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Abstract Fluid flow through porous media is of great importance for many natural systems,
such as transport of groundwater flow, pollution transport and mineral processing. In this
paper, we propose and validate a novel finite volume formulation of the lattice Boltzmann
method for porous flows, based on the Brinkman–Forchheimer equation. The porous media
effect is incorporated as a force term in the lattice Boltzmann equation, which is numerically
solved through a cell-centered finite volume scheme. Correction factors are introduced to
improve the numerical stability. The method is tested against fully porous Poiseuille, Couette
and lid-driven cavity flows. Upon comparing the results with well-documented data available
in literature, a satisfactory agreement is observed. The method is then applied to simulate
the flow in partially porous channels, in order to verify its potential application to fractured
porous conduits, and assess the influence of the main porous media parameters, such as Darcy
number, porosity and porous media thickness.
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1 Introduction

By definition, a porous media consists of pores or void spaces between some particulate phases
within a vessel or conduit. Understanding the characteristics of the fluid flows through fully
or partially porous media is critical to a wide range of fields, including hydrology (ground
water quality), hydrogeology (mineral processing), extract of fossil energies and weathering
(pollution transport) and other engineering applications. For example, porous media are
crucial for groundwater flows in various aquifers, like sedimentary deposits, fractured rock
or karst systems [1]. Aquifers are characterized by a network of porous conduits resulting
from geological formations and allow significant amounts of water to move through it under
ordinary field conditions. All aquifers can be considered to fall on a continuum between
porous media systems and conduit systems.

A key variable to describe the void spaces in porous media is porosity, which denotes the
fraction of the volume of pores over the total control volume. The smallest volume to obtain
a meaningful value for the porosity of a system is called representative elementary volume
(REV), which contains the minimum number of pores necessary to establish a porosity value
valid for the whole system. In many studies, due to the complex nature of the porous media,
the simulations are performed by models based on the volume-averaging at the REV scale.
The Darcy, the Brinkman–Darcy and the Forchheimer–Darcy equations are common models
in the simulation of the flow through the porous media [1,2].

Darcy’s law is valid for laminar flows, and the validity of this hypothesis depends upon
the particle size of media. It has been found that flows through fine-grained soils are laminar
whenever the Reynolds number is less than unity [2]. As a result, the flow is dominated
by fluid viscous forces, such that the pressure gradient responsible for the flow is linearly
proportional to the superficial velocity. Weak inertial flow, often named creeping flow in
porous media, can be also described by Darcy’s law properly [3]. But, by increasing the
pressure gradient, Darcy’s law may fail, as it does not account for the increased influence of
inertial effects at the higher pressures.

The Darcy–Brinkman model is a governing equation for flows through porous media with
an extra viscous term, namely the Brinkman term, added to the Darcy equation [4]. This
equation is adequate for the simulation of high-porosity porous media and thus it enables the
description of the fluid flow where velocities are high enough for the momentum transport
by shear stress to be of importance [5]. This model is used to account for transitional flows
between boundaries, but the validity of the Darcy–Brinkman model has been a subject of
investigation in many applications [6].

The inertia effect can be very important for high velocity flows through porous media.
In order to consider the effect of inertia, a quadratic velocity term (inertia term) was
added to the Darcy’s equation by Forchheimer in 1914. This term is able to account for
the non-linear behavior of the pressure gradient versus velocity. The resulting equation is
known as the Darcy-Forchheimer equation and is solved in order to include non-Darcy
effects [7]. Despite many researches on the suitability of this model [8,9], the Forch-
heimer equation has made the object of several criticisms, questioning the ability of the
quadratic velocity term (Forchheimer coefficient) to capture all regimes beyond the Darcy
flow [10].

As mentioned above, the Brinkman’s equation is valid only for high porosity media and
on the other hand, in such cases the validity of the Forchheimer’s equation is not clear. In
order to overcome such problems, a generalized model, namely the Brinkman–Forchheimer
model, has been proposed [11]. In this model, the viscous and inertial forces are considered
in the momentum equation by a local volume averaging. The other models can be seen as
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limiting cases of the Brinkman–Forchheimer model, which has been successfully applied to
solve transient flows in porous media [12–14].

In this paper, the Brinkman–Forchheimer model is coupled with a finite volume Lat-
tice Boltzmann model (LBM) to simulate flows in porous media of practical interest. The
LBM [15,16] is based on a minimal form of Boltzmann’s kinetic equation in which a set
of representative fluid particles move and interact on the nodes of a uniform lattice accord-
ing to a synchronous stream-collide dynamics. Streaming is the free flight of the particles
along the links of the lattice, whereas collisions are typically represented as a relaxation
around a local equilibrium [17]. The simple form of the governing equations, the space-time
locality, the straightforward parallelism, the easy grid generation and the capability of incor-
porating complex microscopic interactions are the main advantages of the LBM. Thanks
to these advantages, this method has been successfully applied to a wide variety of flow
problems across scales of motion, as turbulent flows in complex geometry, multiphase and
multi-component flows, free surface flows, biological flows [17–24].

Porous flows on pore-scale made the object of very early LBM simulations [18,25,26] and
still represent one of its main applications [27–29]. Recently, LBM has also been combined
with the REV-scale approach to simulate fluid flows in porous media [11,30–33]. In the REV-
scale approach, the standard LBM is modified by including an additional term to account for
the presence of a porous medium [12,19]. The usual REV models are based on the Darcy, the
Brinkman–Darcy and the Forchheimer–Darcy equations and therefore have some intrinsic
limitations. Recently, the Brinkman–Forchheimer equation has been proposed for modeling
fluid flows through porous media [12,34].

The most used form of the LBM is based on the Bhatnagar–Gross–Krook (BGK) [35]
approximation of the collision, which is a single relaxation time model. Though very robust,
the LBGK is affected by linear and non-linear stability problems [36–39] for moderately low
viscosities. Much progress has been made in this direction in the last two decades and several
alternative options for the collision operator are available.

