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Abstract In this paper, we analyze the convergence of a finite element method for the compu-
tation of transmission eigenvalues and corresponding eigenfunctions. Based on the obtained
error estimate results, we propose a multigrid method to solve the Helmholtz transmission
eigenvalue problem. This new method needs only linear computational work. Numerical
results are provided to validate the efficiency of the proposed method.

Keywords Transmission eigenvalue · Multigrid method · Finite element method

Mathematics Subject Classification (2000) 34L16 · 65L60

1 Introduction

The transmission eigenvalue problem has important applications in the inverse scattering
theory and attracted many researchers’ attention recently [7–9,11–13,17,22]. It arises in
the study of inverse scattering by inhomogeneous media. They not only have theoretical
importance [11], but also can be used to obtain estimates for the properties of the scattering
material [6,8,23] since they can be determined from the scattering data.

In the past few years, significant progress of the existence of transmission eigenvalues and
applications has been made. We refer the readers to the recent survey paper by Cakoni and
Haddar [9]. However, in contrast, the numerical treatment of transmission eigenvalues and the
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associated interior transmission problem is very limited [1,12,15,16,21,24,26]. To the best
of the authors’ knowledge, the recent paper by Colton et al. [12] contains the first numerical
study where three finite element methods are proposed. Sun [24] proposes two iterative
methods (bisection and secant). Ji et al. [16] construct a mixed finite element method. The
technique is employed in [21] to compute Maxwell’s transmission eigenvalues. Most papers
do not discuss the convergence due to the difficulty that the problem is neither elliptic nor
self-adjoint. Only in [24], a rough error estimate for the eigenvalues is provided. In this paper,
we present an accurate error estimate of the eigenvalue and eigenfunction approximations
for the Helmhotz transmission eigenvalue problem.

Recently, a new type of multilevel correction method is proposed to solve the eigenvalue
problem [18–20,29]. In the multilevel correction scheme, the solution on a fine mesh can
be reduced to a series of solutions of the eigenvalue problem on a very coarse mesh and a
series of solutions of the boundary value problem on the multilevel meshes. This multilevel
correction method gives a way to construct a type of multigrid scheme for the eigenvalue
problem [19]. Based on the obtained error estimate results on the transmission eigenpairs
and multilevel correction scheme for the eigenvalue computation, we propose a multigrid
method to solve the transmission eigenvalue problem.

The rest of this paper is organized as follows. In Sect. 2, we introduce the transmission
eigenvalue problem and derive an equivalent fourth order reformulation. The finite element
method and its error estimates are given in Sect. 3. Section 4 introduces the multigrid method.
The work estimate of the multigrid method is analyzed in Sect. 5. In Sect. 6, three examples
are presented to validate the efficiency of the proposed numerical methods. The last section
gives some concluding remarks.

2 Transmission Eigenvalue Problem

First, we introduce some notations and the transmission eigenvalue problem. C (with or
without subscripts) denotes a generic positive constant which may be different at its different
occurrences through the paper. For convenience, the symbols �, � and ≈ will be used in
this paper. Notations x1 � y1, x2 � y2 and x3 ≈ y3, mean that x1 ≤ C1 y1, x2 ≥ c2 y2 and
c3x3 ≤ y3 ≤ C3x3 for some constants C1, c2, c3 and C3 that are independent of mesh sizes
(see, e.g., [28]).

In this paper, from the physical point of view, we are only concerned with the real trans-
mission eigenvalues corresponding to the scattering of acoustic waves by a bounded simply
connected inhomogeneous medium Ω ⊂ R2. The transmission eigenvalue problem is to find
k ∈ R, φ, ϕ ∈ H2(Ω), φ − ϕ ∈ H2(Ω) such that

⎧
⎪⎪⎨

⎪⎪⎩

Δφ + k2n(x)φ = 0, in Ω,

Δϕ + k2ϕ = 0, in Ω,

φ − ϕ = 0, on ∂Ω,
∂φ
∂ν

− ∂ϕ
∂ν

= 0, on ∂Ω,

(1)

where ν is the unit outward normal to the boundary ∂Ω . The index of refraction n(x) is
assumed to have two cases: n(x) > α a.e. in Ω for some constant α > 1 or 0 < n(x) < α̃0

a.e. in Ω for some constant α̃0 < 1. Values of k such that there exists a nontrivial solution to
(1) are called transmission eigenvalues.

Define

V := H2
0 (Ω) =

{
u ∈ H2(Ω) : u = 0 and

∂u

∂ν
= 0 on ∂Ω

}
. (2)
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Let u = φ − ϕ ∈ V . Subtracting the second equation from the first one in (1) leads to
(
Δ + k2

)
u = −k2(n(x) − 1

)
φ. (3)

Dividing n(x) − 1 and applying (Δ + k2n(x)) to both sides of the above equation, we can
rewrite (1) as a fourth order problem

(
Δ + k2n(x)

) 1

n(x) − 1
(Δ + k2)u = 0. (4)

Denote by (u, v) the L2(Ω) inner product. The weak formulation for the transmission eigen-
value problem (4) can be stated as follows: Find (k2 �= 0, u) ∈ R × V such that

( 1

n(x) − 1
(Δu + k2u),Δv + k2n(x)v

)
= 0, ∀v ∈ V . (5)

In the rest of this section, we will follow the way in [24] to introduce the associated generalized
eigenvalue problem and the existence of transmission eigenvalues. More details can be found
in [24].

