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Abstract This study aims to minimize the sum of a smooth function and a nonsmooth
�1-regularized term. This problem as a special case includes the �1-regularized convex mini-
mization problem in signal processing, compressive sensing, machine learning, data mining,
and so on. However, the non-differentiability of the �1-norm causes more challenges espe-
cially in large problems encountered in many practical applications. This study proposes,
analyzes, and tests a Barzilai–Borwein gradient algorithm. At each iteration, the generated
search direction demonstrates descent property and can be easily derived by minimizing a
local approximal quadratic model and simultaneously taking the favorable structure of the
�1-norm. A nonmonotone line search technique is incorporated to find a suitable stepsize
along this direction. The algorithm is easily performed, where each iteration requiring the
values of the objective function and the gradient of the smooth term. Under some conditions,
the proposed algorithm appears globally convergent. The limited experiments using some
nonconvex unconstrained problems from the CUTEr library with additive �1-regularization
illustrate that the proposed algorithm performs quite satisfactorily. Extensive experiments for
�1-regularized least squares problems in compressive sensing verify that our algorithm com-
pares favorably with several state-of-the-art algorithms that have been specifically designed
in recent years.

Y. Xiao (B)
Institute of Applied Mathematics, College of Mathematics and Information Science,
Henan University, Kaifeng 475000, China
e-mail: yhxiao@henu.edu.cn

S.-Y. Wu
National Center for Theoretical Sciences (South), National Cheng Kung University,
Tainan 700, Taiwan
e-mail: soonyi@mail.ncku.edu.tw

L. Qi
Department of Applied Mathematics, Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong
e-mail: maqilq@polyu.edu.hk

123



18 J Sci Comput (2014) 61:17–41

Keywords Nonsmooth optimization · Nonconvex optimization · Barzilai–Borwein
gradient algorithm · Nonmonotone line search · �1 regularization · Compressive sensing

Mathematics Subject Classification 65L09 · 65K05 · 90C30 · 90C25

1 Introduction

The focus of this paper is on the following structured minimization:

min
x∈Rn

F(x) := f (x) + μ‖x‖1, (1.1)

where f : R
n → R is a continuously differentiable (may be nonconvex) function that is

bounded below, ‖ · ‖1 is the �1-norm of a vector, and parameter μ > 0 is used to trade
off both terms for minimization. Given its structure, problem (1.1) covers a wide range of
apparently related formulations in different scientific fields, including linear and logistic
regression [45], compressive sensing [18], sparse inverse covariance estimation [46], and
sparse principal component analysis [27,42].

1.1 Problem Formulations

A special case of model (1.1) is the �1-norm regularized least squares problem shown below

min
x∈Rn

1

2
‖Ax − b‖2

2 + μ‖x‖1, (1.2)

where A ∈ R
m×n (m � n) is a linear operator, and b ∈ R

m is an observation. Model
(1.2) mainly appears in compressive sensing, which is an emerging methodology in digital
signal processing, and has attracted intensive research activities over the past years [8–11,18].
Compressive sensing is based on the fact that if the original signal is sparse or approximately
sparse in some orthogonal basis, an exact restoration can be produced by solving problem
(1.2).

Another prevalent case of (1.1) that has attracted much interest in machine learning is the
linear and logistic regression. Assume the training date A = [a1, . . . , am]� ∈ R

m×n and
class labels y ∈ {−1,+1}m . A linear classifier is a hyperplane {wi : x�ai + b = 0}, where
x ∈ R

n is a set of weights, and b ∈ R is the intercept. A frequently used model is the �2-loss
support vector machine, which is given by

min
x∈Rm ,b∈R

m∑

i=1

max
{

0, 1 − yi (x�ai + b)
}2 + μ‖x‖1. (1.3)

The �2-lose function is continuous, but not differentiable because of the “max” operation. In
the logistic model, the probability distribution of the classifier label y, given ai , has the form

p(yi |ai ) = 1

1 − e−(x�ai +b)yi
.

The weights x and the intercept b can be found by minimizing the average loss as

min
x∈Rn ,b∈R

1

m

m∑

i=1

φ
((

x�ai + b
)

yi

)
,

123



J Sci Comput (2014) 61:17–41 19

where φ(z) = log(1 + e−z) is the logistic loss function. Finding the maximum likelihood
estimate of x and b is called logistic regression. To derive a sparse vector x , the �1-regularized
logistic regression can be formulated as

min
x∈Rn ,b∈R

1

m

m∑

i=1

log
(

1 + e−(x�ai +b)yi
)

+ μ‖x‖1. (1.4)

Obviously, the logistic loss function is twice differentiable.
Although the models of these problems have similar structures, they may be very different

from a real-data point of view. For example, in compressive sensing, the length of measure-
ment m is much smaller than that of the original signal (m � n), and the encoding matrix A
is dense. However, in machine learning, the numbers of instance m and features n are both
large, and the data A is very sparse.

1.2 Existing Algorithms

As the �1-regularized term is non-differentiable when x contains zero values, the use of
the standard unconstrained smooth optimization tools are generally precluded. In the past
decades, various approaches have been proposed, analyzed, and implemented in compressive
sensing and machine learning literature. One approach involves a variety of algorithms for
special cases where in f (x) has a specific functional form, such as the least squares (1.2),
the square loss (1.3), and the logistic loss (1.4). In the following, we briefly review some of
these approaches in the literature.

The first popular approach falls into the coordinate descent method. At the current iterate
xk , the simple coordinate descent method updates one component at a time to generate
x j

k , j = 1, . . . , n + 1 such that x1
k = xk, xn+1

k = xk+1 and solves a one-dimensional
subproblem

min
z

F
(

x j
k + ze j

)
− F

(
x j

k

)
, (1.5)

where e j is defined as the j th column of an identity matrix. Clearly, the objective function
has one variable and one non-differentiable point at z = −e j . To solve the logistic regres-
sion model (1.4), Bayesian binary regression (BBR) [21] solves the sub-problem approx-
imately using the trust region method with Newton step; coordinate descent with Newton
step (CDN)[12] improves the performance of BBR by applying a one-dimensional Newton
method and a line search technique. Instead of cyclically updating one component at a time,
the stochastic coordinate descent method [35] randomly selects the working components to
achieve enhanced performance; the block Coordinate Gradient Descent (CGD) algorithm
[37,47] is based on the approximated convex quadratic model for f and selects the working
variables according to some rules.

The second type of approach is to transform model (1.1) into an equivalent box-constrained
optimization problem by variable splitting. Let x = u − v with ui = max{0, xi } and vi =
max{0,−xi }. Then, model (1.1) can be reformulated equivalently as

min
u,v

f (u − v) + μ

n∑

i=1

(ui + vi ), s.t. u ≥ 0, v ≥ 0. (1.6)

The objective function and constraints are smooth. Therefore, the model can be solved by
any standard box-constrained optimization technique. However, an obvious drawback of this
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approach is that it doubles the number of variables. Gradient projection for sparse recon-
struction (GPSR) [20] solves (1.6) and subsequently solves (1.2) using the Barzilai–Borwein
gradient method [2] with an efficient nonmonotone line search [22]. The method is actually an
application of the well-known spectral projection gradient [5] in compressive sensing. The
trust region Newton algorithm [26,45] minimizes (1.6) then solves the logistic regression
model (1.4) and exhibits powerful vitality through a series of comparisons. To solve (1.3)
and (1.4), the interior-point algorithm [24,25] forms a sequence of unconstrained approxima-
tions by appending a “barrier” function to the objective function (1.6), thereby ensuring that
u and v remain sufficiently positive. Moreover, truncated Newton steps and preconditioned
conjugate gradient iterations are used to produce the search direction.

