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Abstract A class of modified Du Fort–Frankel-type schemes is investigated for fractional
subdiffusion equations in the Jumarie’s modified Riemann–Liouville form with constant,
variable or distributed fractional order. New explicit difference methods are constructed by
combining the L1 approximation of the modified fractional derivative with the idea of Du
Fort–Frankel scheme, well-known for ordinary diffusion equations. Unconditional stability
of the explicit methods is established in the sense of a discrete energy norm. The proposed
schemes are shown to be convergent under the time-step (consistency) restriction of the clas-
sical Du Fort–Frankel scheme. Numerical examples are included to support our theoretical
results.
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1 Introduction

Fractional differential equations have proved to be valuable tools in modeling physical phe-
nomena in various fields of science [15,31,32]. Subdiffusion motion is particularly important
in modeling complex systems such as glassy and distorted materials. A class of anomalous
subdiffusion equation takes the form

∂u

∂t
= Kγ 0 D1−γ

t
∂2u

∂x2 + f (x, t), 0 < x < L , 0 < t ≤ T, (1.1)

u(0, t) = α(t), u(L , t) = β(t), 0 < t ≤ T, (1.2)

u(x, 0) = ϕ(x), 0 ≤ x ≤ L , (1.3)

where Kγ is a positive constant and 0 D1−γ
t is the modified Riemann–Liouville derivative of

order 1 − γ , suggested by Jumarie [16–20],

0 D1−γ
t u(x, t) = 1

�(γ )

∂

∂t

t∫

0

u(x, τ ) − u(x, 0)

(t − τ)1−γ
dτ , 0 < γ < 1. (1.4)

The sub-diffusion equation describes the probability density of the diffusing particles that
have a mean square displacement proportional to tγ . When γ = 1, the equation is reduced
to a classical heat equation describing the density of the diffusion particles that undergo
Brownian motion with a mean-square displacement proportional to t .

It has been pointed out [32] that time-fractional differential equations with the standard
Riemann–Liouville derivative,

RL
0 D1−γ

t u(x, t) = 1

�(γ )

∂

∂t

t∫

0

u(x, τ )

(t − τ)1−γ
dτ,

require nonlocal initial conditions expressed in terms of initial values of fractional deriva-
tives of the unknown function. Hilfer [15] showed that the solution of fractional diffusion
based on a Riemann–Liouville fractional derivative does not always admit a probabilistic
interpretation. It is frequently stated that the physical meaning of initial conditions expressed
in terms of time-fractional derivatives is unclear or even non existent, see e.g. [11]. Actu-
ally, the Riemann–Liouville fractional derivative of a function which is nonzero at t = 0 is
unbounded and many authors use the Riemann–Liouville derivatives but avoid the problem
of initial values of fractional derivatives by treating only the case of zero initial conditions.
Heymans and Podlubny [14] considered a series of examples from the field of viscoelasticity
and shown that it is possible to attribute physical meaning to initial conditions expressed
in terms of Riemann–Liouville fractional derivatives, while they also demonstrated that in
many instances of practical significance zero initial conditions, which are used so frequently
in practice, appear in a natural way. On the other hand, the modified Riemann–Liouville deriv-
ative (1.4) is equivalent to the standard Riemann–Liouville definition if the initial condition
is zero. Note that, the Jumarie’s definition has the advantages of both the standard Riemann–
Liouville and Caputo derivatives: it is defined for arbitrary continuous (non-differentiable)
functions and the fractional derivative of a constant equals zero, as desired. Furthermore, it
has been shown [16–20] that the Jumarie’s derivative provides a framework for a fractional
calculus which is quite parallel to the classical calculus, and would be more advantageous
for a theory of calculus of variations.
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In recent years, intensive effort has been made to develop accurate and stable numerical
methods for solving time-fractional diffusion equations. Compared with ordinary diffusion
equations that contain only local time-derivatives, time-fractional differential equations that
involve nonlocal derivatives give rise to many new difficulties in developing efficient numer-
ical approaches. One of the main difficulties is the global dependence of historical solutions,
which implies that all discrete solutions at previous time levels have to be saved in machines to
update the current solution, and thus the overload of limited memory in computer degrades the
computational efficiency evidently. To reduce the massive storage requirements in nonlocal
time-integrations, implicit approaches [2,6,7,21,23,27–29,34,37,40–43] would be prefer-
able since they are always stable and admit large time-steps.

However, there are few works in developing explicit difference schemes for fractional
diffusion equations. Yuste and Acedo [39] employed the Grünwald–Letnikov discretization
of the Riemann–Liouville derivative to construct the fractional FTCS scheme, which is con-
sistent of order O(	t + 	x2), and showed that the numerical solution is unstable unless

Kγ 	tγ

	x2 ≤ 1

22−γ
. (1.5)

For time-fractional diffusions with the fractional derivative in Caputo’s sense, two explicit
schemes were proposed in [8,13]. Numerical comparisons in [25] have been shown that the
three schemes in [8,13,39] have the same stability condition (1.5), while the CL scheme
[8], although closely related to the GMMP method [13], is the least accurate, especially
for short times. Murillo and Yuste [26] also applied the so-called L1 formula to construct
an explicit difference method for solving fractional diffusion equations in the Caputo form.
Note that, the existing explicit methods are conditionally stable and require extremely small
time-steps, even for not too small values of 	x , so that the number of time levels needed
to reach even moderate times becomes prohibitively large. To the best of our knowledge,
no unconditionally stable explicit schemes for time-fractional diffusion equations have been
published. For simplicity, we assume that the solution is smooth near the initial time t = 0.
The lack of smoothness of the solution near the time t = 0 is another main difficulty in
solving the time-fractional differential equations. Note that, a type of nonuniform time-grid
is employed in [28] to compensate for the singular behavior near t = 0, see [27,29] and
references therein.

Since high-dimensional extensions of explicit difference schemes are straightforward,
only one-dimensional problems will be considered in this report. For solving the subdiffusion
Eq. (1.1) with the Jumarie’s modified Riemann–Liouville derivative (1.4), we combine the
idea of Du Fort–Frankel scheme with the L1 approximation of the fractional derivative to
formulate the following modified Du Fort–Frankel-type (MDFF, for short) scheme

un+1
i − un−1

i

2	t
= Kγ 	tγ−1a0

�(1 + γ )	x2

(
un

i−1 − un+1
i − un−1

i + un
i+1

)

−
n−1∑
k=1

Kγ 	tγ−1 (ak−1 − ak)

�(1 + γ )	x2

(
un−k

i−1 − un−k+1
i − un−k−1

i + un−k
i+1

)+ f n
i ,

(1.6)

where un
i be the numerical approximation of the solution U n

i = u(xi , tn) at the discrete grid
point (xi , tn), ak = (k+1)γ −kγ for k ≥ 0,	t is the time-step and 	x is the spatial grid size.
By the discrete energy method, it is shown that the MDFF scheme (1.6) is unconditionally sta-
ble in a discrete energy norm and convergent with an order of O

(
	t1+γ + 	x2 + 	t2/	x2

)
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under the consistency condition 	t/	x → 0, which is rather weak than the stability condi-
tion (1.5) of the fractional FTCS method.

