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Abstract In this paper, an efficient lattice Boltzmann model for n-dimensional steady
convection–diffusion equation with variable coefficients is proposed through modifying the
equilibrium distribution function properly, and the Chapman–Enskog analysis shows that
the steady convection–diffusion equation with variable coefficients can be recovered exactly.
Detailed simulations are performed to test the model, and the results show that the accuracy
and efficiency of the present model are better than previous models.
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1 Introduction

It is well known that numerous complex and interesting phenomena are caused by the com-
petition between convection and diffusion procedures, thus the studies on the solution of
convection–diffusion equation (CDE) are of great importance in many fields of science and
engineering. However, it may be very difficult to obtain exact solution for general CDE,
especially for those with variable coefficients. In contrast, the numerical methods, including
best-approximation weighted-residuals method [1], analytical upstream collocation solution
[2], finite-difference method [3], finite volume method [4], finite element method [5–7] and
so on, can be served as an alternative, and have been developed to solve CDE with the
development of computer technology.

In the past two decades, the lattice Boltzmann method (LBM), as a promising numeri-
cal approach, has been successfully applied in the study of the complex fluid flows [8–10],
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including porous media flow [11,12], multiphase and/or multicomponent flow [13], electro-
magnetic waves propagation [14], electro-osmotic flow [15,16], relativistic fluid dynamics
[17,18] and others [19–21]. Compared with some traditional numerical methods, the LBM is
intrinsically parallel, easy programming, and efficient in dealing with complicated boundary
conditions, and also extended to solve nonlinear systems, including the Burgers equation [22],
KPZ equation [23], reaction–diffusion equation [24], Poisson equation [25,26], convection–
diffusion equations (CDEs) [27–31] and so on.

However, almost all the existing LB models for CDEs focus on the unsteady equations.
When used for solving steady problems, these models usually have defects of computing
complexity, sometimes inefficiency, and even producing wrong solution. A detailed coun-
terexample can be found in Ref. [25]. Besides, nearly all of the previous models are dealing
with constant coefficient CDE. For example, a general lattice Boltzmann (LB) model has
been proposed for the nonlinear CDEs through introducing an auxiliary moment C0 [27],
usually the moment C0 is a complicated function with an integral form, and may not be deter-
mined analytically. In this paper, following the same idea in our previous work [27], a new
simple and efficient LB model for steady CDE with variable coefficients is proposed through
constructing a proper equilibrium distribution function, and simultaneously, the problems
mentioned above can be overcome.

The rest of the paper is organized as follows. In Sect. 2, a lattice Bhatnagar-Gross-Krook
(LBGK) model for steady CDE with variable coefficients is proposed and some of its special
cases are discussed. In Sect. 3, some numerical tests on the proposed model are performed,
and finally, a brief summary is given in Sect. 4.

2 Modified LBGK Model

The n-dimensional steady CDE with a source term can be written in the following form

∇ · B(x, φ) = ∇ · [α(x)∇ D(φ)] + F(x, φ), (1)

where ∇ is the gradient operator with respect to the position x in n dimensions. B(x, φ) is the
convection term, which is the known function of position x and the scalar function φ. D(φ)

is the diffusion term related to φ, which is an unknown real/complex-valued scalar function
of position x. α(x) is the diffusion coefficient, and F(x, φ) is the source term with respect to
the spatial coordinate x and φ in n dimensions.

In this work, the lattice Bhatnagar-Gross-Krook (LBGK) model is considered for its
simplicity and efficiency in the study of the fluid flows and nonlinear CDEs. The evolution
equation of the LBGK model reads

fi (x+ciΔt, t+Δt) − fi (x, t)=− 1

τ
[ fi (x, t)− f eq

i (x, t)]+Δt Fi (x, t), i =0, . . . q − 1,

(2)

where ci =cei is the set of possible discrete velocity directions, c is particle velocity and defined
by c= Δx/Δt with Δx and Δt representing the discrete steps of space and time, respectively.
τ is the dimensionless relaxation time, fi (x, t) and f eq

i (x, t) are the local particle distribution
function and equilibrium distribution function at position x and time t, respectively. Here the
isotropic lattice is used in LBM for considering the isotropic diffusion. Our model is based
on the DnQq lattice (q velocity directions in n-dimensional space), and the lattice velocity
vector must satisfy some reasonable isotropic constraints
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Table 1 The discrete velocity directions and corresponding weight coefficients of DnQq