The so-called multi-time relaxation method [40–42], an optimized version of early LB
models in scattering form, has been proposed by d’Humieres [41]. In this model, the collision
step is performed in a moment space whereas the propagation step is done in the discrete
velocity space. The MRT models are more stable than the standard BGK as they overcome
some limitations, such as the fixed ratio between kinematic and bulk viscosities [43], but
increase computational costs and still presents some stability problems [44,45].

Another heuristic method, recently introduced [46,47], is the so-called quasi-equilibrium
method, which differs from MRT, as no collision is actually performed in the moment space,
thus making it computationally more efficient. This method satisfies the H-theorem and
features an additional free-tunable parameter, that allows enhanced stability by controlling
the bulk viscosity, whenever the incompressible limit is the only concern [47].

The LBM can be also improved by constructing the collision integral on the basis of the
entropy function, and by stabilizing the updates on the basis of the discrete-time H-theorem
[48,49]. The novelty of ELBM is represented by the definition of local equilibrium, which
is computed by minimizing the H-function, under the constraint of local conservation laws.
This makes the method thermodynamically consistent and the simulations non-linearly stable
[48–50]. However, ELBM is known only on highly symmetric lattices (i.e. D3Q27) and, as
for the MRT, implies a computational overhead [51].

The physical spatial structure of the lattice in the standard LB scheme is coupled to the
velocity discretization, which results into a Lagrangian, exact treatment of advective propa-
gation and hence, to virtually zero numerical diffusion. On the other hand, straightforward
integration of the LBE is not possible on non-uniform meshes. This leads to difficulties in
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adapting the mesh in many practical applications with complex geometry. Furthermore, the
use of locally refined meshes is mandatory for an efficient solution of CFD problems.

Recently, many studies have been dedicated to the extension of the standard LBM on non-
uniform mesh. Among the others, we could cite the characteristic Galerkin finite element
method for the discrete Boltzmann equation (CGDBE) [52] and the interpolation supple-
mented LBM [30], both giving good results with limited numerical dissipation. Imamura
et al. [53] applied the local time step method to the generalized form of the interpolation
supplemented LBM and obtained steady-state solutions with a higher computational effi-
ciency.

Among recent advances to overcome the above limitations, a particularly valuable option
is to change the solution procedure from the original ‘stream and collide’ lattice dynamics
to a finite difference (FD), finite element (FE) and finite volume (FV) formulation.

Cao et al. [54] combined the first LBM and FD based on the central difference scheme
in Cartesian coordinates. Their scheme was later extended to curvilinear coordinates with
non-uniform grids [55].

Finite element methods allowed simulating complex and realistic geometries. Least-
squares finite element (LSFE) method has shown a better stability and robustness in com-
parison with Taylor–Galerkin based FE schemes [56]. Li et al. [57] presented a new LSFE
scheme on unstructured mesh to simulate flow in porous media with fourth order accuracy
in space and second order accuracy in time.

The advection term in the FV-LBM is solved in an Eulerian framework, and the problem
of treatment of the advective terms re-enters the solution procedure. This problem may be
effectively addressed by suitably adapting the mesh resolution [58–60].

However, early FV-LBM methods [61–63] usually suffer from substantial numerical
instability compared to the standard LBM models with improved stability [64,66]. Also,
the computational efficiency of the previous FV formulations seems to be only mar-
ginally competitive with standard methods. This stability problem may be overcome by
suitably adapting the various schemes. Patil and Lakshmisha [67] proposed a FV for-
mulation of LBM on triangular meshes based on Total Variation Diminishing (TVD)
scheme. They validated their results for some benchmark problems and demonstrated
that their model features a better stability than the scheme based on central discretiza-
tion of the convection term. Also in [68] they enhanced the accuracy of their scheme
to simulate unsteady flows. They used the quadratic least squares (QLS) procedure to
extract the first-order derivatives of the distribution functions up to second-order accu-
racy and validated the results for flows over two circular cylinders in tandem and side-
by-side.

In this paper, we further develop a stable finite volume formulation of the LBM to study the
behavior of fluid flow through porous media. In this formulation, the combination of the finite
volumes and weighting factors is carried out in the momentum fluxes [69]. Suitable applica-
tion of these factors allows to improve stability and convergence. The effect of porous media is
considered by introducing the porosity into the equilibrium distribution function, and incor-
porating viscous and inertial effects as momentum source terms (Brinkman–Forchheimer
equation) in the Boltzmann equation.

The outline of this paper is as follows. In Sect. 2, we give a description of the lattice Boltz-
mann method for porous media, using the Brinkman–Forchheimer model. Section 3 describes
the mathematical formulation of the proposed scheme. In Sect. 3, we discuss the computa-
tional results and comparisons with previous studies and, finally in Sect. 4, we present some
closing remarks.
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2 Numerical Model

In the presence of an external force
⇀

Fi , the LBM can be viewed as a special discrete scheme
for the Boltzmann equation with discrete velocities. The usual framework starts from an
evolution equation for particle distribution functions of the form:

fi

(
⇀
x + ⇀

e i�t, t + �t
)

− fi (x, t) = − 1

τ

(
fi − f eq

i

) + �t
⇀

Fi , (1)

where τ is the relaxation time, �t is the time step,
⇀
e i is the lattice velocity vector in the i-th

direction, fi is the probability distribution for the particles speed along the i-th direction and
f eq
i is the corresponding equilibrium.

The first term of the right hand-side of Eq. (1) is the so-called Bhatnagar–Gross–Krook
(BGK) operator [35], which describes particles collision through a single time relaxation
(τ f ) to local equilibrium ( f eq

i ).
The corresponding kinematic viscosity is calculated as ν = c2

s τ [70–72] and the discrete

velocities for the so-called D2Q9 lattice are given by
⇀
e 0 = 0 and

⇀
e i = λi (cos θi , sin θi )

with λi = 1, θi = (i − 1) π/2 for i = 1 ∼ 4 and λi = √
2, θi = (i − 5) π/2 + π/4 for

i = 5 ∼ 8 [16]. The order numbers i = 1 ∼ 4 and i = 5 ∼ 8 represent the Cartesian and

the diagonal directions of the lattice, respectively. The force vector
⇀

Fi in Eq. (1) causes an
additional momentum change extra to the momentum exchange due to collisions.

