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Abstract This paper is concerned with developing accurate and efficient nonstandard dis-
continuous Galerkin methods for fully nonlinear second order elliptic and parabolic partial
differential equations (PDEs) in the case of one spatial dimension. The primary goal of
the paper to develop a general framework for constructing high order local discontinuous
Galerkin (LDG) methods for approximating viscosity solutions of these fully nonlinear PDEs
which are merely continuous functions by definition. In order to capture discontinuities of
the first order derivative ux of the solution u, two independent functions q− and q+ are intro-
duced to approximate one-sided derivatives of u. Similarly, to capture the discontinuities of
the second order derivative uxx , four independent functions p−−, p−+, p+−, and p++ are
used to approximate one-sided derivatives of q− and q+. The proposed LDG framework,
which is based on a nonstandard mixed formulation of the underlying PDE, embeds a given
fully nonlinear problem into a mostly linear system of equations where the given nonlinear
differential operator must be replaced by a numerical operator which allows multiple value
inputs of the first and second order derivatives ux and uxx . An easy to verify set of crite-
ria for constructing “good” numerical operators is also proposed. It consists of consistency
and generalized monotonicity. To ensure such a generalized monotonicity property, the crux
of the construction is to introduce the numerical moment in the numerical operator, which
plays a critical role in the proposed LDG framework. The generalized monotonicity gives the
LDG methods the ability to select the viscosity solution among all possible solutions. The
proposed framework extends a companion finite difference framework developed by Feng
and Lewis (J Comp Appl Math 254:81–98, 2013) and allows for the approximation of fully
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nonlinear PDEs using high order polynomials and non-uniform meshes. Numerical experi-
ments are also presented to demonstrate the accuracy, efficiency and utility of the proposed
LDG methods.

Keywords Fully nonlinear PDEs · Viscosity solutions · Local discontinuous Galerkin
methods

Mathematics Subject Classification 65N30 · 65M60 · 35J60 · 35K55

1 Introduction

This is the third paper in a series [12,16] which is devoted to developing finite difference
(FD) and discontinuous Galerkin (DG) methods for approximating viscosity solutions of
the following general one-dimensional fully nonlinear second order elliptic and parabolic
equations:

F (uxx , ux , u, x) = 0, x ∈ � := (a, b) ⊂ R, (1.1)

and

ut + F (uxx , ux , u, x, t) = 0, (x, t) ∈ �T := �× (0, T ), (1.2)

which are complemented by appropriate boundary and initial conditions.
Fully nonlinear PDEs, which are nonlinear in the highest order derivatives of the solution

functions in the equations, arise in many applications such as antenna design, astrophysics,
differential geometry, fluid mechanics, image processing, meteorology, mesh generation,
optimal control, optimal mass transport, etc (cf. [11, section 5]), and, as a result, the solution
of each of these application problems critically depends on the solution of their underlying
fully nonlinear PDEs. In particular, it calls for efficient and reliable numerical methods for
computing the viscosity solutions of these fully nonlinear PDEs. Currently, the availability
of such numerical methods is very limited (cf. [11]).

The goal of this paper is to design and implement a class of nonstandard local discontinuous
Galerkin (LDG) methods for the fully nonlinear Eqs. (1.1) and (1.2). The more involved
high dimensional generalizations of the nonstandard LDG methods of this paper will be
reported elsewhere in [17]. The methods of this paper are designed to complement the interior
penalty discontinuous Galerkin (IP-DG) methods for fully nonlinear second order equations
developed in [16], where the focus is on approximating PDEs (1.1) and (1.2) whose viscosity
solutions belong to C1.

To present the main ideas of our nonstandard LDG methods, we first briefly describe the
nonstandard LDG method proposed by Yan and Osher [22] for approximating the viscosity
solution of the Hamilton-Jacobi equation: ut +H(∇u, u, x, t) = 0. The main ideas of [22] are
to approximate the “left” and “right” side first order derivatives of the viscosity solution and
to judiciously combine them through a monotone and consistent numerical Hamiltonian such
as the Lax-Friedrichs numerical Hamiltonian. We note that the idea of pulling the highest
order derivative(s) outside fully nonlinear PDEs is essential because it allows one to take
advantages of DG techniques to discretize the given fully nonlinear PDEs. Our nonstandard
LDG methods to be presented below are exactly inspired by this idea, although the realization
of this idea for fully nonlinear second order PDEs is more involved. Below we highlight the
main steps/ideas of the construction of our nonstandard LDG framework.
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Because of the full nonlinearity, integration by parts, which is the necessary tool for
constructing any DG method, cannot be performed on Eq. (1.1). The first key idea of this
paper is to introduce the auxiliary variables p := uxx and q := ux and rewrite the original
fully nonlinear PDE in the following nonstandard mixed form:

F(p, q, u, x) = 0, (1.3)

q − ux = 0, (1.4)

p − qx = 0. (1.5)

Unfortunately, since ux and uxx may not exist for a viscosity solution u ∈ C0(�), the
above mixed form may not make sense. To overcome this difficulty, our second key idea
is to replace q = ux by two possible values of ux , namely, its left and right limits, and
p = qx by two possible values for each possible q . Thus, we have the auxiliary variables
q−, q+ : � → R and p−−, p−+, p+−, p++ : � → R such that

q−(x)− ux (x
−) = 0, (1.6)

q+(x)− ux (x
+) = 0, (1.7)

p−−(x)− q−
x (x

−) = 0, (1.8)

p−+(x)− q−
x (x

+) = 0, (1.9)

p+−(x)− q+
x (x

−) = 0, (1.10)

p++(x)− q+
x (x

+) = 0. (1.11)

We remark that (1.6) paired with the Eq. (1.8) or (1.9), and (1.7) paired with Eq. (1.10) or
(1.11), can each be regarded as a “one-sided” Poisson problem in u (in a mixed form) with
source terms p−−, p−+, p+−, p++, respectively.

To incorporate the multiple values of ux and uxx , Eq. (1.3) must be modified because F
is only defined for single value functions p and q . To this end, we need the third key idea of
this paper, that is, to replace (1.3) by

̂F(p−−, p−+, p+−, p++, q−, q+, u, x) = 0, (1.12)

where ̂F , which is called a numerical operator, should be some well-chosen approximation
to F .

Natural questions now arise regarding the choice of ̂F . For example, what are criteria
for ̂F and how to construct such a numerical operator? These are two immediate questions
which must be addressed. To do so, we need the fourth key idea of this paper, which is to
borrow and adapt the notion of the numerical operators from our previous work [12] where
a general finite difference framework has been developed for fully nonlinear second order
PDEs. In summary, the criteria for ̂F include consistency and g-monotonicity (generalized
monotonicity), for which precise definitions can be found in Sect. 2. It should be pointed
out that in order to construct the desired numerical operator ̂F , a fundamental idea used in
[12] is to introduce the concept of the numerical moment, which can be regarded as a direct
numerical realization for the moment term in the vanishing moment methodology introduced
in [10] (also see [11, section 4], [9]).

Finally, we need to design a DG discretization for the mixed system (1.6)–(1.12) to
complete the construction of our LDG method. This then calls for the fifth key idea of this
paper, which is to use different numerical fluxes in the formulations of LDG methods for the
four “one-sided” Poisson problems in their mixed forms described by (1.6)–(1.11). We remark
that, to the best of our knowledge, this is one of a few scenarios in numerical PDEs where
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the flexibility and superiority (over other numerical methodologies) of the DG methodology
makes a vital difference.

At this point, it is clear why we use the word “nonstandard” to indicate the differences
between our LDG methods and the standard LDG methods [6] for linear and quasilinear
PDEs. In the standard LDG methods, one only needs to introduce one copy of the vector
q := ∇u, and there is no need to introduce multiple copies of p := D2u as independent
unknowns to approximate. We also note that in the nonstandard IP-DG framework developed
in [16], because u is assumed to be in C1, q := ∇u is not introduced as an unknown function,
instead, ∇uh is hard computed in the IP-DG methods and the approximated sided Hessians
p−−

h , p−+
h , p+−

h , p++
h are defined directly through uh . It is also interesting to point out that

unlike the relationship between standard LDG and IP-DG methods (cf. [1]), due to fully
nonlinear structure of the PDEs, no integration by parts can be performed, as a result, the
“primal” forms of the nonstandard LDG methods of this paper are intrinsically different from
the nonstandard IP-DG methods of [16] and they may exhibit different properties, especially
in high dimensions (cf. [17]).

