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Abstract In this paper, the interpolated bounce-back scheme and the immersed boundary
method are compared in order to handle solid boundary conditions in the lattice Boltzmann
method. These two approaches are numerically investigated in two test cases: a rigid fixed
cylinder invested by an incoming viscous fluid and an oscillating cylinder in a calm viscous
fluid. Findings in terms of velocity profiles in several cross sections are shown. Differences
and similarities between the two methods are discussed, by emphasizing pros and cons in
terms of stability and computational effort of the numerical algorithm.

Keywords Fluid-structure interaction · Lattice Boltzmann method · Immersed boundary
method

1 Introduction

In the last decades, the lattice Boltzmann (LB) method [1] arose as an effective tool to
simulate fluid flows by recovering the incompressible Navier–Stokes equations with second-
order accuracy [2]. The Boltzmann’s equation is solved on a Cartesian square grid which
is kept fixed during the overall analysis and it is used to compute the evolution in space
and time of a particle distribution function. Many applications have been developed, such as
multiphase flow [3], the solution of reaction-diffusion [4] and Poisson equations [5], blood
flow in deformable vessels [6] and even fluid-structure interaction [7–12]. Regarding the last
application, an accurate description of the immersed solid body is required. Specifically, a
proper boundary condition should be able to account for the position of an immersed solid
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body, to enforce the no-slip condition, to satisfy Newton’s law and to be mass-conservative.
Two approaches are possible: the interpolated bounce-back (BB) scheme and the immersed
boundary (IB) method.

In the interpolated bounce-back scheme, the basic idea is to compute the particle dis-
tribution function in an off-grid position by an interpolation/extrapolation of this function
from the on-grid nodes [13]. Such idea is proven to be very effective and to preserve the
second-order accuracy of the LB method [14,15]. On the other hand, such approach is com-
plex to be implemented, especially upon solid motion and whenever complex geometries are
considered.

The IB method [16,17] is a simpler approach for the solid boundary conditions treatment.
The solid body is represented by a Lagrangian immersed mesh, generally unstructured, non-
stationary and not aligned with the Eulerian fluid grid. The interaction between the two
meshes is given by simple interpolation rules. Since the solid mesh is independent from the
fluid one, the IB method is easier to be implemented in the lattice Boltzmann framework,
regardless of the solid body geometry.

In this paper, the BB scheme and the IB method are compared in two scenarios. In the
former, a rigid fixed cylinder is invested by an incoming flow. The velocity profiles in several
cross sections computed by the two approaches are compared. In the latter, a rigid cylinder
oscillates in a calm fluid. The drag coefficient computed by the two approaches are given,
together with a convergence analysis. Considerations about stability and computational effi-
ciency of the numerical algorithms are discussed in both the scenarios.

The paper is organized as follows. In Sect. 2, a brief summary of the LB method is given.
In Sects. 3 and 4, the main features of the BB scheme and the IB method are discussed,
together with some practical issues. In Sect. 5, the numerical comparisons are carried out.
Some conclusions are drawn in Sect. 6. Finally, in Appendix the influence of the number of
IB points idealizing the immersed solid body is discussed.

2 The Lattice Boltzmann Method

In this paper, the so called D2Q9 lattice Boltzmann model is considered. For more details
the interested reader can refer to [1] and the references therein.

The single-phase two-dimensional lattice equation [18] is solved on a fixed square grid,
where the evolution in space x and time t of the particle distribution function fi is described
along prescribed directions with velocities ci . Such equation reads as follows:

fi (x + ci �t, t + �t) = fi (x, t) + 1

τ
[ f eq

i (x, t) − fi (x, t)], (1)

being τ the relaxation parameter and �t the time step. The equilibrium particle distribution
function f eq

i is derived in the form of a second-order expansion in the local Mach number,
as described in [19]. Once Eq. (1) is solved, the fluid density ρ and the flow velocity v are
computed as:

