(13) with s = 1
2 . In Table 4, we give the analytical values of C1, C2,

C3, 1
2
, and C4, 1

2
obtained in the lemmas from Sect. 3.1 which work for all k. On one hand, C1

and C2 are sharp, namely, C1 = maxk C̃1,k and C2 = maxk C̃2,k , so they cannot be improved
further. Indeed, C̃2,k is independent of k. On the other hand, C3, 1

2
and C4, 1

2
are considerably

larger than C̃3, 1
2 ,k

and C̃4, 1
2 ,k

, respectively. In particular, since C4, 1
2

appears in Theorems

7 and 11 as the coefficient C2
4, 1

2
, using C̃4, 1

2 ,k
instead of C4, 1

2
substantially improves the

estimate of the stable time step for the central DG methods.

4.2 Comparison of the Bounds for the DG and Central DG Operators

In this subsection, we will numerically demonstrate the bounds of the DG and central DG
operators. For each operator, we report three bounds labeled as Case I, Case II, and Case III.
The bound in Case I is the result of Theorems 5 and 7 with the constants found analytically
in Lemmas 1–4 and listed in Table 4. The bound in Case II is the result of Theorems 5 and
7 instead with the constants found from solutions of the appropriate eigenvalue problems
described in “Appendix 1” and listed in Table 3. The bound in Case III is the result of the
implementation of the spatial discretization. More specifically, with the choice of a local
Legendre basis for the finite element spaces, the semi-discrete versions of both the DG and
central DG methods lead to a problem of the form Wt = AW , where W is the coefficient
vector in the expansion of the numerical solution with respect to the basis functions. The
L2 norm of the spatial operator is the same as the 2-norm of A, or, equivalently, the largest
singular value of A.

In Fig. 1, we plot the upper bounds for Ldg,k scaled by k2

h , with k > 0. Cases I
and II show the quadratic dependence of the DG operator bound on k, and Case III con-
firms the quadratic dependence. Asymptotically, the bound of DG operator in Case I is
roughly five to six times as large as the one in Case III, while the bound in Case II is
roughly twice as large as the actual value in Case III. Similarly, in Fig. 2, we plot the
upper bounds for L∞

cdg,k scaled by k
h , with k > 0. The theoretically predicted results in

Cases I and II, which show the linear dependence of the central DG operator bound on
the polynomial degree k, are also conformed algebraically in Case III. Asymptotically,
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Fig. 1 The upper bound of

‖Ldg,k‖, scaled by k2

h , as a
function of k with k > 0

Fig. 2 The upper bound of
‖L∞

cdg,k‖, scaled by k
h , as a

function of k with k > 0

the bound in Case I is nearly fifty times the one in Case III, while a much better bound
is provided in Case II which is roughly two-and-a-half times the actual value in Case
III.

Finally, we want to compare the bounds of the DG and central DG operators. In Fig. 3,
we plot the polynomial degree k versus ‖Ldg,k‖/‖L∞

cdg,k‖ using the bounds described in
Cases I, II, and III. One can see that the comparison based on Case I depicts the DG bound
as considerably smaller, with the quadratic growth in the DG bound exceeding the linear
growth in the central DG bound only for k ≥ 15. Cases II and III, on the other hand,
provide a more reliable comparison, with the DG bound exceeding the central DG bound
for all k. This comparison, combined with the time step conditions in Theorem 11, pro-
vides some indication about when central DG methods can allow larger time steps than DG
methods.
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Fig. 3 The ratio of the operator
bounds ‖Ldg,k‖/‖L∞

cdg,k‖ as a
function of k

4.3 Time Step Conditions with Standard Runge–Kutta Time Discretizations

In practice, DG and central DG spatial discretizations are often combined with the stan-
dard Runge–Kutta time discretizations. These time discretizations may not always be
locally stable. In this subsection, we want to investigate numerically the largest time
steps allowed for these fully discrete schemes to complement our theoretical analysis
for the time step restriction, which, as we recall, requires locally stable time discretiza-
tions.