2.1 The LBM for Porous Media

The forcing term
⇀

Fi in Eq. (1) represents the total body force including viscous diffusion,
inertia related to the presence of a porous medium, and external forces. The suitable choice

for
⇀

Fi to obtain the correct equations of hydrodynamics is as follows [12]:

⇀

Fi = ωiρ

(
1 − 1

2τ

)
⎡
⎢⎢⎣

3
⇀
e i · ⇀

E
c2 +

9

[(
⇀
u · ⇀

e i

) (
⇀

E · ⇀
e i

)]

ε c4 − 3
⇀
u · ⇀

E
ε c2

⎤
⎥⎥⎦

i=1∼9

, (2)

where
⇀
u is the fluid velocity, ε is the porosity and

⇀

E is a forcing term accounting for the
presence of a porous medium and for other external force fields. This term can be calculated
through the Ergun’s equation, as follows [73]:

⇀

E = −εν

K

⇀
u − ε Fε√

K

∣∣∣⇀u
∣∣∣ ⇀

u + ε
⇀

G, (3)

where Fε = 1.75

/√
150ε3 is the geometric function,

⇀

G is the acceleration due to the body

force, and K is the porous media permeability. The latter is calculated as K = Da · H2, being
H the characteristic length and Da the Darcy number, a dimensionless quantity describing
the ability of a fluid to flow through porous media. The permeability is traditionally assumed
to be a constant material property and a function of the porous material’s pore shape and size.
Physically, the permeability can be perceived as an inverse effective resistance of the fluid
flow.

It is worth noting that the total body force
⇀

E in Eq. (3) encompasses the viscous diffusion
(1st term) and inertia due to the presence of a porous medium (2nd term) and an external
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force (3rd term). The equilibrium density distribution functions, f eq
i , for a D2Q9 lattice-speed

model are given by:

f eq
i = wiρ

[
1 + 3

2

(
⇀
e i · ⇀

u
)

+ 9

2ε

(
⇀
e i · ⇀

u
)2 − 3

2ε

∣∣∣⇀u
∣∣∣
2
]

i=1∼9
, (4)

where ρ = ∑
i fi is the macroscopic density and wi are the weighting factors, equal to 4/9

for i = 0, 1/9 for i = 1 ∼ 4 and 1/36 for i = 5 ∼ 8. Accordingly, the pressure is calculated
as p = ρ c2

s /ε and the macroscopic fluid velocity is defined as:

⇀
u =

∑
i

⇀
e i fi/ρ + δt

2

⇀

E . (5)

Since
⇀

E contains the velocity term, Eqs. (3) and (5) represent a 2-equations non-linear system

in
⇀

E and
⇀
u . However, this nonlinearity may be ignored by the introduction of an auxiliary

velocity,
⇀

ϑ , and by explicitly calculating the velocity
⇀
u as follows [12]:

⇀
u =

⇀

ϑ

c0 +
√

c2
0 + c1

∣∣∣⇀v
∣∣∣
, (6)

where c0 = 0.5 [1 + εδtν/2K ], c1 = 0.5εδt Fε/
√

K and
⇀

ϑ defined as:

⇀

ϑ = 1

ρ

∑
i

⇀
e i fi + δt

2

⇀

Gε. (7)

The standard lattice Boltzmann equation is derived from Eq. (1) upon explicit time marching

along the characteristics �
⇀
x i − ⇀

e i�t = 0 leading to a fully discrete formulation in which
space and time are linked one-to-one through the discrete velocities. In other words, the
particles always land on a lattice site, leading to a very simple and highly efficient synchronous
computational scheme. As discussed in the introduction, the downside is the inability to
cluster grid points around regions where a higher resolution is required. This is precisely the
limitation lifted by the finite volume formulation presented in the following section.

2.2 Finite Volume Formulation

In this section, the cell-centered finite volume formulation of the Eq. (1) on an equilateral
mesh system is briefly described. The lattice Boltzmann equation in its continuum form reads
as follows [71]:

∂ fi

∂t
+ ⇀

e i · ∇ fi = − 1

τ

(
fi − f eq

i

)
, (8)

The integration of the collision term is performed through the following formulation:

−
∫

abcd

1

τ
( fi − f eq

i )d A

= − AI,J

τ

[
1

4

[
f ne
i

]
I,J + 1

8

{[
f ne
i

]
I+1,J + [

f ne
i

]
I,J+1 + [

f ne
i

]
I−1,J + [

f ne
i

]
I,J−1

}

+ 1

16

{[
f ne
i

]
I+1,J−1 + [

f ne
i

]
I+1,J+1 + [

f ne
i

]
I−1,J+1 + [

f ne
i

]
I−1,J−1

}]
(9)
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where AI,J is the area of cell and f ne
i = fi − f eq

i is the non-equilibrium component of
the distribution function. After applying an upwind scheme, the convective fluxes may be
written as follows [73]:

∫

abcd

⇀
e i .∇ fi d A ≈ ⇀

e i · Nab
(
ζab [ fi ]I,J + (1 − ζab) [ fi ]I+1,J

)

+⇀
e i · Nbc

(
ζbc [ fi ]I,J + (1 − ζbc) [ fi ]I,J+1

)

+⇀
e i · Ncd

(
ζcd [ fi ]I,J + (1 − ζcd) [ fi ]I−1,J

)

+⇀
e i · Nda

(
ζda [ fi ]I,J + (1 − ζda) [ fi ]I,J−1

)
, (10)

where Nk =
(

�y
⇀

i − �x
⇀

j

)

k
is the outward unit vector normal to the edge, k = ab, bc, cd

and da is the side of cell. The parameters ζab, ζbc, ζcd and ζda are weighting factors defined
as follows [69]:

ζab = �pab∑
phori zental

, ζbc = �pbc∑
pvertical

, ζcd = �pcd∑
phori zental

, ζda = �pda∑
pvertical

,(11)

being
∑

phori zental = ∑ (
pI+1,J + 2pI,J + pI−1,J

)
,

∑
pvertical = ∑ (

pI,J+1+
2pI,J +pI,J−1

)
and �pab = pI+1,J − pI,J , �pbc = pI,J+1 − pI,J , �pcd = pI,J − pI−1,J ,

�pda = pI,J − pI,J−1 The heuristic meaning of these coefficients is to enhance transport
downhill the pressure gradient and reduce it uphill and they allow improving stability and
computational efficiency, without numerical diffusion, as demonstrated in previous works
[72,74].

It is important to note that the employed approach to numerically solve Eq. (8) is a cell-
centred finite-volume scheme based on a space discretization into quadrilateral elements.
The scheme is here employed for a structured grid, but the method could be easily extended
to unstructured grids, as for any finite volume scheme. Obviously unstructured grids would
require a connectivity list for each vertex to identify the mesh elements.

For hydrodynamic boundary conditions, additional D2Q9 lattices at the edge of each
boundary cell are introduced as described in [72]. Then, boundary nodes are treated like
internal nodes, except that the fluxes through the boundary edges are also taken into account.

Physical boundaries of the computational domain are defined to be aligned with the lattice
grid lines (on-grid formulation). Assuming that the velocity on the inlet boundary (uin, vin =
0) is known, the inlet boundary conditions at I = 1 are given by f1 = f3 + 2uin/3,
f5 = f7 + 0.5 ( f4 − f2) + uin/6 and f8 = f6 + 0.5 ( f2 − f4) + uin/6 where ρin =
[ f0 + f2 + f4 + 2 ( f3 + f6 + f7)]/(1 − uin), as proposed by Zou and He [74]. At the outlet
boundary i.e. I = Nx , the distribution functions are extrapolated as follows: fi (Nx , J ) =
2 fi (Nx − 1, J ) − fi (Nx − 2, J ).

Wall boundary conditions, including the corners, are implemented by applying the so-
called bounce-back rule, which states that the component of the distribution function that
would propagate into the solid node is bounced back and ends up back at the fluid node,
but pointing in the opposite direction. Therefore, the unknown distribution functions are
calculated as f6 = f8, f4 = f2 and f7 = f5. For further details about the mathematical
formulation and boundary conditions we refer the reader to our previous works [72,75].
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3 Results and Discussion

At first, in order to validate the proposed scheme, we apply the model to three fully porous
problems, namely: the Poiseuille flow, the Couette flow and the lid driven cavity flow. In all
cases, the results are compared to numerical data available in the literature. Then we perform
simulations for flows through partially porous channels.

3.1 Fluid Flow in Fully Porous Conduits

3.1.1 Porous Poiseuille Flow

One of the basic benchmark hydrodynamics problems is the Poiseuille flow, in which a fluid
laterally flows through a plane duct with constant cross section. Here, we consider a channel
with height H and aspect ratio L/H = 8 where L is the length of channel. The lattice used
is a 640 × 80 square mesh. The channel filled with a porous media of porosity ε = 0.1.
The Reynolds number is defined by Re = Hu0/ν, where u0 is the characteristic velocity.
An important parameter which influences the accuracy and stability of the solution is the
compressibility error which is related to the fact that the LBE recovers the Navier–Stokes
in the limit of weakly-compressible flows (Ma � 1). This means that it describes a slightly
compressible regime to solve the pressure equation of the fluid. Compressibility effects are
kept under control by choosing the Mach number, defined as u0/cs , below 0.1. The selected
computational parameters for the simulations are listed in Table 1. The convergence criterion
is set to max

∣∣(un+1 − un
)
/un

∣∣ ≤ 10−6, where superscripts n and n +1 indicate old and new
time levels, respectively.

Figure 1 compares present numerical results with literature data given in [12] at four
different Reynolds numbers, Re = 0.01, 10, 50 and 100, and at Da = 10−5. The velocity
profiles are normalized by u Br , which is the maximum velocity of the flow along the centerline
in the Brinkman model [12]:

u Br = Gx K

ν

[
1 −

(
cosh

(
r H

2

))−1
]

(12)

where r = √
νε/Kνe. Here, νe is the effective viscosity, which accounts for flows through

porous media where the grains are porous themselves. In the present simulations, the effective
viscosity is assumed to be equal to ν. In the whole Reynolds number range under considera-
tion, we observe an excellent agreement of present results with literature data [12], obtained
with a finite difference solution of the Navier–Stokes equations and a discrete LBM approach,
respectively.

Figure 2 represents the velocity profiles for a porous Poiseuille flow for different Darcy
numbers, Da = 10−3, 10−4 and 10−6, and at Re = 0.1, compared with the finite difference

Table 1 Selected computational
parameters for the channel flow
simulation

Re u0 ν τ Ma

0.01 0.001 0.0001 0.0003 0.0017

0.1 0.05 0.0001 0.0003 0.087

10 0.05 0.0005 0.0015 0.087

50 0.05 0.0001 0.0003 0.087

100 0.05 0.00005 0.00015 0.087
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Fig. 1 Stream-wise velocity profiles of the porous Poiseuille flow at Da = 10−5 and different Reynolds
numbers, Re = 0.01, 10, 50 and 100. Results are compared with finite difference and standard LBM solutions
presented in [12]

Fig. 2 Stream-wise velocity profiles of the porous Poiseuille flow at Re = 0.1 and different Darcy numbers,
Da = 10−3, 10−4 and 10−6. Results are compared with the finite difference solution proposed in [12]

solution reported in [12]. It is observed that, by increasing the Darcy number at a constant
porosity, the value of the permeability (K) is increased, and the velocity profile approaches
a parabolic shape.