ρ =
∑

i

fi , v =
∑

i fi ci

ρ
, (2)

respectively. The pressure field p can be immediately computed by means of the equation of
state of an ideal gas, that is p = ρ c2

s , where c2
s = ∑

i wi c2
i = 1/3 and wi is a set of 9 weights

defined as w0 = 4/9, w1 = w2 = w3 = w4 = 1/9 and w5 = w6 = w7 = w8 = 1/36 for
the present LB model. As usual, for simplicity and computational efficiency, the grid size
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Fig. 1 Interpolated bounce-back
scheme
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and the time step are both set equal to 1. This means that, in order to simulate a physical
phenomenon, special attention should be paid to the unit conversion from the physical system
to the LB one. It is worth to notice that the relaxation parameter τ is strictly related to the
fluid viscosity ν, that is

ν =
(

τ − 1

2

)
c2

s . (3)

Two schemes to account for the position of a solid body in the grid not aligned with the lattice
nodes have been proposed in the literature. First, the so called interpolated bounce-back rule
[14,15] is discussed, which consists of computing the particle distribution function bouncing-
back from each solid off-grid node to the surrounding fluid ones through an interpolation of
the known on-grid fi . Notice that this boundary condition is strictly related to the Eulerian
nature of the LB method, as it will be discussed in the following. Secondly, the immersed
boundary method is presented [16,20]. It consists of the verification of the zero-velocity
condition on a mesh, idealizing the immersed solid, by properly modifying the particle
distribution functions based only on the boundary position. Differently from the previous
one, the immersed boundary condition is characterized by a Lagrangian point of view.

3 Interpolated Bounce-Back

Here, the interpolated bounce-back condition proposed in [14,17] is considered. Making
reference to Fig. 1, the solid boundary is represented by the red curve, the solid and the fluid
nodes involved by the bouncing-back scheme are black and blue, respectively, and denoted
by xb and x f . The intersection points of the grid lines (including the diagonals of each cell)
with the solid boundary are indicated by red nodes and denoted by xw . The off-grid particle
distribution function f̃ī which bounces-back from a solid node xb to a fluid one x f is obtained
by performing a quadratic interpolation of the populations located at the neighbour nodes,
that is,

f̃ī (x f , t) = δ(1 + 2δ) fi (x f + ci , t) + (1 − 4δ2) fi (x f , t) +
−δ(1 − 2δ) fi (x f − ci , t) + 3wi [ci · v(xw, t)] if δ < 1/2, (4)

f̃ī (x f , t) = 1

δ(1 + 2δ)
fi (x f + ci , t) + 2δ − 1

δ
fī (x f − ci , t) +

−2δ − 1

2δ + 1
fī (x f − 2ci , t) + 3wi

δ(1 + 2δ)
[ci · v(xw, t)] if δ ≥ 1/2, (5)
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where xw is the exact position of a wall node in the lattice background, δ is the fraction of
intersected link δ = ||x f − xw||/||x f − xb|| and v(xw, t) is the local velocity of the wall.
Notice that the direction ī is opposite to the direction i , i.e. cī = −ci .

The algorithm used to implement the above condition can be summarized as follows:

1. assign initial conditions;
2. solve Equation (1) (notice that populations are advected from fluid to solid nodes and

vice versa);
3. assign the position of the solid body (it typically changes due to fluid-structure interaction);
4. detect all the quantities that should be used in the interpolated bounce-back scheme:

xw, x f , xb;
5. overwrite the particle distribution functions advected from solid to fluid nodes by using

Eqs. (4) and (5);
6. compute the macroscopic variables, advance in time and restart in step 2.

Aiming at using the fluid solver for fluid-structure interaction, a proper procedure is needed
to tackle moving boundaries due to structure deformation. In particular, because of the fixed
nature of the grid employed for the fluid computation, new fluid nodes can be activated, as
a consequence of structure deformation. Thus, the newly-activated nodes must be properly
initialized, in terms of particle distribution function: to assign a proper initial value, a very
simple refill procedure is often adopted [8,21]. In particular, a linear interpolation at the
surrounding nodes placed externally to the solid is applied. On the other hand, upon struc-
ture deformation some nodes may become inactive. In this case, the associated values are
typically disregarded [7]. Notice that the outlined refill procedure does not exactly guarantee
mass conservation, since it introduces mass in the system each time a new fluid node arises
and removes mass from the system each time a node becomes inactive, but no balance is
guaranteed between the two.