The third type of method approximates the �1-regularized term with a differentiable func-
tion. The simple approach replaces the �1-norm with a sum of multi-quadric functions

l(x) �
n∑

i

√
x2

i + ε,

where ε is a small positive scalar. This function is twice-differentiable, and limε→0+ l(x) =
‖x‖1. Subsequently, several smooth unconstrained optimization approaches can be applied
based on this approximation. However, the performance of these algorithms is highly influ-
enced by the parameter values, and the condition number of the corresponding Hessian
matrix becomes large as ε decreases. Nesterov’s smoothing technique [28] is used to con-
struct smooth functions to approximate some specific structured convex nonsmooth function.
Based on this technique, NESTA (Nesterov’s Algorithm) [4] solves problem (1.2) using first-
order gradient information.

The fourth type of approach falls into the subgradient-based Newton-type algorithm. An
important attempt in this class is that of Andrew and Gao [1], who extend the well-known
limited memory BFGS method [30] to solve �1-regularized logistic regression model (1.4)
and propose an orthant-wise limited memory quasi-Newton method. At each iteration, this
method computes a search direction over an orthant containing the previous point. The
subspace BFGS method [44] involves an inner iteration approach to find the descent quasi-
Newton direction and subgradient Wolfe conditions to determine the stepsize that ensures
decreasing the objective functions. This method is globally convergent and capable of solving
general nonsmooth convex minimization problems.

Aside from GPSR and NESTA, other specially designed solvers are available. Using an
operator splitting technique, Hale, Yin, and Zhang derive the iterative shrinkage/thresholding
(IST) fixed-point continuation algorithm (FPC) [23]. By combining the interior-point algo-
rithm [24], FPC is also extended to solve large-scale �1-regularized logistic regression [36].
A closely related algorithm to FPC is the fixed-point continuation and active set FPC_AS
[39,40], which solves a smooth subproblem to determine the magnitudes of the nonzero
components of x based on an active set. Two-step IST algorithm (TwIST) [6] and fast IST
algorithm (FISTA) [3] speed up the performance of IST algorithm and have virtually the
same complexity but with better convergence properties. Another closely related method is
the sparse reconstruction algorithm (SpaRSA) [41], which involves minimizing a non-smooth
convex problem with separable structures. The spectral projected gradient algorithm named
SPGL1 [38] solves the lasso model (1.2) by the spectral gradient projection method with
an efficient Euclidean projection on �1-norm ball. The alternating directions method called
YALL1 [43] investigates �1-norm problems from either the primal or the dual forms and
solves �1-regularized problems of different types.
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All the reviewed algorithms differ in various aspects such as convergence speed, ease
of implementation, and practical applicability. No evidence can verify that which algorithm
outperforms the others under all scenarios.

1.3 Contributions and Organization

Although much progress has been achieved in solving problem (1.1), existing algorithms
mainly deal with cases where f is a convex function and even least squares. In this study we
propose a Barzilai–Borwein gradient algorithm to solve �1-regularized nonsmooth minimiza-
tion problems. At each iteration, we approximate f locally by a convex quadratic model,
where the Hessian is replaced by the multiples of a spectral coefficient with an identity
matrix. The search direction is determined by minimizing the quadratic model and maxi-
mizing the use of the �1-norm structure. We show that the generated direction contains the
one in FPC_AS [40] as a special case and is descent, which guarantees the existence of a
positive stepsize along the direction. In our algorithm, we adopt the nonmonotone line search
of Grippo, Lampariello, and Lucidi [22], which allows the function values to increase occa-
sionally in some iteration but decrease in the whole iterative process. The nonmonotone line
search is attractive because it saves a considerable number of function evaluations, which
are the computational burden in large datasets. The method is easily performed, as only the
value of objective function and the gradient of the smooth term are needed at each iteration.
We show that each cluster of the iterates generated by this algorithm is a stationary point of
F . Although we mainly consider the �1-regularizer in this study, the �2-norm regularization
problem and the matrix trace norm problems can also be readily included in our frame-
work, thereby broadening the capability of the algorithm. We implement the algorithm to
solve problem (1.1), where f is a nonconvex smooth function from the CUTEr library to
show the efficiency of the algorithm. We also run the algorithm to solve �1-regularized least
squares and do performance comparisons with state-of-the-art algorithms namely NESTA,
CGD, TwIST, FPC_BB, FPC_AS, and GPSR. The results of the comparisons show that the
proposed algorithm is effective, comparable, and promising.

We organize the rest of this paper as follows. In Sect. 2, we briefly recall some preliminary
results in optimization literature to describe our motivation for our work, construct the search
direction, and present the steps of our algorithm along with some remarks. In Sect. 3, we
establish the global convergence theorem under some mild conditions. In Sect. 4, we show
how to extend the algorithm to solve �2-norm and matrix trace norm minimization problems.
In Sect. 5, we present experiments to show the efficiency of the algorithm in solving the
�1-regularized nonconvex problem and least squares problem. In Sect. 6, we conclude our
paper.

2 Algorithm

2.1 Preliminary Results

First, consider the minimization of the smooth function without the �1-norm regularization

min
x∈R

f (x). (2.1)

The basic idea of Newton’s method for this problem is to iteratively use the quadratic approx-
imation qk to the objective function f (x) at the current iterate xk and to minimize the
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approximation qk . Let f : R
n → R be twice continuously differentiable, and let its Hessian

Gk = ∇2 f (xk) be positive definite. Function f at the current xk is modeled by the quadratic
approximation qk as

f (xk + s) ≈ qk(s) = f (xk) + ∇ f (xk)
�s + 1

2
s�Gks,

where s = x − xk . Minimizing qk(s) yields

xk+1 = xk − G−1
k ∇ f (xk),

which is Newton’s formula, and sk = xk+1 − xk = −G−1
k ∇ f (xk) is the so-called Newton’s

direction.
For the positive definite quadratic function, Newton’s method can reach the minimizer with

one iteration. However, when the starting point is far away from the solution, the method
cannot guarantee that Gk is positive definite and that Newton’s direction dk is a descent
direction. Let the quadratic model of f at xk+1 be

f (x) ≈ f (xk+1) + ∇ f (xk+1)
�(x − xk+1) + 1

2
(x − xk+1)

�Gk+1(x − xk+1).

Finding the derivative yields

∇ f (x) ≈ ∇ f (xk+1) + Gk+1(x − xk+1).

Setting x = xk, sk = xk+1 − xk , and yk = ∇ f (xk+1) − ∇ f (xk), we obtain

Gk+1sk ≈ yk . (2.2)

For various practical problems, either the computing efforts of the Hessian matrices are very
expensive or the evaluation of the Hessian is difficult; the Hessian is not even available
analytically. These challenges lead to the quasi-Newton method, which generates a series
of Hessian approximations through the use of the gradient while maintaining a fast rate of
convergence. Instead of computing the Hessian Gk , the quasi-Newton method constructs
the Hessian approximation Bk , where the sequence {Bk} possesses positive definiteness and
satisfies

Bk+1sk = yk . (2.3)

In general, Bk+1 is obtained by updating Bk with some typical and popular formulae, such
as BFGS, DFP, and SR1.

Unfortunately, the standard quasi-Newton algorithm, or even its limited memory versions,
does not scale well enough to train very large-scale models involving millions of variables
and training instances, which are commonly encountered, for example, in natural language
processing. The main computational burden of the Newton-type algorithm is the storage of a
large matrix at per-iteration, which may exceed the memory capability of a personal computer
(PC). Hence, a matrix-free algorithm that particularly deals with large-scale problems is
urgently needed. For this purpose, the approximation Hessian Bk should be furthermore
simplified as a diagonal matrix with positive components, i.e., Bk = λk I with an identity
matrix I and λk > 0. Then, the quasi-Newton condition changes to the form

λk+1 I sk = yk .

Multiplying both sides by s�
k yields

λ
(1)
k+1 = s�

k yk

‖sk‖2
2

. (2.4)
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Similarly, multiplying both sides by y�
k , yields

λ
(2)
k+1 = ‖yk‖2

2

s�
k yk

. (2.5)

As indicated by both formulae, if s�
k yk > 0, then the matrix λk+1 I is positive definite, which

ensures that the search direction −λ−1
k ∇ f (xk) is descent at current point.