Throughout this report, C denotes a generic positive constant, not necessarily the same
at different occurrences, which is always dependent on the solution and the given data but
independent of the time-step size 	t and the grid spacing 	x . The rest of this paper is
arranged as follows. The novel MDFF scheme for the subdiffusion Eq. (1.1) is presented in
the next section, where the stability and convergence are investigated by the discrete energy
method. Extensions of the MDFF scheme and its theoretical results to the variable-order
and distributed-order time-fractional subdiffusion equations are considered in Sects. 3 and 4,
respectively. Three numerical examples are included in Sect. 5 to confirm our theoretical
results. Some remarks conclude this article.

2 Stable Explicit Scheme and Discrete Energy Analysis

2.1 Construction of the MDFF Scheme

For positive integers M and N , let the spacing 	x = L/M and the time-step 	t = T/N . We
use the notation xi = i	x for 1 ≤ i ≤ M and tn = n	t for 1 ≤ n ≤ N . For any temporal

function {wn | 0 ≤ n ≤ N }, denote wn− 1
2 = (

wn + wn−1
)
/2,

δtw
n− 1

2 = wn − wn−1

	t
, Dtw

n = wn+1 − wn−1

2	t
, δ2

t wn = wn+1 − 2wn + wn−1

	t2 .

Let ak = (k +1)γ −kγ for k ≥ 0. The so-called L1 approximation of the standard Riemann–
Liouville derivative RL

0 D1−γ
t y(tn) of order 1 − γ ,

D1−γ

L1 y(tn) = 	tγ−1

�(1 + γ )

{
n∑

k=1

an−k
[
y(tk) − y(tk−1)

]+ γ nγ−1 y(t0)

}

= 	tγ−1

�(1 + γ )

[
a0 y(tn) −

n−1∑
k=1

(ak−1 − ak) y(tn−k) − (
an−1 − γ nγ−1) y(t0)

]
,

(2.1)

has been derived by Oldham and Spanier [31] in 1974. Recently, the L1 formula is shown,
by Langlands and Henry [21], to be consistent of order O(	t1+γ ) for y(t) ∈ C2[0, tn]. We
define the following modified L1 approximate formula

D1−γ
	t wn ≡ 	tγ−1

�(1 + γ )

[
a0w

n −
n−1∑
k=1

(an−k−1 − an−k) wk

]
, n ≥ 1. (2.2)

Obviously, this formula is an O(	t1+γ ) accurate approximation of the Jumarie’s modified
Riemann–Liouville derivative (1.4), as stated below.

Lemma 2.1 [21] Let y(t) ∈ C2[0, tn] and ak = (k + 1)γ − kγ for k ≥ 0. It holds that
∣∣∣0 D1−γ

t y(tn) − D1−γ
	t y(tn)

∣∣∣ ≤ 3 − 2γ

6 �(2 + γ )
	t1+γ max

0≤t≤tn

∣∣y′′(t)
∣∣ , 	t → 0 .

For any spatial function vh = {vi | 0 ≤ i ≤ M}, denote

δxvi− 1
2

= vi − vi−1

	x
, 	hvn = vi+1 − 2vi + vi−1

	x2 .
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For simplicity, we use the following notations for time-space function vn
h (1 ≤ n ≤ N ),

	
d ff
h vn

i = vn
i+1 − vn+1

i − vn−1
i + vn

i−1

	x2 ,

D1−γ
	t 	

d ff
h vn

i = 	tγ−1

�(1 + γ )

[
a0
(
	

d ff
h vn

i

)−
n−1∑
k=1

(an−k−1 − an−k)
(
	

d ff
h vk

i

)]
.

For the smooth solution u(x, t) ∈ C (4,2)
x,t , let U n

i = u(xi , tn). We apply Lemma 2.1 to
approximate the Eq. (1.1) by

DtU
n
i = Kγ D1−γ

	t 	
d ff
h U n

i + f n
i + Rn

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N − 1, (2.3)

where the truncation error
∣∣Rn

i

∣∣ ≤ C
(
	t1+γ + 	x2 + 	t2/	x2) , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N − 1. (2.4)

Neglecting the truncation error Ri and replacing U n
i with the numerical approximation un

i in
the Eq. (2.3), we get the MDFF scheme (1.6) or

Dt u
n
i = Kγ D1−γ

	t 	
d ff
h un

i + f n
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N − 1. (2.5)

Note that, one has ak = 1 (k ≥ 0) if γ = 1, and thus the well-known Du Fort–Frankel scheme
will be recovered by the MDFF method (1.6). To start the MDFF scheme, one can apply the
FTCS scheme [39], which is accurate of order O

(
	t + 	x2

)
, to compute the solution u1

i ,

δt u
1
2
i = Kγ 	tγ−1	h

[
u0

i − ϕ(xi )
]+ f 0

i = f 0
i , 1 ≤ i ≤ M − 1. (2.6)

The truncation error, denoted by R0
i , satisfies

∣∣R0
i

∣∣ ≤ C
(
	t + 	x2) , 1 ≤ i ≤ M − 1. (2.7)

As usual, the initial and Dirichlet-boundary conditions are approximated by

u0
i = ϕ(xi ), 0 ≤ i ≤ M; un

0 = α(tn), un
M = β(tn) , 1 ≤ n ≤ N . (2.8)

The proposed MDFF procedure, including (2.5), (2.6) and (2.8), computes the numerical
solution explicitly. As proved below, the new explicit method is unconditionally stable with
respect to a discrete energy norm. Although the starting scheme (2.6) is only first-order
O(	t) in time, the global solution error will be not polluted since it applies only at the first
time level. On the other hand, the error term O

(
	t2/	x2

)
of Rn

i in (2.3) gives rise to the
following consistency condition

	t

	x
→ 0, as 	x → 0, (2.9)

such that the MDFF scheme is conditionally consistent. It is to note that, the consistency
condition (2.9) is rather weaker than the stability condition (1.5). For instance, we take a
small value of γ = 0.1. The time-step restriction (1.5) indicates that, to compute a meaningful
solution, the FTCS method in [39] needs extremely small time-steps 	t = O(	x20), which
would be prohibitively small even for not too small values of 	x . While our new method can
use large time-steps such as 	t = O(	x2) to compute an accurate solution with an order of
O(	x2), also see numerical results in Sect. 5.
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2.2 Stability and Convergence of MDFF Scheme

Consider a space of grid functions Ph = {
vh | vh = {vi | 0 ≤ i ≤ M} and v0 = 0, vM = 0

}
.