Let τ = k2. We define

Aτ (u, v) =
( 1

n(x) − 1
(Δu + τu), (Δv + τv)

)
+ τ 2(u, v

)
, (6)

for n(x) ≥ α0 a.e. in Ω for some constant α0 > 1, and

Ãτ (u, v) =
( 1

1 − n(x)
(Δu + τn(x)u), (Δv + τn(x)v)

)
+ τ 2(n(x)u, v

)

=
( n(x)

1 − n(x)
(Δu + τu), (Δv + τv)

)
+ (

Δu,Δv
)
, (7)

for n(x) ≤ α̃0 a.e. in Ω for some constant α̃0 < 1. We also define

B(u, v) = (∇u,∇v
)
. (8)

For simplicity, we also call τ a transmission eigenvalue if k is.
From (5), it is straightforward to show that the transmission eigenvalue problem can be

stated as: Find (τ, u) ∈ R × V such that B(u, u) = 1 and

Aτ (u, v) = τB(u, v), ∀v ∈ V, (9)

when n(x) ≥ α0 a.e. in Ω for some constant α0 > 1, and

Ãτ (u, v) = τB(u, v), ∀v ∈ V, (10)

when n(x) ≤ α̃0 a.e. in Ω for some constant α̃0 < 1.
The bilinear forms Aτ (·, ·), Ãτ (·, ·) and Bτ (·, ·) have the following properties.

Lemma 1 [9,24] If 1
n(x)−1 ≥ γ a.e. in Ω for some γ > 0, then the bilinear form Aτ (·, ·)

is coercive on V × V and if n(x)
1−n(x)

≥ γ̃ a.e. in Ω for some γ̃ > 0, then the bilinear form

Ãτ (·, ·) is coercive on V × V . Moreover, B(·, ·) is a symmetric and nonnegative bilinear
form on V × V .

Here, in order to give the error analysis, we will use the idea in [24] of transforming the
transmission eigenvalue as a fix point of a non-linear function λ(τ) which will be defined by
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the general eigenvalue problems. We define the following generalized eigenvalue problem:
Find (λ(τ), u) ∈ R × V such that B(u, u) = 1 and

Aτ (u, v) = λ(τ)B(u, v), ∀v ∈ V, (11)

for n(x) ≥ α0 a.e. in Ω for some constant α0 > 1, or

Ãτ (u, v) = λ(τ)B(u, v), ∀v ∈ V, (12)

for n(x) ≤ α̃0 a.e. in Ω for some constant α̃0 < 1.
Then λ(τ) is a function of τ . Based on the definitions of Aτ (·, ·) and Ãτ (·, ·), it is easy to see

that the function λ(τ) is continuous corresponding to τ based on the eigenvalue perturbation
theory (c.f. [2,3]). From (9) and (10), a transmission eigenvalue is a root of the following
nonlinear function

f (τ ) := λ(τ) − τ. (13)

While our goal is to solve the above non-linear equation numerically, we refer the readers
to [9] for more details on the existence result.

3 Error Estimates of the Eigenpair Approximation

In this section, we first introduce the finite element method for the transmission eigenvalue
problem. Then we adopt the results in [24] by the bisection method to give the error estimate
of the eigenvalue approximations. Finally based on the theory of the finite element method
for eigenvalue problems, we derive the error estimates for the eigenfunction approximation.

3.1 Error Estimate of the Eigenvalue Approximation

For simplicity, we only consider the finite element method and error estimates for the case
(9). The case (10) follows similarly.

Let M(λ(τ)) denote the following eigenfunction set corresponding to the eigenvalue λ(τ)

M(λ(τ)) = {
v ∈ V : v is an eigenfunction of (11) corresponding to λ(τ) and B(v, v)=1

}
.

