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Abstract The volume penalty method provides a simple, efficient approach for solving the
incompressible Navier–Stokes equations in domains with boundaries or in the presence of
moving objects. Despite the simplicity, the method is typically limited to first order spatial
accuracy. We demonstrate that one may achieve high order accuracy by introducing an active
penalty term. One key difference from other works is that we use a sharp, unregularized
mask function. We discuss how to construct the active penalty term, and provide numerical
examples, in dimensions one and two. We demonstrate second and third order convergence
for the heat equation, and second order convergence for the Navier–Stokes equations. In
addition, we show that modifying the penalty term does not significantly alter the time step
restriction from that of the conventional penalty method.

Keywords Active penalty method · Sharp mask function · Immersed boundary ·
Incompressible flow · Navier–Stokes · Heat equation

Mathematics Subject Classification 65N06 · 65N35 · 65N85 · 76M20 · 76M22

1 Introduction

There are many popular methods for numerically solving the incompressible Navier–Stokes
equations in complex geometries. For instance, the immersed boundary method [24], the
immersed interface method [21] and the ghost fluid method [11] are popular since they allow
one to use a regular grid with an immersed domain boundary. Other efficient methods for the
Navier–Stokes or heat equation include [13,14,23]. These methods not only use a regular
grid, but also utilize level set functions to ensure a sharp interface. In all cases, the regular grid
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and level set formulation alleviates many of the numerical difficulties introduced by curved
or moving boundaries. In this paper, we focus on the volume penalty method [1,2,6,7,18],
which loosely fits into the same class of methods.

As a result of their simplicity, penalty methods have been used in a wide variety of
problems including electromagnetism, magnetohydrodynamics [22], shape optimization [9],
fluid-solid interaction problems [10,17] and even simpler problems such as the heat equation
or Poisson equation [25]. In the context of fluids, they provide a simple means for solving the
incompressible Navier–Stokes equations in domains with boundaries. The approach relies on
replacing the often difficult to implement Dirichlet fluid boundary conditions, with a simpler
to implement volumetric forcing term in the advection equation.

Despite the simplicity, the penalty method suffers from i) poor convergence in the penalty
parameter, thereby restricting the accuracy of numerical methods and, ii) a lack of regularity
in the velocity field which reduces the advantages of spectral methods. For example, solutions
to the penalized equations have a discontinuous second derivative which limits the decay rate
of the Fourier coefficients, as well as the ability to spectrally compute derivatives. Despite
the lack of smoothness, stable and low order spectral methods have been successfully used
to solve the penalized fluid equations [17,19].

The focus of our paper is to introduce a systematic method for improving the accuracy
of penalty methods. Current methods which improve accuracy rely on introducing a subgrid
numerical construct in the vicinity of the domain boundary [26,27]. Such approaches, how-
ever, are restrictive if one wishes to eventually use high order Fourier methods. One distinct
difference with our approach is that we alter the equations at the continuous level to improve
the analytic convergence rate of the penalized problem to the original unpenalized problem.
The improved analytic convergence rate then allows for higher order numerical schemes.

We first introduce the original volume penalty method, followed by an introduction to the
improved active penalty method. We then explicitly show how to analytically construct the
new penalty term. Following the construction, we then examine a model equation to demon-
strate how the active penalization improves the convergence rate for the Poisson equation.

After discussing the improved convergence, we focus on numerical details. First, we
examine the stability of the new active penalty term, and show that it does not introduce
additional numerical stiffness. We then provide numerical examples for the heat equation, in
dimensions one and two, showing second and third order schemes. Lastly, we outline how
to handle the divergence constraint for the Navier–Stokes equations and provide numerical
examples showing second order convergence (in L∞) in the velocity field and first order in
the pressure.

2 Navier–Stokes and Volume Penalty Equations

The aim of our work is to examine the behavior of a fluid in the vicinity of a solid or a porous
medium. For instance, two examples include the motion of a fluid in a bounded domain with
hard walls, or the motion around an immersed solid body such as the one shown in Fig. 1.
In our case, we consider dimensions D = 2, 3 and let Ωp ⊂ R

D denote the physical fluid
domain. For our purposes, Ωp is an open set with C2 boundary � = ∂Ωp .

2.1 Incompressible Navier–Stokes Equations

Through the conservation of mass and momentum, the incompressible Navier–Stokes equa-
tions govern the flow of an incompressible fluid for x ∈ Ωp
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Fig. 1 Illustration of the physical fluid (Ωp) and solid obstacle (Ωs ) domains

∂t u + u · ∇u = −∇ p + μ�u + f (1)

∇ · u = 0. (2)

Here u(x, t) is the velocity vector field, p(x, t) is the pressure, μ > 0 is the kinetic viscosity,
and f(x, t) is an external forcing such as gravity.

To supplement the bulk equations (1)–(2), the fluid velocity also satisfies prescribed bound-
ary conditions

u = g for x ∈ � (3)∫

�

g · n dA = 0 (4)

Here n is an outward pointing normal, while Eq. (4) represents a consistency condition
on the boundary data. Although we allow g = g(x, t) to be a function of both space and
time, the case of g = 0 represents the practical condition of a no-slip and no-flux boundary
condition. Together, Eqs. (1)–(2) with boundary data (3) describe the evolution of an initial,
divergence-free velocity field u(x, 0) = u0(x).

