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Abstract We study in this paper two linearized backward Euler schemes with Galerkin
finite element approximations for the time-dependent nonlinear Joule heating equations. By
introducing a time-discrete (elliptic) system as proposed in Li and Sun (Int J Numer Anal
Model 10:622–633, 2013; SIAM J Numer Anal (to appear)), we split the error function as the
temporal error function plus the spatial error function, and then we present unconditionally
optimal error estimates of r th order Galerkin FEMs (1 ≤ r ≤ 3). Numerical results in two
and three dimensional spaces are provided to confirm our theoretical analysis and show the
unconditional stability (convergence) of the schemes.
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1 Introduction

In this paper, we focus on error estimates of linearized backward Euler Galerkin finite element
methods for the time-dependent nonlinear Joule heating equations defined by

∂u

∂t
−�u = σ(u)|∇φ|2, (1.1)

−∇ · (σ (u)∇φ) = 0, (1.2)

for x ∈ � and t ∈ [0, T ], where� is a bounded, smooth and convex domain in R
d , d = 2, 3.

The boundary and initial conditions are taken to be

u(x, t) = 0, φ(x, t) = g(x, t), for x ∈ ∂�, t ∈ [0, T ], (1.3)
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u(x, 0) = u0(x), for x ∈ �. (1.4)

The above nonlinear system (1.1)–(1.4) describes the model of electric heating of a con-
ducting body, where the first unknown u is the temperature and the second unknown φ is the
electric potential with σ(s) being the temperature-dependent electric conductivity satisfying

κ ≤ σ(s) ≤ K , (1.5)

for some positive constants κ and K .
Theoretical analysis for the Joule heating system can be found in [3,5,7,16,32,33]. Among

these works, existence and uniqueness of a Cα solution in three-dimensional space was
proved in Yuan and Liu [33]. Based on this result, one can get higher regularity with suitable
assumptions on the initial and boundary conditions. Numerical methods and analysis for the
Joule heating problems can be found in [2,4,12,31,34,35]. For the two dimensional problem,
optimal L2-norm error estimates of linearized semi-implicit schemes with Galerkin and
mixed FEMs were obtained in [31] and [34] under a weak time step condition, respectively.
A linearized semi-implicit Euler scheme with a linear Galerkin FEM for the three dimensional
model was presented in [12] and an optimal L2-norm error estimate was obtained under the

time step restriction τ = O(h
1
2 ). A more general time discretization with higher-order finite

element approximations was studied in [2]. An optimal L2-norm error estimate was given

under the conditions τ = O(h
3

2p ) and r ≥ 2, where p is the order of discretization in time
direction and r is the degree of piecewise polynomial approximations used.

In the consideration of practical computations, linearized (semi)-implicit schemes are
more efficient since at each time step, the schemes only require solving a linear system.
However, the time step restriction condition of linearized schemes arising from error analy-
sis is always a crucial issue. We refer to [1,9–11,13,14,17,18,20,23,24,26,28–30] for works
on some typical nonlinear parabolic problems. Because of difficulties in obtaining the L∞
boundedness of the numerical solution, which is an essential condition for error analysis
of nonlinear problems, most previous works require certain time step restriction conditions.
There are some attempts to reduce the time step restriction conditions. Recently, a new
approach was introduced by Li and Sun [19] (also see [21]) to get unconditional stabil-
ity and optimal error analysis of a linearized backward Euler Galerkin FEM for the time-
dependent Joule heating equations. The approach was based on a new splitting technique by
a corresponding time-discrete system. With certain proved regularity of the solution of the
time-discrete system, one can see

‖U n
h − RhU n‖L∞ ≤ Ch−d/2‖U n

h − RhU n‖L2 ≤ Ch−d/2hr+1.