More specifically, we consider the DG and central DG spatial discretizations with the
polynomial degree k combined with the (k + 1)-stage, (k + 1)th order Runge–Kutta
time discretizations [4]. For the central DG method, we consider both τmax = τ ∗

max and
τmax = ∞. These schemes are applied to the linear advection equation (1) with a = 1
and u0(x) = 1

2 + sin(2πx). Each scheme is implemented on uniform mesh with mesh
size h = 1

40 , and we record the largest t , denoted as tmax , for which the fully dis-
crete schemes exhibit stability up to the final time T = 100, namely, ‖uh(· , T )‖L2([0,1]) ≤
‖uh(· , 0)‖L2([0,1]) in the case of DG methods, and ‖uh(· , T )‖2

L2([0,1])+‖vh(· , T )‖2
L2([0,1]) ≤

‖uh(· , 0)‖2
L2([0,1]) + ‖vh(· , 0)‖2

L2([0,1]) in central DG methods. The CFL number is defined

as tmax
h .

In Fig. 4, we plot the computed CFL number for each method. The results for the DG
method, given by (a), agree well with the widely known formula for the CFL number [3],
c1(k) = 1

2k+1 , which is given by (d). The results for the central DG method, given by (b)
for τmax = τ ∗

max and (c) for τmax = ∞, have less clear trends. To better understand the
results, we further perform a least-squares data-fitting to fit the data set (b) with a function
of the form 1

αk+β , finding c2(k) = 1
0.606k+3.511 represented by (e) when fitting the data

with k = 1, . . . , 16, and c3(k) = 1
0.339k+6.070 represented by (f) when fitting the data with

k = 9, . . . , 16. In Fig. 5, we show the ratio of the CFL numbers of the DG method in (a)
and the central DG method in (b) with τmax = τ ∗

max, which confirms again that larger time
steps are often allowed for central DG methods even when both the DG and central DG
methods are combined with the same standard time discretizations which may not be locally
stable.
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Fig. 4 The computed CFL number as a function of k for both the DG and central DG methods

Fig. 5 The ratio of the CFL
numbers for the DG and central
DG methods, as a function of k;
τmax = τ∗

max

4.4 The Parameter τmax, and the Computational Efficiencies of the DG and Central DG
Methods

In this subsection, we want to investigate the effect of the parameter τmax on the performance
of the central DG methods. We also compare the computational efficiencies of the DG and
central DG methods.

Recall that, in Sect. 3.3, we introduce τ ∗
max as the choice of τmax for which the two parts

of the central DG operators (7) have the same operator bounds. On the other hand, as two
extreme cases, when τmax approaches 0, central DG methods become inconsistent to the
governing equation; when τmax approaches ∞, we observe sub-optimal convergence order
for the central DG methods with the odd polynomial degree k.

We again consider the linear advection equation (1) with a = 1 and u0(x) = 1
2 +sin(2πx).

We implement central DG methods, up to time T = 1, on a sequence of meshes with
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Fig. 6 L2 error in the central DG
method for τmax = λτ∗

max. Here,
the polynomial degree k = 2, and
each curve corresponds to a
different mesh size h

Fig. 7 L2 error in the central DG
method for τmax = λτ∗

max. Here,
the polynomial degree k = 3, and
each curve corresponds to a
different mesh size h

τmax = λτ ∗
max, where λ takes a wide range of values. The L2 errors of numerical solutions

are plotted as a function of λ on each given mesh in Fig. 6 for k = 2 and in Fig. 7 for k = 3.
The time discretizations are the third-order and fourth-order RK methods, respectively. One
can see that, when k = 2, the numerical errors are not very sensitive to the choice of τmax,
as long as τmax is not too small. When k = 3, if τmax is too large, the errors increase. On
each fixed mesh, τmax = τ ∗

max almost provides the smallest error and therefore nearly the
best result in terms of accuracy.