For grid functions uh, vh ∈ Ph , introduce the inner product
〈
u, v

〉 = 	x
∑M−1

i=1 uivi and

the corresponding norm ‖v‖ = √〈v, v〉 . Also, denote ‖δxv‖ =
√

	x
∑M

i=1

(
δxvi− 1

2

)2
. We

have the discrete Green’s first formula 	x
∑M

i=1 vi (	hvi ) = −‖δxv‖2 for vh ∈ Ph .
Consider a function a(x) = (x + 1)γ − xγ such that ak = a(k) is strictly decreasing.

Furthermore, a(x) is concave owing to that

a′′(x) = γ (γ − 1)(γ − 2)

x+1∫

x

sγ−3 ds > 0, x > 0.

One has a(k − 1) + a(k + 1) > 2a(k) for k ≥ 1, which yields the following lemma.

Lemma 2.2 The positive coefficient ak = (k + 1)γ − kγ is strictly decreasing and

ak−1 − ak > ak − ak+1, k ≥ 1 .

Lemma 2.3 For any time sequence {Q1, Q2, Q3, . . .}, it holds that

	t
N−1∑
n=1

Qn

(
D1−γ

	t Qn

)
≥

tγ−1[
N
2

]

�(γ )
	t

N−1∑
n=1

Q2
n ,

where
[ N

2

]
denotes the integer part of N/2.

Proof Lemma 2.2 shows that ak and (ak−1 − ak) are strictly decreasing such that

an−1 + aN−n−1 ≥ an + aN−n−2, ∀ n ≤ N − 1

2
,

an−1 + aN−n−1 ≤ an + aN−n−2, ∀ n ≥ N − 1

2
.

Recalling that ak = ∫ k+1
k sγ−1 ds, it is easy to check that

min
1≤n≤N−1

(an−1 + aN−n−1) = am−1 + am > 2am > 2γ

[
N

2

]γ−1

, if N = 2m + 1 ;

min
1≤n≤N−1

(an−1 + aN−n−1) = 2am−1 > 2γ

[
N

2

]γ−1

, if N = 2m .

Then it follows that

2	t1−γ �(1 + γ )

N−1∑
n=1

Qn

(
D1−γ

	t Qn

)
= 2

N−1∑
n=1

[
a0 Qn −

n−1∑
k=1

(an−k−1 − an−k) Qk

]
Qn

≥ 2
N−1∑
n=1

a0 Q2
n −

N−1∑
n=2

n−1∑
k=1

(an−k−1 − an−k) Q2
n −

N−1∑
n=2

n−1∑
k=1

(an−k−1 − an−k) Q2
k
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=
N−1∑
n=1

(a0 + an−1) Q2
n −

N−1∑
k=1

(a0 − aN−k−1) Q2
k

=
N−1∑
n=1

(an−1 + aN−n−1) Q2
n ≥ 2γ

[
N

2

]γ−1 N−1∑
n=1

Q2
n ,

where the second equality is obtained by exchanging the summation order of the third term.
Then the claimed inequality follows immediately and the proof is completed.

Lemma 2.4 Let the grid function vn
h ∈ Ph satisfies

Dtv
n
i = Kγ D1−γ

	t 	
d ff
h vn

i + gn
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N − 1, (2.10)

δtv
1
2
i = g0

i , 1 ≤ i ≤ M − 1; v0
i = φi , 0 ≤ i ≤ M. (2.11)

Then it hold that

E N− 1
2 (vh) ≤ E

1
2 (vh) +

�(γ )t1−γ[
N
2

]

2Kγ

	t
N−1∑
n=1

∥∥gn
∥∥2

, N ≥ 2, (2.12)

where the discrete energy En− 1
2 is defined by

En− 1
2 (vh) =1

2

(∥∥δxv
n
∥∥2 + ∥∥δxv

n−1
∥∥2
)

− 	t2

2

∥∥δtδxv
n− 1

2
∥∥2 + 	t2

	x2

∥∥δtv
n− 1

2
∥∥2

. (2.13)

Proof For any grid function vn
h ∈ Ph , we have following inverse estimates

	t2

4

∥∥δtδxv
n− 1

2
∥∥2 ≤ 	t2

	x2

∥∥δtv
n− 1

2
∥∥2

,

	t2

4

∥∥δtδxv
n− 1

2
∥∥2 ≤ 1

2

(∥∥δxv
n
∥∥2 + ∥∥δxv

n−1
∥∥2
)

.

They imply that En− 1
2 ≥ 0, where the equality is valid only for the trial (zero-valued)

function. That is to say, the discrete energy En− 1
2 is positive definite. Applying the discrete

Green’s first formula and the following equalities

2wnδtw
n+ 1

2 = δt (w
n+ 1

2 )2 − 	t (δtw
n+ 1

2 )2 , 2wnδtw
n− 1

2 = δt (w
n− 1

2 )2 + 	t (δtw
n− 1

2 )2 ,

we can obtain

Bn
11 ≡ −2	x

M−1∑
i=1

(
Dtv

n
i

)
	hvn

i = 	x
M−1∑
i=1

(
δtδxv

n+ 1
2

i− 1
2

+ δtδxv
n− 1

2

i− 1
2

)(
δxv

n
i− 1

2

)

= 1

2

(
δt
∥∥δxv

n+ 1
2
∥∥2 − 	t

∥∥δtδxv
n+ 1

2
∥∥2
)

+ 1

2

(
δt
∥∥δxv

n− 1
2
∥∥2 + 	t

∥∥δtδxv
n− 1

2
∥∥2
)

= 1

2

(
δt
∥∥δxv

n+ 1
2
∥∥2 + δt

∥∥δxv
n− 1

2
∥∥2
)

− 	t

2

(∥∥δtδxv
n+ 1

2
∥∥2 − ∥∥δtδxv

n− 1
2
∥∥2
)

.

Thus it follows that

	t
N−1∑
n=1

Bn
11 = 1

2

(∥∥δxv
N
∥∥2 + ∥∥δxv

N−1
∥∥2
)

− 	t2

2

∥∥δtδxv
N− 1

2
∥∥2

−1

2

(∥∥δxv
1
∥∥2 + ∥∥δxv

0
∥∥2
)

+ 	t2

2

∥∥δtδxv
1
2
∥∥2

. (2.14)
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Furthermore, one has

Bn
12 ≡ 2	t2

	x

M−1∑
i=1

(
Dtv

n
i

) (
δ2

t vn
i

) = 	t

	x

M−1∑
i=1

(
δtv

n+ 1
2

i + δtv
n− 1

2
i

)(
δtv

n+ 1
2

i − δtv
n− 1

2
i

)

= 	t

	x2

(∥∥δtv
n+ 1

2
∥∥2 − ∥∥δtv

n− 1
2
∥∥2
)

such that

	t
N−1∑
n=1

Bn
12 = 	t2

	x2

∥∥δtv
N− 1

2
∥∥2 − 	t2

	x2

∥∥δtv
1
2
∥∥2

. (2.15)

Recalling the definitions of Bn
11 and Bn

12, it follows from (2.14) and (2.15) that

B1 ≡ −2	t	x
N−1∑
n=1

M−1∑
i=1

(
Dtv

n
i

)
	

d ff
h vn

i

= −2	t	x
N−1∑
n=1

M−1∑
i=1

(
Dtv

n
i

) (
	hvn

i − 	t2

	x2 δ2
t vn

i

)