where U n
h is the FEM solution and Rh is the Ritz projection operator. Therefore, the bounded-

ness of U n
h in L∞-norm can be obtained without time step restriction. With this new approach,

optimal error estimates for a linear FEM was obtained almost unconditionally in [19] (i.e.,
the step sizes h, τ ≤ s0 for some small positive constant s0). In this paper, we present two
linearized schemes with Galerkin FEMs for the time-dependent nonlinear Joule heating sys-
tem (1.1)–(1.4). The first scheme is semi-decoupled and at each time step, one has to solve

n+1

h and U n+1
h one by one. The second one is fully decoupled and at each time step 
n+1

h

and U n+1
h can be solved in parallel. We apply the Li-Sun error splitting method to analyze

the Galerkin FEMs. The main difficulty is that error estimates for high-order Galerkin FEMs
with the splitting method require rigorous analysis of higher regularity of the solution of the
corresponding time-discrete system. For instance, we have to prove the uniform bounded-
ness of the time-discrete solution in H4-norm for a cubic FEM. As there is no numerical
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experiment in [19], we present numerical examples in two and three dimensional spaces in
this paper. To demonstrate the unconditional stability, we take a fixed τ with several refined
spatial meshes. In our numerical tests, the errors are proportional to the temporal error O(τ )
as h/τ → 0, which show clearly that no time-step condition is needed and the schemes are
unconditionally stable.

The rest of the paper is organized as follows. In Sect. 2, we present two linearized schemes
with Galerkin finite element methods and our main results on error estimates. We split the
error function as the temporal error function plus the spatial error function by introducing a
corresponding time-discrete system. In Sect. 3, we provide a priori estimates for the temporal
error and suitable regularity of the solution of the time-discrete system. In Sect. 4, we provide
optimal spatial error estimates for the Galerkin finite element solutions in L2 and H1-norm
unconditionally. Numerical examples for both two and three dimensional models are given
in Sect. 5 to confirm our theoretical analysis.

2 Galerkin Methods and Main Results

Before presenting the schemes, we clarify some conventional notations. For integer k ≥ 0
and 1 ≤ p ≤ ∞, let W k,p(�) be the Sobolev space with the norm

‖u‖W k,p =

⎧
⎪⎨

⎪⎩

(∑

|β|≤k

∫

�

|Dβu|p dx

) 1
p

, for 1 ≤ p < ∞,
∑

|β|≤k
ess sup�|Dβu|, for p = ∞,

where

Dβ = ∂ |β|

∂xβ1
1 . . . ∂xβd

d

,

for the multi-index β = (β1, . . . , βd), β1 ≥ 0, . . . , βd ≥ 0, and |β| = β1 +· · ·+βd . When
p = 2 we also note Hk(�) := W k,2(�).

For t ∈ (0, T ], the weak formulation of the system (1.1)–(1.2) with the boundary condi-
tions (1.3) is defined by

(ut , ξu)+ (∇u, ∇ξu) = (σ (u)|∇φ|2, ξu), ∀ ξu ∈ H1
0 (�), (2.1)

(σ (u)∇φ, ∇ξφ) = 0, ∀ ξφ ∈ H1
0 (�). (2.2)

Let Th be a regular partition of � into triangles Tj , j = 1, . . . ,M in R
2 or tetrahedra in

R
3, and h = max1≤ j≤M {diam Tj } be the mesh size. For a triangle Tj with two nodes (or

a tetrahedron with three nodes) on the boundary, we use T̃ j to denote the triangle with one
curved edge (or a tetrahedron with one curved face) with the same nodes as Tj . For interior
element, we simply set T̃ j as Tj itself. Following classical FEM theory [27,36], for a given
partition of �, we define the finite element space

Ŝh = {vh ∈ C(�h) : vh |Tj is a polynomial of degree r},
V̂h = {vh ∈ C(�h) : vh |Tj is a polynomial of degree r and vh = 0on ∂�h} ,

we can see that Ŝh is a subspace of H1(�h) and V̂h is a subspace of H1
0 (�h). Let G : �h → �

be a mapping such that both G and G−1 are Lipschitz continuous and, for interior element
G is the identity mapping, for Tj at the boundary, G maps Tj onto T̃ j smoothly. We define
an operator G : L2(�h) → L2(�) by Gv(x) = v(G−1(x)) for x ∈ �. Defining
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Sh = {Gvh : vh ∈ Ŝh},
it is easy to see that Sh is a finite element subspace of H1(�). For any v ∈ H1(�), We
define hv = ĜhG−1v, where ̂h : C0(�h) → Ŝh is the Lagrange interpolation operator
of degree r , then ∀ v ∈ W r+1,p(�)

‖v −hv‖L p + h‖v −hv‖W 1,p ≤ Chr+1‖v‖Wr+1,p , for 1 ≤ p ≤ ∞. (2.3)

We set

Vh = {Gvh : vh ∈ V̂h},
and it is easy to verify that Vh is a finite element subspace of H1

0 (�). We define Rh :
H1

0 (�) → Vh to be a Ritz projection operator by

(∇(v − Rhv),∇w) = 0, ∀w ∈ Vh .