3.1.2 Porous Couette Flow

The numerical model is here tested against the Couette flow, an axial laminar flow induced
in the space between parallel plates that move relative to one another. In the present case, the
flow is driven by the upper plate moving in the stream-wise direction with a constant velocity
u0 instead of constant force. Periodic boundary conditions are applied to the entrance and
exit of the channel and the resulting Reynolds number is defined as Re = Hu0/ν, where H
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is the distance between the two parallel plates. The computations are based on a 640 × 80
lattice in all cases and the aspect ratio is the same used in Poiseuille flow. The other main
flow parameters are set as ε = 0.4, Da = 0.01 and tests have been carried out at four different
Reynolds numbers, i.e. 0.1, 5, 10 and 100. The other computational are the same of those
reported in Table 1.

Without considering the Forchheimer (inertia) term, the governing equations of the flow
at steady state have the following analytical solution [12]:

u = u0 exp
[
r
( y

H
− 1

)] sinh (ϕ · y/H)

sinh (ϕ)
, v = v0 (13)

where r and ϕ are calculated as:

r = Re

2εν/νe
, ϕ = 1

2εν/νe

√
Re2 + 4εν/νe

Da
(14)

Figure 3 shows the normalized stream-wise velocity profiles at the three different Reynolds
numbers, Re = 0.1, 5 and 100, compared with the analytical solution and, again, a very good
agreement is observed.

The same flow test has been also performed using the Brinkman–Forchheimer model,
namely by adding the Forchheimer term to the force term. Figure 4 presents the velocity
profiles of the Couette flow, calculated by the present method at Re = 10, ε = 0.1 and three
different Darcy numbers, 10−2, 10−3, and 10−5. Good agreement is found between the
FV-LBM and the finite difference solution presented in [12]. The graph reported in Fig. 4
clearly shows that, by decreasing the Darcy number, the steadiness of the velocity profiles is
enhanced.

By definition the Darcy number decreases when the permeability is reduced (Da =
K/H2). As we mentioned before, permeability measures the ability of the porous media
to allow fluid flow through it. Therefore, if the pores are very small, or if they are poorly
connected, the permeability is low and the fluid does not flow through easily. Therefore, by
decreasing the permeability and consequently the Darcy number, the collisions between the
fluid particles and the pores increase. In other words, the pores act as a damping force on the
fluid flow velocity. Thus, by decreasing the Darcy number, the porous layer become denser,

Fig. 3 Velocity profiles of the porous Couette flow at Da = 0.01 and different Re numbers, Re = 0.1, 5 and
100. Results are compared with the finite difference solution proposed in [12]
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Fig. 4 Velocity profiles of the porous Couette flow at Re = 10 and different Darcy numbers. Results are
compared with the finite difference solution proposed in [12]

more pressure drop builds up, the velocity profile becomes steadier and shear stress in the
fluid is limited to the fluid layers near the moving plate, as at Da = 10−5 most part of fluid
layers remain static.

3.1.3 Porous Lid-driven Cavity Flow

The lid driven cavity flow is a steady laminar incompressible flow that sets up in a square
box where one of the walls (i.e. bottom wall) translates with constant velocity. It is a standard
benchmark problem in which the non-linear component of the Navier–Stokes equation plays
a major role, as, despite the simplicity of the geometry, the flow has a complicated behavior
with counter rotating vortices appearing at the corners of the cavity. In this section we apply
the present scheme to a 2D lid-driven square of side H filled up with a porous media. The
upper wall of the cavity moves from left to right with a constant velocity u0 and the other
walls are fixed. Fixing the viscosity and the cavity shape, the complexity of the flow depends
only on the Reynolds number calculated in terms of cavity width and of moving plate speed,
Re = Hu0/ν.

As a first validation step, we simulated the cavity flow with ε = 0.99, which practically
corresponds to the standard non-porous cavity flow, Da = 10−4 and Re = 100 and 1,000.
The comparisons between FV-LBM solutions with the benchmark solutions of Ref. [76] are
plotted in Fig. 5. In this figure, the stream-wise and span-wise velocity components through
the cavity center agree well with the benchmark solutions.

Then we perform simulations with porosity ε = 0.1, Re = 10 and two different Darcy
numbers, 10−2 and 10−4. Figure 6 compares the present velocity profiles through the cavity
center with the finite difference solution reported in [12]. The results show that, by decreasing
the Darcy number, the boundary layer thickness near the moving lid decreases, and the vortex
in the cavity becomes weaker.

3.2 Fluid Flow in Partially Porous Conduits

The proposed numerical method is here applied to simulate the flow in a selected partially
porous conduit, represented in Fig. 7, together with its coordinate system. The flow enters the
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(b)(a)

Fig. 5 a Stream-wise and b span-wise velocity components through the cavity center with ε = 0.99, Da =
10−4 and Re = 100 and 1,000. Results are compared with Ghia et al. [76]

(b)(a)

Fig. 6 a Stream-wise and b span-wise velocity components through the cavity center with ε = 0.1, Da = 10−2

and 10−4 and Re = 10. Results are compared with the finite difference solution proposed in [12]

Fig. 7 Schematic of partially porous conduits with homogenous porous layer attached the walls

channel with a uniform velocity profile, u0. The channel aspect ratio is set to L/H = 8, where
L and H are the channel length and width, respectively. The Reynolds number is defined as
Re = Hu0/ν and a homogeneous porous layer of width yp is attached to the walls. This type
of configuration can be selected as a model for fractured porous aquifers. All aquifers can
be regarded to fall on a continuum between porous media systems and conduit systems. In
homogeneous porous media aquifers, groundwater flows through the gaps between the sand
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grains. In purely fractured media, groundwater flows only in conduits, and the aquifer matrix
(porous media) between the conduits is impermeable and has no porosity. But in fractured
porous aquifers, the water flows both in the open channel and in the aquifer matrix [77]. In
reality, most fractured rock aquifers are of the fractured porous media type.