We define the operator Tτ : H1(Ω) → V as

Aτ (Tτ f, v) = B( f, v), ∀ f ∈ H1(Ω). (14)

As we know, the operator Tτ : V → V is compact and self-adjoint because of the compact
embedding of V into H1(Ω). Therefore the eigenvalue problem (11) can be rewritten as

λ(τ)Tτ uτ = uτ . (15)

So μ = 1/λ(τ) is an eigenvalue of Tτ associated with the same eigenfunction uτ .
Let Th be a shape regular mesh over Ω which means there exists a constant γ ∗ such that

hK

ρK
≤ γ ∗, ∀K ∈

⋃

h

Th,

where hK denotes the diameter of the smallest ball containing K for each K ∈ Th , and ρK

is the diameter of the biggest ball contained in K , h := max{hK : K ∈ Th}. Based on the
mesh Th , we define a conforming finite element space Vh (for example Bogner–Fox–Schmit
element [4]) such that Vh ⊂ V .
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Remark 1 The numerical method proposed in this paper can be used for general conform-
ing finite element spaces for the Sobolev space H2(Ω). For more examples of conforming
elements, please read books [5,10]. The actual implementation of conforming finite ele-
ment space Vh offers some computational difficulties: Either the dimension of the “local”
polynomial spaces is fairly large (at least 18 for triangular elements) or the structure of
the polynomial space is complicated. These difficulties mainly come from the fact that the
conforming finite element space Vh requires continuity of the function value and the partial
derivatives across adjacent finite elements. For more details, please refer [5,10].

Based on the finite element space Vh , we can define the following discrete version of the
eigenvalue problem (9) as: Find (τh, uh) ∈ R × Vh such that B(uh, uh) = 1 and

Aτh (uh, vh) = τhB(uh, vh), ∀vh ∈ Vh . (16)

In order to analyze the error estimates by the finite element method, we adopt the process
in [24] to find the roots of a discrete version of (13) which can be defined as: Find (λh(τ ), ûh) ∈
R × Vh such that B(ûh, ûh) = 1 and

Aτ (ûh, vh) = λh(τ )B(ûh, vh), ∀vh ∈ Vh . (17)

Similarly, we define a discrete operator Tτ,h : H1(Ω) → Vh as

Aτ (Tτ,h f, v) = B( f, v), ∀ f ∈ Vh . (18)

Obviously, Tτ,h is a compact self-adjoint operator and the eigenvalue problem (17) can be
rewritten as

λh(τ )Tτ,hûh = ûh . (19)

Based on the standard theory of the finite element method for the eigenvalue problem, we
have the following error estimate (c.f. [2,3]).

Lemma 2 Assume the index of refraction n(x) satisfies the conditions of Lemma 1. Let
(λh(τ ), ûh) denote a solution of the eigenvalue problem (17). Then there exists a solution of
the exact eigenvalue problem (11) such that the following error estimate holds

|λh(τ ) − λ(τ)| � δ2
h(λ(τ)), (20)

where

δh(λ(τ)) := sup
w∈M(λ(τ ))

inf
vh∈Vh

‖w − vh‖V . (21)

Proof First, it is obvious that the eigenvalue problem (17) is the discrete version of the
eigenvalue problem (11) by the finite element method when we fix the parameter τ . Then
the desired result (20) can be obtained by the standard error estimate of the finite element
method for eigenvalue problems corresponding to the compact operators (see, e.g., [2,3]). �

Since the operator Tτ corresponds to the biharmonic operator with a lower order pertur-
bation, the eigenfunction in M(λ) has the following regularity estimate

‖u‖2+γ < ∞, for u ∈ M(λ), (22)

for some γ (0 < γ ≤ 1) which depends on the maximal interior angle of the boundary ∂Ω

and γ = 1 when the domain Ω is convex [14]. Thus the following estimate for δh(λ(τ))

holds

δh(λ(τ)) � hs‖u‖2+s, (23)
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where s = min{γ, k − 1} with k denoting the degree of the piecewise polynomial space for
the finite element space Vh .

From (16) and (17), we know the eigenvalue τh in (16) is a root of the following equation

fh(τ ) := λh(τ ) − τ. (24)

Lemma 3 [24, Lemma 3.2] Let λ0(Ω) denote the first Dirichlet eigenvalue of −Δ on Ω .
If |∇ 1

n(x)−1 | < cg for some constant cg when n(x) ≥ α0 a.e. in Ω for some constant α0 > 1,

or |∇ n(x)
1−n(x)

| < cg for some constant cg when n(x) ≤ α̃0 a.e. in Ω for some constant α̃0 < 1.
Then we have f ′

h(τ ) < 0 when

τ <

(
1 + 2

n∗−1 − cg − cg
λ0(Ω)

)
λ0(Ω)

2n∗
n∗−1

, (25)

for n(x) ≥ α0 a.e. in Ω with some constant α0 > 1, or

τ <

(
1 + 2

1−n∗ − cg − cg
λ0(Ω)

)
λ0(Ω)

2n∗
1−n∗

, (26)

for n(x) ≤ α̃0 a.e. in Ω with some constant α̃0 < 1. Here n∗ = supx∈Ω n(x) and n∗ =
inf x∈Ω n(x).

The following theorem states that the roots of (24) approximate the roots of (13) well if
the mesh size is small enough.

Theorem 1 Assume τh is an eigenvalue solution of (16) approximating the exact eigenvalue
τ of (11) which satisfies the conditions in Lemma 3. Then the following error estimate holds

|τ − τh | � δ2
h(τ ), (27)

for the small enough h > 0.