In Figs. 8 and 9, we further plot the L2 errors versus RK CPU run time for k = 2
and k = 3, respectively. The time discretizations are again the third-order and fourth-
order RK methods, respectively. For both, the code was implemented in Fortran 95 using
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Fig. 8 L2 error versus RK CPU
run time with different choices of
τmax = λτ∗

max in the central DG
method. Here, the polynomial
degree k = 2, and each curve
corresponds to a different choice
of λ

Fig. 9 L2 error versus RK CPU
run time with different choices of
τmax = λτ∗

max in the central DG
method. Here, the polynomial
degree k = 3, and each curve
corresponds to a different choice
of λ

double-precision arithmetic, compiled on gfortran, and tested on a computer running
Ubuntu 13.04 on an Intel Xeon E5607 processor with a clock speed of 2.27 GHZ. Only one
of the processor cores was used for the computation, so naturally the CPU times would be less
for the parallel implementations to which both DG and central DG methods are amenable.
Overall, central DG methods with τmax = τ ∗

max perform very well in terms of accuracy and
efficiency: when τmax is too small, the scheme becomes inconsistent and excessively expen-
sive in terms of computational costs, and when τmax is too large, the scheme loses accuracy
for odd k.

Finally we want to compare the computational efficiencies of the DG and central DG
methods. In Fig. 10, we present the L2 errors versus RK CPU run time of the methods to
solve the same problem described above. Here, the DG and central DG spatial discretizations
with the polynomial degree k are combined with (k +1)th order RK methods, and each curve
in Fig. 10 follows the lower right to the upper left with increasing k from k = 1 to k = 16.
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Fig. 10 L2 error versus RK CPU run time of the DG and central DG methods with τmax = λτ∗
max. Here, the

polynomial degree k = 1, . . . , 16, and each curve follows the lower right to the upper left with increasing k

We observe that the DG method provides the smaller errors compared with the central DG
methods with the same k, yet the larger time steps of the central DG scheme provide lower
computational costs than the DG method for comparable errors when τmax takes a relatively
larger value. In particular, the central DG scheme outperforms the DG scheme for k ≥ 6
when λ = ∞ and k ≥ 7 when λ = 10 and λ = 100, where τmax = λτ ∗

max. We want to point
out that to implement the central DG method with λ = ∞, the terms containing τmax in the
scheme are not included, and this will lower the computational cost. The reduction of the
accuracy order of central DG methods with odd k and larger τmax causes uneven performance.
For the example reported here, λ = 10 seems to provide a good balance of accuracy and
computational cost.

5 Extension

Our analysis of the operator bounds and stable time step conditions in Sect. 3 can be extended
in a natural way to analyze DG and central DG discretizations of one-dimensional linear
hyperbolic systems and multi-dimensional scalar and systems of hyperbolic equations. In
the multi-dimensional cases, we can use discrete spaces with tensor structures, also called Q-
type elements, on Cartesian meshes. When the meshes and finite element approximations are
more general, however, inverse inequalities associated with these meshes and approximations
would need to be established to parallel those in Sect. 3.1.

As illustration, we review and examine two DG methods for solving a one-dimensional
wave equation, wt t = wxx , with initial conditions w(x, 0) = w0(x) and wt (x, 0) = w1(x)
and periodic boundary conditions on the domain � = [0, 1]. The numerical methods start
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with the first-order form of the problem,

ut − vx = 0, vt − ux = 0, (26)

by letting u = wt and v = wx . Accordingly, the initial conditions become u(x, 0) = w1(x)
and v(x, 0) = w′

0(x), and the boundary conditions remain periodic. We apply the notation
from Sect. 2 for the meshes and discrete spaces.

DG Method on One Mesh. Following the standard formulation of DG methods for
hyperbolic systems, we approximate the solutions to (26) in the following way: look for
uh(·, t), vh(·, t) ∈ U k

h such that, for any ϕ,ψ ∈ U k
h and all j ,

∫

I j

∂t uhϕdx = −
∫

I j

vh∂xϕdx + v̂h j+ 1
2
ϕ−

j+ 1
2

− v̂h j− 1
2
ϕ+

j− 1
2
, (27a)

∫

I j

∂tvhψdx = −
∫

I j

uh∂xψdx + ûh j+ 1
2
ψ−

j+ 1
2

− ûh j− 1
2
ψ+

j− 1
2
, (27b)

where

v̂h = {vh} + α[vh] + β[uh], ûh = {uh} − α[uh] + β[vh].
When α = β = 0, we have the central flux; when α = ± 1

2 , β = 0, we have alternating
fluxes. Also, when α = 0, β = 1

2 , we recover the upwind flux.