Here, similarly to many groundwater flow models, we assume that the porous media is
homogeneous and that fractures are planar and parallel [77]. While these assumptions are
unlikely to hold in reality, they provide a useful starting point for our understanding of
groundwater behavior in fractured rocks.

3.2.1 Mesh Refinement

Numerical test were performed to determine the grid size needed to resolve the flow field and
generate grid-independency solutions for the present problems. Several tests were performed
using four meshes of three types, i.e. uniform square grid with 1, 440 × 180 nodes, uniform
rectangular grid with 850×90 nodes, mapped or non-uniform rectangular grids with 850×90
nodes, shown in Fig. 8, and another uniform square grid with 720 × 90 nodes. Here, an
algebraic mapping [78] has been used to cluster the nodes around the walls. This type of
mapped grid has been chosen to properly capture the boundary layer effects, as well as the
porous media layer effects for the selected configuration. More details about the selected
grid sizes are presented in Table 2. The results obtained on the uniform square grid with
1, 440 × 180 nodes are selected as the reference case and used to benchmark the results
obtained with the other meshes.

Figure 9 shows the profiles of non-dimensional stream-wise velocity profile in partially
porous channels at x = 0.15H and x = H using three different meshes with Re = 100,
Da = 10−4, yp = 0.2H and ε = 0.9. As shown in the figure, the numerical results with
reference square and mapped rectangular mesh grids agree well with each other, as the

Fig. 8 Mapped rectangular grid with 850 × 90 nodes

Table 2 Details of the four grids employed in the mesh test

Mesh type Mesh size �x �ymin �ymax

Ref. uniform square 1,440 × 180 5.55 × 10−3 5.55 × 10−3 5.55 × 10−3

Mapped rectangular 850 × 90 9.41 × 10−3 5.01 × 10−3 19.1 × 10−3

Uniform rectangular 850 × 90 9.41 × 10−3 1.11 × 10−2 1.11 × 10−2

Uniform square 2 720 × 90 1.11 × 10−2 1.11 × 10−2 1.11 × 10−2
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(b)(a)

Fig. 9 Stream-wise velocity profiles in the channel with porous media attached to the walls with Re = 100,
Da = 10−4, yp = 0.2H and ε = 0.9 a x = 0.15H and b x = H

Fig. 10 Convergence of error in log scale for the selected grids

maximum velocity error is less than 1.4 %, against a 5.8 % deviation obtained with the uniform
rectangular grid in both selected stations. On the other hand, by using the mapped grid with
about 70 % nodes less than the uniform square grid, almost the same result is obtain. To avoid
crowding the graph, the plots of the 720 × 90 uniform square grid are not reported in Fig. 9,
but the maximum error was calculated around 6 % in comparison with the reference case in
both stations.

Figure 10 shows the convergence of the relative velocity error estimates in log scale for
the selected grid sizes based on the following equation:
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where n and n + 1 indicate the reference and under test conditions, respectively. Also
⇀
u and

⇀
v are the stream-wise and the span-wise velocity component, respectively. The error decay
clearly shows that the mapped grid provides almost the same accuracy of the reference grid,
and it is then used in the following simulations.

Numerical tests are also performed to determine the allowable value of the grid size
aspect ratio, defined as AR = �x/�ymin, for the mapped rectangular grid. For a first set of
simulations, we employed six types of meshes, whose characteristics are reported in Table
3. The number of nodes in vertical (y) direction is equal to 90 for all the tested meshes,
in order to keep constant the distance of the nodes in the y-direction, �ymin. Again, the
result obtained on the uniform square mesh with 1, 440 × 180 nodes is used to calculate
the maximum velocity error

(
u − ure f

)
/ure f and to benchmark the results. The numerical

results in terms of maximum and relative velocity error are reported in Table 3, which clearly
shows that, by increasing the aspect ratio, the velocity error increases. Note that the velocity
profile for AR = 3 is not completely smooth and the simulation diverged for AR > 3.

It is important to note that the limitation to an AR< 3 is due to the fact that, by keeping
constant �ymin, an increase in the AR produces a reduction of the number of nodes, as clearly
shown in the first column of Table 3. Therefore, other numerical tests have been performed
with a variable AR and a constant number of nodes (144,000). In this case we could limit the
maximum velocity error to about 1 % up to an AR slightly lower than 4 and we could reach
an AR as high as 6. The results are summarized in Table 4.

Being finite volume schemes relatively new in the LB framework, this particular scheme
has been developed and successfully demonstrated for isothermal fluid dynamics only
recently [68,71,73]. Several theoretical and practical issues still need to be addressed and a
fair comparison with the standard LBM scheme is not trivial and beyond the scope of the
present paper. However, as regards the computational efficiency, the present method is at least

Table 3 Mesh refinement test results for the mapped rectangular grid

Mesh size �x �ymin AR = �x/�ymin Max. velocity error (%) Ev (Eq. 15)

1, 600 × 90 5.01 × 10−3 5.01 × 10−3 1 1.02 1.98 × 10−5

1, 145 × 90 7 × 10−3 5.01 × 10−3 1.4 1.24 2.17 × 10−5

850 × 90 9.4 × 10−3 5.01 × 10−3 1.8 1.40 2.43 × 10−5

725 × 90 1.1 × 10−2 5.01 × 10−3 2.2 5.66 3.51 × 10−4

640 × 90 1.25 × 10−2 5.01 × 10−3 2.5 8.47 6.89 × 10−4

535 × 90 1.5 × 10−2 5.01 × 10−3 3 12.7 9.25 × 10−4

Table 4 Aspect ratio analysis results for the different grids with constant number of elements (=144,000
nodes)

Mesh size �x �ymin AR = �x/�ymin Max. velocity error (%) Ev (Eq. 15)