2.2 Volume Penalty Equations

Domains with curved boundaries � present several challenges to the numerical solution of
Eqs. (1)–(2). For example, curved boundaries or immersed objects limit the use of Fourier
methods since solutions are not periodic, or easily extended to periodic functions. One simple
solution to handle complicated or moving boundaries is through the use of a volume penalty
term in the Navier–Stokes equations. In such a case, one removes the Navier–Stokes boundary
condition, and instead adds a drag term to the momentum equation.

To introduce the penalized equation, we first denote Ωs as the solid domain of the obstacle
or wall. Here the obstacle region Ωs = Ωs is a closed set which shares the same boundary
as the fluid, ∂Ωs = �. The penalized equations are then defined on a computational domain
Ω which is the union of the physical and solid domains Ω = Ωp

⋃
Ωs . In our case we take

Ω to be a rectangular domain with periodic boundary conditions, i.e. Ω = T
D where T

D is
the D-dimensional torus.

For a stationary obstacle with a g = 0 boundary condition, the volume penalty equations
(see [3–5]) are
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∂t uη + uη · ∇uη = −∇ pη + μ�uη + f − η−1χs uη x ∈ Ω (5)

∇ · uη = 0. (6)

Here η is a small parameter, and χs(x) is the characteristic function on Ωs , namely

χs(x) =
{

0 for x ∈ Ω \ Ωs

1 for x ∈ Ωs
. (7)

In the limit η → 0, the drag term in Eq. (5) becomes large and tends to slow the fluid inside
Ωs . Rigorous convergence results by Angot et al. [3], and Carbou and Fabrie [8] show that
the penalized velocity uη converges to the solution of the Navier–Stokes equations u with an
error rate of O(η1/2) in the L2(Ωp) norm.

2.3 Improved Volume Penalty Equations

Although the volume penalty equations do converge to Navier–Stokes as η → 0, the con-
vergence rate is slow and therefore may limit the accuracy of resulting numerical schemes.
For example, let uη,num denote a numerical solution for the penalized equations. One is
then interested in quantifying the numerical error for uη,num compared to u, the solution to
the original Navier–Stokes problem (1)–(2). Using the triangle inequality,1 the error can be
controlled by

||u − uη,num ||2 ≤ ||u − uη||2 + ||uη − uη,num ||2. (8)

Rigorous convergence results then bound the first term as ||u − uη||2 ∼ η1/2, while
||uη − uη,num ||2 depends on the numerical details and order of the scheme. Finally, we note
that the addition of the penalty term introduces time scales of O(η) and length scales of
O(η1/2) into the solution uη. To appropriately resolve the boundary layers in the penalty
equations (5)–(6), one then has a grid spacing of �x ∼ √

η leading to a first order bound

||u − uη,num ||2 ≤ O(�x). (9)

In light of the above observations, a high order penalty method must either increase the
boundary layer width O(

√
η), or improve the analytic convergence rate in the penalty para-

meter. We adopt the second approach, and outline how Eq. (5) can be modified to better
approximate the original Navier–Stokes problem (1)–(2). Furthermore, we note that when
modifying the penalty term, it is important to avoid the introduction of additional length
or time scales which would hinder the development of high order numerical schemes. To
improve the penalized equations, we exploit the fact that u satisfies the boundary conditions
on �, and does not represent a physical flow inside Ωs . Specifically, we modify the penalty
term so that the flow tracks an extension function g̃ defined on x ∈ Ωs . In such a case, the
volume penalty equations take the form

∂t uη + uη · ∇uη = −∇ pη + μ�uη + f − η−1χs (uη − g̃) x ∈ Ω (10)

∇ · uη = 0 x ∈ Ωp. (11)

At this point, we only specify the divergence constraint within the physical domain and
defer a more detailed description of the divergence constraint inside Ωs for Sect. 7. The idea is
to choose g̃ to reduce the artificial fluid boundary layer generated by the penalized equations
in the vicinity of �. Specifically, the function g̃ should be a smooth, at least C1, extension

1 Here || · ||2 is any appropriate numerical L2(Ωp) norm.
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of the prescribed boundary conditions. The extension is constructed for each component of
g̃, and each component of g̃ should be chosen to match k derivatives of u in the direction
normal to �. As a result, we prescribe the following general properties for g̃

P1. g̃ is an extension of the prescribed boundary values: g̃ = g for x ∈ �.
P2. g̃ has the same normal slope as u: (n · ∇)ui = (n · ∇)g̃i . Here ui and g̃i for i = 1 . . . D

are the components of u and g̃.
P3. For higher derivatives, (n · ∇)kui |�p = (n · ∇)k g̃i .

Since derivatives of u may be discontinuous across �, the notation �p denotes the limit of
the derivative from the physical domain Ωp .

3 Constructing the Extension g̃

In this section we discuss one possible construction for the extension function g̃. The con-
struction procedure is identical for each component gi of g̃ for i = 1 . . . D.

In our approach, we assume the domain Ωp has a smooth boundary, at least � ∈ C2. As a
result, we omit a class of physically important domains such as rectangles. The general idea
is to match the normal derivatives of g̃ to those of u on �. With the appropriate boundary
derivatives, we then let g̃ decay to some constant value G over a length scale l. In our
construction, the maximum length scale l is bounded by the minimum radius of curvature of
the interface.

Step 1. First introduce a family of smooth, one-dimensional basis functions B j ∈ Ck with
0 ≤ j ≤ k such that

(i) The functions B j form a basis for derivatives at x = 0

di

dxi
B j (0) =

{
1 for j = i

0 for j 
= i
(12)

(ii) Each B j (x) has support on [0, 1]. Namely B j (x) = 0 for x < 0 and x > 1.