Proof For small enough h > 0, from Lemma 3, we have that f ′
h(τ ) < −C < 0 for some

C > 0. From Lemma 2, the following estimate holds

| f (τ ) − fh(τ )| � δ2
h(λ(τ)),

on an interval [a − δ2
h(λ(τ))/C, b + δ2

h(λ(τ))/C] for some 0 < a < b. Then from Lemma
3.3 in [24] with λ(τ) = τ , we can obtain the desired result (27). �
3.2 Error Estimate of the Eigenfunction Approximation

Based on the above error estimate of the eigenvalue approximation, we now give the con-
vergence analysis for the eigenfunction approximation. Here, we set the eigenvalue τh to be
the approximation of the exact eigenvalue τ defined by (9). So in this subsection, we set
λ(τ) = τ .

We construct an auxiliary eigenvalue problem: Find (λ̃, ũ) ∈ R×V such that B(ũ, ũ) = 1
and

Aτh (ũ, v) = λ̃B(ũ, v), ∀v ∈ V . (28)
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Corresponding to this eigenvalue problem and Aτh (·, ·), we can also define an operator
Tτh : H1(Ω) → V as

Aτh (Tτh f, v) = B( f, v), ∀v ∈ V . (29)

Then the eigenvalue problem (28) can be written as

λ̃Tτh ũ = ũ. (30)

From Theorem 1, we know τh → τ and the family of compact operators Tτh : V → V
(0 < h ≤ 1) has the property Tτh → Tτ in the operator norm as h → 0.

Lemma 4 Assume eigenvalues τ and τh have the error estimate (27). The two operators Tτ

and Tτh have the following estimate

‖Tτ − Tτh ‖V � |τ − τh | � δh(τ )2, (31)

where ‖ · ‖V means the operator norm on V → V .

Proof From the definitions and boundedness of the operators Tτ and Tτh , the ellipticity and
boundedness of Aτ (·, ·) and Aτh (·, ·), we have the following estimate

‖Tτ − Tτh ‖V = sup
f ∈V,‖ f ‖V =1

‖Tτ f − Tτh f ‖V

� sup
f ∈V,‖ f ‖V =1

sup
v∈V,‖v‖V =1

Aτh

(
Tτ f − Tτh f, v

)

= sup
f ∈V,‖ f ‖V =1

sup
v∈V,‖v‖V =1

(
Aτ

(
Tτ f, v

) − Aτ

(
Tτ f, v

)

+Aτh

(
Tτ f, v

) − Aτh

(
Tτh f, v

))

= sup
f ∈V,‖ f ‖V =1

sup
v∈V,‖v‖V =1

(
Aτh

(
Tτ f, v

) − Aτ

(
Tτ f, v

))

� sup
f ∈V,‖ f ‖V =1

|τ − τh |‖ f ‖V

� |τ − τh |. (32)

This is the desired result (31). �
In order to give the estimate ‖u − ũ‖V , we define Rz(Tτ ) = (z − Tτ )

−1, Rz(Tτh )

= (z − Tτh )
−1. Let Γ be a circle in the complex plane which is centered at 1/τ and encloses

no other eigenvalues of Tτ . The spectral projection operator associated with Tτ and 1/τ is
defined as

Eτ = 1

2π i

∫

Γ

Rz(Tτ )dz. (33)

Eτ is a projection onto the space of generalized eigenvectors associated with 1/τ and Tτ ,
i.e., R(Eτ ) = N ((1/τ − Tτ )

α), where R denotes the range and α is the ascent of τ . For h
sufficiently small, the spectral projection

Eτh = 1

2π i

∫

Γ

Rz(Tτh )dz, (34)

exists, Eτh converges to Eτ in norm and dimR(Eτh ) = dimR(Eτ ). Eτh is the spectral
projection associated with Tτh and the eigenvalues of Tτh which lie in Γ . Furthermore, Eτh
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is a projection onto the direct sum of the spaces of generalized eigenvectors corresponding
to these eigenvalues, for more details, please read [3].

Given two closed subspaces M and N of V , we define the gap between M and N as

δ(M, N ) = max(δ̂(M, N ), δ̂(N , M)), where δ̂(M, N ) = sup
v∈M,‖v‖V =1

inf
χ∈N

‖v − χ‖V .

Lemma 5 The two finite dimensional spaces R(Eτ ) and R(Eτh ) have the following estimate

δ(R(Eτ ), R(Eτh )) � ‖(Tτ − Tτh )|R(Eτ )‖V , (35)

for small enough h, where (Tτ − Tτh )|R(Eτ ) denotes the restriction of Tτ − Tτh to R(Eτ ).