1, 600 × 90 5.01 × 10−3 5.01 × 10−3 1 1.02 1.98 × 10−5

1, 200 × 120 6.67 × 10−3 4.28 × 10−3 1.55 1.11 2.13 × 10−5

1, 000 × 144 8.0 × 10−3 3.55 × 10−3 2.25 1.22 2.16 × 10−5

850 × 170 9.4 × 10−3 2.42 × 10−3 3.88 1.31 2.38 × 10−5

700 × 205 11.4 × 10−3 1.88 × 10−3 6.06 5.11 3.42 × 10−5
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one order of magnitude computationally more expensive than the standard scheme. In fact,
on a single-node basis, streaming and collision steps are no more local and the maximum
time step for a stable computation is much lower, given that the time step is equal to the
spatial resolution in the traditional LBM. On the other hand the above results suggest that
this gas could be partially filled up as long as the geometrical complexity increases, where
non uniform grids would require fewer nodes for a given spatial resolution. A combination of
the present method with the standard LBM would also be possible to exploit the advantages
of both approaches.

3.2.2 Fractured Homogenous Porous Conduit

As pointed out before, the porous media adds extra flow resistance, drag and friction between
the flow and solid surfaces, which mainly depends on flow velocity and permeability. Figure
11 shows the normalized developing stream-wise velocity profile for Da = 10−4, yp = 0.2H ,
ε = 0.2 and Re = 100. So, due to the mentioned forces, the magnitude of the stream-wise
velocity is relatively low in the porous layer and the slowdown of the flow in the porous media
enhances the fluid velocity in the clear region. The magnitude of the axial velocity in the
porous layer decreases along the conduit, especially at the fully developed region. Here, the
starting point of fully developed region was considered as a point in the channel centerline
in which the velocity reaches 99 % of the velocity at the outlet. The region after this point is
named fully developed region.

Figure 12 compares the normalized stream-wise velocity profiles at fully developed region
for two different porosities, 0.2 and 0.9, at Re = 100. According to this figure, the velocity is
strongly influenced by the porous substrate porosity. By increasing the porosity, the resistance
exerted by the insert decreases and the velocity profile is similar to that one found between two
parallel plates. But by decreasing the porosity, eventually the insert acts like an impermeable
and the velocity magnitude increases in the clear region.

The effect of the Darcy number on the fully developed stream-wise velocity is shown in
Fig. 13. By increasing the Darcy number, the ease with which the fluid flows through the
porous layer increases as well and the velocity in the porous layer is enhanced. Consequently,
the peak of the velocity decreases and the profiles tend to assume a parabolic shape in the
fully clear channel.

Fig. 11 Stream-wise velocity profile for Da = 10−4, yp = 0.2H , ε = 0.2, and Re = 100
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Fig. 12 Stream-wise velocity profiles at fully developed region for two different porosities

Fig. 13 Stream-wise velocity profiles at fully developed region for different Darcy numbers and yp = 0.2H

3.2.3 Fractured Non-homogenous Porous Conduit

All porous aquifers exhibit some degree of heterogeneity, in which a systematic variation in
the size of the sand grains leads to the existence of preferential flow zones. In many cases,
the degree of heterogeneity is relatively low, and does not need to be explicitly considered in
groundwater investigations [77]. Here, in order to consider the minimum degree of hetero-
geneity of a porous layer, we add a non-homogeneous layer with random porosity as shown
in Fig. 14. The first layer has constant thickness (yp1 = 0.1H), low porosity (εp1 = 0.2)

and low permeability (Dap1 = 10−5). This part of porous layer can be considered as an
aquitard layer, which is a partly permeable geologic formation and has very low porosity,
thus transmitting water at a slow rate.

The permeability for the second non-homogenous porous layer has been considered equal
to Dap2 = 10−4 and the range of porosity is set to 0.2 < εp2 < 0.5. This layer may feature
an aquiclude which is composed of different materials such as rocks or sediments that act as
a barrier to the groundwater flow.
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Fig. 14 Schematic of the partially porous conduit with homogenous and non-homogenous layers

Fig. 15 Behavior of the velocity profile through the channel with two porous layers

(b)(a)

Fig. 16 Velocity profiles for yp2 = 0.3H and Re = 100, a inlet and b x/H = 0.1

Figure 15 shows the gradual development of the velocity at different stations through the
channel with yp1 = yp2 = 0.1 H . By approaching the fully developed region, the velocity
magnitude in the porous layers decreases whereas it increases in the clear region. Also, it is
clear that the porous layers, especially the first one, play a negligible role in the fluid transport.

In order to show the effect of random porosity, the velocity profiles, for yp2 = 0.3H and
Re = 100, at x = 0 and x = 0.1H , are reported in Fig. 16 and the random behavior of the
velocity profile in the second layer is clearly visible.

The effect of non-homogenous porous layer thickness on the fluid flow is also investigated.
Figure 17 shows the velocity profiles for yp1 = 0.1H and three different non-homogenous
layer thicknesses i.e. yp2 = 0.1H , yp2 = 0.2H and yp2 = 0.3H at x = 0.5H . By increasing
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Fig. 17 Fully developed velocity profiles with different non-homogenous porous layer thickness

the porous layer thickness, the peak value of the velocity in the clear region increases. The
random porosity produces a non-symmetric speed profile, as clearly visible especially in the
thicker layer.

3.2.4 Layered Porous Conduit

Here we consider a layered fully porous channel of the same geometry of the one characterized
in the previous section, except for the central layer, which is here filled up with a porous media
with εs = 0.6 and Das = 10−3. The parameters for other layers are the same as described
before, i.e. for the first layer: yp1 = 0.1H, εp1 = 0.2 and Dap1 = 10−5; and for the second
layer: yp2 = 0.3H, 0.2 < εp2 < 0.5 and Dap2 = 10−4. This configuration can represent
a multi-layer aquifer which is usual in many real aquifer systems. So, we can consider
the first layer as an aquiclude layer with very low permeability and the second layer as a
heterogeneous aquitard layer with low permeability. So, the heterogeneous layer and also the
core layer with higher porosity and permeability are the major water transmitting zones. This
subject is clearly found from Fig. 18 which shows the velocity profile in the layered conduit
obtained at Re = 25.