DnQq ei ωi

D1Q3 (0), (±1) 2/3, 1/6

D2Q5 (0, 0), (±1, 0), (0, ±1) 1/3, 1/6, 1/6

D2Q9 (0, 0), (±1, 0), (0, ±1), (±1, ±1) 4/9, 1/9, 1/9, 1/36

D3Q7 (0, 0, 0), (±1, 0, 0), (0, ±1, 0), (0, 0, ±1) 0, 1/6, 1/6, 1/6

D3Q13 (0, 0, 0), (±1,±1, 0), (±1, 0, ±1), (0, ±1,±1) 1/2, 1/24, 1/24, 1/24

D3Q15 (0, 0, 0), (±1, 0, 0), (0, ±1, 0), (0, 0, ±1), (±1, ±1,±1) 2/9, 1/9, 1/9, 1/9, 1/72

D3Q19 (0, 0, 0), (±1, 0, 0), (0, ±1, 0), (0, 0, ±1), (±1, ±1, 0),
(±1, 0, ±1), (0, ±1,±1)

1/3, 1/18, 1/18, 1/18, 1/36, 1/36, 1/36

q−1∑

i=0

ωi =
q−1∑

i=0

�i = 1,

q−1∑

i=0

ciωi =
q−1∑

i=0

ci�i = 0,

q−1∑

i=0

ci ciωi = c2
s I, (3)

where ωi and �i are weight coefficients in the equilibrium distribution function and source
term [see following Eqs. (6) and (7)]. I is the unit matrix. cs is the so called lattice sound
speed, which is related to the particle velocity c and weight coefficients ωi through the relation∑q−1

i=0 ci ciωi = c2
s I. Here some commonly used DnQq models are listed in Table 1. Besides

�0 = 0 is needed as in the following numerical simulation.
In order to satisfy the above isotropic requirements and to recover Eq. (1) exactly, the

distribution functions should satisfy the following relations:

q−1∑

i=0

fi =
q−1∑

i=0

f eq
i = 0,

q−1∑

i=0

ci f eq
i = B(x, φ),

q−1∑

i=0

ci ci f eq
i = c2

s D(φ)I. (4)

q−1∑

i=0

Fi = F(x, φ),

q−1∑

i=0

ci Fi = 0. (5)

According to the above equations and following the work in Ref. [27], the equilibrium
distribution function and the linear source term are taken as,

f eq
i (x, t) =

⎧
⎨

⎩

(ω0 − 1)φ + ω0
(φ−D)I:I

2 , i = 0,

ωi [φ + ci ·B(x,φ)

c2
s

+ (D−φ)I:(ci ci −c2
s I)

2c2
s

], i = 1, . . . , q − 1.
(6)

Fi (x, t) = �i F(x, φ), i = 0, . . . , q − 1, (7)

where Eq. (6) is an extension of the common equilibrium distribution function in the LBGK
model, which is obtained through modifying that in Ref. [27] according to the moments in
Eq. (4). Thus the macroscopic variable φ is calculated by φ = ∑q−1

i=1 fi/(1 − ω0) when
D = φ. If D is not equal to φ, the macroscopic variable φ is also obtained by above equation
through the following conversion [Eq. (25)] in Remark 3.

In what follows, we will present a detailed Chapman–Enskog analysis [27] to derive Eq.
(1). The distribution function, the source term, and the derivations of the space and time can
be expanded as,

fi = f (0)
i + ε f (1)

i + ε2 f (2)
i + ε3 f (3)

i + · · ·,
F = εF (1), ∂t = ε∂t1 + ε2∂t2 ,∇ = ε∇1,

(8)
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where ε is a small expansion parameter. Taking the Taylor series expansion to Eq. (2) at time
t and space x, we have

�t Di fi + �t2

2
D2

i fi + · · · = − 1

τ
( fi − f eq

i ) + �t Fi , (9)

where Di = εD1i + ε2∂t2 and D1i = ∂t1 + ci · ∇1. Substituting Eq. (8) into Eq. (9), yields
the following equation:

(ε2∂t2 + εD1i )( f (0)
i + ε f (1)

i + ε2 f (2)
i + · · · )

+�t

2
(ε2∂t2 + εD1i )

2( f (0)
i + ε f (1)

i + ε2 f (2)
i + · · · ) + · · · (10)

= − 1

τ�t
(ε f (1)

i + ε2 f (2)
i + · · · ) + εF (1)

i .