By the standard theory of finite element methods to elliptic equations [6,27],

‖v − Rhv‖L2 + h‖v − Rhv‖H1 ≤ Chr+1‖v‖Hr+1 . (2.4)

Moreover, let {tn}N
n=0 be a partition in time direction with tn = nτ, T = Nτ and

un = u(x, tn), φn = φ(x, tn).

For any sequence of functions { f n}N−1
n=0 , we define

Dτ f n+1 = f n+1 − f n

τ
.

Now we introduce two linearized schemes to solve the time-dependent nonlinear Joule
heating Eqs. (1.1)–(1.4).

The first linearized backward Euler Galerkin finite element method is to find U n+1
h ∈

Vh, 

n+1
h ∈ Sh such that

(
DτU n+1

h , ξu

)
+

(
∇U n+1

h , ∇ξu

)
=

(
σ(U n

h )|∇
n+1
h |2, ξu

)
, ∀ ξu ∈ Vh, (2.5)

(
σ(U n

h )∇
n+1
h , ∇ξφ

)
= 0, ∀ ξφ ∈ Vh, (2.6)

with the initial and boundary conditions U 0
h = hu0 and 
n+1

h |∂� = h gn+1|∂�.
The second one is the fully decoupled linearized backward Euler Galerkin FEMs, which

is to find U n+1
h ∈ Vh, 


n+1
h ∈ Sh such that

(
DτU n+1

h , ξu

)
+

(
∇U n+1

h , ∇ξu

)
= (

σ(U n
h )|∇
n

h |2, ξu
)
, ∀ ξu ∈ Vh , (2.7)

(
σ(U n

h )∇
n+1
h , ∇ξφ

)
= 0, ∀ ξφ ∈ Vh , (2.8)

with boundary conditions 
n+1
h |∂� = h gn+1|∂� and initial conditions U 0

h = hu0 and

0

h , which is the solution of
(
σ(u0)∇
0

h, ∇ξφ
) = 0, ∀ ξφ ∈ Vh,

with boundary condition 
0
h |∂� = h g0|∂�.

The scheme (2.5)–(2.6) is semi-decoupled. At each time step, one has to solve (2.6) for

n+1

h and then (2.5) for U n+1
h . A similar semi-decoupled scheme was given in [19], where
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0
h was obtained by solving an elliptic PDE. The scheme (2.7)–(2.8) is fully decoupled. At

each time step, one only needs to solve two systems of U n+1
h and 
n+1

h in parallel.
In this paper, we only present error analysis for the linearized scheme (2.5)–(2.6). The

analysis presented here can be easily extended to the second linearized scheme (2.7)–(2.8),
which will be confirmed numerically in Sect. 5.

In the rest part of this paper, we assume that σ(s) ∈ Cr (R) and the solution to the initial
boundary value problem (1.1)–(1.4) exists and satisfies

{ ‖u‖L∞((0,T );Hr+1) + ‖ut‖L2((0,T );Hr∗
) + ‖ut‖L∞((0,T );H1) + ‖utt‖L2((0,T );H1) ≤ C,

‖φ‖L∞((0,T );Wr+1,4) + ‖φt t‖L2((0,T );H1) + ‖g‖L∞((0,T );Wr+1,4) ≤ C.

(2.9)

where r∗ = max(r, 2).
We present our main results on error estimates in the following theorem.

Theorem 2.1 Suppose that the system (1.1)–(1.2) with the boundary conditions (1.3) and
initial condition (1.4) has a unique solution (u, φ) satisfying (2.9). Then the finite element
system (2.5)–(2.6) with U 0

h = u0 (for r ≤ 3) admits a unique solution (U n+1
h , 
n+1

h ), and
there exist two positive constants τ0 and h0 such that when τ < τ0 and h ≤ h0

max
1≤n≤N

‖U n
h − un‖L2 + max

1≤n≤N
‖
n

h − φn‖L2 ≤ C0(τ + hr+1), (2.10)

and

max
1≤n≤N

‖U n
h − un‖H1 + max

1≤n≤N
‖
n

h − φn‖H1 ≤ C0(τ + hr ), (2.11)

where C0 is a positive constant, independent of n, h and τ .