This paper consists of four additional sections. In Sect. 2 we collect some preliminar-
ies including the definition of viscosity solutions, the definitions of the consistency and
g-monotonicity of numerical operators, and the concept of the numerical moment. In Sect. 3
we give the detailed formulation of LDG methods for fully nonlinear elliptic equation (1.1)
following the outline described above. In Sect. 4 we consider both explicit and implicit in
time fully discrete LDG methods for the fully nonlinear parabolic equation (1.2). The explicit
four stage classical Runge-Kutta method and the implicit trapezoidal method combined with
the spatial LDG methods will be explicitly constructed. In Sect. 5 we present a number of
numerical experiments for the proposed LDG methods for the fully nonlinear elliptic equation
(1.1) and their fully discrete counterparts for the parabolic equation (1.2). These numerical
experiments not only verify the accuracy of the proposed LDG methods but also demonstrate
the efficiency and utility of these methods.

2 Preliminaries

Standard space notations are adopted in this paper. For example, B(�),U SC(�) and
L SC(�) denote, respectively, the spaces of bounded, upper semi-continuous, and lower
semicontinuous functions on �. For any v ∈ B(�), we define

v∗(x) := lim sup
y→x

v(y) and v∗(x) := lim inf
y→x

v(y).

Then, v∗ ∈ U SC(�) and v∗ ∈ L SC(�), and they are called the upper and lower semicon-
tinuous envelopes of v, respectively. If v is continuous, there obviously holds v = v∗ = v∗.

Let F : Sd×d × Rd × R × � → R be a bounded function, where Sd×d denotes the set
of d × d symmetric real matrices. Then, the general second order fully nonlinear PDE takes
the form

F(D2u,∇u, u, x) = 0 in �. (2.1)

Note that here we have used the convention of writing the boundary condition as a disconti-
nuity of the PDE (cf. [3, p.274]).

The following two definitions can be found in [3,4,13].
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Definition 2.1 Equation (2.1) is said to be elliptic if, for all (q, λ, x) ∈ Rd × R ×�, there
holds

F(A,q, λ, x) ≤ F(B,q, λ, x) ∀A, B ∈ Sd×d , A ≥ B, (2.2)

where A ≥ B means that A − B is a nonnegative definite matrix. We note that when F is
differentiable, the ellipticity also can be defined by requiring that the matrix ∂F

∂A is negative
semi-definite (cf. [13, p. 441]).

Definition 2.2 A function u ∈ B(�) is called a viscosity subsolution (resp. supersolution)
of (2.1) if, for all ϕ ∈ C2(�), if u∗ −ϕ (resp. u∗ −ϕ) has a local maximum (resp. minimum)
at x0 ∈ �, then we have

F∗(D2ϕ(x0),∇ϕ(x0), u∗(x0), x0) ≤ 0

(resp. F∗(D2ϕ(x0),∇ϕ(x0), u∗(x0), x0) ≥ 0). The function u is said to be a viscosity solu-
tion of (2.1) if it is simultaneously a viscosity subsolution and a viscosity supersolution of
(2.1).

We note that if F and u are continuous, then the upper and lower ∗ indices can be removed
in Definition 2.2. The definition of ellipticity implies that the differential operator F must be
non-increasing in its first argument in order to be elliptic. It turns out that ellipticity provides
a sufficient condition for Eq. (2.1) to fulfill a maximum principle (cf. [4,13]). From the
above definition it is clear that viscosity solutions in general do not satisfy the underlying
PDEs in a tangible sense, and the concept of viscosity solutions is nonvariational. Such a
solution is not defined through integration by parts against arbitrary test functions; hence,
it does not satisfy an integral identity. This nonvariational nature of viscosity solutions is
the main obstacle that prevents direct construction of Galerkin-type methods, which require
variational formulations to start.

The following definitions are adapted from [12] in the case d = 1.

Definition 2.3 (i) A function ̂F : R8 → R is called a numerical operator.
(ii) A numerical operator ̂F is said to be consistent (with the differential operator F) if ̂F

satisfies

lim inf
pμν→p,μ,ν=+,−
q±→q,λ1→λ,ξ1→ξ

̂F(p−−, p−+, p+−, p++, q−, q+, λ1, ξ1) ≥ F∗(p, q, λ, ξ), (2.3)

lim sup
pμν→p,μ,ν=+,−
q±→q,λ1→λ,ξ1→ξ

̂F(p−−, p−+, p+−, p++, q−, q+, λ1, ξ1) ≤ F∗(p, q, λ, ξ), (2.4)

where F∗ and F∗ denote respectively the lower and the upper semi-continuous envelopes
of F .

(iii) A numerical operator ̂F is said to be g-monotone if ̂F(p−−, p−+, p+−, p++, q−, q+, λ,
ξ) is monotone increasing in p−− and p++ and monotone decreasing in p−+ and p+−,
that is, ̂F(↑,↓,↓,↑, q−, q+, λ, ξ).

We remark that the above consistency and g-monotonicity play a critical role in the finite
difference framework established in [12]. They also play an equally critical role in the LDG
framework of this paper. In practice, the consistency is easy to fulfill and to verify, but the
g-monotonicity is not. In order to ensure the g-monotonicity, one key idea of [12] is to
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introduce the numerical moment. The following is an example of a so-called Lax-Friedrichs-
like numerical operator adapted from [12]:

̂F(p−−, p−+, p+−, p++, q−, q+, λ, ξ) := F
( p−+ + p+−

2
,

q− + q+

2
, λ, ξ

)

+ α
(

p−− − p−+ − p+− + p++)

, (2.5)

where α ∈ R is an undetermined positive constant and the last term in (2.5) is called the
numerical moment. It is trivial to verify that ̂F is consistent with F . By choosing α correctly,
we can also ensure g-monotonicity. For example, suppose F is differentiable and there exists
a positive constant M such that

M >

∣

∣

∣

∣

∂F

∂uxx

∣

∣

∣

∣

. (2.6)

Then, it is trivial to check that the Lax-Friedrichs-like numerical operator is g-monotone
provided that α ≥ M .

We conclude this section with a few remarks about the above definitions.

Remark 2.1

(a) By the definition of the ellipticity for F , the monotonicity constraints on ̂F with respect
to p−+ and p+− in the definition of g-monotonicity are natural.

(b) By choosing the numerical moment correctly, the numerical operator ̂F then behaves
like a uniformly elliptic operator, even if the PDE operator F is a degenerate elliptic
operator. The consistency assumption then guarantees that the numerical operator is still
a reasonable approximation for the PDE operator.

(c) Sometimes it may not be feasible to globally bound ∂F
∂uxx

; however, it is sufficient to
chose a value for α such that the g-monotonicity property is preserved locally over each
iteration of the nonlinear solver for a given initial guess.

(d) The role of the numerical moment as well as the interpretation of the numerical moment
will be further discussed in Sect. 5.3.

3 Formulation of LDG Methods for Elliptic Problems

We first consider the elliptic problem (1.1) with boundary conditions

u(a) = ua and u(b) = ub (3.1)

for two given constants ua and ub.
Let

{

x j
}J

j=0 ⊂ � be a mesh for � such that x0 = a and xJ = b. Define I j = (

x j−1, x j
)

and h j = x j − x j−1 for all j = 1, 2, . . . , J, h0 = h J+1 = 0, and h = max1≤ j≤J h j . Let
Th denote the collection of the intervals {I j }J

j=1 which form a partition of the domain�. We

also introduce the broken H1-space and broken C0-space

H1(Th) :=
∏

I∈Th

H1(I ), C0(Th) :=
∏

I∈Th

C0(I ),

and the broken L2-inner product

(v,w)Th :=
J

∑

j=1

∫

I j

vw dx ∀v,w ∈ L2(�).
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For a fixed integer r ≥ 0, we define the standard DG finite element space V h ⊂ H1(Th) ⊂
L2(Th) as

V h :=
∏

I∈Th

Pr (I ),

where Pr(I ) denotes the set of all polynomials on I with degree not exceeding r . We also
introduce the following standard jump notation:

[vh(x j )] := vh(x
−
j )− vh(x

+
j ) for j = 1, 2, · · · , J − 1.