Proof The proof is similar to Theorem 7.1 in [3]. For any f ∈ R(Eτ ) with ‖ f ‖V = 1, we
have

‖ f − Eτh f ‖V = ‖Eτ f − Eτh f ‖V =
∥
∥
∥

1

2π i

∫

Γ

[Rz(Tτ ) − Rz(Tτh )] f dz
∥
∥
∥

V

=
∥
∥
∥

1

2π i

∫

Γ

[Rz(Tτh )(Tτ − Tτh )Rz(Tτ )] f dz
∥
∥
∥

V

� ‖(Tτ − Tτh ) f ‖V ≤ ‖(Tτ − Tτh )|R(Eτ )‖V . (36)

Combination of Theorem 6.1 in [3] and (36) leads to the desired result (35). �
From the standard error estimate theory for the eigenvalue problem by the finite element

method, we have the following estimates.

Lemma 6 Assume τh → τ . The eigenpair approximations (τ, u) of (9) and (λ̃, ũ) of (28)
have the following estimates

‖u − ũ‖V � δh(τ ), (37)

|τ − λ̃| � δ2
h(τ ). (38)

Proof From Lemmas 4 and 5, the following estimate holds

δ(R(Eτ ), R(Eτh )) � δh(τ ). (39)

Combining this estimate and the theory in [3], we can obtain the desired estimates (37) and
(38). �

The final error estimates of the eigenpair approximation (τh, uh) can be derived from
(37)–(38) and the triangle inequality.

Theorem 2 There exists an eigenpair (τ, u) of (9) such that the eigenpair approximation
(τh, uh) of (16) by the finite element method has the following error estimates

‖uh − u‖V � δh(τ ), (40)

‖uh − u‖1 � ηA(h)δh(τ ), (41)

|τ − τh | � δ2
h(τ ), (42)

where

ηA(h) := sup
f ∈H1(Ω),‖ f ‖1=1

inf
vh∈Vh

‖Tτ f − vh‖V . (43)
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Proof Actually, the discrete eigenvalue problem (16) is the discretization of the linear eigen-
value problem (28) by the finite element method. Then from the standard theory in [3], the
following estimates hold

‖ũ − uh‖V � δh(λ̃), (44)

‖ũ − uh‖1 � ηA(h)‖ũ − uh‖V , (45)

|λ̃ − τh | � δ2
h(λ̃). (46)

Since for any w ∈ M(λ̃), from (39), there exists an w̃ ∈ R(Eτ ) = M(τ ) such that

‖w − w̃‖V � δh(τ ). (47)

From the definition of δh(τ ), there exists wh ∈ Vh such that

‖w̃ − wh‖V � δh(τ ). (48)

The combination of (47) and (48) leads to

‖w − wh‖V � δh(τ ). (49)

Then from (49) and the arbitrariness of w, we have

δh(λ̃) = sup
w∈M(λ̃)

inf
vh∈Vh

‖w − vh‖V � δh(τ ). (50)

The combination of (37)–(38), (44)–(46), (50) and δh(τ ) � ηA(h) leads to the desired results
(40)–(42). �

4 A Multigrid Method

In this section, based on the error estimates derived in the previous sections, we propose
a multigrid method to solve the discrete transmission eigenvalue problem (16). In order to
carry out the scheme, we define a sequence of partitions (triangulation or rectangulation) Thk

of Ω as follows: Suppose Th1 (produced from TH by regular refinement) is given and let Thk

be obtained from Thk−1 via regular refinement (produce β2 congruent elements, for example,
β = 2 for bisection mesh refinement) such that

hk ≈ 1

β
hk−1.

Based on this sequence of meshes, we construct the corresponding finite element spaces such
that

VH ⊆ Vh1 ⊂ Vh2 ⊂ · · · ⊂ Vhn , (51)

and the following relation of approximation errors holds

ηA(H) � δh1(τ ), δhk (λ) ≈
( 1

β

)s
δhk−1(τ ), k = 2, . . . , n, (52)

where s is defined in (22).
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4.1 One Correction Step

Assume we have an eigenpair approximation (τhk , uhk ) ∈ R × Vhk . In order to do the
correction step, we assume VH be the background space which is a subset of Vhk , i.e.,
VH ⊂ Vhk .

Algorithm 1 One Correction Step

1. Define the following auxiliary boundary value problem:
Find ûhk+1 ∈ Vhk+1 such that

Aτhk
(̂uhk+1 , vhk+1) = τhk B(uhk , vhk+1), ∀vhk+1 ∈ Vhk+1 . (53)

Solve this equation with multigrid method to obtain a new eigenfunction approximation
ũhk+1 ∈ Vhk+1 with error estimate

‖ûhk+1 − ũhk+1‖V ≤ Cδhk+1(τ ),

and define

ũhk+1 := MG(Vhk+1 , uhk , τhk , mk+1),

where uhk is the initial solution and mk+1 the iteration time of the multigrid scheme.
2. Define a new finite element space VH,hk+1 = VH + span{̃uhk+1} and solve the following

eigenvalue problem:
Find (τhk+1 , uhk+1) ∈ R × VH,hk+1 such that B(uhk+1 , uhk+1) = 1 and

Aτhk+1
(uhk+1 , vH,hk+1) = τhk+1B(uhk+1 , vH,hk+1), ∀vH,hk+1 ∈ VH,hk+1 . (54)

Summarize the above two steps into (τhk+1 , uhk+1) = Correction(VH , τhk , uhk , Vhk+1), where
τhk and uhk are the given eigenvalue and eigenfunction approximation, respectively.

