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Abstract The stochastic collocation method (Babuška et al. in SIAM J Numer Anal
45(3):1005–1034, 2007; Nobile et al. in SIAM J Numer Anal 46(5):2411–2442, 2008a;
SIAM J Numer Anal 46(5):2309–2345, 2008b; Xiu and Hesthaven in SIAM J Sci Com-
put 27(3):1118–1139, 2005) has recently been applied to stochastic problems that can be
transformed into parametric systems. Meanwhile, the reduced basis method (Maday et al.
in Comptes Rendus Mathematique 335(3):289–294, 2002; Patera and Rozza in Reduced
basis approximation and a posteriori error estimation for parametrized partial differential
equations Version 1.0. Copyright MIT, http://augustine.mit.edu, 2007; Rozza et al. in Arch
Comput Methods Eng 15(3):229–275, 2008), primarily developed for solving parametric
systems, has been recently used to deal with stochastic problems (Boyaval et al. in Com-
put Methods Appl Mech Eng 198(41–44):3187–3206, 2009; Arch Comput Methods Eng
17:435–454, 2010). In this work, we aim at comparing the performance of the two methods
when applied to the solution of linear stochastic elliptic problems. Two important comparison
criteria are considered: (1), convergence results of the approximation error; (2), computa-
tional costs for both offline construction and online evaluation. Numerical experiments are
performed for problems from low dimensions O(1) to moderate dimensions O(10) and to
high dimensions O(100). The main result stemming from our comparison is that the reduced
basis method converges better in theory and faster in practice than the stochastic colloca-
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tion method for smooth problems, and is more suitable for large scale and high dimensional
stochastic problems when considering computational costs.

Keywords Stochastic elliptic problem · Reduced basis method · Stochastic collocation
method · Sparse grid · Greedy algorithm · Offline–online computational decomposition ·
Convergence analysis

1 Introduction

In the modelling of the complex physical systems, uncertainties are inevitably encountered
from various sources, which can be generally categorized into epistemic and aleatory uncer-
tainties. The former can be reduced by more precise measurements or more advanced noise
filtering techniques, while the latter are very difficult if not impossible to be accurately cap-
tured due to possible multiscale properties and intrinsic randomness of the physical systems.
When the latter uncertainties are taken into account in the mathematical models, we come to
face stochastic problems. To solve them, various stochastic computational methods have been
developed, such as perturbation, Neumann expansion, Monte Carlo, stochastic Galerkin, sto-
chastic collocation, reduced basis method [7,18,32,33,45]. In particular, we are interested
in the comparison of stochastic collocation method and reduced basis method.

In the early years, stochastic collocation method was developed from the non-intrusive
deterministic spectral collocation method [9,10] to address applications in a variety of fields,
for instance chemical and environmental engineering [30], multibody dynamic system [25].
Nevertheless, only in the recent years [1,44] a complete analysis has been carried out, and new
extensions outlined [4,17,22,27,31,32]. In principle, stochastic collocation method employs
multivariate polynomial interpolations for the approximation of stochastic solution at any
given realization of the random inputs based on collocated deterministic solutions [1]. Due
to the heavy computation of a deterministic system at each collocation point in high dimen-
sional space, isotropic or anisotropic sparse grids with suitable cubature rules [31,32] were
successfully analysed and applied for stochastic collocation method to reduce the computa-
tional burden. This method is preferred for more practical applications because it features
the possibility of reusing available deterministic solvers owning to its non-intrusive structure
as Monte Carlo method, and also because it achieves fast convergence rate as stochastic
Galerkin method, see numerical comparison of them in [3].

Reduced basis method, on the other hand, is a model reduction technique originally devel-
oped to solve parametric problems arising from the field of structure mechanics, fluid dynam-
ics, etc. [19,20,29,34,36,37,41]. For its application to stochastic problems, we first parame-
trize the random variables into parameter space, next we select the most representative points
in this parameter space by greedy sampling based on a posteriori error estimation [6,7]. A
landmark feature of reduced basis method is the separation of the whole procedure into an
offline computational stage and an online computational stage [34,37]. During the former,
the more computationally demanding ingredients are computed and stored once and for all,
including sampling parameters, assembling matrices and vectors, after solving and collecting
snapshots of solutions. During the online stage, only the parameter related elements are left
to be computed and a small Galerkin approximation problem has to be solved. Reduced basis
method is similar to stochastic collocation method but with a posteriori error estimation for
sampling, and thus potentially be more efficient provided that a posteriori error bound is
cheap to obtain [6]. How to compute rigorous, sharp and inexpensive a posteriori error bound
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is an open challenging task for the application of reduced basis method in more general
stochastic problems.

When it comes to solve practically a realistic stochastic problem, we need to choose
between different stochastic computational methods. It is crucial to know the properties of
each method and especially the way they compare in terms of complexity for formulation
and implementation, convergence properties and computational costs to solve a specific
problem. In this paper, our target is the comparison of the stochastic collocation method
and the reduced basis method based on a rather simple benchmark, a stochastic elliptic
problem, in order to shed light on the advantages and disadvantages of each method. We
hope to provide some insightful indications on how to choose the proper method for different
problems. Generally speaking, for small scale and low dimensional problems, stochastic
collocation method is preferred while reduced basis method performs better for large scale
and high dimensional problems, as supported by our computational comparison. Moreover,
our numerical experiments demonstrate that an efficient combination of reduced basis method
and stochastic collocation method features a fast evaluation of statistics of the stochastic
solution.

In Sect. 2, a stochastic elliptic problem is set up with affine assumptions on the random
coefficient field. Weak formulation and regularity property of this problem is provided. The
general formulation for the stochastic collocation method and the reduced basis method are
introduced in Sects. 3 and 4, respectively. A theoretical comparison of convergence results in
both univariate case and multivariate case as well as a direct comparison of the approximation
error are carried out in Sect. 5 and a detailed comparison of the computational costs for the two
methods is provided by evaluating the cost of each step of the algorithms in Sect. 6. In Sect. 7,
we perform a family of numerical experiments aimed at the assessment of the convergence
rates and computational costs of the two methods. Finally, concluding remarks about the
limitation of our work as well as some extension to more general stochastic problems are
given in Sect. 8.

2 Problem Setting

Let (�, F, P) be a complete probability space, where � is a set of outcomes ω ∈ �, F is σ -
algebra of events and P : F → [0, 1] with P(�) = 1 assigns probability to the events. Let D
be a convex, open and bounded physical domain in R

d (d = 2, 3) with Lipschitz continuous
boundary ∂ D. We consider the following stochastic elliptic problem: find u : � × D̄ → R

such that it holds almost surely

− ∇ · (a(·, ω)∇u(·, ω)) = f in D

u(·, ω) = 0 on ∂ D (2.1)

where f is a deterministic forcing term defined in the physical domain D and the homoge-
neous Dirichlet boundary condition is prescribed on the whole boundary ∂ D for simplicity.
For the random coefficient a(·, ω), we consider the following assumptions:

Assumption 1 The random coefficient a(·, ω) is assumed to be uniformly bounded from
below and from above, i.e. there exist constants 0 < amin < amax < ∞ such that

P(ω ∈ � : amin < a(x, ω) < amax ∀x ∈ D̄) = 1. (2.2)
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Assumption 2 For the sake of simplicity, we assume that the random coefficient a(·, ω)

depends only on finite dimensional noise in the following linear form

a(x, y) = a0(x) +
K∑

n=1

ak(x)yk(ω), (2.3)

where the leading term is assumed to be dominating and uniformly bounded away from 0,
i.e.

∃δ > 0, amin the same as in (2.2) s.t. a0(x) ≥ δ, ∀x ∈ D and ||ak ||L∞(D) < 2amin,

1 ≤ k ≤ K , (2.4)

and {yk}K
k=1 are real valued random variables with joint probability density function ρ(y),

being y = (y1, . . . , yK ). By denoting �k = yk(�), k = 1, . . . , K and � = 	K
k=1�k , we

can also view y as a parameter in the parametric space � that is endowed with the measure
ρ(y)dy.

Remark 2.1 The expression (2.3) is widely used in practice and may come from, e.g., piece-
wise thermal conductivity of a heat conduction field, where the functions ak, k = 1, . . . , K
are characteristic functions. Or it may arise from the truncation of Karhunen–Loève expan-
sion [42] of the correlation kernel of porosity field with continuous and bounded second order
moment when modeling fluid flow in porous media, where in this case for k = 1, . . . , K ,
ak = √

λkφk with λk and φk denoting the kth eigenvalue and eigenfunction of the expansion,
etc.

Under the above assumptions, the weak formulation of the stochastic elliptic problem
reads: find u(y) ∈ H1

0 (D) such that the following equation holds for ∀y ∈ �

A(u, v; y) = F(v) ∀v ∈ H1
0 (D), (2.5)

where H1
0 (D) := {v : Dβv ∈ L2(D), v|∂ D = 0} with non-negative multi-index

β = (β1, . . . , βd) such that |β| ≤ 1 is a Hilbert space equipped with norm ||v||H1
0 (D) =

(
∑

|β|≤1 ||Dβv||L2(D))
1/2, where the derivative is defined as Dβv := ∂ |β|v/∂xβ1

1 · · · ∂xβd
d ;

F(·) is a linear functional defined as F(v) := ( f, v) with f ∈ L2(D) and A(·, ·; y) is a
bilinear form affinely expanded following (2.3)

A(u, v; y) = A0(u, v) +
K∑

k=1

Ak(u, v)yk(ω), (2.6)

where the deterministic bilinear forms Ak(u, v) are given by Ak(u, v) := (ak∇u,∇v), k =
0, 1, . . . , K . From assumption (2.2) we have that the bilinear form is coercive and continuous
and thus the existence of a unique solution u(y) ∈ H1

0 (D) for ∀y ∈ � to problem (2.5) is
guaranteed by Lax–Milgram theorem [39]. In fact, we are interested in a related quantity
s(u; y), e.g., the linear functional F(u), as well as its statistics, e.g. the expectation E[s],
defined as

E[s] =
∫

�

s(u; y)ρ(y)dy. (2.7)

Since any approach for the approximation of the solution in the stochastic/parameter space
depends on the regularity of the solution with respect to the random vector or parameter
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y ∈ �, we summarize briefly the regularity results in Lemma 2.1 following [15] for infinite
dimensional problems (K = ∞).