In addition, for fluid-structure interaction, computing fluid forces on the solid boundary
is needed. Such force computation can be performed by a stress-integration procedure [15].
Specifically, first the stress tensor σ must be computed at each lattice site, that is

σ = −ρ c2
s I −

(
1 − 1

2τ

)
Π, (6)

where Π = ∑
i f neq

i ci ⊗ ci is calculated with the non-equilibrium part of the particle
distribution function f neq

i = fi − f eq
i and I is the unit tensor. Secondly, it must be inter-

polated/extrapolated at the off-grid positions xw . Finally, it typically should be integrated
to get local resultants. As discussed in [15], such stress-integration approach involves high
computational effort, due to the large number of algebraic operations needed by the interpo-
lation/extrapolation. Alternatively, the momentum-exchange method [22] could be adopted.
However, even if this second procedure is simpler than the stress-integration one and involves
a lower computational cost, the drawback to handling a complex geometry, especially upon
solid deformation, still persists.

4 The Immersed Boundary Method

Here, the immersed boundary method proposed in [16,23] is considered. As show in Fig. 2,
the solid boundary is represented by a Lagrangian mesh (red line), generally non-stationary
and unstructured.
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Fig. 2 Immersed boundary
method

x

Xw

Therefore, two different coordinate systems are used in this case: an Eulerian grid for the
LB equation and a Lagrangian mesh for the immersed boundary, which communicate through
interpolation rules satisfying the no-slip condition for velocity and the momentum conser-
vation. The presence of the boundary influences the fluid domain computation indirectly,
through a suitable correction of the particle distribution functions, that could be equivalently
interpreted by an additional source term in the LB equation. Thus, there is no direct boundary
condition for the fluid acting on the populations as in the interpolated bounce-back scheme
[15]. This means that the populations could in principle travel through the boundary, but
the modified populations should avoid it. Moreover, the fluid fills the entire domain, even
inside the boundary region, thus no refill procedure is necessary. Let denote Xw and Vw the
position and the velocity, respectively, of the generic Lagrangian boundary node. The fluid
velocity v can be interpolated at the boundary node, that is

v(Xk) =
∑

x

v(x)W (x − Xw). (7)

Notice that capital letters indicate Lagrangian variables. The interpolation kernel W is chosen
to be short-ranged with a finite cut-off length in order to reduce the computational effort.
Moreover, momentum and angular momentum have to be identical when evaluated in either
the Eulerian or the Lagrangian frame. For convenience, the kernel is factorized as W (xx) =
w(x1) · w(x2), being (x1,x2) the Eulerian coordinates, and

w(x j ) =

⎧
⎪⎪⎨

⎪⎪⎩

1/8
(

3 − 2|x j | +
√

1 + 4|x j | − 4x2
j

)
for 0 ≤ |x j | ≤ 1,

1/8
(

5 − 2|x j | −
√

−7 + 12|x j | − 4x2
j

)
for 1 ≤ |x j | ≤ 2,

0 otherwise,

(8)

with j = 1, 2.
The IB method has been implemented with an implicit velocity-correction scheme [20] in

order to satisfy the no-slip condition: v(Xw) = Vw . The corresponding term used iteratively
to correct the populations is denoted by g.

The outlined IB method is implemented based on the following algorithm:

1. assign the initial conditions;
2. solve Equation (1);
3. compute the fluid macroscopic variables (ρ and v) and compute the initial value of g at

the Lagrangian solid points g(0)(Xw) = Vw − v(Xw);
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4. perform the following iterative procedure until the no-slip convergence criterion is
satisfied:

(a) spread g at iteration l over the Eulerian lattice nodes:

g(l)(x) =
∑

Xw

g(l)(Xw)W (x − Xw)�S, (9)

being �S the solid mesh spacing;
(b) compute the corrected fluid velocity: v(l+1)(x) = v(l)(x) + g(l)(x);
(c) interpolate fluid velocity at the solid nodes:

v(l+1)(Xw) =
∑

x

v(l+1)(x)W (x − Xw); (10)

(d) update the value of g: g(l+1)(Xw) = g(l)(Xw) + [
Vw − v(l+1)(Xw)

]
;

(e) iterate until the no-slip convergence criterion is met:

Vw − v(l+1)(Xw)

Vw

≤ 10−4; (11)

5. update the populations fi based on the boundary correction term:

fi (x + ci �t, t + �t) = fi (x + �t ci , t + �t) + 3wi ci · g(x, t); (12)

6. compute macroscopic variables and advance in time by going to step 2.