One of the most important parameters for porous layers is the hydraulic conductivity,
which is a property of porous media that describes the ease with which the water can move
through pore spaces or fractures. The hydraulic conductivity is defined as:

K = K g/v, (16)

being g is the gravity acceleration. The total thicknesses of the first layer, the non-homogenous
layer and the core layer are d1 = 2yp1 = 0.2H, d2 = 2yp2 = 0.6H and d3 = 0.2H ,
respectively.

By converting the lattice units into real units, the resulting hydraulic conductivities for
the first, the second and the core layer are calculated as Kd1 ≈ 5 × 10−8cm/s, Kd2 ≈
4.5 × 10−6cm/s and Kd3 ≈ 5 × 10−6cm/s, respectively. By comparing with the measured
hydraulic conductivity of real materials in nature [79], we can find that the present multi-layer
channel can be classified as a layered clay aquifer, which consist of very fine sand, silt and
loess. Moreover, the first layer describes a non-pervious layer, whereas the other layers define
semi-pervious media with low permeability. Another important parameter in hydrology is the
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Fig. 18 Stream-wise velocity profile in the layered porous conduit at Re = 25

transmissivity, defined as the hydraulic conductivity multiplied by the porous layer thickness,

T = Kd, (17)

expressing K in meter per day and d in meter. Thus, T is a measure of how much water can be
horizontally transmitted through a porous layer. The transmissivity of multi-layered porous
conduit is calculated as follows:

Ttotal =
n∑

i=1

Ki di (18)

where i = 1, . . ., n denotes the layer. So, the transmissivity for the above described layered
conduit is approximately equal to 3.5×10−3m2/day which shows that the conduit transmits
very few amount of water within a day.

The total discharge (Q) of a porous channel can be calculated through the Darcy’s law,
which is a relationship between the instantaneous discharge rate through a porous medium,
the viscosity of the fluid and the pressure drop over a given distance. In other words, the
discharge passing through a porous tube of cross sectional area (A) is proportional to the
hydraulic conductivity (K), the difference of the hydraulic head between the two end points
�h12 = (h2 − h1) and inversely proportional to the flow length (L), as follows

Q = KA[(h2 − h1)/L], (19)

being the hydraulic head calculated as h = z + p/γ +v2/2g. Since, the conduit is horizontal
and the average velocity of the flow is small and constant, the vertical distance above an
established datum (z) and the averaged fluid velocity (v) are negligible. So, the hydraulic
head between two end points is calculated as �h12 = (p2 − p1)/γ where p is the pressure
and γ is the specific weight of the fluid. Therefore, the discharge flow rates for the first, the
second and the core layer are calculated as Qd1 = 4.4×10−10m3/s, Qd2 = 1.8×10−7m3/s
and Qd3 = 6.8 × 10−8m3/s, respectively, and the total discharge of the conduit is Qt =∑

Qi =2.48 × 10−7m3/s.
If we divide Q by the sectional area, we obtain the so-called apparent or Darcy’s velocity,

which is not to be confused with the effective water velocity, as the water flows through pore-
paths (interconnected pores). Therefore, the average water velocity is greater than the apparent
velocity, as the fluid is moving through a much smaller area. However, both quantities are
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related to each other, through the concept of effective porosity, εe f f . The definition of effective
porosity can be stated in a similar way to porosity, but considering only interconnected pores
instead of void volume and is measured using laboratory techniques.

In other words, to convert the apparent velocity, measured in a flow through an aquifer,
into the actual velocity, also called seepage or average velocity, one must divide specific
discharge by the effective porosity as follows:

Vseepage = Qt/(εe f f A). (20)

Note that the effective porosity occurs because a fluid in a saturated porous media will
not flow through all voids, but only through interconnected voids. Unconnected pores are
often called dead-end pores. Particle size, shape, and packing arrangement are among the
factors that determine the occurrence of dead-end pores. In addition, some fluid contained in
interconnected pores is held in place by molecular and surface-tension forces. This immobile
fluid volume also does not participate to the mass transport [80].

4 Conclusions

In this paper, we propose and validate a novel numerical method to effectively simulate the
fluid flow in media with non-homogeneous porosity, to be applied for modeling fractured
porous aquifers. To this aim, we further developed a finite volume formulation of the lattice
Boltzmann method previously applied to non-porous isothermal flows. In this formulation, a
cell-centered scheme is used to discretize the convection term and the correction factors are
considered in order to improve the numerical stability of the method. The porous media effects
at the REV scale and based on the Brinkman–Forchheimer model are incorporated, by intro-
ducing the porosity and flow resistance effects in the equilibrium distribution function and
Boltzmann’s equation, respectively. The proposed numerical formulation is validated against
literature results for several fully porous channel flows, namely Poiseuille flow, Couette flow
and lid driven cavity flow, and the results demonstrate the validity of the numerical approach.
The scheme has then been extended to simulate partially porous channels, as a model for
fractured porous ducts with homogenous and non-homogenous (random) porosities. A mesh
analysis clearly shows the effectiveness of the finite volume discretisation, which allows a
grid refinement in critical regions with a 70 % reduction in the number of nodes with almost
the same accuracy.

The effects of Darcy number, porosity and porous layer thickness are also investigated. It
is shown that, when the Darcy number or porosity is high, the fluid flows more easily through
the porous layer and the velocity magnitude in the porous layer increases. Consequently,
the peak of velocity in the clear region decreases and the profiles approach a parabolic
shape in the fully clear channel. Furthermore, the random porosity leads to a non-symmetric
behavior of the velocity profile in the layers. Finally, the fluid flow through a porous layered
conduit was simulated and the corresponding hydraulic parameters, as hydraulic conductivity,
transmissivity and discharge rate, were computed.
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