One can then use the functions B j (x) to construct a Ck extension f̃ (x) of a one-
dimensional function f (x) on x ≥ 0 as

f̃ (x) = f (0)B0(x) + f ′(0)B1(x) + · · · + f (k)(0)Bk(x). (13)

Note that by construction, the function f̃ (x) matches k derivatives at x = 0
and vanishes for x > 1. The goal is now to modify the extension (13) to higher
dimensions.
Although there are many different choices for B j (x), we now give an example of
one such choice for matching k = 2 derivatives. We do this by constructing B j (x)

out of stretched copies of the smoothly decaying function

h(x) =
{

e1− 1
1−x for 0 ≤ x < 1

0 for x ≥ 1
. (14)
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Fig. 2 A plot of the 1D basis functions B0(x) (thick), B1(x) (dashed) and B2(x) (thin)

Using h(x), one can take the functions B0, B1, B2 (Fig. 2) as the weighted sums

B0(x) = 3 h(x) − 3 h(2x) + h(3x) (15)

B1(x) = 5

2
h(x) − 4 h(2x) + 3

2
h(3x) (16)

B2(x) = −1

2
h(x) + h(2x) − 1

2
h(3x). (17)

Step 2. Construct a coordinate system inside the obstacle. The coordinate system should be
orthogonal at the boundary, and only needs to extend a distance l inside the domain
Ωs .
To construct the coordinates, we follow a standard approach [12] shown in Fig. 3.
Let ξ ∈ � denote the coordinates of the boundary �. Any point x within a distance
l of the boundary may then be written as

x = ξ + s n(ξ). (18)

Here s is the normal distance inside Ωs from the boundary. Within a small enough
region, s ≤ l, one may invert2 equation (18) to write ξ = ξ(x) and s = s(x).

Remark 1 In cases where a level set function φ(x) describes the boundary � = {x ∈
Ω | φ(x) = 0}, one may identify

n = ∇φ (19)

s = φ(x). (20)

Here we have assumed |∇φ| = 1 and φ(x) > 0 represents the domain Ωs while φ(x) < 0
corresponds to the domain Ωp . ♠
Step 3. Construct the extension g̃ using the functions B j (x) and the coordinates (ξ , s).

2 The coordinates ξ(x) and s(x) are both at least C1 functions.
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Fig. 3 A local set of normal coordinates. Here ξ ∈ � is a point on the boundary, while s is the distance in the
normal direction. A coordinate inside a neighborhood of Ωs has the form x = ξ + s n(ξ)

For brevity, we introduce notation for the normal derivatives at the boundary �.

un(ξ) = (n · ∇)u|� (21)

unn(ξ) = (n · ∇)2u|� (22)
...

unk (ξ) = (n · ∇)ku|� (23)

Again, we note that higher derivatives of u are discontinuous across the boundary.
Therefore, unk is evaluated as the limit approaching the boundary from the physical
domain. The extension is then

g̃(x) = (
g(ξ) − G

)
B0

(
s l−1) + l un(ξ) B1

(
s l−1)

+l2 unn(ξ) B2
(
s l−1) + · · ·

+lk unk (ξ) Bk
(
s l−1) + G. (24)

Note that g̃ decays to G, i.e. g̃ → G, as s → l. Therefore G can be any time-
dependent constant vector, however, for numerical purposes one should choose G
close to the boundary average of g

G = A−1
∫

�

g dA (25)

A =
∫

�

dA. (26)

Remark 2 Since values of g̃ inside Ωs depend on derivatives of u on the boundary, the
function g̃ described in (24) depends linearly on u. ♠
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Remark 3 We can check that the construction (24) satisfies the properties (P1)–(P3). For
x ∈ �, we have s = 0, so that g̃ = g, thereby satisfying (P1). To check higher derivatives,
we first note that differentiating (18) with respect to s yields ∂x(ξ ,s)

∂s = n(ξ). As a result any
function independent of s, y(ξ , s) = y(ξ), has the property that

(n · ∇)y(ξ) =
∑

j

∂x j

∂s

∂y(ξ)

∂x j
(27)

= ∂y(ξ)

∂s
(28)

= 0. (29)

Meanwhile, we also have

(n · ∇)i B j (s l−1)|s=0 =
( ∂

∂s

)i
B j (s l−1)|s=0 (30)

= l−iδi j (31)

where δi j is the Kronecker delta. Combining the two properties above, we have

(n · ∇)i g̃|x∈� = uni (ξ). (32)

Therefore, we recover properties (P2)–(P3). ♠

4 A Model Equation

In this section we examine solutions to the steady-state heat equation to provide some explana-
tion for how the extension function g̃ improves the analytic convergence rate of the penalized
equations to the original problem. In particular, we seek to quantify the error that results from
the additional penalty forcing. As a non-penalized problem, consider

∂xxv = 0 x ∈ [−1, 0] (33)

with boundary conditions: v(−1) = 1, v(0) = 0. The solution is then v(x) = −x for
x ∈ [−1, 0].

We note that solving explicit examples of the steady-state equations do not give general
sharp convergence estimates, however, they do provide a rigorous lower bound on the con-
vergence rate of the penalized equation to the exact non-penalized equation. The equivalent
one dimensional steady-state penalized problem is then

∂xx u = η−1 H(x)(u − g̃) x ∈ [−1,∞) (34)

with boundary conditions u(−1) = 1, u(∞) = 0. Here H(x) is the Heaviside function

H(x) =
{

0 for x < 0

1 for x ≥ 0
(35)

We now examine the convergence of solutions u → v in the limit η → 0 for different
extensions g̃.