The fluid forces F(Xw) acting on an immersed solid node are readly available, since they
can be simply computed as

F(Xw) = −
∑

x

g(x)W (x − Xw). (13)

It should be remarked that, as already pointed by Peskin [16], the Lagrangian boundary
points must be denser than the fluid grid in order to avoid momentum and pressure leaks. The
practical restriction suggested in the technical literature is that the solid mesh size should be
lesser than half the fluid grid (�S < 0.5). A simple test confirming the effectiveness of such
rule is reported in Appendix.

5 Results and Discussion

In this section, two tests are carried out. First, a rigid fixed cylinder is invested by a fluid.
Secondly, a rigid cylinder harmonically oscillates in a calm fluid.

5.1 Rigid Fixed Cylinder Invested by a Fluid

A cylinder is immersed in a viscous fluid, and at the west section, a constant uniform velocity
profile, V = 0.05, is imposed. At the east section, outflow boundary conditions are used, that

is fixed density and
∂v

∂n
= 0, being n the outer normal to the boundary. Free-slip boundary

conditions are enforced at bottom and top walls. Referring to Fig. 3, the cylinder radius
is R = 10, the grid is composed of 35R and 22R lattice sites in the x and y directions,
respectively. Moreover, the distance between the inlet section and the center of the cylinder
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Fig. 3 Sketch of the problem definition

is 11R. Finally, the cylinder is placed symmetrically with respect to the longitudinal axis of
the fluid domain.

The problem is characterized by a Mach number Ma equal to Ma = V/cs = 0.09 and
128 immersed boundary points are used to idealize the surface of the cylinder. Simulations
involving different values of the Reynolds number Re = 2RV/ν are performed by varying
the relaxation parameter τ .

The attention is focused on three cross sections. The first one, called Rear, is horizontal,
starting from the inlet section and ending to the leftmost point of the cylinder. The second
one is called Front, still horizontal, ranging from the rightmost point of the cylinder to the
outlet section. The last one, Up, is vertical and spans the region of the fluid domain from
the topmost point of the cylinder to the upper bound. In Fig. 4, the horizontal component, v,
of the fluid velocity is depicted at the three cross sections after 50,000 lattice time steps for
different values of the Reynolds number: Re = 10, 20, 50, 100 and 200.

Regarding the Rear section, a very close agreement between the immersed boundary
method and the interpolated bounce-back scheme is experienced for all the values of Re.
Similar findings are shown for the Up cross section, even if for the largest value of the
Reynolds number, Re = 200, a slightly higher peak of v is computed by the interpo-
lated bounce-back scheme. The major differences are experienced in the Front cross section,
that is the one interested by vortex shedding phenomena, when Re grows. In particular,
the velocity profile computed by the interpolated bounce-back scheme largely overesti-
mates the negative peak close to the cylinder with respect to the IB method. Moreover,
Fig. 5 shows the zoom of the peak zone of the Up section. As it can be immediately
realized, the velocity profile predicted by the interpolated bounce-back scheme appears
to be upset by higher frequency components, whereas the one given by the IB method is
still smooth. This reveals an onset of instability of the computation in the bounce-back
scheme.

In order to investigate this phenomenon, a simulation at Re = 1000 (τ = 0.503) is
carried out. Using the interpolated bounce-back scheme, the simulation becomes rapidly
unstable, so confirming the stability limitations of this approach as discussed in [24].
On the contrary, the IB method still leads to stable solutions. The velocity profiles after
50,000 lattice time steps and the velocity field at three different time instants are given in
Figs. 6 and 7.