Based on this equation, we can derive the equations at different orders of ε,

f (0)
i = f eq

i , (11)

D1i f (0)
i = − 1

τ�t
f (1)
i + F (1)

i , (12)

∂t2 f (0)
i + D1i f (1)

i + �t

2
D2

1i f (0)
i = − 1

τ�t
f (2)
i . (13)

From Eqs. (4), (8) and (11), we can get the mass conservation condition, namely

q−1∑

i=0

f (k)
i = 0, (k ≥ 1). (14)

Substituting Eq. (12), into Eq. (13), we can rewrite the Eq. (13) in another form

∂t2 f eq
i + D1i

(
1 − 1

2τ

)
f (1)
i + �t

2
D1i F (1)

i = − 1

τ�t
f (2)
i . (15)

Summing Eqs. (12) and (15) over i and with the help of Eqs. (4), (5) and (8), we have

∇1 · B = F (1), (16)

∇1 ·
[(

1 − 1

2τ

) ∑

i

ci f (1)
i

]
= 0, (17)

where the relation
∑q−1

i=0 fi = ∑q−1
i=0 f eq

i = 0 is used to eliminate the time derivative.
Coupling Eqs. (4), (5) and (12), one can obtain

q−1∑

i=0

ci f (1)
i = −τ�t

∑

i

ci (D1i f eq
i − F (1)

i ) = −τ�t∇1 · c2
s DI. (18)

With the help of above equation, Eq. (17) can be written as

0 = ∇1 ·
[

c2
s

(
τ − 1

2

)
�t∇1 D

]
. (19)

Taking Eq. (16) ×ε + Eq. (19) ×ε2, we can obtain the recovered equation

∇ · B(x, φ) = ∇ · [α(x)∇ D(φ)] + F(x, φ), (20)
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with

α(x) = c2
s

(
τ − 1

2

)
�t. (21)

Finally, some remarks on the present model are listed as follows.

Remark 1 From above Chapman–Enskog analysis, it is found that there is no any assump-
tion or auxiliary moment in our model, and through selecting the weights values of each
equilibrium distribution for each velocity vector properly, the present model is more accurate
and efficient for the general steady CDEs with variable coefficients [see numerical results in
Sect. 3].

Remark 2 It is worth noting that when B = 0 and D = φ, Eq. (1) becomes the Poisson
equation and the equilibrium distribution function can be simplified for this special equation,

f eq
i (x, t) =

{
(ω0 − 1)φ, i = 0,

ωiφ, i = 1, . . . , q − 1,
(22)

which has the same expression as that in Ref. [25].

Remark 3 Similar to Ref. [27], Eq. (1) can also be rewritten in another form

∇ · B(φ, x) = ∇ · [αD′(φ)∇φ] + F(x, φ). (23)

Based on Eq. (23), we can give a simple LB model with the following equilibrium distribution
function and diffusion coefficient

f eq
i (x, t) =

⎧
⎨

⎩

(ω0 − 1)φ, i = 0,

ωi

[
φ + ci ·B(x,φ)

c2
s

]
, i = 1, . . . , q − 1,

(24)

αD′(φ) = c2
s

(
τ − 1

2

)
�t. (25)

Remark 4 For Eq. (23), similar to the method in Ref. [32], we can introduce two parameters to
adjust the convergence speed, accuracy and stability. To this end, the equilibrium distribution
function, diffusion coefficient and the discrete source term should be modified by

f eq
i (x, t) =

⎧
⎨

⎩

(ω0 − 1)γ φ, i = 0,

ωi

[
γφ + ci ·βB(x,φ)

c2
s

]
, i = 1, . . . , q − 1,

(26)

αD′(φ) = γ

β
c2

s

(
τ − 1

2

)
�t, (27)

Fi (x, t) = �iβF(x, φ), i = 0, . . . q − 1. (28)

The macroscopic variable φ is obtained by

φ = f0

γ (ω0 − 1)
=

∑q−1
i=1 fi (x, t)