For simplicity, through out this paper, we denote by C a generic positive constant and
ε a generic small positive constant, which are independent of n, h, τ and C0 in the above
theorem.

For n = 0, 1, . . . , N − 1, we define the U n+1 and 
n+1 to be the solutions of the
following elliptic system (or time discrete parabolic equations)

DτU n+1 −�U n+1 = σ(U n)|∇
n+1|2, (2.12)

−∇ · (σ (U n)∇
n+1) = 0, (2.13)

with U 0 = u0 and boundary conditions

U n+1(x) = 0, 
n+1(x) = g(x, tn+1), for x ∈ ∂�. (2.14)

In terms of the LS-splitting proposed in [19,20], the error functions under certain norm
‖ · ‖ can be written by

‖U n
h − un‖ ≤ ‖en‖ + ‖en

h‖ + ‖U n − RhU n‖,
‖
n

h − φn‖ ≤ ‖ηn‖ + ‖ηn
h‖ + ‖
n −h


n‖,
with

en = U n − un, en
h = U n

h − RhU n,

ηn = 
n − φn, ηn
h = 
n

h −h

n .

Here we can see both en and ηn have zero trace

en = ηn = 0, for x ∈ ∂�.
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To prove our main results in Theorem 2.1, we will analyze the temporal error functions
(en, ηn) in Sect. 3 and the spatial error functions (en

h , η
n
h) in Sect. 4, respectively. We present

the Gagliardo–Nirenberg inequality and discrete Gronwall’s inequality in the following two
lemmas which will be frequently used in our proofs.

Lemma 2.1 Gagliardo–Nirenberg inequality (see [25]): Let u be a function defined on �
and ∂su be any partial derivative of u of order s, then

‖∂ j u‖L p ≤ C‖∂mu‖a
Lr ‖u‖1−a

Lq + C‖u‖Lq ,

for 0 ≤ j < m and j
m ≤ a ≤ 1 with

1

p
= j

n
+ a

(
1

r
− m

n

)

+ (1 − a)
1

q
,

except 1 < r < ∞ and m − j − n
r is a non-negative integer, in which case the above estimate

holds only for j
m ≤ a < 1.

Lemma 2.2 Discrete Gronwall’s inequality [15]: Let τ, B and ak, bk, ck, γk , for integers
k ≥ 0, be non-negative numbers such that

an + τ

n∑

k=0

bk ≤ τ

n∑

k=0

γkak + τ

n∑

k=0

ck + B, for n ≥ 0,

suppose that τγk < 1, for all k, and set σk = (1 − τγk)
−1. Then

an + τ

n∑

k=0

bk ≤ exp

(

τ

n∑

k=0

γkσk

) (

τ

n∑

k=0

ck + B

)

, for n ≥ 0.

3 Temporal Error Estimates

Theorem 3.1 Suppose that the time-dependent nonlinear Joule heating system (1.1)–(1.4)
has a unique solution (u, φ) satisfying (2.9). Then the elliptic system (2.12)–(2.14) with
U 0 = u0 admits a unique solution (U n+1,
n+1) such that

max
0≤n≤N

‖en‖H1 + max
1≤n≤N

‖ηn‖H1 ≤ Cτ, (3.1)

and

max
0≤n≤N

‖U n‖Hr+1 +
N∑

n=1

‖DτU n‖2
Hr∗ τ ≤ C, max

1≤n≤N
‖
n‖Wr+1,4 ≤ C. (3.2)

Proof We first prove the temporal error estimate (3.1) and then prove the uniform bound (3.2)
for all the three cases r = 1, 2 and 3. It is clear that e0 = 0. By (1.1)–(1.2) and (2.12)–(2.14),
the temporal error functions (en, ηn) satisfy

Dτ en+1 −�en+1 = (σ (U n)− σ(un))|∇φn+1|2
+σ(U n)(∇φn+1 + ∇
n+1) · ∇ηn+1 − Rn+1

u , (3.3)

and

− ∇ · (σ (U n)∇ηn+1) = ∇ · [(σ (un)− σ(U n))∇φn+1] − ∇ · Rn+1
φ (3.4)
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where Rn+1
u and Rn+1