Lemma 2.1 The following estimate for the solution of the problem (2.5) holds

||∂ν
y u||L∞(�;X) ≤ B|ν|!bν, (2.8)

where ν = (ν1, . . . , νK ) ∈ N
K , |ν| = ν1 + · · · + νK , H1

0 (D) ⊂ X ⊂ H1(D), B =
||u||L∞(�;X) and

bk = ||ak ||L∞(D)

amin
and bν =

K∏

k=1

bνk
k . (2.9)

Furthermore, Lemma 2.1 implies by Taylor expansion the following analytic regularity which
represents a generalization of the result in [4] from R

K to C
K .

Corollary 2.2 The solution u : � → X is analytic and can be analytically extended to the
set

� =
{

z ∈ C
K :

K∑

k=1

|zk − yk |bk < 1, ∀ y ∈ �

}
, (2.10)

We may also write for τk ≤ 1/(K bk), 1 ≤ k ≤ K

�τ =
{

z ∈ C
K : dist(zk, �k) ≤ τk, ∀1 ≤ k ≤ K

}
. (2.11)

Remark 2.2 Problem (2.1) is a stochastic linear elliptic coercive and affine problem with
linear functional outputs. Without loss of generality, it represents our reference benchmark
problem aimed at the comparison of approximation quality and computational costs between
the reduced basis method [41] and the stochastic collocation method [1]. We remark that
the comparison depends essentially on the following factors: the regularity of the stochastic
solution in the parameter space, the dimension of the parameter space, and the complexity
of solving a deterministic system at one stochastic realization. Therefore, conclusions drawn
from the comparison results for the linear elliptic problem are supposed to hold similarly for
more general problems as long as the above factors are concerned.

3 Stochastic Collocation Method

Given any realization y ∈ �, stochastic collocation method [1] essentially adopts the
Lagrangian interpolation to approximate the solution u(y) based on a set of deterministic
solutions at the collocation points chosen according to the probability distribution function
of the random variables. Therefore, we have to solve one deterministic problem at each col-
location point. In order to achieve accurate and inexpensive collocation approximation of the
stochastic solution as well as its statistics, it all remains to select efficient collocation points.
Let us introduce the univariate stochastic collocation at first.

3.1 Univariate Interpolation

Given the collocation points in �, e.g., y0 < y1 < y2 < · · · < yN as well as the correspond-
ing solutions u(yn), 0 ≤ n ≤ N , we define the univariate N th order Lagrangian interpolation
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operator as

UN u(y) =
N∑

n=0

u(yn)ln(y), (3.1)

where ln(y), 0 ≤ n ≤ N are the Lagrangian characteristic polynomials of order N given in
the form

ln(y) =
∏

m �=n

y − ym

yn − ym
0 ≤ n ≤ N . (3.2)

One evaluation of UN u(y) at a new realization y ∈ � requires O(N 2) operations by formula
(3.1). For efficient and stable polynomial interpolation, we use barycentric formula [38] and
rewrite the characteristic polynomials as

ln(y) = 1∏
m �=n(yn − ym)

︸ ︷︷ ︸
w̄n

· 1

y − yn

N∏

m=0

(y − ym)

︸ ︷︷ ︸
l(y)

= l(y)
w̄n

y − yn
0 ≤ n ≤ N , (3.3)

where w̄n, 0 ≤ n ≤ N are barycentric weights, so that the interpolation operator (3.1)
becomes

UN u(y) =
N∑

n=0

w̄n

y − yn
u(yn)

/ N∑

n=0

w̄n

y − yn
, where l(y) =

N∑

n=0

w̄n

y − yn
, (3.4)

which instead needs only O(N ) operations for one evaluation provided that the barycentric
weights are precomputed and stored. The statistics of the solution or output can be therefore
evaluated, e.g.

E[u] ≈ E[UN u] =
N∑

n=0

⎛

⎝
∫

�

(
w̄n

y − yn

/ N∑

n=0

w̄n

y − yn

)
ρ(y)dy

⎞

⎠ u(yn) =
N∑

n=0

wnu(yn),

(3.5)

where wn, 0 ≤ n ≤ N are quadrature weights. In order to improve the accuracy of the
numerical integral in (3.5) and the numerical interpolation in (3.4), it is favourable to select the
collocation points as the quadrature abscissas. Available quadrature rules include Clenshaw–
Curtis quadrature, Gaussian quadrature based on various orthogonal polynomials and so on
[38].

3.2 Multivariate Tensor Product Interpolation

Rewrite the univariate interpolation formula (3.1) with the index k for the kth dimension as

UNk u(yk)=
∑

y
nk
k ∈�k

u(ynk
k )lnk

k (yk), where �k ={ynk
k ∈ �k, nk =0, . . . , Nk} for some Nk ≥1

(3.6)
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then the multivariate interpolation is given as the tensor product of the univariate interpolation
(UN1 ⊗ · · · ⊗ UNK

)
u(y) =

∑

y
n1
1 ∈�1

· · ·
∑

y
nK
K ∈�K

u(yn1
1 , . . . , ynK

K )
(
ln1
1 (y1) ⊗ · · · ⊗ lnK

K (yK )
)
.

(3.7)

The corresponding barycentric formula for the multivariate interpolation is given as
(UN1 ⊗ · · · ⊗ UNK

)
u(y)

=
∑

y
n1
1 ∈�1

b1
n1

(y1)∑

y
n1
1 ∈�1

b1
n1

(y1)
· · ·

∑

y
nK
K ∈�K

bK
nK

(yK )
∑

y
nK
K ∈�K

bK
nK

(yK )
u(yn1

1 , . . . , ynK
K ), (3.8)

where bk
nk

(yk) = w̄k
nk

/(yk − ynk
k ) with barycentric weights w̄k

nk
, 1 ≤ k ≤ K precomputed

and stored. It is obvious that the multivariate barycentric formula reduces the tensor product
interpolation from O(N 2

1 × · · · × N 2
K ) operations by (3.6) to O(N1 × · · · × NK ) operations

by (3.8). Corresponding to the univariate interpolation, the expectation of the solution by
multivariate interpolation is given as

E[u] ≈ E[(UN1 ⊗ · · · ⊗ UNK

)
u]=

∑

y
n1
1 ∈�1

· · ·
∑

y
nK
K ∈�K

u(yn1
1 , . . . , ynK

K )
(
w

n1
1 × · · ·×w

nK
K

)
,

(3.9)

where the quadrature weights w
nk
k , 1 ≤ k ≤ K can be pre-computed and stored by

w
nk
k =

∫

�k

⎛

⎜⎝bk
nk

(yk)
/ ∑

y
nk
k ∈�k

bk
nk

(yk)

⎞

⎟⎠ ρ(yk)dyk . (3.10)

We remark that the number of the collocation points or quadrature abscissas grows exponen-
tially fast as (N1 +1)×· · ·×(NK +1), or (N1 +1)K if N1 = · · · = NK , which prohibits the
application of the multivariate tensor product interpolation for high dimensional stochastic
problems (when K is large).

3.3 Sparse Grid Interpolation

In order to alleviate the “curse of dimensionality” in the interpolation on the full tensor
product grid, various sparse grid techniques [8] have been developed, among which the
Smolyak type [32] is one of the most popular constructions. For isotropic interpolation with
the same degree q ≥ K for one dimensional polynomial space in each direction, we have
the Smolyak interpolation operator

Squ(y) =
∑

q−K+1≤|i |≤q

(−1)q−|i |
(

K − 1
q − |i |

)(
U i1 ⊗ · · · ⊗ U iK

)
u(y), (3.11)

where |i | = i1 + · · · + iK with the multivariate index i = (i1, . . . , iK ) defined via the index
set

X (q, K ) :=
{

i ∈ N K+ ,∀ ik ≥ 1 :
K∑

k=1

ik ≤ q

}
, (3.12)
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Fig. 1 Two dimensional collocation nodes by Clenshaw–Curtis cubature rule in tensor product grid q = 8
(left), sparse grid q = 8 (middle), anisotropic sparse grid q = 8 and α = (1, 1.5) (right)

and the set of collocation nodes for the sparse grid (see the middle of Fig. 1) is thus collected
as

H(q, K ) =
⋃

q−K+1≤|i |≤q

(
�i1 × · · · × �iK

)
, (3.13)

where the number of collocation nodes #�ik = 1 if ik = 1, and #�ik = 2ik−1+1 when ik >

1 in a nested structure. Note that we denote U ik ≡ UNk defined in (3.6) for Nk = 2ik−1.
Define the differential operator �ik = U ik − U ik−1, k = 1, . . . , K with U0 = 0, we have an
equivalent expression of Smolyak interpolation [1]

Squ(y) =
∑

i∈X (q,K )

(
�i1 ⊗ · · · ⊗ �iK

)
u(y)

= Sq−1u(y) +
∑

|i |=q

(
�i1 ⊗ · · · ⊗ �iK

)
u(y). (3.14)

The above formula allows us to discretize the stochastic space in hierarchical structure based
on nested collocation nodes, such as the extrema of Chebyshev polynomials or Gauss–
Patterson nodes, leading to Clenshaw–Curtis cubature rule or Gauss–Patterson cubature rule,
respectively [24,32].