Remark 4 As a result of the discontinuous Heaviside function H(x), the solution u to
Eq. (34) has one continuous derivative (u ∈ C1). Higher derivatives are discontinuous across
x = 0. ♠
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In light of remark (4), we take g̃ to have derivatives matching u from the physical domain
x = 0− and not x = 0+.

Proposition 1 Suppose that g̃ is a bounded Ck+1 function that matches k derivatives of u
at x = 0−. Namely

1. g̃(0) = 0
2. g̃′(0) = u′(0)

3. g̃(m)(0) = u(m)(0−) = 0 for 2 ≤ m ≤ k.

Then the solution u converges to v as

max
x∈[−1,0] |u − v| = O(η(k+1)/2) (36)

Proof In the region −1 ≤ x ≤ 0, u has the solution

u = (1 + c) + cx (37)

for some constant c. To construct the solution on x ≥ 0, we note that one may write g̃ as

g̃(x) = cx + xk+1 R(x) (38)

for some remainder function R(x), where in general R(0) 
= 0. By construction (38) matches
the first k derivatives of u at x = 0−. In addition, we assume that g̃(x) and g̃′(x) are bounded,
so that R(x) and R′(x) are also bounded functions. On x ≥ 0, u then solves

∂xx u − η−1u = −η−1(cx + xk+1 R(x)
)

(39)

To obtain the correct scaling, we rescale x = η1/2 X to obtain

∂X X u − u = −cη1/2 X + η(k+1)/2 Xk+1 R(η1/2 X) (40)

The general solution is then

u(X) =
{

(1 + c) + cη1/2 X if X < 0

be−X + cη1/2 X + η(k+1)/2 Q(X) if X ≥ 0
(41)

where we have excluded the term eX since it diverges as X → ∞. In addition, Q(X) is a
particular solution (which stays bounded as X → ∞ ) to

Q X X − Q = Xk+1 R(η1/2 X) (42)

For instance, one may write a particular solution as

Q(X) = 1

2

X∫

0

(eX−y − e−X+y)yk+1 R(η1/2 y) dy − AeX (43)

A = 1

2

∞∫

0

e−y yk+1 R(η1/2 y) dy (44)

Letting Rm = maxy |R(y)|, we also have the bound

|Q(0)| = |A| ≤ Rm

2

∞∫

0

yk+1e−y dy = Q0. (45)
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The same type of argument holds for bounding |Q′(0)| ≤ Q1.
To solve for the unknown constants, c and b, we use the fact that u and u′ are continuous

across x = 0. We therefore obtain the two equations

1 + c = b + η(k+1)/2 Q(0) (46)

η1/2c = −b + η1/2c + η(k+1)/2 Q′(0) (47)

Upon solving for b and c, the error between u and v on the physical domain −1 ≤ x ≤ 0 is

max
x∈[−1,0] |u − v| = 1 + c (48)

= (Q(0) + Q′(0))η(k+1)/2 (49)

≤ (Q0 + Q1)η
(k+1)/2 (50)

= O(η(k+1)/2) (51)

Hence, for the model problem, matching k derivatives of g̃ yields a convergence rate of
(k + 1)/2. In particular, when k = 0, we recover the known convergence rate η1/2 of the
standard penalty method. ��

Remark 5 Using higher derivatives in the construction of g̃ which are taken as limits from
the domain x ↘ 0+, does not yield the convergence rate stated in proposition (1). As an
example, we take g̃+ = u′(0)B1(x) + u′′(0+)B2(x) where

B1(x) = 5

2
e−x − 4e−2x + 3

2
e−3x (52)

B2(x) = 1

2
e−x − e−2x + 1

2
e−3x . (53)

For such a g̃+, the solution u to problem (34) yields only a first order error

max[−1,0] |u − v| ∼ 11

6
η. (54)

In contrast, taking g̃− = u′(0)B1(x) + u′′(0−)B2(x) yields a convergence rate in agreement
with (1)

max[−1,0] |u − v| ∼ 11η3/2. (55)

♠

5 Stability

In this section we establish numerical stability criteria for the 1D penalized heat equation.
To examine stability, we work with the domain Ωp = (0, π), Ωs = [π, 2π] and periodic
boundary conditions. Moreover, we take g(0) = g(π) = 0 to capture a u = 0 boundary
condition at the fluid-solid boundary. A simple Euler scheme matching one derivative of u
at the interface is then

un+1 = (
I + �t �

)
un − �t η−1χs (un − g̃n) (56)

g̃n = un
x (π)B1(x − π) − un

x (2π)B1(2π − x) (57)
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In general, adding derivatives of u to g̃(x) can reduce, by factors of h, the time step restriction
for an explicit scheme. In the case at hand, however, the structure of g̃(x) results in the same
time step restriction as the original volume penalty method, namely

�t < min{O(h2), O(η)}. (58)

Here h is either the grid spacing of a finite difference scheme, or alternatively h−1 scales
as the largest wavenumber in a Fourier method.

We note that although (56) is a linear recursion relation, the right hand side is not a
normal operator. As a result, a rigorous proof of (58) requires bounding the eigenvalues for
the spatially discrete system (56). The analysis is further complicated by the fact that the
operators (or matrices) on the right hand side of (56) do not commute.

In this section we establish the time step restriction (58). To do so, we first compute the
eigenvalues for the penalty term using a finite difference scheme. We show that although the
penalty term contains derivatives of u, the eigenvalues remain O(η−1) and do not become
O(η−1h−1).

Secondly, to show that the addition of the Laplacian does not alter the restriction (58), we
numerically compute the eigenvalues for Eq. (56) using a finite difference scheme.