γ (1 − ω0)
, (29)

where the role of γ and β is similar to Ref. [32]. In fact, when the diffusion coefficient is
fixed, the dimensionless relaxation time τ can be adjusted in a proper range through changing
the parameters γ and β, and thus, the stability and accuracy of the model can be improved
properly.
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Remark 5 Based on our previous work, we can derive another useful LB model with the
following equilibrium distribution function

f eq
i (x, t) =

⎧
⎨

⎩

ω0φ, i = 0,

ωi

[
φ + ci ·B(x,φ)

c2
s

]
, i = 1, . . . , q − 1,

(30)

and the macroscopic variable can be obtained by the relation φ = ∑q−1
i=0 fi . In the following,

this new model [Eqs. (2) and (30) with Eq. (21)] is denoted by method 2.

3 Numerical Simulation

In this section, numerical experiments on several n-dimensional (n = 1, 2, 3) steady CDEs are
carried out to test the proposed model. The non-equilibrium extrapolation scheme proposed
by Guo et al. [33] is used for the boundary treatments, and the following convergence criterion
is adopted,

ε(t) =
∑

j |φ(x j , t) − φ(x j , t − 100�t)|
∑

j |φ(x j , t)| < 1 × 10−6. (31)

The global relative error (RE) and global maximum error (ME) are used to measure the
accuracy of the present model, and defined by

RE =
∑

j |φ(x j ) − φ∗(x j )|∑
j |φ∗(x j )| , M E = M AX j |φ(x j ) − φ∗(x j )|, (32)

where φ(x j ) and φ∗(x j ) are the numerical and analytical solutions at position x j , respectively.
The summation is performed on all grid points.

For simplicity, to conduct a comparison between different models, we denoted the LB
model in Ref. [27], the new model given in Remark 5 and present model as method 1 (M1),
method 2 (M2) and method 3 (M3). Without otherwise statement, the method 3 is used in the
following simulations, and u = 0 is adopted to initialize the equilibrium distribution function
except for given boundary conditions.

3.1 One-Dimensional Steady CDEs

Example 3.1 The steady Burgers–Fisher equation (BFE) [34]

u
∂u

∂x
= υ

∂2u

∂x2 , (33)

with the boundary conditions

u(−1) = tanh
1

2υ
, u(1) = tanh

−1

2υ
, (34)

is first considered. The exact solution to this problem is given by u(x) = tanh −x
2υ

. We used
the D1Q3 model to study this problem, and took �x = 0.02, c = 10 under different diffusion
coefficients υ. We presented the results in Fig. 1, and found that the numerical results agree
well with the corresponding exact solutions. Besides that, we also observed that although the
values around the position x = 0 are changing more and more sharply with the decrease of
the diffusion coefficient υ, the present model still works well.
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Fig. 2 The errors of different models with different lattice steps (1, 2 and 3: the results obtained by methods
1, 2 and 3)

To test the accuracy of the proposed model, simulations were performed for different
lattice resolutions (�x = 1/50 − 1/800), and c was correspondingly changed from 3 to 48.
Based on the RE and ME in Fig. 2, the slopes of the fitting lines for different results are very
close to 2, which indicates that all of the three models have a seconder-order accuracy in
space.

Furthermore, we conducted a comparison of precision and convergent rate between differ-
ent models, and presented the results in Table 2 where c = 10, �x = 0.0025. From Table 2,
we can see that the present model (method 3) performs better than the previous methods
1 and 2 in precision and convergence rate, especially when υ is relatively larger. We also
gave a comparison between present model and the high-resolution numerical perturbation
algorithm [34] in Table 3, and found that the present model is at least comparable to the
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Table 2 Errors and iteration
steps of different models (M1:
previous model [27], M2: the
model in Remark 5, M3: present
model, IT: iteration steps)