The formulae (2.4) and (2.5) were first developed by Barzilai and Borwein [2] for the
quadratic case of f . This method essentially comprises the steepest descent method and
adopts either (2.4) or (2.5) as the stepsize along a negative gradient direction. Barzilai and
Borwein [2] showed that the corresponding iterative algorithm is R-superlinearly convergent
for the quadratic case. Raydan [32] presented a globalization strategy based on nonmonotone
line search [22] for the general non-quadratic case. Other developments of Barzilai–Borwein
gradient algorithm can be found in [5,13,15–17,31,49].

2.2 Algorithm

Given its simplicity and numerical efficiency, the Barzilai–Borwein gradient method is very
effective in dealing with large-scale smooth unconstrained minimization problems. How-
ever, the application of the Barilai-Borwein gradient algorithm in �1-regularized nonsmooth
optimization is problematic because the regularization is non-differentiable. In this subsec-
tion, we construct an iterative algorithm to solve the �1-regularized structured nonconvex
optimization problem. The algorithm can be described as the iterative form

xk+1 = xk + αkdk,

where αk is a stepsize, and dk is a search direction defined by minimizing a quadratic-
approximated model of F .

Now, we turn our attention to consider the original problem with �1-regularizer. As �1-term
is non-differentiable, at xk + dk , we use the approximated form

‖xk + dk‖1 ≈ ‖xk‖ + ‖xk + hdk‖1 − ‖xk‖
h

,

where h is a small positive number, and the case h = 1 is reduced to the equivalent form.
Subsequently, the objective function F is approximated by the quadratic approximation Qk ,

F(xk + d) = f (xk + d) + μ‖xk + d‖1

≈ f (xk) + ∇ f (xk)
�d + λk

2
‖d‖2

2

+ μ
[
‖xk‖1 + ‖xk + hd‖1 − ‖xk‖1

h

]
=: Qk(d). (2.6)

Minimizing (2.6) yields

min
d∈Rn

Qk(d)

⇔ min
d∈Rn

∇ f (xk)
�d + λk

2
‖d‖2

2 + μ

h
‖xk + hd‖1

⇔ min
d∈Rn

h2

λk

(
∇ f (xk)

�d + λk

2
‖d‖2

2 + μ

h
‖xk + hd‖1

)

⇔ min
d∈Rn

1

2

∥∥∥xk + hd − (
xk − h

λk
∇ f (xk)

)∥∥∥
2

2
+ μh

λk
‖xk + hd‖1
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⇔ min
d∈Rn

n∑

i=1

{1

2

(
xi

k + hdi − (
xi

k − h

λk
∇ f i (xk)

))2 + μh

λk
|xi

k + hdi |
}
, (2.7)

where xi
k, di , and ∇ f i (xk) denote the i th component of xk, d , and ∇ f (xk), respectively.

The favorable structure of (2.7) adopts the explicit solution

xi
k + hdi

k = max
{∣∣∣xi

k − h

λk
∇ f i (xi

k)

∣∣∣ − μh

λk
, 0

} xi
k − h

λk
∇ f i (xk)

|xi
k − h

λk
∇ f i (xk)|

.

Hence, the search direction at current point is

dk = − 1

h

[
xk − max

{∣∣∣xk − h

λk
∇ f (xk)

∣∣∣ − μh

λk
, 0

} xk − h
λk

∇ f (xk)

|xk − h
λk

∇ f (xk)|
]
, (2.8)

where | · | and “max” are interpreted as componentwise, and the convention 0 · 0/0 = 0 is
followed. When μ = 0, (2.8) is reduced to dk = −λ−1

k ∇ f (xk), i.e., the traditional Barzilai–
Borwein gradient algorithm in smooth optimization. The key motivation for this formulation
is that the optimization problem in Eq. (2.7) can be easily solved by exploiting the structure
of the �1-norm.

For y ∈ R
n and τ ∈ R, the unique minimizer of τ‖x‖1 + 1

2‖x − y‖2 is given explicitly by

x∗ = S(y, τ ) = max {|y| − τ, 0} y

|y| .

As a result, in the case of h = 1, (2.8) is reduced to

dk = S
(

xk − 1

λk
∇ f (xk),

μ

λk

)
− xk,

which is essentially the search direction of the algorithm FPC_AS [39,40]. Just because of
this, in the following, we only consider the case where h ∈ (0, 1). The important observation
illustrates that our approach generalizes the definition of the search direction of FPC_AS using
a small scalar h. For the reason, we believe that the search direction should be generated by
theoretically minimizing the quadratic approximation of both terms in F , not just in the
smooth function f . Another advantage of our approach is that an appropriate value of h may
result in an improved numerical performance, and that the approach is not restricted to the
special case h = 1.

Lemma 2.1 For any real vectors a ∈ R
n and b ∈ R

n, the following function L(x) is
non-decreasing

L(x) = ‖a + bx‖1 − ‖a‖1

x
, x ∈ (0,∞). (2.9)

Proof Note that

L(x) = ‖a + bx‖1 − ‖a‖1

x
=

n∑

i

|ai + bi x | − |ai |
x

�
n∑

i

li (x);

hence, it is reduced to prove that li (x) is non-decreasing for each i .

(a) When ai ≥ 0 and ai x + bi ≥ 0, li (x) = bi .
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(b) When ai ≥ 0 and ai x + bi ≤ 0, we obtain

li (x) = −2ai − bi x

x
= −2ai

x
− bi .

(c) When ai ≤ 0 and ai x + bi ≥ 0, we obtain

li (x) = 2ai + bi x

x
= 2ai

x
+ bi .

(d) When ai ≤ 0 and ai x + bi ≥ 0, we have li (x) = −bi .

Clearly li (x) is non-decreasing for each case. Hence, L(x) is non-decreasing. ��
The following lemma shows that the direction defined by (2.8) is descent if dk �= 0.

Lemma 2.2 Suppose that λk > 0 and dk is determined by (2.8). Then,

F(xk + θdk) ≤ F(xk) + θ
[
∇ f (xk)

�dk + μ‖xk + hdk‖1 − μ‖xk‖1

h

]
+ o(θ) θ ∈ (0, h],

(2.10)

and

∇ f (xk)
�dk + μ‖xk + hdk‖1 − μ‖xk‖1

h
≤ −λk

2
‖dk‖2

2. (2.11)

Proof By the differentiability of f and the convexity of ‖x‖1, we show that for any
θ ∈ (0, h] (θ/h ∈ (0, 1]),
F(xk + θdk) − F(xk) = f (xk + θdk) − f (xk) + μ‖xk + θdk‖1 − μ‖xk‖1

= f (xk +θdk)− f (xk)+μ

∥∥∥
θ

h
(xk +hdk)+

(
1− θ

h

)
xk

∥∥∥
1
− μ‖xk‖1

≤ f (xk +θdk)− f (xk)+ θμ

h
‖xk +hdk‖1+

(
1− θ

h

)
μ‖xk‖1−μ‖xk‖1

= θ∇ f (xk)
�dk + o(θ) + θ

[μ

h
‖xk + hdk‖1 − μ

h
‖xk‖1

]
,

which is exactly (2.10).
Noting dk is the minimizer of (2.6) and θ ∈ (0, h], from (2.6) as well as the convexity of

‖x‖1, we have

∇ f (xk)
�dk + λk

2
‖dk‖2

2 + μ‖xk + hdk‖1 − μ‖xk‖1

h

≤ θ∇ f (xk)
�dk + λk

2
‖θdk‖2

2 + μ

h
‖xk + θhdk‖1 − μ

h
‖xk‖1

≤ θ∇ f (xk)
�dk + λkθ

2

2
‖dk‖2

2 + θμ

h2 ‖xk + h2dk‖1 + μ

h

(
1 − θ

h

)
‖xk‖1 − μ

h
‖xk‖1.