DG Method on Staggered Mesh. By approximating u and v with functions in U k
h and V k

h ,
respectively, another scheme can be defined: look for uh(·, t) ∈ U k

h and vh(·, t) ∈ V k
h such

that, for any ϕ ∈ U k
h and ψ ∈ V k

h and all j ,
∫

I j

∂t uhϕdx = −
∫

I j

vh∂xϕdx + vh j+ 1
2
ϕ−

j+ 1
2

− vh j− 1
2
ϕ+

j− 1
2
, (28a)

∫

I
j+ 1

2

∂tvhψdx = −
∫

I
j+ 1

2

uh∂xψdx + uh j+1ψ
−
j+1 − uh jψ

+
j . (28b)

Since uh and vh are piecewise smooth with respect to different meshes, there is no need for
numerical fluxes.

Following a similar analysis as that in Sect. 3.2, one can easily see that the bound of the
operator in the first method of (27) depends quadratically on k, while the one in the second
method of (28) depends linearly on k.

Appendix 1

In this “Appendix”, we illustrate how to find C̃1,k for use in (10) as described in Sect. 4.1.
More specifically, for any k ≥ 0, we want to find C̃1,k such that

‖p′‖L2([−1,1]) ≤ C̃1,kk2‖p‖L2([−1,1])

for any p ∈ Pk([−1, 1]). By inspection, we see that C̃1,0 = 0, so we consider k ≥ 1. We can
represent any p ∈ Pk([−1, 1]) uniquely as p(x) = ∑k

j=0 α j L̃ j (x), where {L̃ j (x)}k
j=0 are
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the Legendre polynomials normalized so that ‖L̃ j‖L2([−1,1]) = 1. We let α = (α j ) ∈ R
k+1

denote the coefficient vector, and we let Ak = (
ai j

) ∈ R
(k+1)×(k+1), where

ai j =
1∫

−1

d L̃i−1

dx

d L̃ j−1

dx
dx, i, j = 1, . . . , k + 1.

We note that Ak is a symmetric positive semi-definite matrix, and, in addition, that

‖p′‖2
L2([−1,1]) = αT Akα, ‖p‖2

L2([−1,1]) = αTα.

Accordingly, we see that

(C̃1,kk2)2 = max
p∈Pk ([−1,1])

p �=0

‖p′‖2
L2([−1,1])

‖p‖2
L2([−1,1])

= max
α∈R

k+1

α �=0

αT Akα

αTα
= λmax(Ak),

where λmax(Ak) ≥ 0 is the largest eigenvalue of Ak , so we have

C̃1,k =
√
λmax(Ak)

k2 .

The process of finding C̃2,k , C̃3,s,k , and C̃4,s,k for use in (11), (12), and (13), respectively, is
similar.

Appendix 2

To illustrate how the local mesh regularly will affect the estimate in (21) for the central DG
spatial operator on general meshes, we consider a quasi-uniform mesh with

x j+ 1
2

=
(
(1 + σ) j + 1 − (−1) j

2
(1 − σ)

)
h

2

for any j , and σ ∈ (0, 1]. For such mesh, ρ j+ 1
2

= σ for all j , and σ = 1 corresponds to a
uniform mesh. In Table 5, we report the value of

�(k; σ) :=
(

2C3, 1
2

+ 2C3,�

)
k + 4C4, 1

2
C4,�(k + 1), (29)

Table 5 Values of�(k; σ), where C3,s and C4,s are replaced by C̃3,s,k and C̃4,s,k , respectively, as described
in Sect. 4.1 and “Appendix 1”

σ = 1 σ = 1
2 σ = 1

4 σ = 1
8 σ = 1

16 σ = 1
32

k = 0 2.00 2.00 2.00 2.00 2.00 2.00

k = 1 8.40 9.32 10.07 10.57 10.87 11.03

k = 2 9.13 11.21 13.67 15.70 17.01 17.77

k = 3 15.23 15.44 18.38 23.01 26.72 29.04

k = 4 21.22 22.68 22.88 28.18 35.04 39.92

k = 5 21.95 26.18 27.56 29.54 38.86 47.03
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for different σ and k, where the constants C3,s and C4,s are replaced by C̃3,s,k and C̃4,s,k

as described in Sect. 4.1 and “Appendix 1”. From the results, one can see that the value of
�(k; σ) is not affected dramatically by the local mesh regularity.
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