Thus, for a given grid resolution and Mach number, the IB method reveals a higher stability.
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Fig. 4 Velocity profiles in three sections for different values of Re. IB and BB represent the immersed
boundary method and the interpolated bounce-back scheme, respectively. (a) Rear at Re = 10. (b) Front at
Re = 10. (c) Up at Re = 10. (d) Rear at Re = 20. (e) Front at Re = 20. (f) Up at Re = 20. (g) Rear at
Re = 50. (h) Front at Re = 50. (i) Up at Re = 50. (j) Rear at Re = 100. (k) Front at Re = 100. (l) Up at
Re = 100. (m) Rear at Re = 200. (n) Front at Re = 200. (o) Up at Re = 200

In order to compare the computational effort of the two approaches, Table 1 reports the
CPU time needed to perform 50,000 lattice time steps is reported for both the BB and the IB
method. As it can be noted, the cost involved by the BB method is about the 26 % lower than
the one given by the IB computation. It is worth to remark that in the interpolated bounce-back
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Fig. 5 Velocity profile in section
Up at Re = 200: zoom of
Fig. 4o. IB and BB represent the
immersed boundary method and
the interpolated bounce-back
scheme, respectively
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Fig. 6 Velocity profiles after 50,000 lattice time steps in three sections at Re = 1000 computed by the IB
method. a Rear. b Front. c Up
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Fig. 7 Velocity field at Re = 1000. a 4,000 lattice time steps. b 5,000 lattice time steps. c 8,500 lattice time
steps
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Table 1 Normalized CPU time needed to perform 50,000 iterations by using the BB and the IB method

Computational cost

BB ∼ 1

IB ∼ 1.7

Fig. 8 Time history of the drag
coefficient. IB and BB represent
the immersed boundary method
and the interpolated bounce-back
scheme, respectively. Ref denotes
the references values from [25]
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 0

 4

 8

 1  2  3  4  5  6

C
d

t/T

IB BB Ref

computation, the larger part of the computation is due to the stress-integration procedure to
compute forces along the solid boundary (as discussed in Sect. 3). If this procedure is skipped,
the CPU time is even 10 times lower.

5.2 Oscillating Rigid Cylinder

A circular cylinder oscillating in a calm viscous fluid [25] is considered. The diameter of
the cylinder is D = 20 lattice nodes and its surface is described by 100 immersed boundary
points. The lattice dimension is set to 1100 × 700. The relaxation parameter is τ = 0.524.
At the beginning of the simulation, the cylinder is placed in the center of the fluid domain.
Everywhere, outflow boundary conditions are enforced, that is n · ∇ fi = 0. The cylinder
oscillates only in the horizontal direction with an imposed velocity V (t)

V (t) = −Vmax cos

(
2π t

T

)
, (14)

being Vmax = 0.04 and T = 2500. Notice that these values correspond to a Reynolds
number Re = Vmax D/ν = 100 and to a Keugelan–Carpenter number Kc = Vmax T/D = 5.
In addition, in order to avoid compressibility effects, simulations are performed at a low
Mach number, that is Ma = Vmax/cs = 0.007.

The drag coefficient Cd acting on the cylinder is computed by using the BB scheme and
the IB method. It is plotted in Fig. 8, where a very close agreement between the two solutions
is experienced. Moreover, it is worth to notice the agreement with the reference solution [25]
too.

A convergence analysis on the peak value of the drag coefficient is plotted in Fig. 9. The
reference value is taken from [25].

The convergence behavior of the two approaches appears to be very similar. Both of them
exhibit a convergence rate approximatively equal to 2. The slight mismatch between the two
curves is due to the fact that, for a given grid resolution, the value of the relaxation parameter
τ used in the present simulations is relatively low, thus negatively affecting the interpolated
bounce-back procedure. Specifically, if a very coarse grid is used, i.e. 137 × 87 lattice nodes
corresponding to τ = 0.503, the interpolated bounce-back scheme rapidly becomes unstable,
as observed in the previous test case.
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Fig. 9 Convergence analysis on
the peak value of the drag
coefficient. IB and BB represent
the immersed boundary method
and the interpolated bounce-back
scheme, respectively
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Table 2 CPU time (s) needed to get a time t/T = 6 by using the bounce-back rule (BB) and the IB method