φ are the truncation errors. With the regularity given in (2.9), we have

‖Rn+1
u ‖H1 ≤ Cτ, ‖Rn+1

φ ‖H1 ≤ Cτ. (3.5)

Using classical energy method as done in [19], we can derive that there exists a small positive
constant τ0 such that when τ < τ0,

max
1≤n≤N

‖en‖2
L2 +

N−1∑

m=0

‖em+1‖2
H1τ + max

1≤n≤N
‖ηn‖H1τ ≤ Cτ 2. (3.6)

It follows from (3.6) that, for 1 ≤ n ≤ N

‖Dτ en‖L2 , ‖Dτ η
n‖H1 , ‖DτU n‖L2 , ‖Dτ


n‖H1 ≤ C, ‖en‖H1 ≤ Cτ 1/2. (3.7)

To obtain the Hs-norm estimates, s = 2, 3 and 4, we need the following lemma and we
refer to [8] for the details of the proof. ��

Lemma 3.1 Suppose that � ∈ R
3 be a bounded and smooth domain and v ∈ Hk(�) is a

solution of

−�v = f, x ∈ �,
satisfying v|∂� = g, where g can be extended to a function on � such that g ∈ W k+1,p(�).
Then

‖v‖W k+1,p ≤ C‖ f ‖W k−1,p + C‖g‖W k+1,p , for 2 ≤ p < ∞.

We rewrite (3.4) by

−�ηn+1 = 1

σ(U n)

(
∇ · [(σ (un)− σ(U n))∇φn+1] − ∇ · Rn+1

φ

)

+σ
′(U n)

σ (U n)
∇U n · ∇ηn+1.

Applying Lemma 3.1 to the above equation, we have

‖ηn+1‖H2 ≤ C‖∇en∇φn+1‖L2 + C‖en�φn+1‖L2 + C‖∇ · Rn+1
φ ‖L2

+C‖∇en · ∇ηn+1‖L2 + C‖∇un · ∇ηn+1‖L2

≤ ε‖∇ηn+1‖2
L6 + ε−1C‖∇en‖2

L3 + C‖en‖H1 + Cτ

≤ εC‖ηn+1‖2
H2 + Cε−1‖en‖H1‖en‖H2 + C‖en‖H1 + Cτ,

which with Cε ≤ 1
2 reduces to

‖ηn+1‖H2 ≤ C‖en‖H1‖en‖H2 + C‖en‖H1 + Cτ. (3.8)

Now we prove a primary estimate by mathematical induction

‖ηn+1‖H2 ≤ 1, for 0 ≤ n ≤ N − 1. (3.9)

From (3.8), it is clear that ‖η1‖H2 ≤ Cτ , (3.9) holds for n = 0 if we require Cτ ≤ 1. We
assume that (3.9) holds for n ≤ k − 1.
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By applying Lemma 3.1 to (3.3), with estimates (3.6), (3.7) and the above assumption
(3.9), we can derive that

‖ek‖H2 ≤ ‖Dτ ek‖L2 + ∥
∥(σ (U k−1)− σ(uk−1))|∇φk |2∥∥L2

+∥
∥σ(U k−1)(∇φk + ∇
k) · ∇ηk

∥
∥

L2 + ‖Rk
u‖L2

≤ C‖∇ηk‖2
L4 + C + Cτ

≤ C‖ηk‖2
H2 + C

≤ C.

With (3.7), substituting the above estimate into (3.8) gives

‖ηk+1‖H2 ≤ C‖ek‖H1 + Cτ ≤ Cτ 1/2 + Cτ,

and therefore, ‖ηk+1‖H2 ≤ 1 when Cτ 1/2 + Cτ ≤ 1.
Thus, we complete the induction and obtain

‖ηn+1‖H2 ≤ C‖en‖H1 + Cτ, (3.10)

and

‖en‖H2 ≤ C, ‖U n‖H2 ≤ C, ‖en‖L∞ ≤ C, ‖U n‖L∞ ≤ C. (3.11)

Again, we rewrite Eqs. (2.12) and (2.13) by

−�U n+1 = σ(U n)|∇
n+1|2 − DτU n+1, (3.12)

and

−�
n+1 = σ ′(U n)

σ (U n)
∇U n · ∇
n+1. (3.13)

Applying Lemma 3.1 to Eq. (3.13) gives

‖
n+1‖W 2,4 ≤ C
∥
∥σ

′(U n)

σ (U n)
∇U n · ∇
n+1

∥
∥

L4 + C‖gn+1‖W 2,4

≤ C‖∇U n‖L6 ‖∇
n+1‖L12 + C

≤ C
∥
∥
n+1

∥
∥

5
7
H1

∥
∥
n+1

∥
∥

2
7
W 2,4 + C

≤ 2

7
‖
n+1‖W 2,4 + C, (3.14)

where we have used the Gagliardo–Nirenberg inequality in Lemma 2.1. It follows that
‖
n+1‖W 2,4 ≤ C .