Smolyak sparse grid [44] is originally developed as isotropic in every one-dimensional
polynomial space. The convergence rate of the solution in each polynomial space may vary
due to different importance of each random variable, which helps to reduce further the
computational effort by anisotropic sparse grid [31], written as

Sα
q u(y) =

∑

i∈Xα(q,K )

(
�i1 ⊗ · · · ⊗ �iK

)
u(y), (3.15)

with the weighted index

Xα(q, K ) :=
{

i ∈ N K+ , i ≥ 1 :
K∑

k=1

ikαk ≤ min(α)q

}
, (3.16)

where α = (α1, . . . , αK ) represents the weights in different directions, estimated either from
a priori or a posteriori error estimates, see [31]. Figure 1 displays the full tensor product grid,
the sparse grid and the anisotropic sparse grid based on Clenshaw–Curtis cubature rule. We
can observe that the isotropic and anisotropic sparse grids are far coarser than the full tensor
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product grid, leading to considerable reduction of the stochastic computation without much
loss of accuracy, as we shall see in the convergence analysis and the numerical experiments
in the following sections.

Remark 3.1 For certain specific problems, some other advanced techniques turn out to be
more efficient than both the isotropic and the anisotropic Smolyak sparse grid techniques.
For example, the quasi-optimal sparse grid [4] is assembled in a greedy manner to deal with
the “accuracy-work” trade-off problem; the adaptive hierarchical sparse grid [17,27] suc-
ceeded in constructing the sparse grid adaptively in hierarchical levels with local refinement
or domain decomposition in stochastic space, which is more suitable for low regularity prob-
lems; the combination of analysis of variance (ANOVA) and sparse grid techniques [21,22]
for dealing with the high dimensional problems, etc.

4 Reduced Basis Method

Different from the interpolation approach used by stochastic collocation method, reduced
basis method employs Galerkin projection in the reduced basis space spanned by a set of
deterministic solutions [34,35,41]. Given any space X of dimension N for the approximation
of the solution of problem (2.5) (for instance, finite element space), we build the N dimen-
sional reduced basis space X N for N = 1, . . . , Nmax hierarchically until satisfying tolerance
requirement at Nmax � N as

X N = span{u(yn), 1 ≤ n ≤ N } (4.1)

based on suitably chosen samples SN = {y1, . . . , yN } from a training set �train ⊂ �.
The solutions {u(yn), n = 1, . . . , N } are called “snapshots” corresponding to the samples
{yn, n = 1, . . . , N }. Note that X1 ⊂ X2 ⊂ · · · ⊂ X Nmax . Given any realization y ∈ �, we
seek the solution uN (y) in the reduced basis space X N by solving the following Galerkin
projection problem

A(uN , v; y) = F(v) ∀v ∈ X N . (4.2)

With uN (y) we can evaluate the output sN (y) = s(uN (y)) as well as compute its statistics,
e.g. expectation E[sN ], by using e.g. Monte–Carlo method or quadrature formula as used in
stochastic collocation method. Four specific ingredients of the reduced basis method play
a key role in selecting the most representative samples, hierarchically building the reduced
basis space, and efficiently evaluating the outputs. They are training set, greedy algorithm,
a posteriori error estimate and an offline–online computational decomposition, which are
addressed respectively as follows.

4.1 Training Set

Two criteria should be fulfilled in the choice of the training set: it should be cheap, without
too many ineffectual samples, in order to avoid unnecessary computation with little gain, and
sufficient to capture the most representative snapshots so as to build an accurate reduced basis
space. In practice, the training set is usually chosen as randomly distributed or log-equidistant
distributed in the parameter space [34,41]. As for stochastic problem with random variables
obeying probability distribution other than uniform type, we propose to choose the samples
in the training set according to the probability distribution. Furthermore, for the sake of
comparison with stochastic collocation method, we take the training set such that it contains
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all the collocation points used by the stochastic collocation method. Adaptive approaches for
building the training set have been well explored starting from a small number of samples to
more samples in the space �, see [46].

4.2 Greedy Algorithm

Given a training set �train ⊂ � and a first sample set S1 = {y1} as well as its asso-
ciated reduced basis space X1 = span{u(y1)}, we seek the sub-optimal solution to the
L∞(�train; X) optimization problem in a greedy way as [41]: for N = 2, . . . , Nmax , find
yN = arg maxy∈�train �N−1(y), where �N−1 is a sharp and inexpensive a posteriori error
bound constructed in the current N − 1 dimensional reduced basis space (specified later).
Subsequently, the sample set and the reduced basis space are enriched by SN = SN−1 ∪{yN }
and X N = X N−1 ⊕ span{u(yN )}, respectively. For the sake of efficient computation of
Galerkin projection and offline–online decomposition, we can normalize the snapshots by
Gram-Schmidt process to get the orthonormal basis of X N = span{ζ1, . . . , ζN } such that
(ζm, ζn)X = δmn, 1 ≤ m, n ≤ N . We remark that another algorithm that might be used for
the sampling procedure is proper orthogonal decomposition, POD for short [41], which is
rather expensive in dealing with L2(�train; X) optimization and thus more suitable for low
dimensional problems.

4.3 A Posteriori Error Estimate

The efficiency and reliability of the reduced basis approximation by greedy algorithm relies
critically on the availability of an inexpensive and sharp a posteriori error bound �N , which
can be constructed as follows: for every y ∈ �, let R(v; y) ∈ X ′ be the residual in the dual
space of X , defined as

R(v; y) := F(v) − A(uN (y), v; y) ∀v ∈ X. (4.3)

By Riesz representation theorem [16], we have a unique function ê(y) ∈ X such that
(ê(y), v)X = R(v; y)∀v ∈ X and ||ê(y)||X = ||R(·; y)||X ′ , where the X -norm is defined
as ||v||X = A(v, v; ȳ) at some reference value ȳ ∈ � (we choose ȳ as the center of � by
convention). Define the error e(y) := u(y) − uN (y), we have by (2.5), (4.2) and (4.3) the
following equation

A(e(y), v; y) = R(v; y) ∀v ∈ X. (4.4)

By choosing v = e(y) in (4.4), recalling the coercivity constant α(y) with the definition of
its lower bound αL B(y) ≤ α(y) of the bilinear form A(·, ·; y), and using Cauchy–Schwarz
inequality, we have

αL B(y)||e(y)||2X ≤ A(e(y), e(y); y) = R(e(y); y)

≤ ||R(·, y)||X ′ ||e(y)||X = ||ê(y)||X ||e(y)||X , (4.5)

so that we can define the a posteriori error bound �N for the solution u as �N :=
||ê(y)||X/αL B(y), yielding ||u(y) − uN (y)||X ≤ �N by (4.5). As for the output in the
compliant case, i.e. s = f , we have the following error bound

|s(y) − sN (y)| = |s(u(y)) − s(uN (y))| = A(e(y), e(y); y) ≤ ||ê(y)||2X/αL B(y). (4.6)

As for more general output where s �= f , an adjoint problem of (2.5) can be employed to
achieve a faster convergence of the approximation error |s − sN | [37]. The efficient compu-
tation of a sharp and accurate a posteriori error bound thus relies on the computation of a
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lower bound of the coercivity constant αL B(y) as well as the value ||ê(y)||X for any given
y ∈ �. For the former, we apply the successive constraint linear optimization method (SCM)
[23] to compute a lower bound αL B(y) of α(y). For the latter, we turn to an offline–online
computational decomposition procedure.

4.4 Offline–Online Computational Decomposition

The evaluation of the expectation E[sN ] and the a posteriori error bound �N requires to
compute the output sN and the solution uN many times. Similar situations can be encountered
for other applications in the context of many query (optimal design, control) and real time
computational problems. One of the key ingredients that make reduced basis method stand out
in this ground is the offline–online computational decomposition, which becomes possible
due to the affine assumption such as that made in (2.3). To start, we express the reduced basis
solution in the form [41]

uN (y) =
N∑

m=1

uNm(y)ζm . (4.7)

Upon replacing it in (4.2) and choosing v = ζn, 1 ≤ n ≤ N , we obtain the problem of finding
uNm(y), 1 ≤ m ≤ N such that

N∑

m=1

(
A0(ζm, ζn) +

K∑

k=1

yk Ak(ζm, ζn)

)
uNm(y) = F(ζn) 1 ≤ n ≤ N . (4.8)

From (4.8) we can see that the values Ak(ζm, ζn), k = 0, 1, . . . , K , 1 ≤ m, n ≤ Nmax and
F(ζn), 1 ≤ n ≤ Nmax are independent of y, we may thus pre-compute and store them in
the offline procedure. In the online procedure, we only need to assemble the stiffness matrix
in (4.8) and solve the resulting N × N stiffness system with much less computational effort
compared to solve the original N × N stiffness system. As for the computation of the error
bound �N (y), we need to compute ||ê(y)||X corresponding to y chosen in the course of
sampling procedure. We expand the residual (4.3) as

R(v; y) = F(v) − A(uN , v; y) = F(v) −
N∑

n=1

uNn

(
K∑

k=0

yk Ak(ζn, v)

)
, where y0 = 1.

(4.9)

Set (C, v)X = F(v) and (Lk
n, v)X = −Ak(ζn, v)∀v ∈ X N , 1 ≤ n ≤ N , 0 ≤ k ≤ K , where

C and Lk
n are the representatives in X whose existence is secured by the Riesz representation

theorem. By recalling (ê(y), v)X = R(v; y), we obtain

||ê(y)||2X = (C, C)X +
K∑

k=0

N∑

n=1

ykuNn(y)

(
2(C, Lk

n)X +
K∑

k′=0

N∑

n′=1

yk′uNn′(y)(Lk
n, Lk′

n′)X

)
.