Hence,

(1 − θ)∇ f (xk)
�dk + μ

h
‖xk + hdk‖1 − θμ

h2 ‖xk + h2dk‖1

−μ

h

(
1 − θ

h

)
‖xk‖1 ≤ −λk

2

(
1 − θ2) ‖dk‖2

2. (2.12)
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The last three terms of the left hand side in (2.12) can be re-organized as

μ

h

{
‖xk + hdk‖1 − θ

h
‖xk + h2dk‖1 −

(
1 − θ

h

)
‖xk‖1

}

= μ

h

{
‖xk + hdk‖1 − ‖xk‖1 − θ

[‖xk + h2dk‖1 − ‖xk‖1

h

]}

= μ

h

{
‖xk + hdk‖1 − ‖xk‖1 − θ

[
h · ‖xk + h2dk‖1 − ‖xk‖1

h2

]}

≥ μ

h

{
‖xk + hdk‖1 − ‖xk‖1 − θ

[
h · ‖xk + hdk‖1 − ‖xk‖1

h

]}

= μ

h
(1 − θ) {‖xk + hdk‖1 − ‖xk‖1} , (2.13)

where the inequality is from Lemma 2.1. Combining (2.12) with (2.13), we obtain

(1 − θ)∇ f (xk)
�dk + (1 − θ)

μ‖xk + hdk‖1 − μ‖xk‖1

h
≤ −λk

2

(
1 − θ2) ‖dk‖2

2.

(2.14)

Dividing both sides of (2.14) by (1 − θ) and noting 1 − θ > 0 when h ∈ (0, 1), we arrive at
the desired result (2.11). ��

When the search direction is determined, a suitable stepsize along this direction should
be found to determine the next iterative point. In this study we pay particular attention to a
nonmonotone line search strategy, which differs from the traditional Armijo line search or
the Wolfe–Powell line search. The traditional Armijo line search requires the function value
to decrease monotonically at each iteration. This requirement may cause the sequence of
iterations to follow the bottom of a curved narrow valley, which commonly occurs in difficult
nonlinear problems. To overcome this difficulty, a possible alternative is to allow an occasional
increase in the objective function at each iteration. To clarify further the proposed algorithm,
we briefly recall the earliest nonmonotone line search technique by Grippo, Lampariello, and
Lucidi [22]. Let δ ∈ (0, 1), ρ ∈ (0, 1), and m̃ be a positive integer. The nonmonotone line
search is used to choose the smallest nonnegative integer jk such that the stepsize αk = α̃ρ jk

satisfies

f (xk + αkdk) ≤ max
0≤ j≤m(k)

f (xk− j ) + δαk∇ f (xk)
�dk, (2.15)

where

m(0) = 0 and 0 ≤ m(k) ≤ min {m(k − 1) + 1, m̃} .

If m(k) = 0, the above nonmonotone line search reduces to the standard Armijo line search.
Based on Lemma 2.2, the inequality (2.15) should be modified as

F(xk + αkdk) ≤ max
0≤ j≤m(k)

F(xk− j ) + δαk�k, (2.16)

where

�k = ∇ f (xk)
�dk + μ‖xk + hdk‖1 − μ‖xk‖1

h
. (2.17)

As shown in (2.11) �k ≤ − λk
2 ‖dk‖2

2 < 0 whenever dk �= 0. Hence, αk given by (2.16) is
well-defined.
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Given all the derivations above, we now describe the nonmonotone Barzilai–Borwein
gradient algorithm (hereafter referred to NBBL1) as follows.

Algorithm 1 (NBBL1)

Initialization: Choose x0 and constant μ > 0. Constants α̃ > 0, ρ ∈ (0, 1), δ ∈ (0, 1),
h ∈ (0, 1] and positive integer m̃. Set k = 0.
Step 1. Stop if ‖dk‖2 = 0. Otherwise, continue.
Step 2. Compute dk via (2.8).
Step 3. Compute αk via (2.16).
Step 4. Let xk+1 = xk + αkdk .
Step 5. Let k = k + 1. Go to Step 1.

Remark 1 Ifλk > 0, then the generated direction is descent. However, the conditionλk > 0 in
this case may not be fulfilled and the hereditary descent property can no longer be guaranteed.
To cope with this drawback, we should keep the sequence {λk} uniformly bounded; that is,
for sufficiently small λ(min) > 0 and sufficiently large λ(max) > 0, the λk is forced as

λk = min
{
λ(max), max

{
λk, λ(min)

}}
.

This approach ensures that λk is bounded from zero and subsequently ensures that dk is
descent at per-iteration.

Remark 2 Lemma 2.2demonstrates the existence of a constant θ ∈ (0, h] such that xk + θdk

is a descent point. Hence, choosing the initial stepsize as α̃ = h is suggested in practical
computation.

3 Convergence Analysis

Thfis section is devoted to presenting some favorable properties of the generated direction
and establishing the global convergence of Algorithm 1. Our convergence result utilizes the
following assumption:

Assumption 1 The level set � = {x : f (x) ≤ f (x0)} is bounded.

To easily understand the lemma given below, we present two frequently used definitions
in convex analysis.

Definition 3.1 The directional derivative of a multivariate function f (x1, . . . , xn) along a
given vector d = (d1, . . . , dn) at a given point x is defined by

f ′(x; d) = lim
α↓0

f (x + αd) − f (x)

α
.

Definition 3.2 A feasible point x ∈ R
n is said to be a stationary point of f if f ′(x; d) ≥ 0

for all d ∈ R
n .

Lemma 3.3 Suppose that λk > 0 and dk is defined by (2.8) with h ∈ (0, 1]. Then, xk is a
stationary point of problem (1.1) if and only if dk = 0.
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Proof If dk �= 0, then Lemma 2.2 shows that dk is descent direction at xk , which implies that
xk is not a stationary point of F . If dk = 0 is the solution of (2.7), we obtain the following
for any αd ∈ R

n with α > 0:

α∇ f (xk)
�d + λkα

2

2
‖d‖2

2 + μ

h
‖xk + αhd‖1 ≥ μ

h
‖xk‖1. (3.1)

Combining f (xk + αd) − f (xk) = α∇ f (xk)
�d + o(α) with (3.1) yields

F ′(xk; d) = lim
α↓0

f (xk + αd) − f (xk) + μ‖xk + αd‖1 − μ‖xk‖1

α

= lim
α↓0

α∇ f (xk)
�d + o(α) + μ‖xk + αd‖1 − μ‖xk‖1

α

≥ lim
α↓0

(− λkα2

2 ‖d‖2
2 + o(α)

α

+
[
μ‖xk + αd‖1 − μ‖xk‖1

] − [
μ
h ‖xk + αhd‖1 − μ

h ‖xk‖1
]

α

)
.

≥ lim
α↓0

− λkα2

2 ‖d‖2
2 + o(α)

α

= 0,

where the second inequality is from Lemma 2.1. Hence, xk is a stationary point of F . ��
The proof of the following lemma is similar to the Theorem in [22].

Lemma 3.4 Let l(k) be an integer such that

k − m(k) ≤ l(k) ≤ k and F(xl(k)) = max
0≤ j≤m(k)

F(xk− j ).

Then, the sequence {F(xl(k))} is non-increasing, and the search direction dl(k) satisfies

lim
k→∞ αl(k)‖dl(k)‖2 = 0. (3.2)

Proof From the definition of m(k), we have m(k + 1) ≤ m(k) + 1. Hence,

F(xl(k+1)) = max
0≤ j≤m(k+1)

F(xk+1− j )

≤ max
0≤ j≤m(k)+1

F(xk+1− j )

= max
{

F(xl(k)), F(xk+1)
}

= F(xl(k)).

Based on (2.16), we obtain the following for all k > m̃:

F(xl(k)) = F
(
xl(k)−1 + αl(k)−1dl(k)−1

)

≤ max
0≤ j≤m(l(k)−1)

F
(
xl(k)−1− j

) + δαl(k)−1�l(k)−1

= F
(
xl(l(k)−1)

) + δαl(k)−1�l(k)−1.