We now are ready to formulate our LDG discretizations for Eqs. (1.6)–(1.12). First, for
(fully) nonlinear equation (1.12) we simply approximate it by its broken L2-projection into
V h , namely,

a0
(

uh, q−
h , q+

h , p−−
h , p−+

h , p+−
h , p++

h ;φ0h
) = 0 ∀φ0h ∈ V h, (3.2)

where

a0(v, q−, q+, p−−, p−+, p+−, p++;φ) =
(

̂F(p−−, p−+, p+−, p++, q−, q+, v, ·), φ
)

Th
.

Next, we discretize the four linear equations (1.8)–(1.11). Notice that for given “sources”
{pμν}μ,ν=+,−, (1.6) and (1.8), (1.6) and (1.9), (1.7) and (1.10), and (1.7) and (1.11) are four
(different) Poisson equations for u. Thus, we can use the mixed upwinding LDG formulation
for the Laplacian operator to discretize these equations. The only difference in the four
equations will be how we choose our upwinding numerical fluxes for uh, q−

h and q+
h . To

realize the above strategy, we first define the element-wise LDG formulation, and we then
define the whole domain LDG formulation afterward.

3.1 Element-Wise LDG Formulation

Suppose that values for uh(a−), uh(b+), q±
h (a

−), and q±
h (b

+) are given. We postpone
explaining how these values are chosen until Sect. 3.2. Our LDG discretization of Eqs.
(1.6)–(1.11) is defined as follows: for all φ±

h ∈ V h ,
∫

I j

q±
h φ

±
h dx +

∫

I j

uh (φ
±
h )x dx = uh(x

±
j ) φ

±
h (x

−
j )− uh(x

±
j−1) φ

±
h (x

+
j−1) (3.3)

and, for all ψμνh ∈ V h ,
∫

I j

pμνh ψ
μν
h dx +

∫

I j

qμh (ψ
μν
h )x dx = qμh (x

ν
j ) ψ

μν
h (x−

j )− qμh (x
ν
j−1) ψ

μν
h (x+

j−1) (3.4)

for μ, ν = +,−, for all j = 1, 2, · · · , J . Notice that the nodal values from the right or left
and the choice of q±

h in (3.4) follow directly from Eqs. (1.6)–(1.11).

3.2 Boundary Numerical Fluxes

To complete the construction, we must specify how the boundary numerical flux values
for uh, q−

h , and q+
h are determined in the above formulation. Due to the inherent jumps of

piecewise constant functions, which corresponds to the case r = 0, we shall consider the two
cases r ≥ 1 and r = 0 separately.

123



136 J Sci Comput (2014) 59:129–157

When r ≥ 1, we have freedom to control how the functions uh , q−
h , and q+

h approach
the boundary. Thus, we can assume continuity across the boundary for uh, q−

h , and q+
h .

Considering the boundary conditions given by (3.1), the continuity requirement naturally
leads to

uh(a
±) = ua, uh(b

±) = ub. (3.5)

On the other hand, since no boundary data for q−
h or q+

h is given, any choice of the
boundary numerical fluxes for them is a guess (unless one already knows the exact solution
u). Here we choose

q±
h (a

−) = q±
h (a

+), q±
h (b

+) = q±
h (b

−). (3.6)

It is important to note that both q±
h (a

+) and q±
h (b

−) are treated as unknowns in the above
LDG formulation. The choice (3.6) is equivalent to requiring that q±

h is continuous at the
boundary nodes x = a and x = b.

We now consider the case r = 0. To define the boundary numerical fluxes, we first examine
the consequences of the interior flux choices represented by the above LDG formulation.
Suppose Th is a uniform mesh and denote the midpoint of I j by x̂ j for all I j ∈ Th . Define
U j := uh

(

x̂ j
)

. Then, it follows from (3.3) and (3.4) that

q−
h

(

x̂ j
) = U j − U j−1

h
:= δ−x U j , (3.7)

q+
h

(

x̂ j
) = U j+1 − U j

h
:= δ+x U j , (3.8)

p−−
h

(

x̂ j
) = q−

h (x̂ j )− q−
h (x̂ j−1)

h
= U j−2 − 2U j−1 + U j

h2 := δ2
xU j−1, (3.9)

p−+
h

(

x̂ j
) = q−

h (x̂ j+1)− q−
h (x̂ j )

h
= U j−1 − 2U j + U j+1

h2 := δ2
xU j , (3.10)

p+−
h

(

x̂ j
) = q+

h (x̂ j )− q+
h (x̂ j−1)

h
= U j−1 − 2U j + U j+1

h2 := δ2
xU j , (3.11)

p++
h

(

x̂ j
) = q+

h (x̂ j+1)− q+
h (x̂ j )

h
= U j − 2U j+1 + U j+2

h2 := δ2
xU j+1, (3.12)

for j = 3, 4, . . . , J − 2. Thus, in order to define boundary values for uh, q−
h , and q+

h , we
need to define ghost values U−1,U0,UJ+1, and UJ+2 that are equivalent to extending the
solution u to the outside of the domain �. Below we describe a natural way to do such an
extension that is consistent with the interpretation of the auxiliary variables.

From the Dirichlet boundary data for u, a natural choice is that U0 = ua and UJ+1 = ub.
This is equivalent to assuming

uh(a
−) = ua, uh(b

+) = ub. (3.13)

In other words, we extend the boundary data for u away from the boundary over an interval
of length h. Due to the inherent discontinuities of the piecewise constant functions, uh(a+)
and uh(b−) are treated as unknowns. Otherwise, the boundary data would be extended into
the interior of the domain over an interval of length h.

From (3.7) and (3.8) we see that q+
h

(

x̂ j
) = q−

h

(

x̂ j+1
)

and q−
h

(

x̂ j
) = q+

h

(

x̂ j−1
)

in the
interior of the domain. Extending this relationship to the boundary yields

q+
h (a

−) = q−
h (a

+), q−
h (b

+) = q+
h (b

−), (3.14)
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where both q−
h (a

+) and q+
h (b

−) are treated as unknowns in the above LDG formulation.
Finally, we need to define values for q−

h (a
−) and q+

h (b
+). Using [10] as a guide, we are

led to choosing

q−
h (a

−) = q−
h (a

+), q+
h (b

+) = q+
h (b

−). (3.15)

We note that this is consistent with discretizing the auxiliary boundary conditions

(q−
h )x (a) = (q+

h )x (b) = 0. (3.16)

In order words, we require that q−
h and q+

h are constant across the boundary. Using ghost
values, the above requirements are equivalent to imposing the constraints

U−1 = 2ua − U1, UJ+2 = 2ub − UJ .

Remark 3.1 From the imposed boundary conditions we can see that the relationship p−+
h =

p+−
h has been extended to the boundaries. Thus, using the ghost values defined above and

substituting the equations (3.7)–(3.12) into (3.2), we successfully recover the convergent finite
difference method defined in [12] for the grid function U . Hence, for r = 0, the convergence
of the proposed LDG method is obtained. Heuristically, using higher order elements should
increase the rate and/or accuracy of convergence.