(4.10)

Therefore, we can compute and store (C, C)X , (C, Lk
n)X , (Lk

n, Lk′
n′)X , 1 ≤ n, n′ ≤ Nmax , 0 ≤

k, k′ ≤ K in the offline-procedure, and evaluate ||ê(y)||X in the online-procedure by assem-
bling (4.10).

Remark 4.1 Different from the presentation of stochastic collocation method regardless of
the underlying system, reduced basis method is introduced based on the linear, coercive
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and affine elliptic problem. In fact, the same approach presented above can be extended to
more general problems [37,41], e.g. time-dependent, non-linear, non-coercive and non-affine
problems, as long as a posteriori error bound is cheap to obtain and the offline construction
and online evaluation can be efficiently decomposed using proper techniques [2,19,20,28],
see, e.g. [14,26,36,37,40], where many different kind of applications are addressed.

5 Comparison of Convergence Analysis

In this section, we provide a comparison of the theoretical convergence results between the
stochastic collocation method and the reduced basis method. In the first part, a preliminary
comparison is carried out based on the available convergence results in the literature at the
best of our knowledge. Then we perform a direct comparison between the approximation
errors of the two methods.

5.1 Preliminary Comparison of Convergence Results

Let us first consider a priori error estimate for one dimensional Lagrangian interpolation for
y ∈ � = [−1, 1] without loss of generality. In fact, we can map any bounded interval � into
[−1, 1] by shifting and rescaling. The convergence result for univariate stochastic collocation
approximation is given as:

Proposition 5.1 Thanks to the analytic regularity in Corollary 2.2, we have the exponen-
tial convergence rate for one dimensional stochastic collocation approximation error in
L∞(�; X) norm

||u − UN u||L∞(�;X) ≤ CN r−N = CN e−(ln r)N , (5.1)

with r = a + b = √
1 + τ 2 + τ ≥ (

√
5 + 1)/2 ≈ 1.6 owing to (2.11) and assumption (2.4).

The constant CN is bounded in a logarithmic rescaling CN ≤ C ln(N + 1), where C is a
constant independent of N .

Remark 5.1 The same result has been obtained in L2(�; X) norm in [1] except that the
constant CN in (5.1) is independent of N . For the sake of comparison with the convergence
rate of reduced basis method, we consider (5.1) in the norm of L∞(�; X) with the constant
CN depending on N .

Proof Firstly, we demonstrate that the operator UN : C0(�; X) → L∞(�; X) is continuous.
In fact, by the definition of UN in (3.1), we have the following estimate

||UN u||L∞(�;X) = sup
y∈�

∣∣∣∣∣

∣∣∣∣∣

N∑

n=0

u(yn)ln(y)

∣∣∣∣∣

∣∣∣∣∣
X

≤ sup
y∈�

(
N∑

n=0

|ln(y)|
)

max
n=0,1,...,N

||u(yn)||X ≤ �(N )||u||C0(�;X), (5.2)

where �(N ) is the optimal Lebesgue constant bounded by (see [36])

�(N ) := sup
y∈�

(
N∑

n=0

|ln(y)|
)

≤ 3

4
+ 2

π
ln(N + 1). (5.3)
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Therefore, by the fact UN w = w,∀w ∈ PN (�)⊗X (where PN (�) is the space of polynomials
of order less than or equal to N ), we have that for every function u ∈ C0(�; X),

||u − UN u||L∞(�;X) ≤ ||u − w||L∞(�;X) + ||UN (w − u)||L∞(�;X)

≤ (1 + �(N ))||u − w||C0(�;X). (5.4)

Moreover, the following approximation error estimate holds for every function u ∈ C0(�; X)

(see [1])

inf
w∈PN (�)⊗X

||u − w||C0(�;X) ≤ 2

r − 1
r−N max

z∈�
||u(z)||X . (5.5)

A combination of (5.2), (5.3), (5.4) and (5.5) leads to the result stated in (5.1) with the constant
CN such that CN ≤ C ln(N + 1), with C depending only on maxz∈� ||u(z)||X and r . ��

For the same one dimensional parametric problem, a priori error estimate has been well
established for the reduced basis approximation [29,41]. Note that in the context of the
reduced basis approximation, the result is based on the assumption that the parameter y is
positive with 0 < ymin ≤ y ≤ ymax < ∞. For the sake of consistent comparison with
stochastic collocation method, we still take the same parameter range � = [−1, 1] and
introduce a new parameter by μ = y + (1 + δ) with δ > 0 so that μ ∈ [δ, 2 + δ] with
μmin = δ > 0 and μmax = 2 + δ. Correspondingly, the problem coefficient becomes
a(x, y) = a0(x) + a1(x)y = (a0(x) − (1 + δ)a1(x)) + a1(x)μ and will be denoted as
â0(x)+a1(x)μ for convenience. We state the convergence result for one dimensional reduced
basis approximation given in [34,41] in the following proposition:

Proposition 5.2 Suppose that ln μr = ln(μmax/μmin) > 1/2e and N ≥ Ncrit ≡ 1 +
[2e ln μr ]+ ([s]+ is the maximum integer smaller than s), then

||u − uN ||L∞(�;X) ≤ Ce−(N−1)/(Ncrit −1), (5.6)

where uN is the reduced basis approximation of the solution in the reduced basis space
spanned by N “snapshots”, and C is independent of N . Note that the samples μ1, . . . , μN

are taken as equidistant within [ln(μmin), ln(μmax )] in the way that ln(μn) − ln(μn−1) =
ln(μr )/(N − 1), 2 ≤ n ≤ N.

At our knowledge, the a priori error estimates in Proposition 5.1 for the stochastic col-
location approximation and in Proposition 5.2 for the reduced basis approximation are the
best available results in the literature. Both of them show exponential convergence rate for
the approximation of the analytic solution with respect to the parameter y ∈ �. In order to
guarantee the positiveness of â0(x) in Proposition 5.2, we require δ ≤ 1/2 by assumption
(2.4). Therefore, the minimal value of Ncrit is 1 + [2e ln(ur )]+ = 9, so that the convergence
rate in (5.6) becomes e−(N−1)/8 ≈ 1.13−(N−1) for N dimensional reduced basis approxima-
tion, which is larger than r−(N−1) (r > 1.6) in the stochastic collocation approximation (5.1)
using N collocation nodes corresponding to UN−1. From this closer look, it seems that the
stochastic collocation approximation is better as to a priori error estimation than the reduced
basis approximation in the univariate case under the above specific assumptions.

In the multivariate case, the property of convergence rate inherits that of the univariate
case thanks to the full tensor product structure of the multivariate Lagrangian interpolation
(3.6) in the stochastic collocation approximation. A priori error estimate is obtained in the
following proposition.
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Proposition 5.3 Under the assumptions of (2.4) and the analytic regularity of the solution
in Corollary 2.2, with � = [−1, 1]K for simplicity, the following convergence result is a
consequence of Proposition 5.1 by recursively using triangular inequality

||u − UN u||L∞(�;X) ≤
K∑

k=1

CNk e− ln(rk )Nk , (5.7)

where rk = a + b =
√

1 + τ 2
k + τk > 1, 1 ≤ k ≤ K from (2.11) and N = (N1, . . . , NK ) is

the interpolation order corresponding to the interpolation operator (UN1 ⊗ · · · ⊗ UNK ).

Remark 5.2 If CNk = CN1 , rk = r > 1, 1 ≤ k ≤ K and Nk = N1, 2 ≤ k ≤ K . Then
the total number of collocation nodes is N = K N1 and the error estimate in Proposition 5.3
becomes

||u − UN u||L∞(�;X) ≤ CN1 K N− ln(r)
ln(K ) , (5.8)

which decays very slowly when K is large and the region of analyticity r is small. For
instance, when K = 10 and r = 1.6 as in Proposition 5.1, we need at least N = 1010 in

order to have K N− ln(r)
ln(K ) ≤ 0.1.

The convergence analysis of the isotropic and anisotropic Smolyak sparse grids stochastic
collocation methods have been studied in [32] and [31] in the norm L2(�; X). Using the
same argument in the proof of Proposition 5.1, the following results in L∞(�; X) norm are
straightforward.

Proposition 5.4 Suppose that the function u can be analytically extended to a complex
domain �(�; τ). By using isotropic Smolyak sparse grid and Clenshaw–Curtis collocation
nodes, we have

||u − Squ||L∞(�;X) ≤ Cq−K+1 N−r
q , (5.9)

where: Cq−K+1 is a constant depending on q − K + 1 and r s.t. Cq−K+1 ≤
C(r) ln(2q−K+1 + 2); Nq = #H(q, K ) is the number of collocation nodes; r is defined
as r = min(ln(

√
r1), . . . , ln(

√
rK ))/(1 + ln(2K )) with r1, . . . , rK defined in (5.7). Using

the anisotropic Smolyak sparse grid with Clenshw–Curtis collocation nodes, we have

||u − Sα
q u||L∞(�;X) ≤ Cq−K+1 N−r(α)

q , (5.10)

where r(α) = min(α)(ln(2)e − 1/2)/
(

ln(2) +∑K
k=1 min(α)/αk

)
and αk = ln(

√
rk), k =

1, . . . , K .