By assumption 1, the sequence {F(xl(k))} admits a limit for k → ∞. Hence,

lim
k→∞ αl(k)�l(k) = 0. (3.3)
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Given the definition of �k in (2.17) and the inequality (2.11), we can deduce that

�l(k) ≤ −λ(min)

2
‖dl(k)‖2

2 < 0.

Combining the previous equation with (3.3) yields

lim
k→∞ αl(k)‖dl(k)‖2

2 = 0,

which shows the desired result (3.2). ��
Theorem 3.5 Let the sequences {xk} and {dk} be generated by Algorithm 1. Then, a subse-
quence K exists such that

lim
k→∞,k∈K

‖dk‖2 = 0. (3.4)

Proof As shown in [22], (3.2) also implies that

lim
k→∞ αk‖dk‖2 = 0. (3.5)

Now, let x̄ be a limit point of {xk} and {xk}K1 be a subsequence of {xk} converging to x̄ .
Then, by (3.5), either lim

k→∞,k∈K1
‖dk‖2 = 0, which implies ‖d̄‖2 = 0, or a subsequence

{xk}K (K ⊂ K1) exists such that

lim
k→∞,k∈K

dk �= 0 and lim
k→∞,k∈K

αk = 0. (3.6)

In this case, we assume that a constant ε > 0 exists such that

‖dk‖2 ≥ ε, ∀ k ∈ K. (3.7)

As αk is the first value that satisfies (2.16), we can assume based on Step 3 in Algorithm 1
that an index k̄ exists such that for all k ≥ k̄ and k ∈ K,

F

(
xk + αk

ρ
dk

)
> max

0≤ j≤m(k)
F(xk− j ) + δ

αk

ρ
�k ≥ F(xk) + δ

αk

ρ
�k . (3.8)

As f is continuously differentiable, we can find based on the mean-value theorem on f that
a constant θk ∈ (0, 1) exists such that

f

(
xk + αk

ρ
dk

)
− f (xk) = αk

ρ
∇ f

(
xk + θk

αk

ρ
dk

)�
dk .

By combining the previous equation with (3.8), we obtain

∇ f

(
xk + θk

αk

ρ
dk

)�
dk + μ‖xk + αk

ρ
dk‖1 − μ‖xk‖1

αk/ρ
> δ�k . (3.9)

As α̃ = h and αk → 0 in (3.6), we obtain αk < ρh as k → ∞. Based on Lemma 2.1,

μ‖xk + αk
ρ

dk‖1 − μ‖xk‖1

αk/ρ
− μ‖xk + hdk‖1 − μ‖xk‖1

h
≤ 0.

Subtracting both sides of (3.9) by �k and noting the definition of �k

∇ f

(
xk + θk

αk

ρ
dk

)�
dk − ∇ f (xk)

�dk
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≥ ∇ f

(
xk + θk

αk

ρ
dk

)�
dk − ∇ f (xk)

�dk

+
[μ‖xk + αk

ρ
dk‖1 − μ‖xk‖1

αk/ρ
− μ‖xk + hdk‖1 − μ‖xk‖1

h

]

> −(1 − δ)�k

≥ (1 − δ)
λ(min)

2
‖dk‖2

2. (3.10)

Taking the limit as k ∈ K, k → ∞ in both sides of (3.10) and using the smoothness of f ,
we obtain

0 = ∇ f (x̄)�d̄ − ∇ f (x̄)�d̄ ≥ (1 − δ)
λ(min)

2
‖d̄‖2

2,

which implies that ‖dk‖2 → 0 as k ∈ K, k → ∞. This result yields a contradiction because
(3.7) indicates that ‖dk‖2 is bounded away from zero. ��

4 Some Extensions

In this section, we show that our algorithm can be readily extended to solve �2-norm and
matrix trace norm minimization problems in machine learning, thereby broadening the
applicable range of our approach significantly.

First, we consider the �2-regularization problem

min
x∈Rn

F(x) = f (x) + μ‖x‖2.

The search direction dk is clearly determined by minimizing

min
d∈Rn

1

2

∥∥∥xk + hd − (
xk − h

λk
∇ f (xk)

)∥∥∥
2

2
+ μh

λk
‖xk + hd‖2.

Based on [19], the explicit solution is

xk + hdk = max
{∥∥∥xk − h

λk
∇ f (xk)

∥∥∥
2
− μh

λk
, 0

} xk − h
λk

∇ f (xk)

‖xk − h
λk

∇ f (xk)‖2
,

i.e.,

dk = − 1

h

[
xk − max

{∥∥∥xk − h

λk
∇ f (xk)

∥∥∥
2
− μh

λk
, 0

} xk − h
λk

∇ f (xk)

‖xk − h
λk

∇ f (xk)‖2

]
.

Now, we consider the matrix trace norm minimization problem

min
X∈Rm×n

F(X) = f (X) + μ‖X‖∗, (4.1)

where the functional ‖X‖∗ is the trace norm of matrix X , which is defined as the sum of its
singular values. That is, assume that X has r positive singular values of σ1 ≥ σ2 ≥ · · · ≥
σr ≥ 0; then, ‖X‖∗ = ∑r

i=1 σi . The matrix trace norm is also known as the Schatten �1-norm,
Ky Fan norm, and nuclear norm [33]. This problem has received much attention because it is
closely related to the affine rank minimization problem, which has appeared in many control
applications, including controller design, realization theory, and model reduction.
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Similar to the steps undertaken in previous sections, we can readily reformulate (2.6) as
the following quadratic model to determine the search direction:

min
D∈Rm×n

1

2

∥∥∥Xk + h D − (
Xk − h

λk
∇ f (Xk)

)∥∥∥
2

2
+ μh

λk
‖Xk + h D‖∗. (4.2)

To obtain the exact solution of (4.2), we now consider the singular value decomposition
(SVD) of a matrix Y ∈ R

m×n with rank r as

Y = U�V �, � = diag({σi }1≤i≤r ),

where U and V are m × r and r × n matrices, respectively, with orthonormal columns, and
the singular value σi is positive. For each τ > 0, let

Dτ (Y ) = UDτ (�)V �, Dτ (�) = diag([σi − τ ]+),

where [·]+ = max{0, ·}. Dτ (Y ) obeys the following nuclear norm minimization problem [7],
i.e.,

Dτ (Y ) = arg min
X

τ‖X‖∗ + 1

2
‖X − Y‖2

F . (4.3)

Comparing (4.2) with (4.3), we deduce that

Xk + h Dk = UDμh/λk (�)V � and Dμh/λk (�) = diag
([σi − μh

λk
]+

)
,

or, equivalently,

Dk = − 1

h

[
Xk − UDμh/λk (�)V �]

.

Subsequently, the NBBL1 framework to solve �2-norm and matrix trace norm regularization
problems is easily derived.

5 Numerical Experiments

In this section, we present numerical results to illustrate the feasibility and efficiency of
NBBL1. We partition our experiments into three classes based on different types of f . In the
first class, we use our algorithm to solve �1-regularized nonconvex problem. In the second
class, we use our algorithm to solve �1-regularized least squares, which mainly appear in
compressive sensing. In the third class, we compare some state-of-the-art algorithms in
compressive sensing to show the efficiency of our algorithm. All experiments are performed
under Windows XP and Matlab 7.8 (2009a) running on a Lenovo laptop with an Intel Atom
CPU at 1.6 GHz and 1 GB of memory.