υ M RE ME IT

0.001 M1 1.2222 × 10−4 2.6214 × 10−2 8,200

M2 1.2042 × 10−4 2.4293 × 10−2 8,200

M3 1.2042 × 10−4 2.4293 × 10−2 2,800

0.005 M1 6.9978 × 10−5 4.5523 × 10−3 8,700

M2 3.5968 × 10−5 3.1786 × 10−3 8,700

M3 3.5946 × 10−5 3.1655 × 10−3 3,000

0.01 M1 1.2405 × 10−4 3.4096 × 10−3 9,400

M2 1.8288 × 10−5 8.0476 × 10−4 9,400

M3 1.8278 × 10−5 7.9446 × 10−4 3,200

0.05 M1 6.2948 × 10−4 3.3749 × 10−3 14,400

M2 8.4000 × 10−6 6.2067 × 10−5 14,200

M3 4.0286 × 10−6 3.7598 × 10−5 5,100

0.1 M1 1.3254 × 10−3 3.3456 × 10−3 18,800

M2 1.3226 × 10−5 3.7277 × 10−5 18,700

M3 4.3779 × 10−6 1.5828 × 10−5 6,700

Table 3 RE of different methods
for the Burgers equation with
υ = 0.001 (2-CD: second-order
central difference, NP: numerical
perturbation, M3: method 3, OS:
oscillatory solution)

N 2-CD 3-NP 7-NP M3

80 OS 0.2720 × 10−1 0.2713 0.7416 × 10−1

160 OS 0.5511 × 10−2 0.2872 × 10−1 0.1328 × 10−1

320 OS 0.8816 × 10−3 0.6077 × 10−3 0.1800 × 10−2

640 OS 0.2220 × 10−4 0.1031 × 10−3 0.9031 × 10−4

high-order (7th-order) numerical perturbation algorithm [34] when υ = 0.001 and c = 10.
Based the results presented above, we can conclude that the present model is an accurate and
efficient algorithm in solving this special CDE.

Example 3.2 We also used a linear convection–diffusion equation with a source term

∂u

∂x
= υ

∂2u

∂x2 + υπ2sin(πx) + πcos(πx), (35)

to test present model. The problem has the following analytical solution

u(x) = sin(πx) + (ex/υ − 1)/(e1/υ − 1). (36)

We used the D1Q3 model to solve this problem in the interval [0, 1] by using different
�0, and showed the results in Fig. 3 where �x = 1/80, c = 5, υ = 0.001. As seen from this
figure, the numerical results derived by M3 with �0 = 0 and M1/2 are in good agreement with
the exact solutions. Figure 3 also shows that �0 = 0 is essential for M3, but not essential for
M1 or M2, which may be due to the different definitions in computing macroscopic variable.

In addition, we carried out a comparison of RE and iteration steps between different models
for the case of c = 5, υ = 0.001 with different lattices, and presented the results in Table 4.
From Table 4, it can be seen that the present model is better than other two models in the
convergence rate and precision, and LB models are also better or comparable to the method
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Table 4 The results of different methods for the case of υ = 0.001 (2-CD: second order central difference,
NP: numerical perturbation; M1, 2 and 3: methods 1, 2 and 3; IT: iteration steps)

N 2-CD 3-NP M1 M2 M3

RE RE RE (I T × 102) RE (I T × 102) RE (I T × 102)

80 0.3158 × 10−1 0.4167 × 10−1 0.3043 × 10−2 (6) 0.2292 × 10−2 (6) 0.2317 × 10−2 (3)

160 0.6531 × 10−2 0.1058 × 10−1 0.1956 × 10−2 (11) 0.1224 × 10−2 (11) 0.1239 × 10−2 (4)

320 0.1005 × 10−2 0.2575 × 10−2 0.1211 × 10−2 (20) 0.5134 × 10−3 (20) 0.5219 × 10−3 (7)

640 0.1973 × 10−3 0.6327 × 10−3 0.6903 × 10−3 (38) 0.8156 × 10−4 (38) 0.8699 × 10−4 (13)

in Ref. [34]. Besides, the relaxation time effect on the numerical results is also studied. For
given �x = 0.01 and υ = 0.01, we can derive the RE under different relaxation time τ , and
plot the results in Fig. 4. As shown in this figure, there is an optimal relaxation time that can
be used to give smallest error. Although the optimal values for different models are different
from each other, all of them are less than 1 for this special example.

Finally, we also investigated the convergence procedures of different models under various
lattice speeds, and presented the results in Fig. 5 where the lattice is 640 and the diffusion
coefficient υ = 0.001. From this figure, one can find that the method 3 converges to the exact
solution with a fastest rate while M2 is better than M1 in precision, although both of them
have the same convergence rate.