As for the reduced basis approximation in multivariate problems, there is unfortunately
no a priori error estimate in the literature to our knowledge. However, there is indeed a
comparison between the Kolmogorov width,

dN (�) := inf
dim(SN )=N

sup
y∈�

inf
wN ∈X N

||u(y) − wN ||X , (5.11)

which defines the error of the optimal approximation, and the convergence rate of N dimen-
sional reduced basis approximation by the greedy algorithm [5]. In (5.11), the notations are the
same as in section 4: SN is a subset of samples with cardinality N ; X N = span{u(y), y ∈ SN }
is a function space spanned by the “snapshots”. Essentially, the Kolmogorov width measures
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the error of the best or optimal N dimensional approximation over all possible N dimen-
sional approximation. Define the error of N dimensional approximation in the subspace X g

N
constructed from a greedy algorithm as:

σN (�) = sup
y∈�

inf
wN ∈X g

N

||u(y) − wN ||X . (5.12)

In practice we use a posteriori error estimator �N as introduced in Sect. 4 instead of the true
error infwN ∈X g

N
||u(y) − wN ||X for the greedy selection of quasi-optimal samples, which

satisfies

c�N ≤ inf
wN ∈X g

N

||u(y) − wN ||X ≤ C�N , where 0 < γ ≡ c

C
≤ 1. (5.13)

A recent result [5] established a relation between the Kolmogorov width dN and the reduced
basis approximation error σN , which is summarized in the following proposition.

Proposition 5.5 Suppose that ∃ M > 0 s.t. d0(�) ≤ M. Moreover, assume that ∃ r > 0

if dN (�) ≤ M N−r then σN (�) ≤ C M N−r ∀N > 0, (5.14)

where the constant C depends only on r and γ . Moreover, assume that ∃ a > 0,

if dN (�) ≤ Me−aNr
then σN (�) ≤ C Me−cN s ∀N ≥ 0, (5.15)

where the constants s = r/(r + 1) and c, C depends only on a, r and γ .

This proposition basically states that whenever the Kolmogorov width decays at either an
algebraic or exponential rate, the greedy algorithm will also generate a quasi-optimal approxi-
mation space with the error decaying in a similar way. By the definition of Kolmogorov width,
which measures the error of the optimal approximation among all the possible approxima-
tions, we have that the stochastic collocation approximation error can not be smaller than or
decay faster than the Kolmogorov width. In particular, we have that the Kolmogorov width
is smaller than the isotropic and anisotropic sparse grid collocation approximation error, i.e.

dNq (�) ≤ min{||u − Squ||L∞(�;X), ||u − Sα
q u||L∞(�;X)} (5.16)

and if dNq (�) ≤ M N−r̃
q then r̃ ≥ max{r, r(α)}, where r and r(α) are the algebraic conver-

gence rate in (5.9) and (5.10), respectively. Then we have the following a priori error estimates:
the reduced basis approximation error σNq (�) ≤ C M N−r̃

q which decays faster than the sto-
chastic collocation approximation error. Moreover, if the stochastic solution is analytic in the
probability/parameter space, as is the case for the elliptic problem (2.1) with analytic solution
in Corollary 2.2, the Kolmogorov width can achieve exponential convergence rate in prac-
tice [5], so that the reduced basis approximation error also decays exponentially and much
faster than the stochastic collocation approximation error, as demonstrated by our numerical
experiments in Sect. 7.

Both the Kolmogorov width dN (�) and the greedy error σN (�) are given on the whole
region �. However, in practice they are defined over the training set �train ⊂ �. When it is
dense enough, i.e. dN (�) and σN (�) are indistinguishable from dN (�train) and σN (�train),
the comparison above is valid. On the other hand, if the training set �train is rather sparse in
�, which is usually the case in high dimensional problem, the comparison might be invalid. In
order to have more rigorous and fair comparison of the reduced basis approximation and the
stochastic collocation approximation, we perform a direct comparison of their approximation
errors in the next section.
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5.2 Direct Comparison of Approximation Errors

As mentioned above, selecting an appropriate training set �train for the reduced basis approx-
imation is crucial. For its effective comparison with the stochastic collocation approximation,
we choose training set as the set represented by the collocation points used in the latter approx-
imation, which we denote as �sc in general for both the full tensor product grid and the sparse
grid. Let us denote also the interpolation formula on �sc as Isc : C0(�; X) → L∞(�; X).
We have the following proposition for a direct comparison:

Proposition 5.6 Provided that the training set �train for reduced basis approximation is
taken as the collocation set �sc for stochastic collocation approximation, we have

||u − uN ||L∞(�;X) ≤ C ||u − Iscu||L∞(�;X), (5.17)

where C = 3amax/amin (with amax , amin defined in (2.2)) is a constant independent of N .

Proof By definition of the reduced basis approximation uN in (4.7), we have

||u − uN ||L∞(�;X) = sup
y∈�

||u(y) − uN (y)||X

≤ C

3
sup
y∈�

inf
w∈X N

||u(y) − w||X

≤ C

3
sup

y∈�sc/SN

inf
w∈X N

||u(y) − w||X + C

3
sup

y∈�/�sc

inf
w∈X N

||u(y) − w||X ,

(5.18)

where C = 3amax/amin is a constant independent of N according to Céa lemma [39]; the
first inequality is due to the property of Galerkin projection on the space X N , the second one
comes from the fact that � = SN ∪(�sc/SN )∪(�/�sc) and the reduced basis approximation
error vanishes for any y ∈ SN so that only the above two terms remain. For the second term
of (5.18), we have

sup
y∈�/�sc

inf
w∈X N

||u(y) − w||X ≤ sup
y∈�/�sc

inf
v∈Xsc

||u(y) − v||X + inf
w∈X N

||v − w||X , (5.19)

where the function v is defined in the space Xsc, which is spanned by the solutions at the
collocations points in �sc. Therefore, the first term of (5.19) satisfies

sup
y∈�/�sc

inf
v∈Xsc

||u(y) − v||X ≤ sup
y∈�/�sc

||u(y) − Iscu(y)||X = sup
y∈�

||u(y) − Iscu(y)||X

(5.20)

and (noting that v is one solution at some y ∈ �sc) the second term of (5.19) can be bounded
by

inf
w∈X N

||v − w||X ≤ sup
y∈�sc

inf
w∈X N

||u(y) − w||X = sup
y∈�sc/SN

inf
w∈X N

||u(y) − w||X .

(5.21)

A combination of (5.18), (5.19), (5.20) and (5.21) leads to the following error bound

||u − uN ||L∞(�;X) ≤ 2C

3
sup

y∈�sc/SN

inf
w∈X N

||u(y) − w||X + C

3
sup
y∈�

||u(y) − Iscu(y)||X .

(5.22)
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Moreover, we can construct the reduced basis space in such a way that the reduced basis
approximation error in the collocation/training set �sc [the first term of (5.22)] is smaller
than the stochastic collocation approximation error over � [the second term of (5.22)], i.e.

sup
y∈�sc/SN

inf
w∈X N

||u(y) − w||X ≤ sup
y∈�

||u(y) − Iscu(y)||X , (5.23)

which is always possible and an extreme case is that all the collocation points are included
in the sample set, i.e. �sc = SN , so that the first term of (5.22) vanishes. Therefore, by
substituting (5.23) into (5.22) we obtain (5.17). ��

Since the evaluation of statistics by Monte Carlo algorithm converges very slowly, we
propose the approach of evaluating the solution by reduced basis method at all the collocation
nodes first and then applying quadrature formula (2.7) to assess the statistics. To improve the
accuracy of this approach, we also build the training set �train as the collocation/quadrature
nodes �sc = �train . In fact, we have the error estimate between the expectation E[s] and
the value E[srb] approximated by reduced basis method (E[ssc] is the value approximated by
stochastic collocation method)

|E[s] − E[srb]| ≤ |E[s] − E[ssc]| + |E[ssc] − E[srb]|, (5.24)

where the first term represents the quadrature error, while the second term is bounded by
(4.6) as

|E[ssc] − E[srb]| ≤
∑

yi ∈�sc

wi |s(yi ) − srb(yi )|

≤ max
y∈�sc

|s(y) − srb(y)|
≤ max

y∈�sc
||s||X ′ ||u(y) − uN (y)||X , (5.25)

where wi > 0 are quadrature weights. As long as reduced basis approximation error is
smaller than the quadrature error, (5.24) is dominated by the first term—the quadrature error.

6 Comparison of Computational Costs

In this section, we aim at comparing in detail the computational costs with respect to opera-
tions count and storage of the reduced basis method and the stochastic collocation method.
Let us begin with the computational costs (C(·) stands for operations count and S(·) for
storage) for stochastic collocation method, which is listed along side the Algorithm 1. The
major computational costs for reduced basis method is listed along side the Algorithm 2.

A few notations are: Nsc = #� = (N1+1)×· · ·×(NK +1), Nt = #�train ; Nrb = Nmax ;
Wα is the average work to evaluate the lower bound αL B over the training set; Ws is the
work to solve once the linear system arising from (2.5) with C(N 2) ≤ Ws ≤ C(N 3) and
Wm is the work to evaluate (L, L)X in (4.10) once with C(N ) ≤ Wm ≤ C(N 2). The
total computational costs (apart from that of the common initialization) for the reduced basis
method and stochastic collocation method is calculated from Algorithm 1 and 2 and presented
in Table 1.

More in detail, the offline cost for stochastic collocation method is dominated by solving
the problem (2.5) Nsc times with total work C(Nsc(Ws +K )). Its online cost scales as C(Nsc)

by the multivariate barycentric formula or quadrature formula. The total storage is dominated
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by that for all the solutions S(Nsc(N )). As for reduced basis method, the offline cost is the
sum of pre-computing the lower bound C(Nt Wα), solving the system Nrb times with total
work C(NrbWs + K N 2

rbN ), computing error bound with work C(K 2 N 2
rbWm) and searching

in the training set with work C(Nt K 2 N 3
rb). The online cost is the sum of assembling (4.8) with

work C(K N 2
rb) and solving it with work C(N 3

rb) as well as evaluating the error bound with
work K 2 N 2

rb, as for statistics by quadrature formula, we need work C(Nsc(N 3
rb + K N 2

rb)).
The total storage for reduced basis method takes S(NrbN + K 2 N 2

rb + K Nt ) for storing the
solution, stiffness matrix as well as the training set.