5.1 Eigenvalues of the Penalty Term (Finite Differences)

In practice, one does not observe the time step restriction governed by the norm of g̃, but
rather the larger bound in (58). Here we provide a stability criteria by analytically computing
the penalty term eigenvalues for a finite difference scheme.

Let xk = kh for 0 ≤ k ≤ N − 1 with grid spacing h = 2π/N . Furthermore, denote the
discrete vector u = [u(x0) u(x1) . . . u(xN−1)]T .

We are then interested in evaluating the eigenvalues of the penalty term

Bu = λu (59)

B = −η−1(Iχ − v1dT
1 − v2dT

2 ) (60)

where B is the finite difference matrix corresponding to the penalty term. Here Iχ is the
identity matrix restricted to x ∈ Ωs while v1 and v2, are vectors with components

(v1)k = χs(xk)B1(xk − π) (61)

(v2)k = −χs(xk)B1(2π − xk) (62)

In addition, d1 and d2 are column vectors which approximate the derivatives of a vector u
as

ux (π) ≈ dT
1 u (63)

ux (2π) ≈ dT
2 u (64)

For instance, a centered difference approximation to the derivative ux (2π) would have
(d2)N−1 = −(2h)−1, (d2)1 = (2h)−1 and (d2)k = 0 for k = 0 and 1 < k < N − 1.
Lastly, since the support of B1(x) is restricted to x < 1, the function B1(x − π) = 0 for
x > π + 1. Hence, the numerical derivative of B1(x − π) at x = 2π is zero (or similarly
with B1(2π − x) at x = 0)

dT
2 v1 = 0 (65)

dT
1 v2 = 0. (66)
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Combining the orthogonality conditions (65)–(66) with the fact that Iχ v1,2 = v1,2, implies
that u = v1,2 are eigenvectors with corresponding eigenvalues

λ1 = −η−1(1 − dT
1 v1) (67)

λ2 = −η−1(1 − dT
2 v2). (68)

All other eigenvalues of B then lie in the space perpendicular to v1 and v2 resulting in
either λ = 0 or λ = −η−1. The eigenvalues (67)–(68) are therefore directly a result of the
modified penalty term and depend specifically on the component values of d1,2. As a result,
the products dT

1,2v1,2 ∈ (0, 1] depending on how one builds the numerical derivative vector
d1,2.

As an example, taking a centered difference approximation to the derivative ux (2π) yields

bT
2 v2 = 1

2h
((v2)1 − (v2)N−1) (69)

≈ 0.5. (70)

The second line follows since (v2)N−1 = 0 while (v2)1 ≈ h because the function B ′
1(0) = 1.

In general, the product dT
1,2v1,2 will be a weighted average of the derivatives of B1(x) on

the left and right of the interface. As a result, all eigenvalues λ of B satisfy −η−1 ≤ λ ≤ 0.
Therefore, modifying the penalty term does not change the time step restriction �t < 2η for
a simple Euler scheme un+1 = un + �t Bun .

5.2 Numerical Eigenvalues

In the follow section we numerically compute the eigenvalues of (56)–(57) using a finite
difference scheme for the spatial derivatives.3 The scheme then has the form

un+1 = [
I + �t (L + B)

]
un (71)

where L is the standard 3-point stencil discrete Laplacian. As a result, the eigenvalues of the
linear system (71) approach the real values associated with the Laplacian � when η → ∞,
and the values associated with the penalty term when η → 0.

To compute the eigenvalues numerically, we fix a grid with N points (256 ≤ N ≤ 4096)
and examine the range 10−9 ≤ η ≤ 1.

Proposition 2 (Practical stability) In practice, the numerical scheme (71) is stable provided
one takes the time step restriction

�t < min{0.5h2, 1.2η}. (72)

Remark 6 The exact constant 1.2 in (72) depends on numerical details such as how one
interpolates derivatives to the interface or the nature of the functions B0(x), B1(x) . . .. ♠

Here Fig. 4 shows that the numerical eigenvalues for N = 2048 and η = 10−7 are stable
with a time step restriction (72).

6 Numerical Example: Heat Equation

In the following section we provide numerical examples for the heat equation in dimension
D = 1, 2. Specifically, we combine the analytic convergence and stability results from the

3 Although not shown, a similar result of �t < min{N−2, 1.1η} holds for a Fourier scheme.
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Fig. 4 Scatter plot of the numerical eigenvalues for (71). Here N = 2048, η = 10−7 and �t is taken
from (72)

previous sections to show that one may achieve high order numerical schemes. As a starting
point, we demonstrate high order convergence in D = 1 dimension. We then move to D = 2,
and outline additional details that arise from the numerical construction of the extension g̃(x).

6.1 1D Heat Equation

To test the convergence rates for the penalized heat equation, we use a manufactured solution
approach. We note that the forced heat equation on x ∈ [0, 2π],

∂t u = uxx + f (73)

f = esin(x+t)[ cos(x + t) + sin(x + t) − cos2(x + t)
]

(74)

u(x, 0) = esin(x) (75)

has an exact solution ue = esin(x+t). To quantify the total error, we penalize equation (73) as

∂t uη = (uη)xx + f − η−1χs (uη − g̃) (76)

and compare the numerical solution of (76) to the exact one from (73).4

To discretize in space, we use an equispaced grid with fourth order stencils for all deriva-
tives. In addition, we treat all terms explicitly in time with a second order (improved) Euler
scheme. When constructing the extension g̃, we first compute the derivatives of u at each grid
point, i.e. ux (xk) or uxx (xk). We then interpolate the values of ux and uxx from the regular
grid points to the points x� on the interface.