5.1 Test on �1-Regularized Nonconvex Problem

Our first test is performed on a set of nonconvex unconstrained problems from the CUTEr
[14] library. The second-order derivatives of all the selected problems are available. Given
our interest in large problems, we only consider the problems with a size of at least 100. For
such problems, we use the dimensions that is admissible of the “double large” installation of
CUTEr. The algorithm stops if the norm of the search direction is small enough; that is,

‖dk‖2 ≤ tol1. (5.1)
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Table 1 Test result for NBBL1 with μ = 0

Problem Dim μ Iter Nf Time Fun Normg Normd

VARDIM 1,000 0.0 49 94 0.48 3.2506e−26 3.6059e−13 2.5893e−09

FLETCHER 100 0.0 1,217 1,983 3.75 3.0113e−10 2.2576e−05 9.9505e−09

COSINE 10,000 0.0 51 350 23.41 −9.9990e+03 2.5387e−03 4.4188e−09

SINQUAD 1,000 0.0 180 908 10.22 6.4479e−05 4.9743e−05 6.8482e−09

GENROSE 200 0.0 323 646 0.80 1.0000e+00 1.3870e−05 9.9488e−09

WOODS 1,000 0.0 322 579 3.00 9.9104e−13 7.2693e−06 7.5155e−09

NONCVXU2 200 0.0 4,987 8,476 21.17 4.6373e+02 2.0726e−07 7.0300e−09

BROYDN7D 500 0.0 1,305 2,402 10.38 3.8234e+00 9.3966e−07 9.2037e−09

CHAIWOO 1,000 0.0 757 1,335 9.80 1.0000e+00 8.0006e−06 4.4747e−09

The iterative process is also stopped if the number of iterations exceeds 10,000 without
achieving convergence.

In this experiment, we take tol1 = 10−8, h = 1, λ(min) = 10−20, and λ(max) = 1020.
In the line search, we choose α̃0 = 1, ρ = 0.35, δ = 10−4, and m̃ = 5. We test NBBL1
with different parameter values μ = {0, .25, 1, 1.5, 2}. The numerical results are presented
in Tables 1 and 2, which contain the name of the problem (Problem), the dimensions of the
problem (Dim), the number of iterations (Iter), the number of function evaluations (Nf), the
CPU time required in seconds (Time), the final objective function values (Fun), the norm of
the final gradient of f (Normg), or the number of nonzeros components of solutions (Nzero),
and the norm of final direction (Normd).

As show in Tables 1 and 2, NBBL1 works successfully for all the test problems in
each case. Particularly, NBBL1 consistently produces highly accurate solutions within a
short amount of time. The proposed algorithm requires a large number of iterations for a
number of special problems, such as problems FLETCHER, NONCVXU2, and BROYDN7D
with parameter μ = 0, problems FLETCHER and BROYDN7D with μ = 0.25; problems
FLETCHER and CHAIWOO with μ = 1, problems VARDIM, FLETCHER and CHAIWOO
with μ = 1.5 and μ = 2. It can also be observed that the number of iterations and function
evaluations both decrease universally as μ increase from 1 except for problem VARDIM. As
illustrated at the third column on the right, the number of the non-zero components of final
solutions decrease dramatically as μ gets small, and reach zero when μ = 2 for a coupe of
problems. Moreover, if larger μ is permitted, the number of non-zero components of final
solutions are all zero for each test problem, which means that zero is the optimal solution. The
phenomenon is not surprising once we note the separable structure of the original problem
and the balanced parameter μ. From Table 2 we also note that for problems COSINE and
GENROSE, the proposed algorithm requires only two steps to achieve convergence. From
CUTEr [14], it is easy to see that the fundamental cause of the thing lies in the starting
point near to zero, i.e. the solution. Meanwhile, the norm of the final direction is exactly
zero for problems COSINE and GENROSE, because at the solution it has xk = 0 and |xk −
h
λk

∇ f (xk)| <
μh
λk

in (2.8) at this case. Table 1 presents the numerical results of NBBL1 after
solving a smooth nonconvex minimization problem without any regularization. As shown
in the second to the last column of this table, the norm of the final gradient is sufficiently
small. The important observation verifies that the proposed algorithm is very efficient in
solving unconstrained smooth minimization problems. This result is not surprising, because
the proposed algorithm reduces to the effective nonmonotone Barzailai-Borwein gradient
method of Raydan [32] in this case.
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Table 2 Test result for NBBL1 with μ = 0.25, 1, 2

Problem Dim μ Iter Nf Time NZero Fun Normd

VARDIM 1,000 0.25 49 94 0.06 1,000 2.5000e+02 6.4503e−09

FLETCHER 100 0.25 5,042 8,657 1.65 100 2.4497e+01 9.7495e−09

COSINE 10,000 0.25 47 108 2.23 9,999 −1.6829e+03 4.8382e−09

SINQUAD 1,000 0.25 46 92 0.19 2 2.8084e−01 2.2567e−13

GENROSE 200 0.25 9 57 0.00 199 1.9846e+02 3.7742e−09

WOODS 1,000 0.25 645 1,527 0.80 1,000 2.4911e+02 7.0300e−09

NONCVXU2 200 0.25 998 1,957 0.58 176 5.6230e+02 8.2357e−09

BROYDN7D 500 0.25 1,314 2,366 1.56 500 8.9609e+01 8.1753e−09

CHAIWOO 1,000 0.25 435 746 0.72 1,000 2.5055e+02 6.6783e−09

VARDIM 1,000 1.0 143 450 0.16 1,000 9.3925e+02 6.2518e−09

FLETCHER 100 1.0 1,046 1,635 0.33 100 9.7761e+01 4.0598e−09

COSINE 10,000 1.0 63 983 3.06 1 1.0462e+04 7.6739e−12

SINQUAD 1,000 1.0 59 96 0.20 2 6.3115e−01 4.7160e−11

GENROSE 200 1.0 8 52 0.00 199 1.9950e+02 4.4169e−10

WOODS 1,000 1.0 837 1,826 0.94 1,000 9.8571e+02 9.5164e−09

NONCVXU2 200 1.0 492 774 0.27 140 6.2045e+02 8.7467e−09

BROYDN7D 500 1.0 510 975 0.59 494 3.3286e+02 7.5406e−09

CHAIWOO 1,000 1.0 1,057 1,804 1.62 1,000 9.9376e+02 5.0433e−09

VARDIM 1,000 1.5 845 2,780 0.94 1,000 1.3596e+03 6.0186e−09

FLETCHER 100 1.5 1,323 2,366 0.45 100 1.4645e+02 8.9985e−09

COSINE 10,000 1.5 3 4 0.19 0 9.9990e+03 0.0000e+00

SINQUAD 1,000 1.5 83 339 0.48 2 7.7024e−01 4.5581e−09

GENROSE 200 1.5 5 6 0.00 199 1.9988e+02 5.0868e−09

WOODS 1,000 1.5 853 1,809 0.83 1,000 1.4677e+03 9.9695e−09

NONCVXU2 200 1.5 365 671 0.19 107 6.7764e+02 5.7948e−09

BROYDN7D 500 1.5 305 517 0.22 26 4.9970e+02 7.7333e−09

CHAIWOO 1,000 1.5 935 1,538 1.53 1,000 1.4962e+03 8.6569e−09

VARDIM 1,000 2.0 1,506 4,816 1.64 1,000 1.7511e+03 2.4783e−09

FLETCHER 100 2.0 996 1,721 0.33 100 2.4344e+02 2.8322e−09

COSINE 10,000 2.0 2 3 0.14 0 9.9990e+03 0.0000e+00

SINQUAD 1,000 2.0 67 110 0.23 2 8.6555e−01 5.0413e−11

GENROSE 200 2.0 2 3 0.03 0 2.0000e+02 0.0000e+00

WOODS 1,000 2.0 102 283 0.11 750 3.3572e+03 3.8964e−09

NONCVXU2 200 2.0 251 825 0.14 50 7.3779e+02 9.7233e−09

BROYDN7D 500 2.0 152 455 0.12 9 5.0216e+02 5.0308e−09

CHAIWOO 1,000 2.0 927 1,634 1.54 998 1.9739e+03 9.5918e−09

5.2 Test on �1-Regularized Least Squares

Let x̄ be a sparse or a nearly sparse original signal, A ∈ R
m×n (m � n) be a linear operator,

ω ∈ R
m be a zero-mean Gaussian white noise, and b ∈ R

m be an observation that satisfies
the relationship
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Fig. 1 Left Original signal with length 4,096 and 64 positive non-zero elements; Middle the noisy measurement
with length 512; Right recovered signal by NBBL1 (red circle) versus original signal (blue peaks) (Color figure
online)

b = Ax̄ + ω.