Algorithm 1 Stochastic collocation method
1: procedure OFFLINE construction
2: Initialization: mesh, parameters, finite element functions ϕi , 1 ≤ i ≤ N , etc;
3: Pre-compute and store stiffness matrix Ak = Ak (ϕ·, ϕ·), 0 ≤ k ≤ K and vector F(ϕ·);

4: Pre-compute and store the collocation nodes � = �1 × · · · × �K ; � C(Nsc)/S(K Nsc)
5: for k = 1, . . . , K do
6: for nk = 0, . . . , Nk do
7: Pre-compute and store the barycentric weights w̄

nk
k (y

nk
k ), y

nk
k ∈ �k ; � C(Nk )/S(1)

8: Pre-compute and store quadrature weights wk
nk

by formula (3.10); � C(Nk )/S(1)

9: end for
10: end for
11: for n = 1, . . . , Nsc do
12: Compute and store the solution u(yn), yn ∈ �; � C(Ws )/S(N )

13: end for
14: end procedure

15: procedure ONLINE evaluation
16: Given y ∈ �, compute the solution u(y) by interpolation (3.8), (3.11) or (3.15); � C(Nsc)
17: Evaluate the expectation E[u] by (3.9); � C(Nsc)
18: end procedure

From Table 1 we can observe that an explicit comparison of computational costs for
reduced basis method and stochastic collocation method depends crucially on the number
of collocation points Nsc and the size of the training set Nt , the dimension of the reduced
basis Nrb and parameters K , as well as on the work of computing the lower bound Wα .
In general, provided that the problem is computational consuming in the sense that N is
very large and provided that Nsc ≈ Nt , we have Nrb � Nsc so that the reduced basis
method is much more efficient in the offline procedure under the condition that Wα � Ws

by the SCM optimization algorithm. As for the online evaluation of the solution at a new
y ∈ �, this advantage becomes even more evident especially in high dimensions since the
online operations count for reduced basis method is much smaller than that for the stochastic
collocation method, i.e. C(N 3

rb + K N 2
rb + K 2 N 2

rb) � C(Nsc). However, as for the evaluation
of the statistics, e.g. expectation E[u], the online operations count C(Nsc(N 3

rb + K N 2
rb))

is larger for the reduced basis method than the online operations count (C(Nsc)) for the
stochastic collocation method. Moreover, if we choose the size of the training set larger than
the number of collocation points Nt � Nsc, which is usually the case in practice for low
dimensional problems (K = 1, 2, 3), or else the work Wα for the computation of the lower
bound αL B is not significantly smaller than Ws , the stochastic collocation method could
perform as well as or even better than the reduced basis method when Nt � Nsc.
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Algorithm 2 Reduced basis method
1: procedure OFFLINE construction
2: Initialization: mesh, parameters, finite element functions ϕi , 1 ≤ i ≤ N , etc;
3: Pre-compute and store stiffness matrix Ak = Ak (ϕ·, ϕ·), 0 ≤ k ≤ K and vector F(ϕ·);

4: Pre-compute and store �train and αL B (y), y ∈ �train by SCM; � C(Nt Wα)/S(Nt )
5: Initialize y1 ∈ �train , S1 = {y1}, X1 = {ζ1}, ζ1 = u(y1)/||u(y1)||X ; � C(Ws )/S(N )

6: Compute and store Ak (ζ1, ζ1) and F(ζ1), 0 ≤ k ≤ K ; � C(KN )/S(1)

7: Compute and store (C, C)X , (C, Lk
1)X , (Lk

1, Lk′
1 )X , 0 ≤ k, k′ ≤ K ; � C(K 2Wm )/S(K 2)

8: for N = 2, . . . , N̄max do
9: Compute �u

N−1(y) = ||ê(y)||X /αL B (y) by (4.10); � C(K 2 N 2 Nt )/S(Nt )

10: Choose yN = arg maxy∈�train �u
N−1(y); � C(Nt )/S(1)

11: if �u
N−1(yN ) ≤ tolerance then

12: Nmax = N − 1; Break;
13: end if
14: Set SN = SN−1 ∪ yN and compute u(yN ); � C(K + Ws )/S(N )

15: Orthogonalize X N = span{ζ1, . . . , ζN−1, u(yN )}; � C(N )/S(N )

16: Compute and store Ak (ζm , ζn) and F(ζN ) for (4.8); � C(K NN )/S(N 2)

17: Compute and store (C, Lk
N )X , (Lk

n , Lk′
n′ )X for (4.10); � C(K 2 N Wm )/S(K 2 N )

18: end for
19: end procedure

20: procedure ONLINE evaluation
21: Given y ∈ �, assemble and solve (4.8) and compute �N (y); � C(N 3

rb + K N 2
rb + K 2 N 2

rb)

22: Evaluate statistics by quadrature formula with Nsc abscissas; � C(Nsc(N 3
rb + K N 2

rb))

23: end procedure

Table 1 Computational costs of stochastic collocation method (SC) and reduced basis method (RB)

Computational costs SC RB

Offline operations count C(Nsc(Ws + K )) C(Nt Wα + NrbWs + K N 2
rbN + K 2 N 2

rbWm + Nt K 2 N 3
rb)

Online operations count C(Nsc) C(N 3
rb + K N 2

rb + K 2 N 2
rb)

Total storage S(Nsc(N + K )) S(NrbN + K 2 N 2
rb + K Nt )

7 Numerical Experiments

In this section, we find numerical substantiation to our previous analysis on the convergence
rate and on computational costs, by numerically comparing the reduced basis method and the
stochastic collocation method. More precisely, we consider a stochastic elliptic problem in
a two dimensional unit square x = (x1, x2) ∈ D = (0, 1)2. The deterministic forcing term
f = 1 is fixed. The coefficient a(x, ω) is a random field with finite second moment, whose
expectation and correlation are given as

E[a](x) = c

100
, for a suitable c > 0; Cov[a](x, x ′)

= 1

1002 exp

(
− (x1 − x ′

1)
2

L2

)
, x, x ′ ∈ D (7.1)
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where L is the correlation length. The Karhunen–Loève expansion of the random field a is

a(x, ω)= 1

100

(
c+
(√

π L

2

)1/2

y1(ω)+
∞∑

n=1

√
λn (sin(nπx1)y2n(ω)

+ cos(nπx1)y2n+1(ω))

)
, (7.2)

where the uncorrelated random variables yn, n ≥ 1, have zero mean and unit variance, and
the eigenvalues λn, n ≥ 1, have the following expression

√
λn = (√π L

)1/2
exp

(
− (nπ L)2

8

)
, ∀ n ≥ 1. (7.3)

The random field a(x, ω) will be chosen as in (7.4) and (7.7) below. All the numerical
computation is performed in MATLAB on an Intel Core i7-2620M Processor of 2.70 GHz.

7.1 Numerical Experiments for a Univariate Problem

For the test of univariate stochastic problem, we take

a(x, ω) = 1

100

(
1 +

(√
π L

2

)1/2

sin(2πx1)y1(ω)

)
, (7.4)

where y1(ω) obeys uniform distribution with zero mean and unit variance y1(ω) ∼
U(−√

3,
√

3). We implement Algorithm 1 for the stochastic collocation approximation with
Clenshaw–Curtis nodes (the same as Chebyshev–Gauss–Lobatto nodes [9,43]), defined for
y1 ∈ �1 = [−√

3,
√

3] as

yn
1 = −√

3 cos
(nπ

N

)
, n = 0, . . . , N . (7.5)

We also implement Algorithm 2 for the reduced basis approximation with equidistant training
set �train with cardinality Nt = 1000, which is rather dense in the interval [−√

3,
√

3]. We
take randomly the testing set �test with Ntest = 1000 samples and define the L∞(�) error
between the true solution u (finite element solution) and approximate solution uapprox as

||u − uapprox ||L∞(�;X) ≈ max
y∈�test

||u(y) − uapprox (y)||X . (7.6)

We also compute the statistical error |E[||u||X ]−E[||uapprox ||X ]| with the expectation defined
in (3.5).