Remark 7 The solution to the penalized heat equation u has a discontinuous second derivative
uxx across the interface. As a result, interpolating uxx using regular grid points on both sides
of the interface will produce a weighted average of right and left derivatives uxx (0−) and
uxx (0+) in the construction of g̃. We note that in practice, such a procedure does not appear
to alter the final numerical convergence rate. ♠

For our tests, we choose a solid region centered at π to be Ωs = [π − 0.7, π + 0.7]. To
satisfy the stability restriction, we then take �t = 0.2 h2, h = 2π/N and slave η = 5 �t so

4 One can also restrict the forcing f̃ = f (1 − χs ) to the physical domain, and obtain similar results.
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Fig. 5 Plot of numerical errors ||u − uη,num ||∞ for different values of N . The three curves correspond to
building g̃ using 0, 1, 2 derivatives of u and result with convergence rates of 1, 2, 3, respectively

Fig. 6 Plot of the numerical solution uη,num (thin line) with the extension g̃ (dashed line) for N = 2048.
Here Ωs = [π − 0.7, π + 0.7] is the solid domain

that all parameter values are fixed by the number of grid points N . For each N = 2k , with
6 ≤ k ≤ 12, we then numerically integrate (76) up to a final time of T = 1. We repeat the
procedure using 0, 1 and 2 derivatives of u in constructing the extension g̃ and compare the
numerical solution to the exact one (i.e. that of the unpenalized problem). Here Fig. 5 shows
the convergence rates for matching different derivatives, while Figs. 6 and 7 show a typical
solution and the corresponding error, respectively.

6.2 2D Heat Equation

In the following subsection, we outline the numerical details for a D = 2 scheme. Here we
work with an equispaced, regular grid with N × N points (64 ≤ N ≤ 512), and immerse the
boundary �. The main difference when moving to higher dimensions is how one computes
the extension g̃(x). To illustrate the construction, we refer to Fig. 8. To build g̃(x) we first
compute all appropriate derivatives at each grid point (both on Ωs and Ωp). For each grid
point x ∈ Ωs within a distance l of �, we compute ξ(x) as the orthogonal projection of x onto
� and s(x) = ||ξ(x) − x||2. Using a regular 9 point stencil, we then perform a polynomial
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Fig. 7 Plot of the total error in solving the penalized equations matching 1 derivative of u in the extension.
Here, N = 2048, T = 1 is the integration time, while Ωs = [π − 0.7, π + 0.7] is the solid domain

Fig. 8 Regular grid with interpolation points

Fig. 9 A sample 2D plot of g̃ matching 2 normal derivatives of u(x). The plot is taken at t = 0 for the heat
equation tests
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Fig. 10 Converence plot of the L∞ error at T = 0.1 for the heat equation tests. The plot shows curves
for matching 0 derivatives (triangles), 1 derivative (squares), and 2 derivatives (circles). The straight lines
compare the expected convergence rates of O(η0.5), O(η) and O(η1.5), respectively

interpolation of all required derivatives from the grid points to ξ . Using the interpolated
derivatives at ξ , one can then compute the normal derivatives of u required in Eq. (24) to
construct g̃(x) at each grid-point inside Ωs . Figure 9 illustrates a typical construction of g̃(x).

Remark 8 For computational efficiency, one can precompute and store the values of ξ as
well as the appropriate coefficients required to extrapolate derivatives to the interface �. ♠

As an example in D = 2, we take the computational domain Ω to be a periodic square with
side length 2π . For the penalized domain Ωs , we take a circle of radius r = 1/2 and center
(xc, yc) = (π, π). The physical domain is then Ωp = Ω \Ωs . To perform convergence tests,
we again use a manufactured solution where ue = [esin(x) +cos(y)] cos(t). Here we perform
a convergence test for the penalty parameter η. To compute the convergence rate, we fix
N = 512 and vary 5 × 10−5 ≤ η ≤ 10−1, so that discrete numerical errors are smaller than
the η-dependent error obtained by introducing the penalty term. For different values of η, we
then integrate the penalty equation for a time T = 0.1 and compute the error. Figure 10 shows
the L∞ error between the penalized equation and the exact heat equation as a function of η.

7 Numerical Example: 2D Incompressible Navier–Stokes

The primary difficulty when transitioning from a penalized heat equation to the penalized
incompressible Navier–Stokes equations is the addition of the velocity divergence constraint.
Other differences, such as moving from a scalar to a vector equation, or adding a nonlinear
convective term do not pose new additional challenges to the penalized equations. Intuitively,
the difficulty with the divergence can be outlined as follows. For the penalized heat equation,
the active penalty term forces the function u to closely track the extension function g̃. When
moving to a set of vector equations, the velocity vector uη will closely track the term g̃ inside
the penalty region Ωs . However, the component-wise construction of g̃ will in general be
such that ∇ · g̃ 
= 0. Consequently, to remain consistent, one should not force ∇ · uη = 0
inside Ωs but rather allow ∇ · uη to loosely track ∇ · g̃.

One approach for handling the divergence constraint is to replace ∇·uη = 0 with a Pressure
Poisson equation (PPE) [15,16,28,29]. Such an approach can provide a consistent method
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to compute the pressure and obtain high order schemes. Since a PPE approach requires the
additional solution of a Poisson equation with Neumann boundary conditions, we defer the
implementation to future work. In our case, we utilize a projection method where we project
the velocity divergence to zero inside the fluid domain. We now discretize equations (10)–(11)
in time.