= 	t
N−1∑
n=1

(
Bn

11 + Bn
12

) = E N− 1
2 − E

1
2 . (2.16)

Moreover, applying Lemma 2.3, one gets

B2 ≡ − 2Kγ 	t
N−1∑
n=1

	x
M−1∑
i=1

(
D1−γ

	t 	
d ff
h vn

i

) (
	

d ff
h vn

i

)

≤ −
2Kγ tγ−1[

N
2

]

�(γ )
	t	x

N−1∑
n=1

M−1∑
i=1

(
	

d ff
h vn

i

)2
. (2.17)

And it is easy to obtain that

B3 ≡ − 2	t	x
N−1∑
n=1

M−1∑
i=1

gn
i

(
	

d ff
h vn

i

)

≤
2Kγ tγ−1[

N
2

]

�(γ )
	t	x

N−1∑
n=1

M−1∑
i=1

(
	

d ff
h vn

i

)2 +
�(γ )t1−γ[

N
2

]

2Kγ

	t
N−1∑
n=1

∥∥gn
∥∥2

. (2.18)

Multiplying the difference Eq. (2.10) by −2	t	x	
d ff
h vn

i , summing the indexes i, n for
1 ≤ i ≤ M − 1 and 1 ≤ n ≤ N − 1, one has

B1 = B2 + B3 ,

where Bi (i = 1, 2, 3) has been defined above. Then applying the inequalities (2.16)–(2.18),
we get the claimed estimation (2.12) and complete the proof.

Theorem 2.5 The MDFF scheme (2.5) is unconditionally stable in the sense of (2.12).

Now we turn to the error analysis for smooth solutions by setting ũn
i = U n

i − un
i . It is

easy to see that the error function ũn
h ∈ Ph, 0 ≤ n ≤ N , satisfies
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Dt ũ
n
i = Kγ D1−γ

	t 	
d ff
h ũn

i + Rn
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N − 1, (2.19)

δt ũ
1
2
i = R0

i , 1 ≤ i ≤ M − 1; ũ0
i = 0, 0 ≤ i ≤ M. (2.20)

Applying Lemma 2.4, we get

E N− 1
2 (ũh) ≤ E

1
2 (ũh) +

�(γ )t1−γ[
N
2

]

2Kγ

	t
N−1∑
n=1

∥∥Rn
∥∥2

, N ≥ 2. (2.21)

From the Eq. in (2.20), one gets

E
1
2 (ũh) =1

2

(∥∥δx ũ1
∥∥2 + ∥∥δx ũ0

∥∥2
)

− 	t2

2

∥∥δtδx ũ
1
2
∥∥2 + 	t2

	x2

∥∥δt ũ
1
2
∥∥2 = 	t2

	x2

∥∥R0
∥∥2

.

Thus it follows from (2.4), (2.7) and (2.21) that

E N− 1
2 (ũh) ≤ 	t2

	x2

∥∥R0
∥∥2 +

�(γ )t1−γ[
N
2

]

2Kγ

	t
N−1∑
n=1

∥∥Rn
∥∥2

≤ 	t2

	x2 C2 (	t + 	x2)2 +
�(γ )tN−1t1−γ[

N
2

]

2Kγ

C2 (	t1+γ + 	x2 + 	t2/	x2)2

≤ C2 (	t1+γ + 	x2 + 	t2/	x2)2 . (2.22)

Theorem 2.6 Let u(x, t) ∈ C (4,2)
x,t be the smooth solution of the time-fractional subdiffusion

Eq. (1.1), the numerical solution of the MDFF scheme (1.6) is convergent, in the sense of
(2.22), with the order of O

(
	t1+γ + 	x2 + 	t2/	x2

)
.

3 Generalization to Variable-Order Subdiffusion Equations

As a natural candidate to provide an effective mathematical framework for the description
of complex dynamical problems, variable-order fractional operators and variable-order frac-
tional differential equations have been developed recently, see e.g. [9,24,33,36]. Lorenzo and
Hartley [24] suggested that the concept of a variable order operator is allowed to vary either
as a function of the independent variable of integration or differentiation, or as a function of
some other (spatial) variable. Sun et al. [36] introduced a classification of the variable-order
diffusion models based on the possible physical origins that motivated the variable-order.
However, as remarked in [6], numerical methods of variable-order fractional differential
equations are still at an early stage of development. An implicit scheme was considered in
[34] for the variable-order fractional diffusion equation with the Caputo-type operator. Sun
et al. [37] investigated the explicit Euler, implicit Euler and Crank-Nicholson schemes for
a fractional diffusion equation with the Coimbra fractional operator. Zhuang et al. [43] pre-
sented explicit and implicit Euler methods for the variable-order advection-diffusion equation
with a nonlinear source term. Chen et al. [6,7] developed two compact schemes with fourth-
order spatial accuracy for the subdiffusion equations with variable-order Riemann–Liouville
derivative. Nonetheless, no unconditionally stable explicit schemes for variable-order sub-
diffusion equation have been reported. Consider the following variable-order subdiffusion
equation
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∂u

∂t
= Kγ 0 D1−γ (x,t)

t
∂2u

∂x2 + f (x, t), t ≥ 0, (3.1)

subject to u(x, 0) = ϕ(x), where 0 < γ (x, t) < 1 and 0 D1−γ (x,t)
t is the variable-order

modified Riemann–Liouville derivative defined by, see [6,7,24,43],

0 D1−γ (x,t)
t u(x, t) = 1

�(γ (x, t))

⎡
⎣ ∂

∂ξ

ξ∫

0

u(x, τ ) − u(x, 0)

(ξ − τ)1−γ (x,t)
dτ

⎤
⎦

ξ=t

. (3.2)

In this section, the MDFF scheme (1.6) is shown to be applicable for solving the variable-
order subdiffusion Eq. (3.1). Let the grid function γ m

j = γ (x j , tm) at the point (x j , tm) and(
am

j

)
k = (k + 1)

γ m
j − kγ m

j for k ≥ 0. For any temporal function {wn | 0 ≤ n ≤ N }, the

modified L1 approximate operator D
1−γ m

j
	t is defined by

D
1−γ m

j
	t wn = 	tγ

m
j −1

�(1 + γ m
j )

{(
am

j

)
0w

n −
n−1∑
k=1

[(
am

j

)
n−k−1 − (

am
j

)
n−k

]
wk

}
. (3.3)

It is easy to generalize the results of Lemmas 2.1 and 2.2 as follows.

Lemma 3.1 For some fixed 0 < γ m
j ≤ 1, and y(t) ∈ C2[0, tn], it holds that

∣∣∣∣0 D
1−γ m

j
t y(tn) − D

1−γ m
j

	t y(tn)

∣∣∣∣ ≤ 3 − 2γ m
j

6 �(2 + γ m
j )

	t1+γ m
j max

0≤t≤tn

∣∣y′′(t)
∣∣ .