Example 3.3 The conservation air pocket equation

∂(1 − 2x)u

∂x
= υ

∂2u

∂x2 , (37)

with the boundary conditions
u(0) = 1, u(1) = 1, (38)
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Fig. 5 Convergence histories of different methods for the case of υ = 0.001

is also considered in this work. The analytical solution to this problem can be given as

u(x) = e
x(1−x)

υ . (39)

We still used the D1Q3 model to study this problem, and takeυ = 0.1, c = 60,�x = 0.01.
We presented the results in Fig. 6, and found that the numerical results agree well with the
corresponding exact solutions.

To test the accuracy of the proposed model for this problem, some simulations were per-
formed under different lattice resolutions (�x = 1/40 − 1/100), and c was correspondingly
changed from 24 to 60. Based on the RE and ME in Fig. 7, the slopes of the fitting lines are
about 2, indicating that all of the three models are second-order accurate in space. In addition,
we also conducted a comparison of precision and convergence rate between different models,
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Fig. 7 The errors of different models with different lattice steps (1, 2 and 3: methods 1, 2 and 3)

and presented the results in Table 5 where c = 60, �x = 0.01. From Table 5, we can see
that the present model (method 3) performs much better than the previous M1 and M2.

3.2 Two-Dimensional Steady CDEs

Example 3.4 We also used 2D steady Burgers equation [34]

u
∂u

∂x
+ u

∂u

∂y
= υ

(
∂2u

∂x2 + ∂2u

∂y2

)
, (40)
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Table 5 Errors and iteration
steps of different models (M1, 2
and 3: methods 1, 2 and 3; IT:
iteration steps)

υ M1 M2 M3

0.1 RE 3.3212 × 10−3 5.0645 × 10−3 1.6878 × 10−4

ME 4.0947 × 10−2 6.4135 × 10−2 3.4340 × 10−3

IT 172300 172600 64700

0.5 RE 1.5233 × 10−3 1.9309 × 10−3 1.9179 × 10−5

ME 3.4782 × 10−3 4.1497 × 10−3 5.2821 × 10−5

IT 16600 16600 6100

1 RE 2.0314 × 10−3 2.2760 × 10−3 4.2287 × 10−4

ME 3.5420 × 10−3 3.8586 × 10−3 5.4709 × 10−4

IT 8100 8100 2900

5 RE 2.9019 × 10−3 3.0856 × 10−3 8.2699 × 10−4

ME 3.9999 × 10−3 4.2394 × 10−3 8.8700 × 10−4

IT 2300 2300 1200
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Fig. 8 Analytical and numerical solutions of 2D nonlinear Burgers equation

to test present model. The problem has the following exact solution

u(x, y) = tanh

(−(x + y)

2υ

)
. (41)

The D2Q5 model was applied to solve this problem in the domain [−1, 1]2, and the
results were presented in Fig. 8 where υ = 0.01,�x = 0.01 and �t = 0.001. As seen
from this figure, the numerical result is in good agreement with the exact solution. Similar to
above discussion, to test the accuracy of the proposed model for this special two-dimensional
problem, some simulations were conducted under different lattice resolutions (�x = 1/50−
1/400), and c was correspondingly varied from 3 to 24. Based on the results of RE and ME
in Fig. 9, one can find that the slopes of the fitting lines for different results are close to 2,
which indicates that all of the three models have a second-order accuracy in space. Besides
that, we also conducted a comparison of precision and convergence rate between different
models, and presented the results in Table 6 where �x = 0.01, τ = 1. As seen from Table 6,
the present model (method 3) also performs better than the previous M1 and M2 in precision
and convergence rate.