7.1 Discretization in Time

Here we outline a pseudo-spectral scheme for solving the Navier–Stokes equations. For
a second order scheme in h, we take a first order discretization in time with a time step
restriction of the form outlined in (72). Since the domain is 2π periodic, we can use the
Fourier transform to invert the Poisson equation. In the following algorithm we take a regular
N × N grid. We also denote the discrete Fourier transform by F so that p̂n(k) = F[pn] with
k = (kx , ky) and k = |k|.

Algorithm 1 (Navier–Stokes)

1. Given the velocity un
η , compute an intermediate velocity ũn+1

η

ũn+1
η − un

η

�t
= Fn − 1

η
χs(x)(un

η − g̃n) (77)

Fn = −un
η · ∇un

η + μ�un
η + fn (78)

2. Compute the pressure

�pn+1
η = 1

�t
(∇ · ũn+1

η )(1 − χs) − A. (79)

For k = 0 set p̂n+1
η (0) = 0, while for k 
= 0 take

p̂n
η(k) = − 1

k2 F[ 1

�t
(∇ · ũn+1

η )(1 − χs)]. (80)

Note that A does not appear in the Fourier transform and at no time does one ever compute
A. The value of A is hidden as a consistency condition in setting p̂n+1

η (0) = 0.
3. Update the velocity un+1

η

un+1
η = ũn+1

η − (�t)F−1[−ık p̂n
η ]. (81)

Note that either Fourier transforms or a second order finite difference scheme can be used
when computing the derivatives ∂x j uη in algorithm (1).

Since the second derivatives are discontinuous, we compute �uη using finite differences.

In the Poisson equation for the pressure, pη is only determined up to a constant. To
uniquely determine pη we enforce

∫
Ω

pη dV = 0. Meanwhile the value of A is chosen so
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that the Poisson equation satisfies the standard solvability condition. Namely,

A = �t−1

V

∫

Ωp

∇ · ũη dV (82)

= �t−1

V

∫

�

ũη · n dA (83)

= �t−1

V

∫

�

(ũη − g) · n dA (84)

where in the last line we have used the fact that
∫
�

g ·n = 0. Here V = ∫
Ωp

dV is the volume

of the physical domain. The last line also shows that A is not nearly as large as �t−1 since
the jump (uη − g) · n is expected to be small. Finally, we make a remark on the projection
of u. Inside Ωp , we have

∇ · u = ∇ · ũ − (�t)�p (85)

= (�t)A (86)

≤ C max
x∈�

|ũη − g| (87)

where C is an appropriate constant. Hence any error in the divergence of u is directly con-
trolled by the error in the velocity boundary condition. In particular, for matching 1 derivative,
we expect ∇ · u = O(η) + O(�t) inside Ω f . As a result, we can recover a second order
scheme, however systematically moving to a higher order method will require an alternative
formulation, such as a PPE scheme, for computing the pressure.

Remark 9 In order to guarantee second order spatial accuracy in algorithm (1), g̃ should
match at least 1 derivative of uη. ♠
Remark 10 One could also consider solving the Poisson equation (79) with A = 0 and
instead impose an interface condition on the normal pressure gradient:

[n · ∇ pη]� = 1

�t
n · (ũη − g) (88)

[ f ]� := lim
ε→0

(
f (x + εn) − f (x − εn)

)
x ∈ �. (89)

In the definition (89), n is taken as the unit normal directed outward from Ωp . Such an
approach greatly simplifies the analysis for the behavior of the divergence (∇ · uη) in the
resulting PPE scheme. However, we note that numerically solving (79) with (88) and A = 0
is harder than simply solving (79)–(82). Furthermore, the equations also allow for a direct
solution using pseudo-spectral methods, while the interface problem does not. ♠

To test the order of accuracy of the active penalty method, we again use a manufactured
solution of the form ue = (ue, ve) and pe where

ue = cos(x) sin(y) cos(t) (90)

ve = − sin(x) cos(y) cos(t) (91)

pe = sin(2x) cos(y) cos(t). (92)

Given initial data corresponding to the exact solution, we numerically evolve the velocity
uη and pressure pη using the pseudo-spectral method outlined in algorithm 1. Here we match
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Fig. 11 Navier–Stokes convergence plot. Second order convergence in L∞(Ωp) for the velocity field
(squares), and in L2(Ωp) for the pressure (triangles) and velocity divergence (circles)

Fig. 12 Navier–Stokes convergence plot. First order convergence in L∞(Ωp) for the pressure (triangles)
and velocity divergence (circles). The weaker convergence in L∞(Ωp) is due to the boundary layer in the
pressure and divergence. The divergence was computed using second order finite differences

1 derivative of uη in the construction of g̃ and take time steps, with the appropriate restriction,
of �t = O(h2) = O(η). Figure 11 shows second order convergence of the velocity field (in
L∞(Ωp)), as well as the pressure and divergence (in L2(Ωp)). Meanwhile, the pressure and
the divergence converge at one order less in L∞(Ωp) (Fig. 12). As an example, Fig. 13a, b
show the typical error for velocity and pressure while Fig. 14a, b show the velocity diver-
gence. In addition, Fig. 15a, b show the horizontal velocity field along with the horizontal
component of the extension g̃ · x̂. Note that uη is again very close to g̃ inside Ωs .