With (3.11) and the above uniform bound for
n+1, multiplying the Eq. (3.3) by −�en+1

yields further

Dτ (‖en+1‖2
H1)+ ‖�en+1‖2

L2

≤ C
∥
∥(σ (U n)− σ(un))|∇φn+1|2∥∥2

L2

+C
∥
∥σ(U n)(∇φn+1 + ∇
n+1) · ∇ηn+1

∥
∥2

L2 + C‖Rn+1
u ‖2

L2

≤ C‖σ(U n)‖2
L∞ (‖∇φn+1‖2

L∞ + ‖∇
n+1‖2
L∞) ‖∇ηn+1‖2

L2

+C‖en‖2
L2‖∇φn+1‖4

L∞ + Cτ 2

≤ Cτ 2. (3.15)
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Thanks to Gronwall’s inequality, there exists a small constant τ0, such that when τ ≤ τ0

max
0≤n≤N

‖en‖2
H1 +

N−1∑

m=0

‖em+1‖2
H2τ ≤ Cτ 2, (3.16)

where we have noted the fact that ‖en+1‖H2 ≤ C‖�en+1‖L2 . The estimate (3.16) also
implies that ‖DτU n+1‖H1 ≤ C . Substituting the above results into (3.10) gives

max
1≤n≤N

‖ηn‖H2 ≤ Cτ. (3.17)

Thus, we complete the proof of the temporal error estimate (3.1) by combining estimates
(3.6) and (3.16).

Next, we prove the estimate (3.2) for r = 1, 2, 3. From (3.16) we can also derive that

N−1∑

m=0

‖DτU m+1‖2
H2τ ≤

N−1∑

m=0

(‖Dτ em+1‖2
H2τ + ‖Dτum+1‖2

H2τ
)

≤ Cτ−2
N−1∑

m=0

‖em+1‖2
H2τ + C

≤ C. (3.18)

By combining (3.11), (3.14) and (3.18), we see that the uniform bound (3.2) holds for r = 1.
For the case r = 2, we apply Lemma 3.1 to the Eqs. (3.12) and (3.13) again to deduce

‖U n+1‖H3 ≤ C
∥
∥σ(U n)|∇
n+1|2 − DτU n+1

∥
∥

H1

≤ C‖σ(U n)‖L∞ ‖∇
n+1‖L∞ ‖
n+1‖H2

+C‖σ(U n)‖H1 ‖∇
n+1‖2
L∞ + C

≤ C, (3.19)

and

‖
n+1‖W 3,4 ≤ C
∥
∥σ

′(U n)

σ (U n)
∇U n · ∇
n+1

∥
∥

W 1,4 + C‖g‖W 3,4

≤ ∥
∥σ

′(U n)

σ (U n)

∥
∥

W 1,∞
(‖U n‖W 2,4‖
n+1‖W 1,∞ + ‖U n‖W 1,∞‖
n+1‖W 2,4

) + C

≤ C‖U n‖H3‖
n+1‖W 1,∞ + ‖U n‖H3‖
n+1‖W 2,4

≤ C, (3.20)

which imply the uniform bound (3.2) holds for r = 2.
Now we turn our proof to the uniform bound (3.2) for the case r = 3. We multiply (3.3)

by −Dτ�en+1 to get

Dτ (‖�en+1‖2
L2)+ ‖∇ Dτ en+1‖2

L2

≤ C‖∇ (
(σ (U n)− σ(un))|∇φn+1|2) ‖2

L2

− (
σ(U n)(∇φn+1 + ∇
n+1) · ∇ηn+1, Dτ�en+1) + ‖∇ Rn+1

u ‖2
L2

≤ − (
σ(U n)(∇φn+1 + ∇
n+1) · ∇ηn+1, Dτ�en+1) + C‖en‖2

H1 + Cτ 2 ,
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which shows further