Finally, the convergence procedures of different models under various lattice speeds were
also investigated, and the results were shown in Fig. 10 where the lattice and diffusion
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Fig. 9 The errors of different models with different lattice steps (1, 2 and 3: methods 1, 2 and 3)

Table 6 Errors and iteration steps of different models for 2D Burgers equation (M1, M2 and M3: methods 1,
2 and 3; IT: iteration steps)

υ Error D2Q9 D2Q5

M1 M2 M3 M2 M3

0.005 RE 1.3742 × 10−3 9.9647 × 10−4 9.9647 × 10−4 5.2411 × 10−4 5.2411 × 10−4

ME 9.7476 × 10−2 6.9466 × 10−2 6.9466 × 10−2 4.0109 × 10−2 4.0109 × 10−2

IT 700 700 500 700 500

0.01 RE 7.7842 × 10−4 5.4512 × 10−4 5.4512 × 10−4 2.8048 × 10−4 2.8048 × 10−4

ME 2.7960 × 10−2 2.4840 × 10−2 2.4840 × 10−2 1.3842 × 10−2 1.3842 × 10−2

IT 1,300 1,300 800 1,300 900

0.05 RE 1.6027 × 10−4 1.1219 × 10−4 1.1220 × 10−4 5.6183 × 10−5 5.6161 × 10−5

ME 1.3039 × 10−3 1.0976 × 10−3 1.0975 × 10−3 5.5096 × 10−4 5.5086 × 10−4

IT 7,100 7,100 4,100 7,100 4,900

0.1 RE 8.4370 × 10−5 5.6113 × 10−5 5.5480 × 10−5 2.9285 × 10−5 2.8445 × 10−5

ME 3.6738 × 10−4 2.9391 × 10−4 2.7786 × 10−4 1.6861 × 10−4 1.5511 × 10−4

IT 16,700 16,700 9,600 16,700 11,400

coefficient are fixed to be 200 × 200 and υ = 0.05. From this figure, one can find that the
present model (method 3) also converges to the exact solution with a fastest rate for this
two-dimensional Burgers equation.

Example 3.5 The 2D convection–diffusion equation with variable coefficient
(

y − 1

2

)
∂u

∂x
+

(
x − 1

2

)
∂u

∂y
= υ

(
∂2u

∂x2 + ∂2u

∂y2

)
, (42)

was further considered. The exact solution of this problem is given by u(x, y) =
exp[(x − 0.5)(y − 0.5)/υ]. We adopted the D2Q5 model to study this problem in the domain
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Fig. 11 Comparison between analytical solution and numerical result

[0, 1]2, and took �x = 0.01, c = 6 and diffusion coefficient υ = 0.01. We presented the
results in Fig. 11, and found that the numerical result agrees very well with the corresponding
analytic solution. Besides that, we can also observe that although the values around the point
(0, 0) and (1, 1) have dramatic changes, the present model still works well.

Furthermore, we also studied the precision and convergence rate between different models,
and presented the results in Table 7 where �x = 0.01, τ = 1. As seen from Table 7, the
present model (method 3) also performs better than the previous method 1 and 2 in precision
and convergence rate, and D2Q5 is better than D2Q9. To test the accuracy of the proposed
model, simulations were also carried out at different lattice resolutions (�x = 1/50−1/800),
and c was changed from 3 to 48. Based on the RE in Fig. 12 where the diffusion coefficient
was set to be υ = 0.01, the slopes of the fitting lines are about 2, indicating that all of
these three models have a second-order accuracy in space. Based on the results presented
above, one can conclude that the present model is accurate and more efficient in solving these
two-dimensional problem.
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Table 7 RE and iteration steps of different models (M1, M2 and M3: methods 1, 2 and 3; IT: iteration steps)

υ D2Q9 D2Q5

M1 M2 M3 M2 M3

0.01 RE 2.1709 × 10−2 2.5354 × 10−2 1.4931 × 10−2 2.1956 × 10−2 6.5481 × 10−3

IT 1,100 1,000 700 1,000 800

0.025 RE 5.6359 × 10−3 6.0086 × 10−3 3.1007 × 10−3 5.6310 × 10−3 1.2258 × 10−3

IT 15,700 15,600 9,200 15,600 10,900

0.05 RE 1.4540 × 10−3 1.4453 × 10−3 7.9966 × 10−4 1.4874 × 10−3 2.4549 × 10−4

IT 31,400 31,400 18,300 31,400 21,600

0.1 RE 2.4971 × 10−4 2.5868 × 10−4 1.5693 × 10−4 2.9406 × 10−4 2.6807 × 10−5

IT 40,300 40,300 23,400 40,300 27,700

0.5 RE 6.1403 × 10−6 6.9224 × 10−6 4.8470 × 10−6 1.0014 × 10−5 2.9498 × 10−7

IT 4,200 44,200 25,600 44,200 30,300

1.0 RE 1.7390 × 10−6 1.8404 × 10−6 1.3213 × 10−6 2.7101 × 10−6 2.5363 × 10−7

IT 44,300 44,300 25,700 44,300 30,400
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Fig. 12 The errors of different models with different lattice steps (1, 2 and 3: methods 1, 2 and 3)