3.3 Whole Domain LDG Formulation

Using the above element-wise LDG formulation (3.3) and (3.4), and substituting the boundary
numerical flux values from Sect. 3.2, we get the following whole domain LDG discretization
of (1.6)–(1.11):

(

q±
h , φ

±
h

)

Th
+ a±(uh, φ

±
h ) = f ±(φ±

h ), ∀φ±
h ∈ V h, (3.17)

(

pμνh , ψ
μν
h

)

Th
+ bμν(q−

h , q+
h ;ψμνh ) = 0, ∀ψμνh ∈ V h, μ, ν = +,−, (3.18)

where

a−(v, ϕ) = (v, ϕx )Th − (1 − κr ) v(b
−) ϕ(b−)−

J−1
∑

j=1

v(x−
j )

[

ϕ(x j )
]

,

a+(v, ϕ) = (v, ϕx )Th + (1 − κr ) v(a
+) ϕ(a+)−

J−1
∑

j=1

v(x+
j )

[

ϕ(x j )
]

,

b−−(v−, v+;ϕ) = (v−, ϕx )Th + v−(a+) ϕ(a+)− v−(b−) ϕ(b−)−
J−1
∑

j=1

v−(x−
j )

[

ϕ(x j )
]

,

b++(v−, v+;ϕ) = (v+, ϕx )Th + v+(a+) ϕ(a+)− v+(b−) ϕ(b−)−
J−1
∑

j=1

v+(x+
j )

[

ϕ(x j )
]

,

b−+(v−, v+;ϕ) = (v−, ϕx )Th + v−(a+) ϕ(a+)− (1 − κr ) v
+(b−) ϕ(b−)

−κr v
−(b−) ϕ(b−)−

J−1
∑

j=1

v−(x+
j )

[

ϕ(x j )
]

,

b+−(v−, v+;ϕ) = (v+, ϕx )Th + (1 − κr ) v
−(a+) ϕ(a+)+ κr v

+(a+) ϕ(a+)
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−v+(b−) ϕ(b−)−
J−1
∑

j=1

v+(x−
j )

[

ϕ(x j )
]

,

and

f −(φ) = κr ub φ(b
−)− ua φ(a

+),
f +(φ) = ub φ(b

−)− κr ua φ(a
+),

for

κr =
{

0 if r = 0,
1 otherwise.

(3.19)

In summary, our nonstandard LDG methods for the fully nonlinear Dirichlet problem

(1.1) and (3.1) are defined as seeking
(

uh, q−
h , q+

h , p−−
h , p−+

h , p+−
h , p++

h

) ∈ (

V h
)7

such
that (3.2), (3.17), and (3.18) hold.

We conclude the section with a few remarks.

Remark 3.2

(a) Looking backwards, (3.17) and (3.18) provide a proper interpretation for each of q±
h and

pμνh forμ, ν = +,−, for a given function uh . Each q±
h defines a discrete derivative for uh

and each pμνh defines a discrete second-order derivative for uh . The functions q−
h and q+

h
should be very close to each other if ux exists. Similarly, the functions p−−

h , p−+
h , p+−

h ,
and p++

h should be very close to each other if uxx exists. However, their discrepancies
are expected to be large if ux or uxx , respectively, do not exist. The auxiliary functions
q±

h defined by (3.17) and the auxiliary functions pμνh defined by (3.18) can be regarded as
high order extensions of their lower order finite difference counterparts defined in [12].

(b) It is easy to check that the linear equations defined by (3.17)–(3.18) are linearly inde-
pendent.

(c) Notice that (3.2), (3.17), and (3.18) form a nonlinear system of equations, with the
nonlinearity only appearing in a0. Thus, a nonlinear solver is necessary in implementing
the above scheme. In Sect. 5, an iterative method is used with initial guess given by
the linear interpolant of the boundary data. Since a good initial guess is essential for
most nonlinear solvers to converge, another possibility is to first linearize the nonlinear
operator and solve the resulting linear system first. However, we show in our numerical
tests that the simple initial guess works well in many cases. We suspect that the g-
monotonicity of ̂F enlarges the domain of “good” initial guesses over which the iterative
method converges.

4 Formulation of Fully Discrete LDG Methods for Parabolic Problems

The goal of this section is to extend the LDG methods for elliptic problems to solving the
initial-boundary value problem (1.2) using the method of lines. Let the initial condition be
given by

u(x, 0) = u0(x), ∀x ∈ �, (4.1)

and the boundary conditions be given by

u(a, t) = ua(t), u(b, t) = ub(t), ∀t ∈ (0, T ]. (4.2)
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We shall consider both the implicit trapezoidal rule and the (explicit) fourth order clas-
sical Runge–Kutta method (i.e., RK4) for the time-discretization. In practice, the time-
discretization scheme should be chosen to match the order of the spatial discretization. Thus,
when using a piecewise constant element, a sufficient choice for the time discretization would
be forward or backward Euler. However, when using higher order elements, a higher order
scheme such as RK4 should be chosen.

We first formulate the semi-discrete in space discretization for Eq. (1.2), which is a straight-
forward adaptation of the one described in Sect. 3. Let φ ∈ V h . Replacing the PDE operator
with a numerical operator in (1.2), and using the LDG framework of Sect. 3, we obtain the
semi-discrete equation

(

(uh)t , φh
)

Th
= −(

̂F
(

p−−
h , p−+

h , p+−
h , p++

h , q−
h , q+

h , uh, ·, t
)

, φh
)

Th
, ∀φh ∈ V h,

(4.3)

where, given uh at time t , corresponding values for q±
h and pμνh can be found using the

methodology below.
We now describe a full discretization procedure for (1.2) by applying an ODE solver to

the semi-discrete equations given in (4.3). For a fixed integer M > 0, let t = T
M and

tk := kt for k ∈ (0,M]. Notationally, un
h(x) ∈ V h will be an approximation for u(x, tn)

for n = 0, 1, . . . ,M . We define the initial value u0
h to be the L2-projection of u0, namely,

(

u0
h, φh

)

Th
= (

u0, φh
)

Th
, ∀φh ∈ V h . (4.4)

Next, we introduce several “one-sided” discrete differential operators, which will be used
to define explicit time-stepping schemes and to define the auxiliary variables at time t =
0 in implicit time-stepping schemes. We first define two “one-sided” first-order discrete
derivatives Q−,k

h v,Q+,k
h v ∈ V h for a given function v(·, tk) ∈ H1(Th) by

(

Q−,k
h v, φh

)

Th
= κr ub(tk) φh(b

−)− ua(tk) φh(a
+)+ (1 − κr ) v(b

−) φh(b
−)

−(

v, (φh)x
)

Th
+

J−1
∑

j=1

v(x−
j )

[

φh(x j )
]

, ∀φh ∈ V h, (4.5)

(

Q+,k
h v, φh

)

Th
= ub(tk) φh(b

−)− κr ua(tk) φh(a
+)− (1 − κr ) v(a

+) φh(a
+)

−(

v, (φh)x
)

Th
+

J−1
∑

j=1

v(x+
j )

[

φh(x j )
]

, ∀φh ∈ V h . (4.6)

The above definitions are inspired by (3.17). The super-index k on Q±,k
h indicates that the

definitions are t-dependent because of the boundary terms.
We also define four discrete “one-sided” second order discrete derivatives Pμν,k

h v ∈
V h, μ, ν = +,−, at time tk by

(

P−−,k
h v,ψh

)

Th
= Q−,k

h v(b−) ψh(b
−)− Q−,k

h v(a+) ψh(a
+)− (

Q−,k
h v, (ψh)x

)

Th

+
J−1
∑

j=1

Q−,k
h v(x−

j )
[

ψh(x j )
]

, ∀ψh ∈ V h, (4.7)

(

P++,k
h v,ψh

)

Th
= Q+,k

h v(b−) ψh(b
−)− Q+,k

h v(a+) ψh(a
+)− (

Q+,k
h v, (ψh)x

)

Th

123



140 J Sci Comput (2014) 59:129–157

+
J−1
∑

j=1

Q+,k
h v(x+

j )
[

ψh(x j )
]

, ∀ψh ∈ V h, (4.8)

and
(

P−+,k
h v,ψh

)

Th
= (1 − κr )Q+,k

h v(b−) ψh(b
−)+ κr Q−,k

h v(b−) ψh(b
−)

−Q−,k
h v(a+) ψh(a

+)− (

Q−,k
h v, (ψh)x

)