Computational cost

BB ∼ 1

IB ∼ 0.06

In order to quantify the computational cost, the CPU time involved by the two methods
are compared in Table 2, where the grid dimensions are 1100 × 700. In this case, CPU
times are very different if compared to the previous test case. In particular, the computation
implementing the BB rule involves a CPU time that is about 17 times larger than the one
needed by the IB computation. This difference is mainly due to the fact that for a fixed
obstacle the identification of xw, xb and x f can be performed just once at the beginning
of the simulation. Upon solid motion, such quantities move with the cylinder, thus they
should be identified at each time step before using Eqs. (4) and (5). Similarly, the stress-
integration procedure is affected by a higher computational effort too, since Eq. (6) and the
interpolation/extrapolation operation involve much more lattice nodes. In this case, even if
the stress-integration procedure is avoided the cost of the BB procedure is still 70 % higher.
However, notice that force computation can not be skipped in fluid-structure interaction
problems.

6 Conclusions

In this paper, two strategies to handle the position of a solid body immersed in the lattice
background have been compared. First, the interpolated bounce-back scheme has been dis-
cussed. It is characterized by an Eulerian nature, strictly related to the lattice framework. Even
if this methodology is second-order accurate, it is affected by several drawbacks. In particu-
lar, handling a general geometry is an hard task. Moreover, upon solid motion/deformation,
some nodes are activated/deactivated and, as a consequence, a refill procedure should be
devised. Computing the fluid forces acting on the body involves a huge computational effort,
especially if the stress-integration procedure is adopted. On the other hand, the immersed
boundary method implemented in an implicit velocity-correction based version, with its
characteristic Lagrangian point of view, offers a valid alternative to the previous scheme.
The presence of a solid body with a complex shape is irrelevant, since the only required
information is a set of coordinates describing the immersed solid. The numerical tests con-
firm that the IB method is more stable than the BB scheme, while exhibiting a compara-
ble overall accuracy. Considerations about the computational effort have been carried out
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in terms of involved CPU time. In particular, if a fixed body is considered, the interpo-
lated bounce-back rule is computationally cheaper than the immersed boundary method.
The scenario is drastically different for moving boundaries and fluid-structure interaction
problems. In these cases, the computational cost involved by the IB procedure is remarkably
lower.

7 Appendix

In order to prevent momentum and pressure leakages, the immersed body should be rep-
resented by a sufficiently large [16,26] number of Lagrangian IB points. Therefore, we
performed and report here a preliminary analysis on the effect of the number of IB points for
the test case of Sect. 5.1 (flow over a rigid cylinder). The drag coefficient Cd experienced by
the cylinder at Re = 10 is computed with 350 × 220 lattice points by progressively refining
the number of Lagrangian IB points representing the cylinder surface, thus reducing the solid
mesh spacing �S. The drag coefficient is computed as

Cd = Fx

ρ̄V 2 R
, (15)

where Fx is the horizontal component of the total force acting upon the cylinder and ρ̄ is the
average density. The force is computed according to Eq. 13 over all the Xw idealizing the
cylinder. The relative error ε is defined as

ε = Cc
d − C r

d

C r
d

, (16)

where Cc
d is the drag coefficient computed for a given number of IB points and the refer-

ence value C r
d is computed for a very fine solid mesh consisting of 1024 IB points, which

corresponds to a mesh size �S = 0.06. In Fig. 10, the relative error is plotted against
the solid mesh spacing �S. It is possible to observe that the error practically vanishes for
�S ≤ 0.5, which is therefore the value used in the numerical analyzes reported in the
present paper. Specifically, a further refining over such value corresponds to a plateau of
the curve. Finally, it is worth to notice that the relative error assumes negative values, since
Cc

d < C r
d . Such behavior has to be addressed to the fact that the lower the number of IB points,

the more permeable the cylinder surface is, thus the resultant drag coefficient reduces as
well.

Fig. 10 Relative error in the
computation of Cd at Re = 10
for different values of the solid
mesh spacing �S (red curve).
The blue line represents ε = 0
(Color figure online)
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