‖�en+1‖2
L2 +

n∑

m=0

τ‖∇ Dτ em+1‖2
L2

≤ −
n∑

m=0

τ
(
σ(U m)(∇φm+1 + ∇
m+1) · ∇ηm+1, Dτ�em+1) + Cτ 2

=
n∑

m=1

τ
(
Dτ

(
σ(U m)(∇φm+1 + ∇
m+1) · ∇ηm+1) , �em)

− (
σ(U n)(∇φn+1 + ∇
n+1) · ∇ηn+1, �en+1) + Cτ 2

≤
n∑

m=1

τ‖Dτ
(
σ(U m)(∇φm+1 + ∇
m+1) · ∇ηm+1) ‖2

L2

+1

2
‖�en+1‖2

L2 +
n∑

m=1

τ‖�em‖2
L2 + Cτ 2

≤ C
n∑

m=1

τ‖∇(Dτ ηm+1)‖2
L2 + 1

2
‖�en+1‖2

L2 +
n∑

m=1

τ‖�em‖2
L2 + Cτ 2 , (3.21)

where the summation by parts is used in the temporal direction. In order to estimate
‖∇(Dτ ηm+1)‖2

L2 , we take Dτ to both sides of the Eq. (3.4) and multiply the result with

Dτ ηn+1 to deduce that

‖Dτ η
n+1‖2

H1 ≤ C‖(Dτ σ (U n))∇ηn+1‖2
L2 + C‖Dτ en‖2

L2 + Cτ 2

≤ C‖Dτ en‖2
L2 + Cτ 2

≤ C‖�en‖2
L2 + Cτ 2 , (3.22)

where we have used the Eq. (3.3).
Substituting (3.22) into (3.21), with the help of Gronwall’s inequality, we have

max
0≤n≤N

‖en‖2
H2 +

N−1∑

m=0

‖∇ Dτ em+1‖2
L2τ ≤ Cτ 2, (3.23)

when τ is less than certain τ0 > 0. It follows that

‖DτU n+1‖H2 ≤ C.

Moreover, by applying Lemma 3.1 to (3.3), we can obtain

‖en+1‖H3 ≤ C‖Dτ en+1‖H1 + C‖(σ (U n)− σ(un))|∇φn+1|2‖H1

+C‖σ(U n)(∇φn+1 + ∇
n+1) · ∇ηn+1‖H1 + C‖Rn+1
u ‖H1

≤ C‖Dτ en+1‖H1 + Cτ , (3.24)
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and therefore, by estimate (3.23), we have

N−1∑

m=0

‖DτU m+1‖2
H3τ ≤

N−1∑

m=0

(‖Dτ em+1‖2
H3 + ‖Dτum+1‖2

H3)τ

≤
N−1∑

m=0

(
Cτ−2‖em+1‖2

H3

)
τ +

N−1∑

m=0

‖Dτum+1‖2
H3τ

≤ Cτ−2

(
N−1∑

m=0

(‖Dτ em+1‖2
H1 + τ 2)τ

)

+ C

≤ C . (3.25)

Finally, we apply Lemma 3.1 to Eqs. (3.12) and (3.13) to get further

‖U n+1‖H4 ≤ C‖σ(U n)|∇
n+1|2 − DτU n+1‖H2

≤ C‖U n‖H2 C(‖
n+1‖2
W 1,∞ + ‖
n+1‖W 1,∞ ‖
n+1‖W 2,∞)

+C‖U n‖L∞ ‖
n+1‖2
W 1,∞ ‖
n+1‖2

W 3,4 + C

≤ C, (3.26)

and

‖
n+1‖W 4,4 ≤ C‖σ
′(U n)

σ (U n)
∇U n · ∇
n+1‖W 2,4 + C‖g‖W 4,4

≤ C‖U n‖W 3,4‖
n+1‖W 1,∞‖U n‖W 1,∞ + C‖U n‖W 2,∞‖
n+1‖W 2,4

+C‖U n‖W 1,∞‖
n+1‖W 3,4 + C

≤ C , (3.27)

where we have used estimates (3.19) and (3.20).
By combining (3.25), (3.26) and (3.27) , we have proved that (3.2) holds in the case r = 3.

Thus, we obtain the uniform boundedness of the solution to the elliptic system for all the
three cases.