Th

+
J−1
∑

j=1

Q−,k
h v(x+

j )
[

ψh(x j )
]

, ∀ψh ∈ V h, (4.9)

(

P+−,k
h v,ψh

)

Th
= Q+,k

h v(b−) ψh(b
−)− (1 − κr )Q−,k

h v(a+) ψh(a
+)

−κr Q+,k
h v(a+) ψh(a

+)− (

Q+,k
h v, (ψh)x

)

Th

+
J−1
∑

j=1

Q+,k
h v(x−

j )
[

ψh(x j )
]

, ∀ψh ∈ V h, (4.10)

where κr is defined by (3.19). The above four definitions are motivated by (3.18).
Lastly, to simplify the presentation, we introduce the operator notation

̂Fk[v] := ̂F
(

P−−,k
h v,P−+,k

h v,P+−,k
h v,P++,k

h v,Q−,k
h v,Q+,k

h v, v, x, tk
)

. (4.11)

Using the new notation, the semi-discrete equation can be rewritten compactly as
(

(uh)t (·, tk), φh
)

Th
= −(

̂Fk [uh(·, tk)] , φh
)

Th
, ∀φh ∈ V h, k ∈ (0,M]. (4.12)

4.1 The Fourth Order Classical Runge–Kutta Method

A straightforward application of the fourth order classical Runge–Kutta (RK4) method to
(4.12) yields

(

un
h, φh

)

Th
= (

un−1
h , φh

)

Th
+ 1

6

(

ξ1 + 2ξ2 + 2ξ3 + ξ4, φh
)

Th
, ∀φ ∈ V h, n = 1, 2, . . . ,M,

where
(

ξ1, φh
)

Th
= −t

(

̂Fn−1[un−1
h ], φh

)

Th
,

(

ξ2, φh
)

Th
= −t

(

̂Fn− 1
2

[

un−1
h + 1

2
ξ1

]

, φh

)

Th

,

(

ξ3, φh
)

Th
= −t

(

̂Fn− 1
2

[

un−1
h + 1

2
ξ2

]

, φh

)

Th

,

(

ξ4, φh
)

Th
= −t

(

̂Fn[un−1
h + ξ3], φh

)

Th
.

Notice that in the above explicit time-stepping scheme, the function un
h is defined as an

L2-projection of the source data based on un−1
h . However, the boundary conditions are not

enforced in the definition for un
h . To take care of the boundary conditions, we choose to enforce

them weakly, which requires the introduction of a modified L2-projection. Specifically, for
any v ∈ L2(�), we recall that the standard L2-projection Phv ∈ V h of v is defined by

(

Phv, φh
)

Th
= (

v, φh
)

Th
, ∀φh ∈ V h . (4.13)
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For any v ∈ C0(Th), we introduce a modified L2-projection P
k
h : L2(�) ∩ C0(Th) → V h at

time tk ∈ (0, T ] by

(

P
k
hv, φh

)

Th
+ 1√

h

(

P
k
hv(a)φh(a)+ P

k
hv(b)φh(b)

)

= (

v, φh
)

Th
+ 1√

h

(

ua(tk) φh(a
+)+ ub(tk) φh(b

−)
)

, ∀φh ∈ V h .

(4.14)

Clearly, the boundary conditions (4.2) are weakly enforced in (4.14) via a penalty technique,
an idea which dates back to Nitsche [20].

Using the above discrete differential operators Q±,k
h and Pμν,k

h for μ, ν = +,−, the
projection operators P

k
h and Ph , and using the notation given in (4.11), our fully-discrete

RK4 method for the initial-boundary value problem (1.2), (4.2), and (4.1) is defined as
follows: for n = 1, 2, . . . ,M ,

un
h = P

n
h

(

un−1
h + 1

6

(

ξn−1
1 + 2ξn−1

2 + 2ξn−1
3 + ξn−1

4

)

)

, (4.15)

ξn−1
1 = −t Ph ̂Fn−1[un−1

h ], (4.16)

ξn−1
2 = −t Ph ̂Fn− 1

2

[

un−1
h + 1

2
ξn−1

1

]

, (4.17)

ξn−1
3 = −t Ph ̂Fn− 1

2

[

un−1
h + 1

2
ξn−1

2

]

, (4.18)

ξn−1
4 = −t Ph ̂Fn[un−1

h + ξn−1
3 ], (4.19)

u0
h = Phu0. (4.20)

We remark that it is easy to verify that the value ξn−1
4 actually already takes into account

the boundary conditions at time tn because of the evaluation calls Q−,n
h and Q+,n

h , which
in turn have the boundary conditions built-in. Thus, in the above formulation, the boundary
condition enforcement can actually be successfully relaxed by replacing P

n
h with Ph in (4.15).

However, for other explicit methods a weak boundary condition enforcement method such
as the above modified L2-projection is necessary, especially if the boundary conditions are
not consistent with the initial condition. For example, in the forward Euler method, defined
by

un
h = P

n
h

(

un−1
h −t ̂Fn−1[un−1

h ]), (4.21)

we can see that the approximation at time tn relies upon the modified L2-projection in order
to see the Dirichlet boundary condition at the current time.

4.2 The Trapezoidal Method

Applying the trapezoidal rule to (4.12), we obtain
(

un
h + t

2
̂Fn[un

h], φh

)

Th
=

(

un−1
h − t

2
̂Fn−1[un−1

h ], φh

)

Th
, ∀φh ∈ V h,

and n = 1, 2, . . . ,M . Thus, using the trapezoidal rule to discretize (4.12), and using the
implicit equalities

q−,n
h = Q−,n

h un
h, q+,n

h = Q+,n
h un

h,
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and

p−−,n
h = P−−,n

h un
h, p−+,n

h = P−+,n
h un

h, p+−,n
h = P+−,n

h un
h, p++,n

h = P++,n
h un

h,

for n = 1, 2, . . . ,M , the fully discrete trapezoidal LDG method for approximating solu-
tions to (1.2), (4.1), and (4.2) is defined by seeking (un

h, q−,n
h , q+,n

h , p−−,n
h , p−+,n

h , p+−,n
h ,

p++,n
h ) ∈ (V h)7 such that

(

un
h + t

2
̂Fn[un

h], φ0h

)

Th
=

(

un−1
h − t

2
̂Fn−1[un−1

h ], φ0h

)

Th
, ∀φ0h ∈ V h,

(4.22)
(

q±,n
h , φ±

h

)

Th
+ â± (

un
h, φ

±
h

) = g± (

tn, φ±
h

)

, ∀φ±
h ∈ V h, (4.23)

(

pμν,nh , ψ
μν
h

)

Th
+̂bμν

(

q−,n
h , q+,n

h ;ψμνh

)

= 0, ∀ψμνh ∈ V h, μ, ν = +,−, (4.24)

where u0
h = Phu0, q±,0

h = Q±,0
h u0

h , pμν,0h = Pμν,0
h u0

h for μ, ν = +,−, and

â−(vn, ϕ) = (vn, ϕx )Th − (1 − κr ) v
n(b−) ϕ(b−)−

J−1
∑

j=1

vn(x−
j )

[

ϕ(x j )
]

,

â+(vn, ϕ) = (vn, ϕx )Th + (1 − κr ) v
n(a+) ϕ(a+)−

J−1
∑

j=1

vn(x+
j )

[

ϕ(x j )
]

,

̂b
−−
(v−,n, v+,n;ϕ) = (v−,n, ϕx )Th + v−,n(a+) ϕ(a+)− v−,n(b−) ϕ(b−)

−
J−1
∑

j=1

v−,n(x−
j )

[

ϕ(x j )
]

,

̂b
++
(v−,n, v+,n;ϕ) = (v+,n, ϕx )Th + v+,n(a+) ϕ(a+)− v+,n(b−) ϕ(b−)

−
J−1
∑

j=1

v+,n(x+
j )

[

ϕ(x j )
]

,

̂b
−+
(v−,n, v+,n;ϕ) = (v−,n, ϕx )Th + v−,n(a+) ϕ(a+)− (1 − κr ) v

+,n(b−) ϕ(b−)

−κr v
−,n(b−) ϕ(b−)−

J−1
∑

j=1

v−,n(x+
j )

[

ϕ(x j )
]

,

̂b
+−
(v−,n, v+,n;ϕ) = (v+,n, ϕx )Th + (1 − κr ) v

−,n(a+) ϕ(a+)+ κr v
+,n(a+) ϕ(a+)

−v+,n(b−) ϕ(b−)−
J−1
∑

j=1

v+,n(x−
j )

[

ϕ(x j )
]

,

g−(tn, φ) = κr ub(t
n) φ(b−)− ua(t

n) φ(a+),
g+(tn, φ) = ub(t

n) φ(b−)− κr ua(t
n) φ(a+).