Lemma 3.2 For some fixed γ m
j , the positive coefficient

(
am

j

)
k = (k + 1)

γ m
j − kγ m

j satisfies
(
am

j

)
k−1 >

(
am

j

)
k and

(
am

j

)
k−1 − (

am
j

)
k >

(
am

j

)
k − (

am
j

)
k+1, k ≥ 1 .

For the smooth solution u(x, t) ∈ C (4,2)
x,t , we apply Lemma 3.1 to approximate the variable-

order Eq. (1.1) by

DtU
n
i = Kγ D

1−γ n
i

	t 	
d ff
h U n

i + f n
i + Sn

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N − 1, (3.4)

where the truncation error∣∣Sn
i

∣∣ ≤ C
(
	t1+γ n

i + 	x2 + 	t2/	x2
)

, 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N − 1. (3.5)

Neglecting the small term Si and replacing U n
i by the approximation un

i in (3.4), we get the
following modified Du Fort–Frankel scheme with variable-order (denoted by MDFF-VO)

Dt u
n
i = Kγ D

1−γ n
i

	t 	
d ff
h un

i + f n
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N − 1. (3.6)

To start the MDFF-VO scheme, one can apply (2.6) to compute the first level solution u1
i .

The initial-boundary conditions can be approximated by (2.8).
We see that the approximation (3.4) is consistent only if the time-space grid satisfies the

consistency condition (2.9) such that the MDFF-VO scheme is also conditionally consistent.
Numerical experiments suggest that the proposed MDFF-VO procedure, including (2.6),
(2.8) and (3.6), is stable although, at this moment, we are not able to prove the unconditional
stability for a general fractional order γ = γ (x, t). Assuming that γt (x, t) = 0, or γ = γ (x),
and applying Lemma 3.2, we have a straightforward generalization of Lemma 2.3.
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Lemma 3.3 For any time sequence {Q1, Q2, Q3, . . .}, it holds that

	t
N−1∑
n=1

Qn

(
D1−γi

	t Qn

)
≥

tγi −1[
N
2

]

�(γi )
	t

N−1∑
n=1

Q2
n , 1 ≤ i ≤ M − 1.

Lemma 3.4 Let the fractional order γ = γ (x) and the grid function vn
h ∈ Ph satisfies

Dtv
n
i = Kγ D1−γi

	t 	
d ff
h vn

i + gn
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N − 1, (3.7)

δtv
1
2
i = g0

i , 1 ≤ i ≤ M − 1; v0
i = φi , 0 ≤ i ≤ M. (3.8)

Then it hold that

E N− 1
2 (vh) ≤ E

1
2 (vh) + 	t	x

2Kγ

N−1∑
n=1

M−1∑
i=1

[
�(γi )t

1−γi[
N
2

] (gn
i

)2
]

, N ≥ 2, (3.9)

where the positive definite energy En− 1
2 is defined by (2.13).

Proof This proof is the same to that of Lemma 2.4 except slight differences in the technical
treatments of B2 and B3. Applying Lemma 3.3, one has

G2 ≡ − 2Kγ 	t
N−1∑
n=1

	x
M−1∑
i=1

(
D1−γi

	t 	
d ff
h vn

i

)
	

d ff
h vn

i

≤ − 2Kγ 	t	x
M−1∑
i=1

⎡
⎢⎢⎣

tγi −1[
N
2

]

�(γi )

N−1∑
n=1

(
	

d ff
h vn

i

)2

⎤
⎥⎥⎦ . (3.10)

Furthermore, it is easy to obtain that

G3 ≡ − 2	t	x
N−1∑
n=1

M−1∑
i=1

gn
i

(
	

d ff
h vn

i

)
≤ 	t

N−1∑
n=1

	x
M−1∑
i=1

⎡
⎢⎢⎣

2Kγ tγi −1[
N
2

]

�(γi )

(
	

d ff
h vn

i

)2

⎤
⎥⎥⎦

+ 	t	x

2Kγ

N−1∑
n=1

M−1∑
i=1

[
�(γi )t

1−γi[
N
2

] (gn
i

)2
]

. (3.11)

Multiplying the difference Eq. (3.7) by −2	t	x	
d ff
h vn

i , summing the indexes i, n for 1 ≤
i ≤ M − 1 and 1 ≤ n ≤ N − 1, one has

B1 = G2 + G3 ,

where B1 was defined in the proof of Lemma 2.4. Applying the inequalities (2.16) and
(3.10)–(3.11), we get the claimed inequality (3.9) and complete the proof. �
Theorem 3.5 If the variable fractional order γ = γ (x), the MDFF-VO scheme (3.6) is
unconditionally stable in the sense of (3.9).

Now consider the error analysis. It is easy to see that ũn
h ∈ Ph satisfies

Dt ũ
n
i = Kγ D1−γi

	t 	
d ff
h ũn

i + Sn
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N − 1, (3.12)

δt ũ
1
2
i = R0

i , 1 ≤ i ≤ M − 1; ũ0
i = 0, 0 ≤ i ≤ M. (3.13)
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Applying Lemma 3.4, we get

E N− 1
2 (ũh) ≤ E

1
2 (ũh) + 	t	x

2Kγ

N−1∑
n=1

M−1∑
i=1

[
�(γi )t

1−γi[
N
2

] (Sn
i

)2
]

, N ≥ 2. (3.14)

Furthermore, one applies (3.13) and (2.7) to find that

E
1
2 (ũh) = 	t2

	x2

∥∥δt ũ
1
2
∥∥2 = 	t2

	x2

∥∥R0
∥∥2 ≤ 	t2

	x2 C2 (	t + 	x2)2 .

Reminding that 0 < γi < 1, it follows from (3.14) and (3.5) that

E N− 1
2 (ũh)≤ 	t2

	x2 C2 (	t + 	x2)2 + 	x
M−1∑
i=1

tN−1�(γi )t
1−γi[

N
2

]

2Kγ

(
	t1+γi +	x2+ 	t2

	x2

)2

≤ C2 (	t + 	x2 + 	t2/	x2)2 . (3.15)

It yields the following theorem.

Theorem 3.6 Let the fractional order γ = γ (x) and u(x, t) ∈ C (4,2)
x,t be the smooth solution

of the variable-order subdiffusion Eq. (3.1), the numerical solution of the MDFF-VO scheme
(3.6) is convergent, in the sense of (3.15), with an order of O

(
	t + 	x2 + 	t2/	x2

)
.

4 Extension to Distributed-Order Subdiffusion Equations

We consider a nonnegative function ρ(γ ) that acts as weight for the order of differentiation
γ ∈ (0, 1) such that

∫ 1
0 ρ(γ ) dγ = ρ0 > 0, where ρ0 is a positive constant. For the sake of

simplicity, it is to assume ρ(γ ) is continuous and consider the following distributed-order
fractional diffusion equation, see [22,24,35,38],

∂u

∂t
= Kγ

1∫

0

ρ(γ ) 0 D1−γ
t

∂2u

∂x2 dγ + f (x, t), t ≥ 0, (4.1)

subject to u(x, 0) = ϕ(x), where 0 D1−γ
t is the modified Riemann–Liouville derivative (1.4).