Figure 2 illustrates the convergence of the error against collocation nodes as well as the
number of reduced bases for the stochastic collocation approximation and reduced basis
approximation, respectively. From the left of Fig. 2, we observe that both approximations
achieve exponential convergence in accordance with Proposition 5.1 and Proposition 5.2. The
reduced basis approximation (convergence rate ≈ exp(−1.8N )) turns out to be slightly better
than the stochastic collocation approximation (convergence rate ≈ exp(−1.3N )). As for the
computation of the expectation E[||u − uapprox ||X ], we apply Clenshaw–Curtis quadrature
rule [43] for stochastic approximation and Monte–Carlo algorithm for reduced basis approx-
imation. The right of Fig. 2 shows that the quadrature rule with exponential convergence rate
≈ exp(−1.6N ) is apparently superior to Monte–Carlo algorithm with algebraic convergence
rate ≈ N−1/2 in the univariate problem.
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Fig. 2 Comparison for convergence rate of the error ||u − uapprox ||L∞(�;X) (left) and the expectation
|E[||u||X ] − E[||uapprox ||X ]| (right) between the true and the approximate solutions in 1D

Table 2 1D offline (online in bracket) computational costs measured in CPU time by reduced basis approxi-
mation (RB) and stochastic collocation approximation (SC) achieving the same accuracy

time t(s)—size h 1/8 1/16 1/32 1/64 1/128

tRB (1D,Nt = 103) 4 (0.0003) 7 (0.0003) 12 (0.002) 14 (0.005) 33 (0.02)

tSC (1D,NSC = 28) 0.04 (0.0002) 0.1 (0.0002) 1 (0.0002) 6 (0.0002) 31 (0.0002)

As for the computational costs, though the reduced basis approximation needs slightly less
“snapshots” than the stochastic collocation approximation, it costs more for the computation
of a posteriori error estimator by greedy sampling over a large training set in the offline con-
struction. In Table 2 for univariate (1D) problem, we observe that for small scale problems, i.e.
the mesh size h is large, the offline construction of reduced basis approximation is apparently
more expensive than the stochastic collocation approximation. When the problem grows to
large scale, i.e. the mesh size h is small, the computational time is dominated by the time
required for the solution of the finite element problem, then the reduced basis approximation
is as efficient as the stochastic collocation approximation or even better. Moreover, it takes
C(NSC ) = C(28) operations count for the online evaluation of the solution u(y) for any
given y ∈ � by stochastic collocation method while reduced basis method needs more com-
putation C(N 3

RB) = C(8000) > C(NSC ) = C(28). From Table 2 we can see that the online
computational costs of reduced basis approximation increases with the scale of the problem
and takes more time than that of the stochastic collocation approximation, which depends
only on the number of collocation points NSC . In the computation of statistics, the reduced
basis—Monte–Carlo approximation is much more expensive than the stochastic collocation
approximation with corresponding quadrature rule for the univariate problem. In order to
alleviate the computational cost, we can first evaluate the solution at the collocation nodes by
reduced basis approximation and then use the quadrature formula to compute the statistics.
However, this is not so useful if the number of collocation nodes is comparable to the number
of reduced bases, as in the univariate case. We will compare the proposed approach with the
stochastic collocation approach for multivariate case later. From the univariate experiment,
we conclude that the stochastic collocation approximation is more efficient than the reduced
basis approximation for small scale problem in terms of computational costs and become
less efficient as the problem becomes in large scale, expensive to solve.
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Fig. 3 Comparison of greedy sampling (top) and hierarchical Clenshaw–Curtis rule (bottom). The size of the
nodes stands for the order that they are selected in the hierarchical approximation. Correspondence of samples
for reduced basis (◦) and Clenshaw–Curtis nodes (·) is highlighted (middle)

Figure 3 depicts the procedure of reduced basis construction by greedy sampling algorithm
and hierarchical stochastic collocation construction based on Clenshaw–Curtis nodes. At the
top of Fig. 3, we use larger size of dots to show earlier samples selected in the greedy
algorithm, which is very similar to the hierarchical collocation construction shown at the
bottom of Fig. 3 in terms of the position and selected order of the nodes. This effect can be
observed more closely in the middle figure, where the greedy samples is in full consistency
with the Clenshaw–Curtis nodes. In fact, the maximum distance of the corresponding points
between greedy samples and Clenshaw–Curtis nodes (CC) is 0.074, and the mean distance is
0.023. For comparison, we also test Chebyshev–Gauss nodes (CG), Legendre–Gauss nodes
(LG) and Legendre–Gauss–Lobatto nodes (LGL) (see[9]) and the result is listed in Table
3, from which we can see that Clenshaw–Curtis nodes are the best choice, followed by
Legendre–Gauss–Lobatto nodes. Note that the average distances of the samples in the training
set are 2

√
3/1000 = 0.0035 and 2

√
3/10000 = 0.00035, which are much smaller than

the quantities in Table 3, so that we are confident with the intrinsic difference between
the samples selected by the greedy algorithm and the collocation nodes. This numerical
coincidence has also been observed for empirical interpolation method (EIM) [2,28], which
is efficiently used in affinely approximating the nonlinear function for nonlinear problems
in the framework of reduced basis approximation. The fact sheds light on the similarity of
projection and interpolation in the common framework of nonlinear approximation, in the
way that the greedy algorithm for reduced basis projection tends to select the points on which
the Lebesgue constant arising in the stochastic collocation/interpolation is minimized.
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Table 3 Comparison of the maximum distance (average distance in brackets) between greedy samples in
reduced basis approximation and different collocation nodes for stochastic collocation approximation

Nt CC CG LG LGL

1,000 0.074 (0.023) 0.108 (0.033) 0.131 (0.047) 0.082 (0.024)

10,000 0.076 (0.022) 0.110 (0.034) 0.134 (0.049) 0.085 (0.024)
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Fig. 4 Comparison for convergence rate of the error ||u − uapprox ||L∞(�;X) (left) and the expectation
|E[||u||X ] − E[||uapprox ||X ]| (right) between the true and the approximate solution in 5D

7.2 Numerical Experiments for Multivariate Problems

For the test of multivariate problem, we truncate the random field a(x, ω) from Karhunen–
Loève expansion (7.2) with five uniformly distributed random variables y = (y1, . . . , y5),
whose value belongs to � = [−√

3,
√

3]5, and correlation length L = 1/8 so that the two
eigenvalues λ1 ≈ 0.2132, λ2 ≈ 0.1899, written as

a(x, ω) = 1

100

(
4 +

(√
π L

2

)1/2

y1(ω) +
2∑

n=1

√
λn (sin(nπx1)y2n(ω)

+ cos(nπx1)y2n+1(ω))

)
. (7.7)

The tensor product of one dimensional Clenshaw–Curtis nodes (7.5) for N =
1, 2, 3, 4, 5, 6, 7 as well as a single node [0, 0, 0, 0, 0] are used for the stochastic collo-
cation approximation, while Smolyak sparse grid with level q − 5 = 1, 2, 3, 4, 5, 6, 7 are
used for stochastic sparse grid collocation approximation. For the reduced basis approxi-
mation, we select the same 75 samples as used in the tensor product stochastic collocation
nodes. The convergence results for L∞(�) error and the expectation are displayed in Fig. 4.
From the left of Fig. 4, we observe obviously better convergence rate for the reduced basis
approximation (still achieving exponential convergence rate ≈ exp(−0.2N )) than stochastic
collocation approximation (only gaining convergence rate ≈ exp(0.0002N ) or rather alge-
braic convergence rate ≈ N−1.5). The sparse grid collocation achieves better approximation
than the tensor production collocation at the beginning, and loses this advantage to the latter
due to slower convergence for our specific experiment in five dimensions.
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Table 4 5D offline (online in bracket) computational costs measured in CPU time by reduced basis approxi-
mation (RB) and stochastic collocation approximation (SC) achieving the same accuracy

Time t(s)—size h 1/8 1/16 1/32 1/64 1/128

tRB (5D, Nt = 103) 50 (0.0008) 55 (0.001) 57 (0.002) 76 (0.01) 159 (0.05)

tRB (5D, Nt = 75) 839 (0.0005) 843 (0.001) 846 (0.002) 864 (0.009) 949 (0.05)

tSC (5D, NSC = 75) 17 (0.02) 58 (0.02) 755 (0.02) 3,619 (0.02) 17,252(0.02)
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Fig. 5 Empirical convergence (left) and fitted convergence rate (right) in dimension 1 ≤ k ≤ 9

As for the convergence of the expectation E[||u||X ] as seen from the right of Fig. 4,
the highest convergence rate (gaining exponential convergence rate) is still achieved by the
reduced basis—collocation approximation, essentially by constructing the reduced basis at
first and then evaluating the solution at the collocation/quadrature points by reduced basis
approximation. Similar convergence behaviour can be observed for the tensor product and
sparse grid collocation approximation, which are still better than the reduced basis—Monte–
Carlo approximation, though this advantage becomes less evident than the univariate case.

For the comparison of computational cost, besides the same 75 training samples as used
in the tensor product stochastic collocation nodes, we also use Nt = 1000 � 75 randomly
generated samples as training set and obtain the same number of reduced bases to achieve the
same accuracy due to the smoothness of the solution in the parameter space. From Table 4, we
may see that the offline computational costs for stochastic collocation approximation grows
exponentially fast as the complexity of the problem, while for reduced basis approximation,
it increases slightly and is dominated linearly by the cardinality of the training set �train

from the contrast of 75 ≈ 1.7 × 104 to 103, which is almost the same ratio of the CPU time
839/50 ≈ 17. In comparison, the reduced basis approximation becomes much more efficient
than the stochastic collocation approximation in offline construction for large scale problems
while it loses moderately to the latter for the online computational cost. In the computation
of statistics, the reduced basis—collocation approximation is much faster than the stochastic
collocation approximation: 949(offline) + 0.05 × 75(online) ≈ 1789 � 17252 for large
scale problems (h = 1/128) while this becomes opposite for small scale problems (h = 1/8)
since 839 + 0.0005 × 75 ≈ 847 � 17.

When numerically solving the five dimensional stochastic problems, we can see that
both collocation and reduced basis approximation achieve better convergence property than
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Fig. 6 Comparison for convergence rate of the error ||||u||X −||uapprox ||X ||L∞(�) (left) and the expectation
|E[||u||X ] − E[||uapprox ||X ]| (right) between the true and the approximate solutions in 9D

Monte–Carlo algorithm. However, when the number of random variables or parameters
becomes very large, the tensor product stochastic collocation approximation would need
too many collocation points so that the quadrature formula losses its advantage over the
Monte–Carlo algorithm. Meanwhile, the size of the training set for reduced basis construc-
tion also grows exponentially with the dimensions of the problem. Therefore, it is necessary
to alleviate the computational cost. When the random variables yk, 1 ≤ k ≤ K have different
importance for the stochastic problem, it would be worthless to put the same weight on the
ones with little importance as on those with much larger influence. For instance, the first
few eigenvalues λ1 ≈ 0.4782, λ2 ≈ 0.0752, λ3 ≈ 0.0034, λ4 ≈ 0.000045 decay so fast for
large correlation (L = 1/2) length in the Karhunen–Loève expansion (7.2) that the random
variables have distinct weights in determining the value of the coefficient a(x, y1, . . . , yK ).