Again, κr is defined by (3.19). Notice that the above fully discrete formulation amounts to
approximating a non-homogeneous fully nonlinear elliptic equation at each time step using
the LDG method defined in Sect. 3.
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5 Numerical Experiments

In this section, we present a series of numerical tests to demonstrate the utility of the proposed
LDG methods for fully nonlinear PDEs of the types (1.1) and (1.2). In all of our tests we
shall use uniform spatial meshes as well as uniform temporal meshes for the time-dependent
problems. To solve the resulting nonlinear algebraic systems, we use the Matlab built-in
nonlinear solver fsolve. For the elliptic problems we choose the initial guess as the linear
interpolant of the boundary data. For parabolic problems, we let u0

h = Phu0, and then define

all auxiliary variables by q±,0
h = Q±,0

h u0
h and pμν,0h = Pμν,0

h u0
h for μ, ν = +,−. Also, the

initial guess for fsolve at the nth time step will be chosen as the computed solution at the
previous time step when using implicit methods. The role of the numerical moment will be
further explored in Sect. 5.3.

For our numerical tests, errors will be measured in the L∞ norm and the L2 norm, where
the errors are measured at the current time step for the time-dependent problems. For both
elliptic and parabolic test problems where the error is dominated by the spatial discretization
errors, it appears that the spatial errors are of optimal order O(hs) for most problems, where
s = min{r + 1, k} for the viscosity solution u ∈ Hk(�). However, for a couple of problems,
we observe less than optimal rates of convergence. We note that the actual convergence rates
have not yet been analyzed, and may also depend on the regularity of the operator F in
addition to the regularity of u.

5.1 Elliptic Test Problems

We first present the results for four test problems of type (1.1). Both Monge–Ampère and
Bellman types of equations will be tested.

Test 1 Consider the elliptic Monge–Ampère problem

−u2
xx + 1 = 0, 0 < x < 1,

u(0) = 0, u(1) = 1

2
.

It is easy to check that this problem has exactly two classical solutions:

u+(x) = 1

2
x2, u−(x) = −1

2
x2 + x,

where u+ is convex and u− is concave. Note that u+ is the unique viscosity solution which
we want our numerical schemes to converge to. In Sect. 5.3 we shall give some insights about
the selectiveness of our schemes.

We approximate the given problem for various degree elements (r = 0, 1, 2) to see how
the approximation converges with respect to h. Note, when r = 0, 1, the solution is not in the
DG space V h . The numerical results are shown in Fig. 1. We observe that the approximations
using r = 2 are almost exact for each mesh size. This is consistent with the fact u+ ∈ V h

when r = 2.
Test 2 Consider the problem

−u3
xx + uxx + S(x)3 − S(x) = 0, −1 < x < 1,

u(−1) = − sin(1)− 8 cos(0.5)+ 9, u(1) = sin(1)− 8 cos(0.5)+ 9,

where
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Fig. 1 Test 1 with α = 10

S(x) =
{ 2x

|x | cos(x2)− 4x2 sin(x |x |)+ 2 cos( x
2 )+ 2, x �= 0,

−4x2 sin(x |x |)+ 2 cos( x
2 )+ 2, x = 0.

This problem has the exact solution u(x) = sin (x |x |) − 8 cos
( x

2

) + x2 + 8 ∈ H2(−1, 1).
Note that this problem is not monotone decreasing in uxx , and the exact solution is not
twice differentiable at x = 0. However, the derivative of F with respect to uxx is uniformly
bounded. The numerical results are shown in Fig. 2. As expected, we can see from the plot
that the error appears largest around the point x = 0, and both the accuracy and order of
convergence improve as the order of the element increases. For finer meshes, we see the rates
of convergence begin to deteriorate. Theoretically, we expect the rates of convergence to be
bounded by two for high-order bases due to the lower regularity of the solution.

Test 3 Consider the stationary Hamilton-Jacobi-Bellman problem with finite dimensional
control set

min
θ(x)∈{1,2}

{−θuxx + ux − u + S(x)} = 0, −1 < x < 1,

u(−1) = −1, u(1) = 1,

where

S(x) =
{−12x2 − 4|x |3 + x |x |3, x < 0

24x2 − 4|x |3 + x |x |3, x ≥ 0.

This problem has the exact solution u(x) = x |x |3 ∈ H4(−1, 1) corresponding to θ∗(x) = 1
for x < 0 and θ∗(x) = 2 for x ≥ 0. Approximating the problem using various order elements,
we have the following results recorded in Fig. 3. Due to the low regularity of the solution, we
expect the rates of convergence to be bounded by four for high-order bases. We observe that
the rates of convergence for r = 0, 1, 2 appear to be optimal on average, while the rates of
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Fig. 2 Test 2 with α = 6

Fig. 3 Test 3 with α = 4

convergence for r = 3 appear to be limited to three. However, we still see increased accuracy
for r = 3 when compared to r = 2.

Test 4 Consider the stationary Hamilton-Jacobi-Bellman problem with infinite dimen-
sional control set

inf
0≤θ(x)≤1

{

−θuxx + θ2 x2 ux + 1

x
u + S(x)

}

= 0, 1.2 < x < 4,
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Fig. 4 Test 4 with α = 4

u(1.2) = 1.44 ln 1.2, u(4) = 16 ln 4,

where

S(x) = 4 ln(x)2 + 12 ln(x)+ 9 − 8x4 ln(x)2 − 4x4 ln(x)

4x3 [2 ln(x)+ 1]
.

This problem has the exact solution u(x) = x2 ln x corresponding to the control function
θ∗(x) = 2 ln(x)+3

2x3[2 ln(x)+1]
. Approximating the problem using various order elements, we obtain

the results recorded in Fig. 4.

5.2 Parabolic Test Problems

We now implement the proposed fully discrete RK4 and trapezoidal LDG methods for approx-
imating fully nonlinear parabolic equations of the form (1.2). While the above formulation
makes no attempt to formally quantify a CFL condition for the RK4 method, for the tests
we assume a CFL constraint of the formt = κt h2, and note that the constant κt appears to
decrease as the order of the element increases. Below we implement both the RK4 method
and the trapezoidal method for each test problem. However, we make no attempt to classify
and compare the efficiency of the two methods. Instead, we focus on testing and demonstrat-
ing the usability of both fully discrete schemes and their promising potentials. For explicit
scheme tests, we record the parameter κt , and for implicit scheme tests, we record the time
step size t . Note that the row 0∗ in the figures corresponding to the RK4 method refers to
elements with r = 0 that use the standard L2 projection operator in (4.15).

Test 5 Let � = (0, 1), ua(t) = t4, ub = 1
2 + t4, and u0(x) = 1

2 x2. We consider the
problem (1.2), (4.1), and (4.2) with

F(uxx , ux , u, t, x) = −uxx u + 1

2
x2 + t4 − 4 t3 + 1.
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Fig. 5 Test 5: Computed solutions at T = 1 using κt = 0.001, α = 2

It is easy to verify that this problem has a unique classical solution u(x, t) = 0.5 x2 + t4 +1.
Notice that the PDE is actually quasi-linear, but does provide a measure of the effectiveness
of the implementation. The numerical results for RK4 are presented in Fig. 5 and the results
for the trapezoidal method are shown in Fig. 6. As expected, RK4 appears to recover the
exact solution when r = 2.