In order to do the error estimate, we define the finite element projection operator Ph :
V �→ Vh as follows

Aτ (u − Phu, vh) = 0, ∀vh ∈ Vh . (55)

Theorem 3 Assume there exists an eigenpair (τ, u) of (9) such that the current eigenpair
approximation (τhk , uhk ) ∈ R × Vhk has the following error estimates

‖u − uhk ‖V � εhk (τ ), (56)

‖u − uhk ‖1 � ηA(H)εhk (τ ), (57)

|τ − τhk | � ε2
hk

(τ ). (58)

Then after one correction step, the resultant approximation (τhk+1 , uhk+1) ∈ R × Vhk+1 has
the following error estimates

‖u − uhk+1‖V � εhk+1(τ ), (59)

‖u − uhk+1‖1 � ηA(H)εhk+1(τ ), (60)

|τ − τhk+1 | � ε2
hk+1

(τ ), (61)

where εhk+1(τ ) := ε2
hk

(τ ) + ηA(H)εhk (τ ) + δhk+1(τ ).
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Proof From problems (9), (53), (55), and inequalities (56), (57), and (58), the following
estimates hold

‖ûhk+1 − Phk+1 u‖2
V � Aτ (̂uhk+1 − Phk+1 u, ûhk+1 − Phk+1 u)

� Aτhk
(̂uhk+1 , ûhk+1 − Phk+1 u) − Aτ (Phk+1 u, ûhk+1 − Phk+1 u)

+|τ − τhk |‖ûhk+1 − Phk+1 u‖V

= B(τhk uhk − τu, ûhk+1 − Phk+1 u) + |τ − τhk |‖ûhk+1 − Phk+1 u‖V

� ‖τhk uhk − τu‖1‖ûhk+1 − Phk+1 u‖V + |τ − τhk |‖ûhk+1 − Phk+1 u‖V

� (|τhk − τ |‖uhk ‖1 + τ‖uhk − u‖1)‖ûhk+1 − Phk+1 u‖V

�
(
ε2

hk
(τ ) + ηA(H)εhk (τ )

)‖ûhk+1 − Phk+1 u‖V .

Then we have

‖ûhk+1 − Phk+1 u‖V � ε2
hk

(τ ) + ηA(H)εhk (τ ). (62)

Combining (62) and the error estimate of finite element projection

‖u − Phk+1 u‖V � δhk+1(τ ),

we obtain

‖ûhk+1 − u‖V � ε2
hk

(τ ) + ηA(H)εhk (τ ) + δhk+1(τ ). (63)

From (63) and ‖ûhk+1 − ũhk+1‖V � δhk+1(τ ), the following estimate holds

‖ũhk+1 − u‖V � ε2
hk

(τ ) + ηA(H)εhk (τ ) + δhk+1(τ ). (64)

Now we estimate the error for the eigenpair solution (τhk+1 , uhk+1) of problem (54). Based
on the error estimate theory developed in Sect. 3 (Theorem 2) and the definition of the space
VH,hk+1 , the following estimates hold

‖u − uhk+1‖V � sup
w∈M(τ )

inf
v∈VH,hk+1

‖w − v‖V � ‖u − ũhk+1‖V . (65)

The combination of (64) and (65) leads to the desired result (59). Using the same process in
Sect. 3 to derive the eigenvalue result (41), we can also obtain

‖u − uhk+1‖1 � η̃A(H)εhk+1(τ ), (66)

where

η̃A(H) = sup
f ∈V,‖ f ‖V =1

inf
v∈VH,hk+1

‖T f − v‖V ≤ ηA(H). (67)

The estimate (61) can also be derived similarly by Theorem 1. �
4.2 A Multigrid Method by the One Correction Step

In this subsection, we introduce a multigrid scheme based on the One Correction Step defined
in Algorithm 1. This method has the same optimal error estimate as solving the transmis-
sion eigenvalue problem in the finest finite element space directly which needs much more
computation.
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Algorithm 2 Eigenvalue Multigrid Scheme

1. Construct a series of nested finite element spaces VH , Vh1 , Vh2 , . . . , Vhn such that (51)
and (52) hold.

2. Solve the following transmission eigenvalue problem:
Find (τh1 , uh1) ∈ R × Vh1 such that B(uh1 , uh1) = 1 and

Aτh1
(uh1 , vh1) = τh1B(uh1 , vh1), ∀vh1 ∈ Vh1 . (68)

3. Do k = 1, . . . , n − 1
Obtain a new eigenpair approximation (τhk+1 , uhk+1) ∈ R × Vhk+1 by a correction step

(τhk+1 , uhk+1) = Correction(VH , τhk , uhk , Vhk+1). (69)

End Do

Finally, we obtain an eigenpair approximation (τhn , uhn ) ∈ R × Vhn .