Recent compressive sensing results show that under some technical conditions, the desired
signal can be reconstructed almost exactly by solving the �1-regularized least squares (1.2).
In this subsection, we perform two classes of numerical experiments to solve (1.2) using
the Gaussian matrices as the encoder. In the first class, we demonstrate that our algorithm
effectively decodes a sparse signal. In the second class, we carry out a series of experiments
with different h to choose the best one. We measure the quality of restoration x∗ through the
relative error to the original signal x̄ ; that is,

RelErr = ‖x∗ − x̄‖2

‖x̄‖2
. (5.2)

In the first test, we use a random matrix A with independent identically distributed
Gaussian entries. The ω is the additive Gaussian noise of zero mean and standard deviation
σ . Given the storage limitations of the PC, we test a small size signal with n = 211, m = 29.
The original signal contains randomly p = 26 nonzero elements. We also choose the noise
level σ = 10−3. The proposed algorithm starts at a zero point and terminates when the
relative change of two successive points are sufficiently small, i.e.,

‖xk − xk−1‖2

‖xk−1‖2
< tol2. (5.3)

In this experiment, we take tol = 10−4, h = 10−2, λ(min) = 10−30, and λ(max) = 1030.
In the line search, we choose α̃0 = 10−2, ρ = 0.35, δ = 10−4, and m̃ = 5. The original
signal, the limited measurement, and the reconstructed signal are given in Fig. 1.

Comparing the left plot with the right one in Fig. 1, we clearly see that the original
sparse signal is restored almost completely. All the blue peaks are encircled by the red
circles, illustrating that the original signal has been found almost exactly. Overall, this simple
experiment shows that the proposed algorithm performs quite well and provides an efficient
approach to the recovery of large sparse non-negative signal.

The last term in the approximate quadratic model (2.6) is equivalent to ‖xk + d‖1 exactly
when h = 1. Next, we provide evidence to show that other values can be potentially and
dramatically better than h = 1. We conduct a series of experiments and compare the perfor-
mance at each case. In our experiments, we set all the parameters values as in the previous
test except for n = 210. We present in Fig. 2 the impact of the parameter h values on the total
number of iterations, the computing time, and the quality of the recovered signal. In each
plot, the level axis denotes the values of h from 0.01 to 1 in a log scale.
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Fig. 2 Performance of NBBL1: number of iterations (left), computing time (middle) and final relative error
(right). In each plot, the horizontal axis represents the value of h in log scale

In Fig. 2, the number of iterations, the computing time, and the quality of restorations are
greatly influenced by the h values. Generally, as h increases, NBBL1 consistently performs
satisfactorily. On the other hand, the right plot clearly demonstrates that the relative error
decreases dramatically at the very beginning and then decreases slightly after 0.2. However,
the quality of restoration cannot be improved further after 0.7. On the other hand, the left
and middle plots show that the number of iterations and the computing time slightly increase
after h = 0.8. The these plots verify that the performance of NBBL1 is sensitive to the
h values, and that the value of h ∈ [0.7, 0.9] may be preferable.

5.3 Comparisons with NESTA_Ct, GPSR_BB, CGD, TwIST, FPC_BB, and FPC_AS

In the third class of the experiment we test the proposed algorithm against several state-of-
the-art algorithms to solve �1-regularized problems in compressive sensing or linear inverse
problems. Compare each algorithm in a very fair way is difficult, because each algorithm is
compiled with different parameter settings, such as the termination criterions, the starting
points, or the continuation techniques. Hence, in our performance comparisons, we run each
code from the same initial point, use all the default parameter values, and only observe the
convergence behavior of each algorithm to attain a solution of similar accuracy. We provide
below a brief review of each solver.

NESTA1 uses Nesterov’s smoothing technique [28] and gradient method [29] to solve basis
pursuit denoising problem. The current version can solve �1-norm regularization problems
with different types, including (1.2). In this experiment, we test NESTA with continuation
(hereafter referred to as NESTA-Ct) for comparison. This algorithm solves a sequence of
problems (1.2) using a decreasing sequence of μ values. Additionally, NESTA-Ct initially
uses the intermediated solution for the next problem. In running NESTA, all the parameters
are taken as default except TolVar, which is set to 1e − 5, to obtain solutions of similar
quality with other solvers.

Gradient projections for sparse reconstruction (referred to as GPSR_BB 2 [20]) reformu-
lates the original problem (1.2) as a box-constrained quadratic programming problem (1.6)
by splitting x = u − v. Figueiredo, Nowak, and Wright use a gradient projection method
with Barziali-Borwein steplength [2] for its solution, the performance of which is improved
using a nonmonotone line search [22]. For the comparison of the proposed algorithm with
GPSR-BB, we use the former’s continuation variant and set all parameters as default.

1 Available at http://www.acm.caltech.edu/~nesta.
2 Available at http://www.lx.it.pt/~mtf/GPSR.
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The well-known CGD3 uses a gradient algorithm to solve (1.5) and obtain the search
direction di

k = zei in i ∈ J , where J is a nonempty subset of {1, . . . , n}. Moreover,
CGD chooses the index subset J following the Gauss-Southwell rule. The iterative process
xk+1 = xk +αkdk continues until some termination criteria are met, (i.e., di

k = 0 with i /∈ J ),
and the stepsize αk using an Armijo rule. In running CGD, we use the code CGD according
to its Matlab package and set all the parameters as default except for init=2 to start the
iterative process at A�b.

TwIST4 is a two-step IST algorithm that is used to solve a class of linear inverse problems.
Specifically, TwIST is designed to solve

min
u

J (u) + μ

2
‖Au − f ‖2

2, (5.4)

where A is a linear operator, and J (·) is a general regularizer, which can be either a �1-norm
or total variation [34]. The iteration framework of TwIST is

uk+1 = (1 − α)uk−1 + (α − δ)uk + δ�μ(ξk),

where α, δ > 0 are parameters, ξk = uk + A�( f − Auk), and

�μ(ξk) = arg min
u

J (u) + μ

2
‖u − ξk‖2

2. (5.5)

We use the default parameters in TwIST and terminate the iteration process when the relative
variation of function value falls below 10−4.

FPC5 is used to solve the general �1-regularized minimization problem (1.1), where f is
a continuously differentiable convex function. At current xk and any scalar τ > 0 (might be
1/λk), the next iteration is produced by the so-called fixed point iteration

xk+1 = S(xk − τ∇ f (xk), μτ).

To obtain a good practical performance, FPC is augmented with a continuation approach.
Moreover, FPC is further modified using Barzilai–Borwein stepsize (code FPC-BB in Matlab
package FPC_v2), resulting in a significantly improved performance. In running FPC-BB,
we use all the default parameter values except xtol = 1 · e − 5 to stop the algorithm when
the relative change between successive points is below xtol to derive solutions of similar
quality with other solvers. The closely related algorithm FPC_AS 6 searches along

dk = S(xk − τ∇ f (xk), μτ) − xk

to estimate the support to the solution using the nonmonotone line search of Zhang and
Hager [48]. Then, a smooth “subspace optimization” is solved to recover the magnitudes of
the nonzero components of x . In running FPC_AS, we use the latest version in its Matlab
package and set all the parameters as default except for opts.init=2 to start at A�b.