Test 6 Let� = (0, 2), ua(t) = 1, ub = e2(t+1), and u0(x) = ex . We consider the problem
(1.2), (4.1), and (4.2) with

F(uxx , ux , u, t, x) = −ux ln
(

uxx + 1
) + S(x, t),

and

S(x, t) = e(t+1)x
(

x − (t + 1) ln
(

(t + 1)2e(t+1)x + 1
)

)

.

It is easy to verify that this problem has a unique classical solution u(x, t) = e(t+1)x . Notice
that this problem is nonlinear in both uxx and ux . Furthermore, the exact solution u cannot
be factored into the form u(x, t) = G(t) Y (x) for some functions G and Y . Results for RK4
are given in Fig. 7, and results for the trapezoidal method are shown in Fig. 8. We note
that RK4 was unstable without using the very restrictive values for κt recorded in Fig. 7.
However, for RK4, we observe optimal rates of convergence in the spatial variable while the
rates for the trapezoidal method appear to be limited by the lower rate of convergence for the
time-stepping scheme.

Test 7 Let� = (0, 2π), ua(t) = 0, ub = 0, and u0(x) = sin(x). We consider the problem
(1.2), (4.1), and (4.2) with

F(uxx , ux , u, t, x) = − min
θ(t,x)∈{1,2}

{

Aθ uxx − c(x, t) cos(t) sin(x)− sin(t) sin(x)
}

,
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Fig. 6 Test 5: Computed solution at T = 1 using t = 0.001 and α = 2

Fig. 7 Test 6: Computed solutions at time T = 0.5 using κt = 0.005, 0.001, 0.0005, 0.0001 for r = 0, 1, 2, 3,
respectively, and α = 4. Left figure uses the standard L2 projection operator
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Fig. 8 Test 6: Computed solutions at time T = 0.5 using t = 0.005 and α = 4

where A1 = 1, A2 = 1
2 , and

c(x, t) =
{

1, if 0 < t ≤ π
2 and 0 < x ≤ π or π2 < t ≤ π and π < x < 2π,

1
2 , otherwise.

It is easy to check that this problem has a unique classical solution u(x, t) = cos(t) sin(x).
Notice that this problem has a finite dimensional control parameter set, and the optimal
control is given by

θ∗(t, x) =
{

1, if c(x, t) = 1,
2, if c(x, t) = 1

2 .

The numerical results are reported in Fig. 9 for RK4 and in Fig. 10 for the trapezoidal method.
Test 8 Let � = (0, 3), ua(t) = e−t , ub = 8 e−t , and u0(x) = |x − 1|3. We consider the

problem (1.2), (4.1), and (4.2) with

F(uxx , ux , u, t, x) = − inf−1≤θ(t,x)≤1

{

|x − 1|uxx + θux

}

− |x − 1|2 (|x − 1| − 3) e−t ,

It is easy to verify that the problem has the exact solution u(t, x) = |x − 1|3 e−t . Notice that
the above operator is not elliptic for x = 1. For each value of t , we have u ∈ H3(0, 3). Also,
this problem has a bang-bang type control with the optimal control given by

θ∗(t, x) =
{

1, if x < 1,
−1, if x > 1.
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Fig. 9 Test 7: Computed solutions at time T = 3.10 using κt = 0.05, 0.005, 0.001, 0.0005 for r = 0, 1, 2, 3,
respectively, and α = 2. Left plot uses the standard L2 projection operator

We can see from the results for the RK4 method in Fig. 11 and the results for the trapezoidal
method in Fig. 12 that the spatial rates of convergence appear to be limited to two instead of
the optimal rate of three for r ≥ 2, while the accuracy appears to increase with respect to the
element degree.

5.3 The Role of the Numerical Moment

In this section, we focus on understanding the role of the numerical moment. We first give
two ways to interpret the numerical moment, and then we explore the utility of the numerical
moment. The role of the numerical moment can heuristically be understood as follows when
the numerical moment is rewritten in the form

h2 α
( p−−

h − p−+
h − p+−

h + p++
h

h2

)

.

Letting r = 0, we see that
p−−

h −p−+
h −p+−

h +p++
h

h2 is an O(h2) approximation to uxxxx . Then,

we can see that the numerical moment acts as a centered difference approximation for 2u
multiplied by a factor that tends to zero with rate O(h2). Thus, at the PDE level, we are in
essence approximating the fully nonlinear second order elliptic operator

F (uxx , ux , u, x)
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Fig. 10 Test 7: Computed solutions at time T = 3.10 using t = 0.031 and α = 2

by the quasilinear fourth order operator ˜Fρ , where

˜Fρ (uxxxx , uxx , ux , u, x) = ρ uxxxx + F (uxx , ux , u, x) .

In the limit as ρ → 0, we heuristically expect that the solution of the fourth order problem
converges to the unique viscosity solution of the second order problem. Using a convergent
family of fourth order quasilinear PDEs to approximate a fully nonlinear second order PDE
has previously been considered for PDEs such as the Monge–Ampère equation, the prescribed
Gauss curvature equation, the infinity-Laplace equation, and linear second order equations
of non-divergence form. The method is known as the vanishing moment method and serves
as an analogue to the vanishing viscosity method for first order Hamilton-Jacobi equations
where the PDE is perturbed by a second order derivative term. We refer the reader to [11,9]
for a detailed exposition.

We now express the numerical moment using jumps defined on the interior nodes. Observe,
by equations (3.18),

(

p−−
h − p−+

h − p+−
h + p++

h , ϕh
)

Th

= −b−− (

q−
h , q+

h ;ϕh
) + b−+ (

q−
h , q+

h ;ϕh
) + b+− (

q−
h , q+

h ;ϕh
) − b++ (

q−
h , q+

h ;ϕh
)

= (1 − κr )
(

q−
h (a

+)− q+
h (a

+)
)

ϕh(a
+)+ (1 − κr )

(

q−
h (b

−)− q+
h (b

−)
)

ϕh(b
−)

+
J−1
∑

j=1

([

q−
h (x j )

] − [

q+
h (x j )

]) [

ϕh(x j )
]

for all ϕh ∈ V h , where κr is defined in (3.19). Thus, the Lax-Friedrichs-like numerical
operator with a numerical moment amounts to the addition of nonstandard jump/stabilization
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Fig. 11 Test 8: Computed solutions at time T = 1 using κt = 0.05, 0.005, 0.001, 0.0005 for r = 0, 1, 2, 3,
respectively, and α = 2

terms to an L2 projection of the fully nonlinear PDE operator into V h . The jump/stabilization
terms penalize the differences in q−

h and q+
h . For comparison, the numerical moment using

the IP-DG formulation in [16] takes the form

J−1
∑

j=1

[

uh(x j )
] [

ϕh(x j )
]

,

a standard jump/stabilization term. Due to only having a single approximation for ∇u in the
IP-DG framework, a standard jump/stabilization term that corresponds to q−

h and q+
h would

take the form

J−1
∑

j=1

1

2

[

q−
h (x j )+ q+

h (x j )
] [

ϕh(x j )
]

,

where we penalize the sum of q−
h and q+

h . Therefore, the above nonstandard LDG formula-
tion that uses two independent approximations for ∇u allows for the formulation of a new
jump/stabilization term that is not analogous to penalty terms from the IP-DG literature.
We also note that while the numerical moment can be rewritten using jumps, numerical
experiments indicate generic solvers such as fsolve appear to succeed in finding a root more
frequently when using the presented mixed formulation with the numerical moment imple-
mented as a function of the various second-order derivative approximations.
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Fig. 12 Test 8: Computed solutions at time T = 1 using t = 0.001 and α = 2

For the remainder of the section, we focus on observed consequences of the numerical
moment in our test problems. In particular, we observe that the proposed schemes using
a numerical moment can eliminate the numerical artifacts that arise as consequences from
using a standard discretization, and in certain cases when the numerical artifacts are not fully
eliminated, the algebraic system has enough structure to design solvers that emphasize the

monotonicity in
p−+

h +p+−
h

2 and are consistent in searching for solutions at which the nonlinear
PDE problem is elliptic.