In Step 2 of Algorithm 2, (τh1 , uh1) can be chosen as one of the eigenpair sequences
(τ j,h1 , u j,h1) for the discrete eigenvalue (16) on the space Vh1 and do the multigrid scheme.
But for different j , we can do the multigrid scheme parallelly.

Theorem 4 After implementing Algorithm 2, there exists an eigenpair (τ, u) of (9) such that
the resultant eigenpair approximation (τhn , uhn ) has the following error estimates

‖uhn − u‖V � δhn (τ ), (70)

‖uhn − u‖1 � ηA(H)δhn (τ ), (71)

|τhn − τ | � δ2
hn

(τ ), (72)

with the condition CβsηA(H) < 1 for some constant C.

Proof From ηA(H) � δh1(τ ) ≥ δh2(τ ) ≥ · · · ≥ δhn (τ ) and Theorem 3, we have

εhk+1(τ ) � ηA(H)εhk (τ ) + δhk+1(τ ), for 1 ≤ k ≤ n − 1. (73)

From Theorem 2 and Algorithm 2, we know there exists an eigenpair (τ, u) of (9) such that
the following estimates hold

‖u − uh1‖V � δh1(τ ), (74)

‖u − uh1‖1 � ηA(H)δh1(τ ), (75)

|τ − τh1 | � δ2
h1

(τ ). (76)

Let εh1(τ ) = δh1(τ ). Based on the proof in Theorem 3, (52), (73), (74)–(76) and CβsηA(H) <

1, the final eigenfunction approximation uhn has the error estimate

‖uhn − u‖V � ηA(H)εhn−1(τ ) + δhn (τ )

� ηA(H)2εhn−2(τ ) + ηA(H)δhn−1(τ ) + δhn (τ )

�
n∑

k=1

ηA(H)n−kδhk (τ )

=
n∑

k=1

(βsηA(H))n−kδhn (τ )

�
βsηA(H)

1 − βsηA(H)
δhn (τ )

� δhn (τ ). (77)
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This is the estimate (70). From the proof of Theorem 3 and (70), we can obtain the desired
results (71) and (72). �

5 Work Estimate of Eigenvalue Multigrid Scheme

In this section, we turn our attention to the estimate of computational work for Eigenvalue
Multigrid Scheme (Algorithm 2). We will show that this algorithm makes solving the eigen-
value problem with almost the same work as solving the corresponding biharmonic boundary
value problem.

First, we define the dimension of each level finite element space as Nk := dimVhk . Then
we have

Nk ≈

( 1

β

)2(n−k)

Nn, k = 1, 2, . . . , n. (78)

Theorem 5 Assume the eigenvalue problem solved in the coarse spaces VH and Vh1

need work O(MH ) and O(Mh1), respectively, and the work of the multigrid solver
MG(Vhk , uhk−1 , τhk−1 , mk) in each level space Vhk is O(Nk) for k = 2, 3, . . . , n. Then the
work involved in Algorithm 2 is O(Nn + MH log Nn + Mh1). Furthermore, the complexity
will be O(Nn) provided MH � Nn and Mh1 ≤ Nn.

Proof Let Wk denote the work of the correction step in the kth finite element space Vhk . Then
with the correction definition, we have

Wk = O(Nk + MH ). (79)

Iterating (79) and using the fact (78), we obtain

Wn =
n∑

k=1

Wk = O
(

Mh1 +
n∑

k=2

(
Nk + MH

))

= O
( n∑

k=2

Nk + (n − 2)MH + Mh1

)

= O
( n∑

k=2

( 1

β

)2(n−k)
Nn + (n − 2)MH + Mh1

)

= O(Nn + MH log Nn + Mh1). (80)

This is the desired result O(Nn + MH log Nn + Mh1) and O(Nn) can be obtained by the
conditions MH � Nn and Mh1 ≤ Nn . �

6 Numerical Results

First, we solve the eigenvalue problem (9) on the unit square Ω = (0, 1)×(0, 1). In this paper,
we use the Bogner–Fox–Schmit (BFS) element on the rectangular mesh for the discretization.
The BFS element can be defined as follows [4,31]

Vh =
{
vh |K ∈ Q3(K ) : vh(Zi ), ∂x1vh(Zi ), ∂x2vh(Zi ), ∂x1∂x2vh(Zi ) are continuous,

i = 1, 2, 3, 4
} ⋂

H2
0 (Ω), (81)
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where Zi (i = 1, 2, 3, 4) denote the four vertices on the element K ∈ Th and Q�(K ) denotes
the space of polynomials with a degree not greater than � for each variable.

As predicted in Theorem 4, the convergence order of the eigenvalue approximation is
fourth, i.e.,

|τ − τh | � h4‖u‖6,Ω, (82)

provided u ∈ H6(Ω).