8 Flow Around an Impulsively Started Cylinder

In this section we test our method for the model problem of an impulsively started cylinder
[20]. In this case, we solve the following initial value problem where the fluid starts at rest
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Fig. 13 Error fields with N = 128 for the velocity and pressure after T = 1. a Velocity error. b Pressure
error

Fig. 14 Plots of the divergence ∇ · uη in Ω (left) and in Ωp (right) with N = 128 after T = 1. The plot
in Ωp shows the ||∇ · uη||L∞(Ωp) error occurs at a point in a boundary layer near �. a Full divergence. b
Divergence error

Fig. 15 The numerical velocity field for horizontal component uη,Num along with the extension function.
Here N = 128 and T = 1. a Velocity uη,Num . b The extension g̃ · x̂

uη(x, 0) = 0 for x ∈ Ω. (93)

The impulsively started cylinder is then modeled by a moving mask function with a time
dependent set Ωs(t) and the appropriate Dirichlet boundary condition. For t > 0 we have

Ωs(t) = {x : |x − x0 − u0t | ≤ R} (94)

u = u0 for x ∈ �. (95)

Here u0 = u0êx is the velocity of the cylinder, and (x0, R) denotes the center and radius of
the cylinder.
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Fig. 16 Drag versus time for RE = 40. Here η = 2 × 10−4, N = 512, l = 0.45

To simplify the numerical calculation, we perform a Galilean transformation on the coor-
dinates and solve the penalized equations with a stationary mask. The velocity field then
solves the equation

∂t uη + (uη − u0) · ∇uη = −∇ pη + μ�uη + f − η−1χs (uη − u0 − g̃), (96)

with initial data u(x, 0) = 0. Here χs(x) is a stationary mask with Ωs(0), while g̃ is the
active penalty term with a zero boundary condition g = 0.

To compare our results with pre-existing numerical tests, we adopt the following definition
of the Reynolds number and time scales from [20]

RE = 2Ru0

μ
(97)

T = u0

R
t. (98)

Using Eq. (96), we then solve for the velocity field in time, and compute the drag force
and lift for the impulsively started cylinder. To compute the force we numerically evaluate
the momentum transfer to the fluid

Fb = − d

dt

∫

Ω f

u dV (99)

= − d

dt

∫

Ω

u
(
1 − χs(x)

)
dV . (100)

The lift (CL ) and drag (CD) coefficients are then evaluated as the non-dimensionalized
components of the force

CD = Fb · êx

Ru2
0

CL = Fb · êy

Ru2
0

. (101)

In our numerical tests, we examine the impulsively started cylinder for RE = 40 and RE
= 550. In both cases, we use R = 1, u0 = 10 and the appropriate values of μ to obtain RE.
Here Figs. 16 and 17 show the drag versus time for an impulsively started cylinder with RE
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Fig. 17 Drag versus time for RE = 550. Here η = 10−3, N = 768, l = 0.05. Circles correspond to snapshots
of the vorticity shown in Fig. 18

Fig. 18 Snapshots of the vorticity for an impulsively started cylinder with RE = 550. Images are taken at
times (l − r) T = 1, 1.66, 2.33, 3, 3.66, 4.33 and correspond to the circles in Fig. 17

= 40 and RE = 550, respectively. Note that qualitatively the curves match the benchmark
results from [20]. In particular, for the RE = 40, the drag coefficient monotonically decays to
a value slightly below 2. Meanwhile, for RE = 550, the drag first drops, followed by a peak at
T = 3.05. Here Fig. 18 shows the early development of vorticity for the impulsive cylinder.
We also extend the computation for a much longer time to verify the onset of vortex shedding.
Here Fig. 19 shows the oscillations in the lift coefficient versus time, while Fig. 20 shows the
vorticity at various times in the evolution. We note that due to the periodicity of the domain,
the simulation effectively models an array of cylinders, as opposed to the conventional von
Kármán street which arises from flow past one cylinder.
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Fig. 19 Lift versus time for the onset of the von Kármám street at RE = 550. The oscillations correspond to
vortex shedding. Circles correspond to snapshots of the vorticity shown in Fig. 20

Fig. 20 Snapshots of the vorticity for an impulsively started cylinder showing the onset of full vortex shedding
and von Kármán type street [30]. Images are for RE = 550, and taken at times T = 45, 51, 57, 63, 69, 75
corresponding to the circles in Fig. 19

9 Conclusion

In this paper, we outline how to construct high order penalty methods. We do so by first
introducing an active penalty term for the heat equation. When we increase the number
of matched derivatives, we show that the penalty term improves the analytic convergence
rate in terms of the penalty parameter. Secondly, we examine the numerical stability of the
active penalty term. We show that it does not introduce additional stiffness into the equations
or additional length scales that would need to be resolved. The combination of the high
order convergence in the penalty parameter along with the numerical stability then leads to
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higher order numerical schemes. Lastly, we extend the penalized term from the heat equation
to the incompressible Navier–Stokes equations. In particular, we show how to handle the
divergence constraint on the velocity field. We also conclude with an application of flow
around an impulsively started cylinder for RE = 40 and RE = 550. In the case of RE= 550,
we demonstrate the onset of a von Kármán street.

Although we have outlined a high order approach, there are still remaining issues that limit
the practical feasibility of the method. For instance, at no point do we improve the smoothness
of the solution uη. In fact the second derivatives of uη remain discontinuous across the curve
�, although matching more derivatives in the active penalty term may reduce the size of
the discontinuity. As a result, Fourier methods still have a slow decay in the Fourier modes
thereby limiting the ability to spectrally compute derivatives. In addition, interpolation of
high order derivatives in the construction of g̃ should be one-sided (i.e. from Ωp) while in
practice one would prefer to use points on both sides of �. As a result, ongoing research
includes improving the global smoothness of uη while retaining the high order convergence.
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