We again consider the Monge–Ampère type problem from Test 1 in Sect. 5.1. The given
problem has two classical PDE solutions u+ and u−. However, there exists infinitely many C1

functions that satisfy the PDE and boundary conditions almost everywhere, as seen by μ̂ in
(5.1). These almost everywhere solutions will correspond to what we call numerical artifacts
in that algebraic solutions for a given discretization may correspond to these functions. It
is well known that using a standard discretization scheme for the Monge–Ampère problem
can yield multiple solutions, many of which are numerical artifacts that do not correspond
to PDE solutions [11]. For example, let μ ∈ H2(0, 1) \ C2(0, 1) be defined by

μ̂(x) =
{ 1

2 x2 + 1
4 x, for x < 0.5,

− 1
2 x2 + 5

4 x − 1
4 , for x ≥ 0.5.

(5.1)

Furthermore, suppose x j = 0.5 for some j = 2, 3, . . . , J − 1. Then, when using a standard
central difference discretization, μ̂ corresponds to a numerical solution, yielding a numerical
artifact.

We now consider our discretization that uses a numerical moment. When α = 0, we have
no numerical moment. As a result, we have numerical artifacts as in the standard central
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difference discretization case. Suppose r = 0. Then, for α �= 0, inspection of (3.9)–(3.12)
yields the fact that p−+

h cannot jump from a value of 1 to a value of −1 when going across
x j = 0.5. Thus, the numerical moment penalizes discontinuities in pμνh , μ, ν = +,−, and,
as a result, the numerical moment eliminates numerical artifacts such as μ̂. Similarly, for
r = 1, we can see that μ̂ does not correspond to a numerical solution. However, in this case,
the algebraic system does have a small residual that may trap solvers such as fsolve. Thus,
for r = 0 and r = 1, the numerical moment penalizes differences in pμνh , μ, ν = +,−, that
arise from discontinuities in uh, q−

h , and q+
h . Hence, it eliminates numerical artifacts such

as μ̂. We note that the same test using the IP-DG framework in [16] does appear to have a
numerical artifact corresponding to μ̂when using r = 1. Thus, the LDG formulation is more
successful at removing numerical artifacts for this example when using r = 1. Furthermore,
the IP-DG formulation does not allow for r = 0.

We now consider r ≥ 2, in which case μ̂ ∈ V h . Furthermore, since μ̂ ∈ C1, we will end
up with uh = μ̂, q−

h = q+
h , and p±∓

h = p±±
h being a numeric solution, where

q−
h (x) =

{

x + 1
4 , for x < 0.5,

−x + 5
4 , for x > 0.5,

and p−−
h (x) =

{

1, for x < 0.5,
−1, for x > 0.5.

Thus, by the equalities of pμνh , μ, ν = +,−, the numerical moment is always zero and we
do have numerical artifacts. These equalities are a consequence of the continuity of uh , q−

h ,
and q+

h . With the extra degrees of freedom for r ≥ 2, we allow C1 to be embedded into
our approximation space V h , thus creating possible solutions with a zero-valued numerical
moment. The numerical moment acts as a penalty term for differences in pμνh , μ, ν = +,−,
which are a consequence of differences in q−

h and q+
h that naturally arise for nontrivial

functions when r = 0 or r = 1.
Even with the possible presence of numerical artifacts for the above discretization when

r ≥ 2, the numerical moment can be exploited at the solver level. We now present a splitting
algorithm for solving the resulting nonlinear algebraic system that uses the numerical moment
to strongly emphasize the fact that the viscosity solution of the PDE should preserve the
monotonicity required by the definition of ellipticity. Again, we emphasize that the following
algorithm is based upon the mixed formulation where the numerical moment is a function of
the various second-order derivative approximations.

Algorithm 5.1 (1) Pick an initial guess for uh .
(2) Form initial guesses for q−

h , q+
h , p−−

h , p−+
h , p+−

h , and p++
h using equations (3.17) and

(3.18).

(3) Solve Eq. (3.2) for
p−+

h +p+−
h

2 .
(4) Solve Eq. (3.17) for + and − and the equation formed by averaging (3.18) for μ =

−, ν = + and μ = +, ν = − for uh, q−
h , and q+

h .
(5) Solve Eq. (3.18) for μ, ν = +,− for p−−

h , p−+
h , p+−

h , and p++
h .

(6) Repeat Steps 3–5 until the change in
p−+

h +p+−
h

2 is sufficiently small.

We note that step (3) requires solving a nonlinear equation. However, the nonlinear equation
is both monotone and entirely local with respect to the unknown function. Also, step (4) of
Algorithm 5.1 requires solving a nonstandard Poisson discretization. The analysis for the
corresponding Poisson discretization can be found in [18].

For the next numerical tests, we will show that using Algorithm 5.1 with a sufficiently
large coefficient for the numerical moment destabilizes numerical artifacts such as μ̂ and
steers the approximation towards the viscosity solution of the PDE. Let u(x) = x

2 . Then, u
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Fig. 13 Left α = 40, h = 1/40, and r = 0. Right α = 0, h = 1/40, and r = 0

Fig. 14 Left α = 20, h = 1/20, and r = 2. Right α = 0, h = 1/20, and r = 2

is the secant line formed by the boundary data for the given boundary value problem. We
now approximate the solution of the Monge–Ampère type problem from Test 1 in Sect. 5.1
by using 100 iterations of Algorithm 5.1 followed by using fsolve on the full system to solve
the global discretization given by (3.2), (3.17), and (3.18). We take the initial guess to be

u(0)h = 3

4
μ̂+ 1

4
u,

where, for r = 0, u0
h is first projected into V h . From Fig. 13, we see that the numerical moment

drives the solution towards the viscosity solution u+ when r = 0 and α is positive. From
Fig. 14, we see that the numerical moment also drives the solution towards the viscosity
solution u+ when r = 2 and α is positive, despite the presence of numerical artifacts.
From Fig. 15, we see that the moment drives the solution towards the viscosity solution of
F(uxx , ux , u, x) := u2

xx −1 given by u− for r = 0 and r = 2 whenα is chosen to be negative.
In each figure, the middle graph corresponds to μ̂. Clearly, we recover the numerical artifact
corresponding to μ̂when α = 0. Thus, the numerical moment plays an essential role in either
eliminating numerical artifacts at the discretization level or handling numerical artifacts at
the solver level.
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Fig. 15 Left α = −40, h = 1/40, and r = 0. Right α = −20, h = 1/20, and r = 2

The IP-DG framework presented in [16] has similar behavior for the preceding numerical
tests when using r = 2 with a solver analogous to Algorithm 5.1, where again we have
a numerical artifact corresponding to μ̂. However, due to the wider availability of IP-DG
Poisson solvers in the literature, there is currently greater potential to speed up step (4) in
Algorithm 5.1 using the IP-DG formulation. Again, we see that the IP-DG formulation has
potential for increased speed at the solver level over the corresponding LDG formulation.

We make one final note about using the iterative solver given by Algorithm 5.1. Using
fsolve to solve the full system with the initial guess given by u(0)h resulted in either not finding
a root for many tests (r = 1) or converging to a numerical artifact with a discontinuous
second order derivative at another node in the mesh (r = 2). In order to use fsolve for the
given test problem, the initial guess should either be restricted to the class of functions where
p−+

h and p+−
h preserve the ellipticity of the nonlinear operator, the initial guess should be

preconditioned by first using fsolve with r = 0, 1, or the initial guess should be preconditioned
using Algorithm 5.1. When using r = 0 and a non-ellipticity-preserving initial guess, solving
the full system of equations with fsolve still has the potential to converge to u− even for
α > 0. The strength of Algorithm 5.1 is that it strongly enforces the requirement that ̂F is
monotone decreasing in p−+ and p+− over each iteration. Thus, a sufficiently large value
for α drives the approximation towards the class of ellipticity-preserving functions if the
algorithm converges.
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