Fractional differential equations where the order of differentiation is integrated over a
given range, and therefore there is no single order of differentiation, have been considered by
Caputo [3,4]. Bagley and Torvik [1] studied extensively these distributed-order differential
equations and gave series expansion solutions. Lorenzo and Hartley [24] studied the rheo-
logical properties of composite materials, while the distributed order fractional kinetics was
discussed by Sokolov et al. [35]. Actually, the distributed order operator becomes a more
precise tool to explain and describe some real physical phenomena [5,24,30,38] such as the
complexity of nonlinear systems and multi-scale, multi-spectral phenomena. However, there
are seldom works on numerical approximations of differential equations with distributed-
order. Diethelm and Ford [10] introduced a general framework for distributed-order ordinary
differential equations by using the quadrature formula, such as the trapezoidal formula, with
some suitable numerical solver for the resulting multi-term fractional equations, while a con-
vergence analysis of the method was discussed in [12] recently. To the best of our knowledge,
numerical schemes for partial integro-differential equations with distributed fractional order,
including the subdiffusion Eq. (4.1), have not appeared in the literature.
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In this section, the MDFF scheme (1.6) is extended to approximate the distributed-order
subdiffusion Eq. (4.1). For a positive integer Nγ , let 	γ = 1/Nγ , γ ∗

� = (� − 1
2 )	γ and

a∗
k = (k + 1)γ

∗
� − kγ ∗

� for k ≥ 0. For any temporal function {wn | 0 ≤ n ≤ N }, the modified

L1 approximate operator D
1−γ ∗

�

	t is defined by

D
1−γ ∗

�

	t wn = 	tγ
∗
� −1

�(1 + γ ∗
� )

[
a∗

0 wn −
n−1∑
k=1

(
a∗

n−k−1 − a∗
n−k

)
wk

]
, n ≥ 1.

We combine the modified L1 formula above with the second-order midpoint formula for
the weighted integral to get an accurate approximation of the distributed-order Riemann–
Liouville derivative, as stated in the following lemma.

Lemma 4.1 Assume that y(t) ∈ C2
t [0, tn+1] and ρ(γ ) 0 D1−γ

t y(t) ∈ C2
γ [0, 1]. Then

	γ

Nγ∑
�=1

ρ(γ ∗
� )D

1−γ ∗
�

	t y(tn) =
1∫

0

ρ(γ ) 0 D1−γ
t y(tn) dγ + O(	t + 	γ 2) .

We apply Lemma 4.1 to approximate the distributed-order Eq. (1.1) by

DtU
n
i = Kγ

Nγ∑
�=1

	γρ(γ ∗
� )D

1−γ ∗
�

	t 	
d ff
h U n

i + f n
i + R̃n

i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N − 1,

where the truncation error
∣∣R̃n

i

∣∣ ≤ C
(
	t + 	x2 + 	t2/	x2 + 	γ 2) , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N − 1. (4.2)

Neglecting the truncation error R̃i and replacing U n
i with its approximation un

i , we get the
following modified Du Fort–Frankel scheme with distributed-order (denoted by MDFF-DO)

Dt u
n
i = Kγ

Nγ∑
�=1

	γρ(γ ∗
� )D

1−γ ∗
�

	t 	
d ff
h un

i + f n
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N − 1. (4.3)

To start the MDFF-DO scheme, one can apply (2.6) to compute the first level solution u1
i .

Also, the initial-boundary conditions can be approximated by (2.8).
Obviously, the MDFF-DO scheme is also conditionally consistent. By the discrete energy

method, we will show that the proposed MDFF-VO procedure, including (2.6), (2.8) and
(4.3), is unconditionally stable. For simplicity of presentation, denote

Ak ≡ 	γ

Nγ∑
�=1

ρ(γ ∗
� )	tγ

∗
� −1

�(1 + γ ∗
� )

a∗
k = 	γ

Nγ∑
�=1

ρ(γ ∗
� )

�(γ ∗
� )	t

tk+1∫

tk

sγ ∗
� −1 ds , k ≥ 0. (4.4)

It is not difficult to obtain the following lemmas.

Lemma 4.2 The positive coefficient Ak satisfies

Ak−1 > Ak and Ak−1 − Ak > Ak − Ak+1, k ≥ 1 .
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Lemma 4.3 For any time sequence {Q1, Q2, Q3, . . .}, it holds that

	t
N−1∑
n=1

⎛
⎝

Nγ∑
�=1

	γρ(γ ∗
� )D

1−γ ∗
�

	t Qn

⎞
⎠ Qn ≥

⎛
⎜⎜⎝

Nγ∑
�=1

	γρ(γ ∗
� )t

γ ∗
� −1[
N
2

]

�(γ ∗
� )

⎞
⎟⎟⎠	t

N−1∑
n=1

Q2
n .

Proof Note that

	t
N−1∑
n=1

⎛
⎝

Nγ∑
�=1

	γρ(γ ∗
� )D

1−γ ∗
�

	t Qn

⎞
⎠ Qn

= 	t
N−1∑
n=1

	γ

Nγ∑
�=1

ρ(γ ∗
� )	tγ

∗
� −1

�(1 + γ ∗
� )

[
a∗

0 Qn −
n−1∑
k=1

(
a∗

n−k−1 − a∗
n−k

)
Qk

]
Qn

= 	t
N−1∑
n=1

[
A0 Qn −

n−1∑
k=1

(An−k−1 − An−k) Qk

]
Qn .

Thus, following the proof of Lemma 2.3, the claimed inequality can be verified by using
Lemma 4.2. The proof is completed. �

Lemma 4.4 Let the grid function vn
h ∈ Ph satisfies

Dtv
n
i = Kγ

Nγ∑
�=1

	γρ(γ ∗
� )D

1−γ ∗
�

	t 	
d ff
h vn

i + gn
i , 1 ≤ i ≤ M − 1, 1 ≤ n ≤ N − 1, (4.5)

δtv
1
2
i = g0

i , 1 ≤ i ≤ M − 1; v0
i = φi , 0 ≤ i ≤ M. (4.6)

Then it hold that

E N− 1
2 (vh) ≤ E

1
2 (vh) + 	t

∑N−1
n=1

∥∥gn
∥∥2

2Kγ

∑Nγ

�=1 	γρ(γ ∗
� )
(
�(γ ∗

� )
)−1

t
γ ∗
� −1[
N
2

]
, N ≥ 2, (4.7)

where the positive definite energy En− 1
2 is defined by (2.13).