The key idea behind anisotropic sparse grid is that we take advantage of the anisotropic
weights, placing more collocation points in the dimensions that suffer from a slower conver-
gence in order to balance and minimize the global error [31]. How to obtain a sharp estimate
of the importance or the weight of different dimensions is crucial to use the anisotropic
spars grid. One way is to derive a priori error estimate with the convergence rate, e.g. the
convergence rate exp(− ln(rk)N ), 1 ≤ k ≤ K in (5.7), as accurate as possible. However,
deriving an analytical estimation of the convergence rate for general problems is rather dif-
ficult. In alternative, we may perform empirical estimation by fitting the convergence rate
from numerical evaluation for each dimension, see Fig. 5, and use the estimated convergence
rates as α in (3.15) for anisotropic sparse grid construction [31]. For the test of efficiency of
anisotropic grid, we take the correlation length L = 1/2, c = 5 for the coefficient a(x, ω)

in (7.2) and truncate it with nine random variables y = (y1, . . . , y9) ∈ � = [−√
3,

√
3]9.

Instead of the norm ||u − uapprox ||L∞(�,X), we use ||||u||X − ||uapprox ||X ||L∞(�) to reduce
the evaluation cost.

We use isotropic sparse grid and anisotropic sparse grid at the interpolation level
q − 9 = 1, 2, 3, 4, 5, 6 for stochastic collocation approximation in (3.11) and (3.15), and
choose the training samples as the collocation nodes in sparse grid at the deepest interpola-
tion level q − 9 = 6 (100897 ≈ 105 nodes) for reduced basis approximation. From Fig. 6
we can see that the reduced basis approximation converges much faster than the stochastic
collocation approximation in both L∞(�) norm and the statistical norm. The offline compu-
tational cost of reduced basis approximation for small scale problems h = 1/8, 1/16, 1/32
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Table 5 9D offline (online in bracket) computational costs measured in CPU time by reduced basis approxi-
mation (RB) and stochastic collocation approximation (SC) achieving the same accuracy

Time t(s)—size h 1/8 1/16 1/32 1/64 1/128

tRB (9D, Nt = 103) 85 (0.0007) 91 (0.001) 93 (0.002) 121 (0.01) 235 (0.04)

tRB (9D, Nt ≈ 105) 8,577 (0.0008) 8,582 (0.001) 8,585 (0.002) 8,610 (0.01) 8,722 (0.04)

tSC (9D, NSC ≈ 105) 154 (0.13) 305 (0.13) 4,804 (0.13) 23,401 (0.13) 101,795 (0.13)

is larger than that of stochastic collocation approximation, while for large scale problems
h = 1/64, 1/128 this becomes quite opposite, see Table 5. Besides, we also use 103 ran-
domly generated training samples for reduced basis approximation, and we still obtain the
high accuracy in both L∞(�) norm and the statistical norm due to the fact that the solution
is very smooth in the parameter space. We can see from Table 5 that the computational costs
with 103 samples is far less than that of the sparse grid stochastic collocation approximation
for both offline construction and online evaluation. In fact, the online construction of the
reduced basis approximation stays the same as dominated by the number of reduced basis
Nrb in the way O(N 3

rb + K N 2
rb + K 2 N 2

rb), while the online cost for stochastic collocation
approximation grows with the number of collocation points in an approximately linear way
O(Nsc)(105/75 ≈ 0.13/0.02). Figure 6 also carries the fact that anisotropic sparse grid is
more efficient than the isotropic sparse grid for anisotropic problems. Meanwhile, we can see
that the stochastic collocation approximation based on tensor product grid starts to converge
slower than N−1/2, which is the typical convergence rate of Monte–Carlo method.

7.3 Numerical Experiments for Higher Dimensional Problems

In this numerical experiment, we deal with high dimensional stochastic problems, pushing
the dimensions from 9D to 21D, 51D to up 101D and comparing the performance of the
reduced basis approximation and the stochastic collocation approximation. Note that in high
dimensions K = 101, it is prohibitive to use stochastic collocation with tensor product grid
(since we would need 3101 ≈ 1.5 × 1048 collocation points in total with 3 collocation points
in each dimension), we use instead sparse grid of the anisotropic type to reduce the computa-
tional cost. The correlation length is L = 1/128, which enables us to consider an anisotropic
problem but with the eigenvalues decaying very slowly (λ1 = 0.0138, λ50 = 0.0095). The
constant in (7.2) is chosen as c = 20 to guarantee that the stochastic problem is well posed
with coercive elliptic operator. For the reduced basis approximation, we use 1,000 samples
randomly selected in � = [−√

3,
√

3]K , K = 9, 21, 51, 101 thanks to the rather smooth
property of the solution in the parameter space, and for the stochastic collocation approxi-
mation, we construct adaptively an anisotropic sparse grid with 101, 102, 103, 104, 105, 106

collocation nodes in a hierarchical way governed by the hierarchical surpluses [24]. To eval-
uate the ||||u||X − ||uapprox ||X ||L∞(�) error, we randomly select 100 samples in �. For the
computation of expectation as well as the error |E[||u||X ] − E[||uapprox ||X ]|, we apply the
reduced basis—collocation approximation with 105 collocation nodes constructed from the
anisotropic grid. The error |E[||u||X ] − E[||uapprox ||X ]| is evaluated as a posteriori error by
taking the best stochastic collocation approximation as the true value.

The results for the high dimensional stochastic problems are displayed in Fig. 7, from
which we can observe an exponential decay rate for both the L∞(�) error and the statistical
error by reduced basis approximation, which is much faster than the stochastic collocation
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Fig. 7 Comparison for convergence rate of ||||u||X − ||uapprox ||X ||L∞(�) (left) and the expectation
|E[||u||X ] − E[||uapprox ||X ]| (right) between the anisotropic sparse grid stochastic collocation (SC) approx-
imation and the reduced basis (RB) approximation in high dimensions 9D, 21D, 51D and 101D

approximation. As the dimension increases from 9 to 101, the convergence rate decreases very
fast for both reduced basis approximation and stochastic collocation approximation. As for the
computational costs of reduced basis method, it takes 86(K = 9), 424(K = 21), 2479(K =
51), 8986(K = 101) CPU seconds, respectively for the offline construction with the mesh
size h = 1/8, growing as tRB ∝ O(K 2), which verify the formula in Table 1 by Algorithm 2.
In contrary, it would take tSC ∝ O(K w) where w = q − K = 0, 1, 2, . . . is the interpolation
level in the isotropic Smolyak formula (3.11), which prevents large w for high dimensional
problems. We remark that although our numerical results are very promising for reduced
basis approximation, the size of the samples in the training set #�train = 1000 and the
testing set #�test = 100 is rather small for the high dimensional problems, which may bring
insufficiency as for the approximation. In order to increase the accuracy of approximation,
we may construct the training set adaptively by replacing it with new set once the reduced
basis approximation is good enough in the current one, see [46]. We also remark that the work
of offline construction is linear with respect to the cardinality of the training set tRB ∝ Nt ,
as seen in Table 1.

8 Concluding Remarks

In this work, we carried out a detailed comparison between the reduced basis method and the
stochastic collocation method for linear stochastic elliptic problems, in terms of convergence
analysis and computational costs. The reduced basis method adopts Galerkin projection on
the reduced basis space constructed from a greedy algorithm governed by a posteriori error
estimate. It takes advantage of the affine structure of the stochastic problem to decompose the
computation into offline procedure and online procedure. The stochastic collocation method,
on the other hand, follows essentially the Lagrangian interpolation on the collocation nodes,
which are taken as quadrature abscissa in order to achieve high order interpolation as well
as integration for statistical computation.

As for the convergence analysis, the reduced basis method achieves exponential con-
vergence rate for analytic/smooth problems regardless of dimensions in our test case. The
stochastic collocation method also obtains exponential convergence in the low dimensional
case, though with a slower rate than that featured by the reduced basis method; in contrast,
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in the multivariate case, especially for high dimensional problems, it only achieves algebraic
convergence rate. The computation of the stochastic collocation method costs less effort than
the reduced basis method in small scale and low dimensional problems, while it grows much
faster than the reduced basis method in large scale and high dimensional problems, resulting
in much higher computational effort than the latter one. Note that the comparison depends
essentially on the regularity of the stochastic solution, the dimension of the parameter space
as well as the complexity of solving the underlying deterministic system, so that we presume
that similar comparison results hold reasonably beyond the case of linear stochastic elliptic
problems considered here.

We succeeded in applying the reduced basis method and the anisotropic sparse grid sto-
chastic collocation method in high dimensional problems up to the order of (100). Neverthe-
less, the application is admittedly insufficient since the number of samples and collocation
nodes is rather small. More advanced techniques such as sensitivity analysis, adaptive con-
struction and so on [21,22] for both methods are being developed actively from the research
community, more specifically to deal with high dimensional stochastic systems.

Moreover, the comparison has been only carried out for problems with smooth solutions
with respect to the parameters. As for non-smooth or low regularity stochastic problems,
we expect that the reduced basis method, by taking advantage of solving a reduced problem
(4.2) with the same mathematical structure as the original problem (2.5), can avoid Gibbs
phenomenon as encountered by stochastic collocation method based on dictionary basis
(here Lagrange basis function), thus gaining further benefit on convergence, see examples in
[11]. More research focusing on both theoretical and computational aspects is still needed
when considering reduced basis method and stochastic collocation method, as well as their
efficient combination, for solving low regularity and high dimensional stochastic problems
with random variables featuring more general probability distributions [12,13].
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