6.1 Model Problem with n = 16

Here we give the numerical results of the multigrid scheme on the unit square. In this example,
we choose the index of refraction n(x) = 16.

The sequence of finite element spaces are constructed by using the BFS element on the
series of rectangular mesh which are produced by regular refinement with β = 2 (connecting
the midpoints of each edge). In this example, we use two rectangular partitions with mesh
sizes H = 1/4 and H = 1/8 as initial meshes and we set Th1 = TH to investigate the
convergence behaviors.

Eigenvalue Multigrid Scheme (Algorithm 2) is applied to solve the eigenvalue prob-
lem. The first four eigenvalue approximations (kh = √

τh) on the finest mesh are
(1.879591, 2.444236, 2.444236, 2.866439) and the corresponding eigenfunction are shown
in Fig. 1. Figure 2 present the error estimates of the numerical approximations for the first four
eigenvalues corresponding to the two initial meshes. From Fig. 2, we know that the multi-
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Fig. 3 Example 1: The computing time

grid scheme does obtain the same optimal error estimates as directly solving the eigenvalue
problem.

Also, we present the computing time (in seconds) in Fig. 3 to show that the multigrid
method has the linear complexity as claimed in Theorem 5.

6.2 Model Problem with n = 8 + x1 − x2

In the second example, we also consider the eigenvalue problem on the unit square
Ω = (0, 1)×(0, 1). In this example, the index of refraction is chosen to be n(x) = 8+x1−x2.

The sequence of finite element spaces are also constructed by using the BFS element on
the series of rectangular mesh which are produced by regular refinement with β = 2. We
also use two partitions with mesh sizes H = 1/4 and H = 1/8 as initial meshes and we set
Th1 = TH to investigate the convergence behaviors.

The first four eigenvalue approximations (kh = √
τh) on the finest mesh are

(2.823887, 3.539624, 3.540073, 4.118556) and the corresponding eigenfunction are shown
in Fig. 4. Figure 5 gives the numerical errors for the first four eigenvalues corresponding to
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the two initial meshes. Figure 5 also shows that the multigrid scheme does obtain the same
optimal error estimates as directly solving the eigenvalue problem.

6.3 Model Problem with n = 16 on L Shape Domain

Here we give the numerical results of the multigrid scheme on the L shape domain
Ω = (−1, 1) × (−1, 1)\[0, 1) × (−1, 0]. In this example, we also choose the index of
refraction n(x) = 16. Since Ω has a reentrant corner, eigenfunctions with singularities are
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Fig. 6 Example 3: The errors of the multigrid algorithm for the first three eigenvalues

expected. The convergence order for eigenvalue approximation is less than 4 by the BFS
element which is the order predicted by the theory for regular eigenfunctions.

The series of finite element spaces are still constructed by using the BFS element on
the series of rectangular mesh by regular refinement with β = 2 (connecting the midpoints
of each edge). Here we also use two rectangular partitions with mesh sizes H = 1/4 and
H = 1/8 as initial meshes and we also set Th1 = TH to investigate the convergence behaviors.

Figure 6 gives the numerical errors for the first three eigenvalues corresponding to the
two initial meshes. As we have expected the convergence order shown in Fig. 6 is only 1.25
which is less than 4.

7 Concluding Remarks

In this paper, we give a multigrid scheme to solve the transmission eigenvalue problem.
The idea is to use the multilevel correction method which can transform the solution of
transmission eigenvalue problem to a series of solutions of the corresponding linear boundary
value problems that can be solved by the multigrid method.

When the desired eigenvalue λi has multiplicity m, we can choose � (� ≥ m)

eigenpairs (λ j,h1 , u j,h1), . . . , (λ j+�−1,h1 , u j+�−1,h1) to perform the multigrid scheme. The
only requirement for the multigrid method is that the eigenspace of λi is a subset of the
space span{u j,h1 , . . . , u j+�−1,h1}. Since it is independent of each other for the boundary
value problems corresponding to different eigenfunction approximations u j,hk , . . . , u j+�−1

in Step 1 of Algorithm 1, we can implement them in the parallel way and the com-
putation work in each processor is still only O(Nk+1). Furthermore, the computational
work in Step 2 of Algorithm 1 is almost the same since the dimension of the space
VH,hk+1 = VH + span{ũ j,hk+1 , . . . , ũ j+�−1,hk+1} will not change much. Finally, we can con-
struct a type of parallel method to compute the eigenvalue problem by the multigrid scheme
for the multiple eigenvalues. The computational work involved in the multigrid method is
O(�Nn), but the work in each processor is still only O(Nn) when we use the parallel method.
For some details, please refer [27].

We can replace the multigrid method by other types of efficient iteration schemes such
as algebraic multigrid method and the type of preconditioned schemes based on the domain
decomposition method (see, e.g., [25,30]). Furthermore, the framework here can also be
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coupled with parallel method and the adaptive refinement technique. The multigrid method
proposed here can also be extended to the general quadratic eigenvalue problems. These will
be investigated in our future work.
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