In this test, A is a partial discrete cosine transform (DCT) coefficient matrix, whose m rows
are chosen randomly from the n × n DCT matrix. This encoding matrix A does not require
storage and allows fast matrix-vector multiplications involving A and A�. Therefore, it can
be used to test larger-size problems compared with those tested using Gaussian matrices. In
NBBL1, we take tol2 = 10−4, h = 0.83, λ(min) = 10−30, and λ(max) = 1030. In the line

3 Available at http://www.math.nus.edu.sg/~matys/.
4 Available at: http://www.lx.it.pt/~bioucas/TwIST/TwIST.htm.
5 Available at http://www.caam.rice.edu/~optimization/L1/fpc.
6 Available at http://www.caam.rice.edu/~optimization/L1/FPC_AS/.
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Fig. 3 Comparison result of NBBL1, NESTA_Ct, CGD, TwIST, and GPSR_BB. The x-axes represent the
CPU time in seconds (left) and the number of iterations (right). The y-axes represent the relative error

search, we choose α̃0 = h, ρ = 0.35, δ = 10−5, and m̃ = 5. In this comparison, we let
n = 214, m = floor(n/4), where “floor” is a Matlab command used to round off an
element to the nearest integer toward minus infinity. The original signal x̄ contains p =
floor(m/8) number of nonzero components. Moreover, the observation b is contaminated
by Gaussian noise with level σ = 1e−3. The goal is to use each algorithm to reconstruct x̄
from the observation b by solving (1.2) with μ = 2−8. All the tested algorithms start at x0 =
A�b and terminate with different stopping criterions to produce resolutions of similar quality.
Note that for the continuation technique used in some of the tested algorithms, the value of
μ may change occasionally. For this reason, we only observe the convergence behavior of
the algorihtms with respect to relative error as the iteration numbers and computing time
increase to specifically illustrate the performance of each algorithm.. The results of NBBL1,
NESTA_Ct, CGD, TwIST, and GPSR_BB are presented in Fig. 3.

The left plot in Fig. 3 shows that NBBL1 usually decreases the relative errors faster than
NESTA_Ct, CGD, GPSR_BB, and TwIST throughout the entire iteration process. Mean-
while, the right plot shows that NBBL1 requires lesser number of iterations than NESTA_Ct,
CGD, and GPSR_BB. Notably, TwIST requires a nearly equal number of iterations as NBBL1
but with more computing time. The reason lies in solving the de-noising subproblem (5.5)
per-iteration. Among the compared solvers, CGD performs the weakest. However, if CGD
starts at zero, its performance should significantly improve (see [43]). In sum, the simple
experiment verifies that NBBL1 is the fastest algorithm among those included inthis set of
test.

Now we proceed to testing the algorithm against two other related solvers, namely,
PFC_BB and FPC_AS, while keeping the experiment settings as the same as previous test.
The reason behind our choice to conduct this particular experiment is that the three cate-
gories of algorithms all use the Barzilai–Borwein coefficient and nonmonotone line search
strategy but in different ways. The search direction of FPC_AS is clearly included in the one
defined by (2.8) as a special case. Nevertheless, we still test NBBL1 when h = 1 [abbrevi-
ated as NBBL1(1.0)], the purpose of which is to demonstrate that the search direction (2.8)
would greatly benefit the performance of the algorithm. The results of NBBL1, FPC_BB,
and FPC_AS are presented in Fig. 4.

As shown in Fig. 4 all the tested algorithms eventually attain nearly equal relative errors
at the end. FPC_BB is the most competitive with NBBL1(0.83), whereas NBBL1(1.0) and
FPC_AS are much slower. FPC_AS is the slowest in decreasing relative errors throughout the
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Fig. 4 Comparison result of NBBL1, FPC_AS and FPC_BB. The x-axes represent the CPU time in seconds
(left) and the number of iterations (right). The y-axes represent the relative error

Table 3 Comparison results for
each test algorithm

Algorithms Iter Time RelErr Fun

NBBL1(0.83) 57 0.33 1.8549e−2 1.5708

NBBL1(1.0) 69 0.45 1.8538e−2 1.5708

NESTA_Ct 189 1.23 1.9755e−2 1.5876

GPSR_BB 130 0.89 1.8378e−2 1.6053

TwIST 54 1.05 1.8846e−2 1.5708

CGD 131 2.73 1.8958e−2 1.5708

FPC_BB 56 0.33 1.8539e−2 1.5708

FPC_AS 42 0.58 1.8674e−2 1.5708

entire iteration process, but requires the least number of iterations, because at each iteration,
FPC_AS solves a subspace minimization problem. One fact that must be emphasized is that
the performance of NBBL1 indeed improves dramatically using h = 0.83. In conclusion,
the proposed algorithm is generally more efficient than FPC_AS and competes strongly with
FPC_BB.

To further illustrate the benefit of NBBL1, we present the comparison results of each
algorithm behind the previous two experiments in Table 3 at the end of this section. In this
comparison, we only consider the iteration numbers (Iter), the computing time (Time), and the
relative error (RelErr) and the function values (Fun) at the final solutions for each algorithm.

It can be seen from Table 3 that, each algorithm obtained solutions with comparable
objective function values and comparable relative errors. From the results, once again we
see that FPC_BB is most competitive with NBBL1(0.83), while others are relatively slow.
Based on the experimental results, NBBL1(1.0) is appreciably slower than NBBL1(0.83).
We also did a series of tests with different of experiments settings and observed consistent
results. Specifically, FPC_BB is the most competitive with NBBL1(0.83). These results and
observations sufficiently demonstrated the efficiency and stability of NBBL1.

6 Conclusions

In this study, we proposed, analyzed, and tested a new practical algorithm to solve the
separable nonsmooth minimization problem consisting of an �1-norm regularized term and
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a continuously differentiable term. This type of problem mainly appears in signal/image
processing, compressive sensing, machine learning, and linear inverse problems. However,
the problem is challenging because of the non-smoothness of the regularization term. Our
approach minimizes an approximal local quadratic model to determine a search direction at
each iteration. We showed that the search direction contains the one of FPC_AS as a spe-
cial case, and is reduced to the classic Barzilai–Borwein gradient method when μ = 0.
We also proved that the objective function is descent along the direction provided that
the initial stepsize does not exceed h in the nonmonotone line search step. We established
the algorithm’s global convergence theorem by assuming that f is bounded below. Exten-
sive experimental results illustrated that the proposed algorithm is an effective tool to solve
�1-regularized nonconvex problems from CUTEr library. Moreover, we ran our algorithm
to recover a large sparse signal from its noisy measurement. The performance comparisons
with several state-of-the-art solvers verified that our algorithm is competitive with FPC_BB
and faster than FPC_AS, NESTA_Ct, CGD, GPSR, and TwIST.

Unlike all the existing algorithms in the literature, our approach uses a linear model to
approximate ‖xk + d‖1 for computing the search direction with a small scalar h; that is,

‖xk + d‖1 ≈ ‖xk‖1 + ‖xk + hd‖1 − ‖xk‖1

h
.

Although the equations may hold exactly when h = 1, a series of numerical experiments
in this paper showed that an appropriate h may result in an improved performance with
suitable experiment settings. This approach is distinctive and novel; therefore, it is one of
the important contributions of this study. A natural question is whether the performance of
FPC_AS, even its related variants, can be improved using the search direction defined in
(2.8). The answer deserves a thorough investigation. The nonmonotone Barzilai–Borwein
gradient algorithm of Raydan [32] is known to be very effective in smooth unconstrained
minimization, and its equally remarkable effectiveness in signal reconstruction problems
involving �1-regularized problems has not been clearly explored. Hence, our approach can
be considered as a modification or extension of the algorithm in [32]. Moreover, the numerical
experiments illustrated that our approach is comparable with or even better than several state-
of-the-art algorithms. This advantage certainly serves as the numerical contribution of this
study. Our algorithm readily solves the �1-regularized logistic regression, the �2-norm, as well
as matrix trace norm and �2,1-norm minimization problems in machine learning. However,
tests related to these problems were not conducted in the study. Further investigations are
therefore necessary.
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