Proof This proof is the same to that of Lemma 2.4 except slight differences in the technical
treatments of B2 and B3. Applying Lemma 4.3, one has

B̃2 ≡ − 2Kγ 	t
N−1∑
n=1

	x
M−1∑
i=1

⎛
⎝	γ

Nγ∑
�=1

ρ(γ ∗
� )D

1−γ ∗
�

	t 	
d ff
h vn

i

⎞
⎠(	d ff

h vn
i

)

≤ − 2Kγ

⎛
⎝	γ

Nγ∑
�=1

ρ(γ ∗
� )
(
�(γ ∗

� )
)−1

t
γ ∗
� −1[
N
2

]
⎞
⎠	t

N−1∑
n=1

[
	x

M−1∑
i=1

(
	

d ff
h vn

i

)2
]

. (4.8)
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Furthermore, it is easy to obtain that

B̃3 ≡ −2	t	x
N−1∑
n=1

M−1∑
i=1

gn
i

(
	

d ff
h vn

i

)

≤ 2Kγ

⎛
⎝	γ

Nγ∑
�=1

ρ(γ ∗
� )
(
�(γ ∗

� )
)−1

t
γ ∗
� −1[
N
2

]
⎞
⎠	t

N−1∑
n=1

[
	x

M−1∑
i=1

(
	

d ff
h vn

i

)2
]

+ 	t
∑N−1

n=1

∥∥gn
∥∥2

2Kγ

∑Nγ

�=1 	γρ(γ ∗
� )
(
�(γ ∗

� )
)−1

t
γ ∗
� −1[
N
2

]
. (4.9)

Multiplying the difference Eq. (4.5) by −2	t	x	
d ff
h vn

i , summing the indexes i, n for 1 ≤
i ≤ M − 1 and 1 ≤ n ≤ N − 1, one has

B1 = B̃2 + B̃3 ,

where B1 was defined in the proof of Lemma 2.4. With the help of the inequalities (2.16)
and (4.8)–(4.9), the above equation gives the claimed inequality (4.7). �
Theorem 4.5 The MDFF-DO scheme (4.3) is unconditionally stable in the sense of (4.7).

Now consider the error analysis. It is easy to see that ũn
h ∈ Ph satisfies

Dt ũ
n
i = Kγ

Nγ∑
�=1

	γρ(γ ∗
� )D

1−γ ∗
�

	t 	
d ff
h ũn

i + R̃n
i , 1 ≤ i ≤ M−1, 1 ≤ n ≤ N −1, (4.10)

δt ũ
1
2
i = R0

i , 1 ≤ i ≤ M − 1; ũ0
i = 0, 0 ≤ i ≤ M. (4.11)

Applying Lemma 4.4, we get

E N− 1
2 (ũh) ≤ E

1
2 (ũh) + 	t

∑N−1
n=1

∥∥R̃n
∥∥2

2Kγ

∑Nγ

�=1 	γρ(γ ∗
� )
(
�(γ ∗

� )
)−1

t
γ ∗
� −1[
N
2

]
, N ≥ 2. (4.12)

Furthermore, one applies (4.11) and (2.7) to find that

E
1
2 (ũh) = 	t2

	x2

∥∥δt ũ
1
2
∥∥2 = 	t2

	x2

∥∥R0
∥∥2 ≤ 	t2

	x2 C2 (	t + 	x2)2 .

Thus it follows from (4.2) and (4.12) that

E N− 1
2 (ũh) ≤ 	t2

	x2 C2 (	t + 	x2)2 + tN−1C2
(
	t + 	x2 + 	t2/	x2 + 	γ 2

)2
2Kγ

∑Nγ

�=1 	γρ(γ ∗
� )
(
�(γ ∗

� )
)−1

t
γ ∗
� −1[
N
2

]

≤ C2 (	t + 	x2 + 	t2/	x2 + 	γ 2)2 . (4.13)

Theorem 4.6 Let ρ(γ ) ∈ Cγ [0, 1], u(x, t) ∈ C (4,2)
x,t be the smooth solution of the distributed-

order subdiffusion Eq. (4.1) and ρ(γ ) 0 D1−γ
t u(x, t) ∈ C2

γ [0, 1], the numerical solution of

the MDFF-DO scheme (4.3) is convergent of order O
(
	t + 	x2 + 	t2/	x2 + 	γ 2

)
in

the sense of (4.13).
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5 Numerical Experiments

Three numerical examples are included in this section to verify the stability and accuracy of
the MDFF (2.5), MDFF-VO (3.6) and MDFF-DO (4.3) schemes. As usual, maximum norm
solution errors e(	t,	x) = max0≤i≤M

∣∣U (xi , tN ) − uN
i

∣∣ at the final time T , are computed
in our experiments, which are carried out on a PC with 1,024 RAM using MATLAB.

Example 1 Consider the following initial-boundary value problem of (1.1),

∂u

∂t
= 0 D1−γ

t
∂2u

∂x2 + 2tex
[

1 − tγ

�(2 + γ )

]
, 0 < x < 1, 0 < t ≤ 1,

u(0, t) = t2, u(1, t) = et2, 0 < t ≤ 1,

u(x, 0) = = 0, 0 ≤ x ≤ 1.

This problem has an exact solution u(x, t) = ex t2.

Numerical accuracy of the MDFF scheme (2.5) is examined for different time-step settings,
that is 	t = O(	x2),	t = O(	x3/2) and 	t = O(	x). In each setting, three different
fractional orders γ = 0.1, 0.5, 0.9 are tested. Tables 1, 2 and 3 list the solution errors
on the gradually refined grids with the coarsest grid �τ

h of 	x = 1/10 and 	t = 1/100.
Taking 	t = 	x2 in Table 1, the mesh spacings of the refined grid �̃τ

h are determined by
	̃x = 	x/2, 	̃t = 	t/4 . The experimental rate p (listed as Order in tables) of convergence,
in 	x , is estimated by computing

p ≈ log2
[
e(	t,	x)/e(	̃t, 	̃x)

]
.

It is seen that, the MDFF scheme is of about O(	x2) for 	t = O(	x2).
The mesh spacings of the refined grid �̃τ

h in Table 2 are determined by 	̃x = 	x/2, 	̃t ≈
2− 3

2 	t such that the time-step size 	t ≈ 10− 1
2 	x

3
2 . We observe that the numerical solu-

tions for the three fractional-orders are O(	x) accurate. Table 3 lists the solution errors for
large time-steps 	t = 10−1	x . As predicted by Theorem 2.5, the numerical solutions are