3.3 Three-Dimensional Steady CDE

Example 3.6 The 3D nonlinear Burgers equation

u
∂u

∂x
+ u

∂u

∂y
+ u

∂u

∂z
= υ

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
, (43)

with following exact solution

u(x, y) = tanh
−(x + y + z)

2υ
, (44)
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Fig. 13 Comparisons between analytical solution (solid) and numerical result (symbol) of 3D Burgers
equation
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Fig. 14 The errors of different models with different lattice steps

was also adopted to test present model. We applied the simple D3Q7 model to solve
this problem in the domain [−1, 1]3, and showed the results in Fig. 13 where υ = 0.01,
�x = 0.02, and c = 6. As seen from this figure, the numerical result agree with the
exact solution. We also tested the accuracy of the proposed model for this three-dimensional
problem, and presented RE at different lattice resolutions (�x = 2/25 − 2/150) in Fig. 14.
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Table 8 RE and iteration steps of different models (1, 2 and 3: methods 1, 2 and 3; IT: iteration steps)

D3Qq M υ = 1.0 υ = 0.5 υ = 0.05 υ = 0.01

D3Q7 2/3 RE 1.5723 × 10−5 8.6611 × 10−5 2.4953 × 10−4 1.1846 × 10−3

IT 21,300 21,200 10,900 11,000

D3Q13 2 RE 5.7764 × 10−5 1.1814 × 10−4 7.1750 × 10−4 4.7709 × 10−3

IT 21,300 21,200 10,900 11,200

3 RE 4.7587 × 10−5 1.0769 × 10−4 7.1831 × 10−4 4.7731 × 10−3

IT 11,400 11,400 5,900 6,100

D3Q15 1 RE 5.5116 × 10−5 1.0612 × 10−4 5.4455 × 10−4 3.1860 × 10−3

IT 21,300 21,200 10,900 11,100

2 RE 5.5753 × 10−5 1.0765 × 10−4 5.8039 × 10−4 3.2328 × 10−3

IT 21,300 21,200 10,900 11,100

3 RE 5.1049 × 10−5 1.0325 × 10−4 5.8080 × 10−4 3.2339 × 10−3

IT 1,700 16,900 8,700 8,900

D3Q19 1 RE 5.5117 × 10−5 1.0611 × 10−4 5.5620 × 10−4 2.9021 × 10−3

IT 21,300 21,200 10,900 11,100

2 RE 5.5751 × 10−5 1.0763 × 10−4 5.2754 × 10−4 3.6706 × 10−3

IT 21,300 21,200 10,900 11,200

3 RE 4.8718 × 10−5 1.0106 × 10−4 5.8080 × 10−4 3.6718 × 10−3

IT 14,800 17,400 8,700 7,800

From this figure, one can find that all slopes of the fitting lines are close to 2, which indicates
that all of the three models have a second-order accuracy in space.

In addition, we also conducted a comparison of precision and convergence rate between
different models, and presented the results in Table 8 where �x = 0.02, τ = 0.75. From
Table 8, we can see that the present model (method 3) has a faster convergence rate than the
previous methods 1 and 2, and D3Q7 is better than other D3Qq models in precision. From
the results shown above, we can also conclude that the present model is more efficient in
solving this special three-dimensional CDE.

4 Conclusion

In the present work, a unified LBGK model for the n-dimensional steady CDE is proposed.
Efficiency and accuracy of the present model are tested through some classic CDEs, and
the numerical results show that the present model performs better than previous models
in precision and convergence rate. In addition, through a comparison with some previous
models, we can also find some distinct characteristics of the present model. First of all, the
present model can be served as a general solver for the steady CDE with variable coefficients,
while previous models dealing with time dependent CDEs are not a very good solution to
the steady problems with variable coefficients. Second, the previous models for CDEs are
sometimes dependent on the initial value, but the present model are not and can accelerate
convergence. And finally, in the computation of macroscopic quantity u, only q-1 velocities
are used in the present model.
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