Table 1 Numerical accuracy in
	x of MDFF with 	t = 	x2 	x γ = 0.1 γ = 0.5 γ = 0.9

e(	t, 	x) Order e(	t, 	x) Order e(	t, 	x) Order

1/10 5.79e−03 – 3.90e−03 – 4.01e−03 –

1/20 1.24e−03 2.22 9.72e−04 2.00 1.01e−03 1.99

1/40 3.17e−04 1.97 2.42e−04 2.01 2.52e−04 2.00

1/80 7.01e−05 2.17 6.05e−05 2.00 6.31e−05 2.00

Table 2 Numerical accuracy in
	x of MDFF with

	t ≈ 10− 1
2 	x

3
2

	x γ = 0.1 γ = 0.5 γ = 0.9

e(	t, 	x) Order e(	t, 	x) Order e(	t, 	x) Order

1/10 5.79e−03 – 3.90e−03 – 4.01e−03 –

1/20 3.11e−03 0.90 1.98e−03 0.98 2.05e−03 0.97

1/40 1.14e−03 1.46 9.93e−04 0.99 1.04e−03 0.99

1/80 4.82e−04 1.24 4.97e−04 1.00 5.20e−04 0.99
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Table 3 Numerical accuracy in
	x of MDFF with
	t = 10−1	x

	x γ = 0.1 γ = 0.5 γ = 0.9

e(	t, 	x) Order e(	t, 	x) Order e(	t, 	x) Order

1/10 5.79e−03 – 3.90e−03 – 4.01e−03 –

1/20 5.59e−03 0.05 3.98e−03 −0.03 4.14e−03 −0.05

1/40 5.51e−03 0.02 3.99e−03 0.00 4.17e−03 −0.01

1/80 5.46e−03 0.01 3.98e−03 0.00 4.18e−03 0.00

Table 4 Numerical accuracy in
	x of MDFF-VO with
	t = 	x2

	x γ = γ1(x, t) γ = γ2(x, t) γ = γ3(x, t)

e(	t, 	x) Order e(	t, 	x) Order e(	t, 	x) Order

1/10 5.79e−03 – 3.94e−03 – 4.08e−03 –

1/20 1.20e−03 2.27 9.82e−04 2.00 1.03e−03 1.99

1/40 3.06e−04 1.97 2.44e−04 2.01 2.57e−04 2.00

1/80 6.96e−05 2.14 6.08e−05 2.00 6.42e−05 2.00

Table 5 Numerical accuracy in
	x of MDFF-VO with

	t ≈ 10− 1
2 	x

3
2

	x γ = γ1(x, t) γ = γ2(x, t) γ = γ3(x, t)

e(	t, 	x) Order e(	t, 	x) Order e(	t, 	x) Order

1/10 5.79e−03 – 3.94e−03 – 4.08e−03 –

1/20 3.04e−03 0.93 1.99e−03 0.99 2.08e−03 0.97

1/40 1.09e−03 1.48 9.98e−04 1.00 1.05e−03 0.99

1/80 5.06e−04 1.10 4.99e−04 1.00 5.24e−04 1.00

stable although the convergence rates approach zero. Experimentally, the numerical results in
Tables 1, 2 and 3 suggest that the order of accuracy is not less than O(	t +	x2 +	t2/	x2).
It supports Theorems 2.6 partly.

Example 2 [6,7] Consider the following initial-boundary value problem of (3.1),

∂u

∂t
= 0 D1−γ (x,t)

t
∂2u

∂x2 + 2tex

[
1 − tγ (x,t)

�(2 + γ (x, t))

]
, 0 < x < 1, 0 < t ≤ 1,

u(0, t) = t2, u(1, t) = et2, 0 < t ≤ 1,

u(x, 0) = 0, 0 ≤ x ≤ 1.

This problem has an exact solution u(x, t) = ex t2.

We set a(x, t) = (x − 0.5)2 + (t − 0.5)2 and consider three variable fractional orders
γ1(x, t) = (2+a(x, t))/20, γ2(x, t) = (10+a(x, t))/20, and γ3(x, t) = (18+a(x, t))/20.

They take the minimum values γm = 0.1 , 0.5 and 0.9, respectively, at the interior time-
space point (x, t) = (0.5, 0.5). Numerical accuracy of the MDFF-VO scheme (3.6) are also
tested for three time-step settings, 	t = O(	x2),	t = O(	x3/2) and 	t = O(	x). The
approximate solutions in Tables 4, 5 and 6 are obtained in similar to those in Tables 1, 2
and 3. It is seen that, the numerical data support Theorems 3.5 and 3.6 experimentally.
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Table 6 Numerical accuracy in
	x of MDFF-VO with
	t = 10−1	x

	x γ = γ1(x, t) γ = γ2(x, t) γ = γ3(x, t)

e(	t, 	x) Order e(	t, 	x) Order e(	t, 	x) Order

1/10 5.79e−03 – 3.94e−03 – 4.08e−03 –

1/20 5.61e−03 0.05 4.00e−03 −0.02 4.18e−03 −0.04

1/40 5.53e−03 0.02 4.00e−03 0.00 4.19e−03 −0.00

1/80 5.48e−03 0.01 3.99e−03 0.00 4.19e−03 0.00

Table 7 Numerical accuracy in
	x of MDFF-DO for different
time-steps

	x(= 	γ ) 	t = 	x2 	t ≈ 10− 1
2 	x

3
2 	t = 10−1	x

e(	t, 	x) Order e(	t, 	x) Order e(	t, 	x) Order

1/10 4.35e−03 – 4.35e−03 – 4.35e−03 –

1/20 1.04e−03 2.06 2.05e−03 1.09 4.30e−03 0.02

1/40 2.58e−04 2.02 1.04e−03 0.98 4.22e−03 0.03

1/80 6.40e−05 2.01 5.13e−04 1.01 4.18e−03 0.01

Example 3 Consider an initial-boundary value problem of (4.1) with ρ = �(2 + γ ),

∂u

∂t
=

1∫

0

�(2 + γ ) 0 D1−γ
t

∂2u

∂x2 dγ + 2tex
[

1 − t − 1

ln t

]
, 0 < x < 1, 0 < t ≤ 1,

u(0, t) = t2, u(1, t) = et2, 0 < t ≤ 1,

u(x, 0) = 0, 0 ≤ x ≤ 1.

This problem has an exact solution u(x, t) = ex t2.

Numerical stability and accuracy of the MDFF-DO scheme (4.3) are also examined for
three time-step settings 	t = O(	x2),	t = O(	x3/2) and 	t = O(	x). Taking the
length 	γ = 	x , Table 7 lists the solution errors on the gradually refined grids with the
coarsest grid of 	x = 1/10 and 	t = 1/100. It is seen that, the results of Theorems 4.5 and
4.6 are supported experimentally.

6 Concluding Remarks

By combing the L1 approximation of the Jumarie’s modified Riemann–Liouville derivative
with the idea of Du Fort–Frankel scheme, well-known for ordinary diffusion equations, we
propose three modified Du Fort–Frankel-type schemes for fractional subdiffusion equations
with constant, variable and distributed fractional order, respectively. Under the time-step
(consistency) restriction 	t/	x → 0, the proposed explicit schemes are stable and con-
vergent such that they admit large time-steps to accelerate the nonlocal time-integration in
numerical approximations of time-fractional diffusion equations especially in higher spatial
dimensions. Furthermore, due to the flexibility and relative simplicity of implementation, the
stable explicit approaches would be good candidates for parallel computations on distributed-
memory machines and pave the way for reducing the massive storage requirements of all
discrete solutions at previous time levels.
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