We complete the proof of Theorem 3.1. ��

4 Spatial Error Estimates

Theorem 4.1 Suppose that the time-dependent nonlinear Joule heating system (1.1)–(1.4)
has a unique solution (u, φ) satisfying (2.9). Then the fully-discrete system (2.5)–(2.6) with
U 0

h = hu0 for r ≤ 3 admits a unique solution (U n+1
h ,
n+1

h ), such that

max
0≤n≤N

‖en
h‖L2 + max

1≤n≤N
‖ηn

h‖L2 ≤ Chr+1 , (4.1)

max
0≤n≤N

‖∇en
h‖L2 + max

1≤n≤N
‖∇ηn

h‖L2 ≤ Chr . (4.2)

Proof The proof for linear FEM has been given in [19], here we only analyze the quadratic
and cubic FEMs. Since the coefficient matrices for U n+1

h and 
n+1
h are symmetric positive

definite, it is clear that the FEM system (2.5)–(2.6) is uniquely solvable. By using the inverse
inequality, it is easy to verify that the L2-norm estimate (4.1) implies the H1-norm estimate
(4.2). Thus, we only need to prove (4.1). We first prove

‖en
h‖2

L2 ≤ C1h2r+2, 0 ≤ n ≤ N , (4.3)
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by mathematical induction, where C1 is a positive constant independent of n, h, τ and the
general constant C . As u0 = U 0, from the Lagrange interpolation error estimate (2.3) and
the Ritz projection error estimate (2.4), we can easily obtain

‖e0
h‖2 = ‖hu0 − Rhu0‖2 ≤ C2h2r+2,

where C2 is a positive constant independent of τ, h and n. Therefore, if we require C1 ≥ C2,
(4.3) holds for n = 0. We assume that (4.3) holds for n ≤ k − 1. We need to find C1, which
is independent of n, h, τ and the general constant C , such that (4.3) also holds for n ≤ k.

With our assumption, by inverse inequality we have

‖en
h‖L∞ ≤ Ch−d/2‖en

h‖L2 ≤ CC1hr+1−d/2.

It is clear that when CC1hr+1−d/2 ≤ 1 we get ‖en
h‖L∞ ≤ 1, which implies ‖U n

h ‖L∞ ≤ C
for n ≤ k − 1.

The weak formulation of the time-discrete elliptic system (2.12)–(2.14) is
(
DτU n+1, ξu

) + (∇U n+1, ∇ξu
) = (

σ(U n)|∇
n+1|2, ξu
)
, ∀ ξu ∈ H1

0 , (4.4)
(
σ(U n)∇
n+1, ∇ξφ

) = 0, ∀ ξφ ∈ H1
0 . (4.5)

Then, the spatial error functions (en
h , η

n
h) satisfy

(
Dτ en+1

h , ξu

)
+

(
∇en+1

h , ∇ξu

)

= (
Dτ (U

n+1 − RhU n+1), ξu
) + (

(σ (U n
h )− σ(U n))|∇
n+1|2, ξu

)

+2
(
(σ (U n

h )− σ(U n))∇
n+1 · ∇(
n+1
h −
n+1), ξu

)

+
(
σ(U n

h )|∇(
n+1
h −
n+1)|2, ξu

)

+2
(
σ(U n)∇
n+1 · ∇(
n+1

h −
n+1), ξu

)

:=
5∑

j=1

I n+1
j (ξu), ∀ ξu ∈ Vh , (4.6)

and
(
σ(U n)∇ηn+1

h , ∇ξφ
)

=
(
(σ (U n)− σ(U n

h ))∇
n+1
h , ∇ξφ

)

+ (
σ(U n)∇(
n+1 −h


n+1), ∇ξφ
)
, ∀ ξφ ∈ Vh . (4.7)

Taking ξu = en+1
h into (4.6), now we estimate the five residual terms of the right-hand

side of (4.6). The first two terms are bounded by

I n+1
1 (en+1

h ) ≤ ε‖en+1
h ‖2

H1 + ε−1C‖DτU n+1 − Rh DτU n+1‖2
H−1

≤ ε‖en+1
h ‖2

H1 + ε−1C‖DτU n+1‖2
Hr∗ h2r+2 ,

and

I n+1
2 (en+1

h ) ≤ ‖σ(U n
h )− σ(U n)‖L2‖∇
n+1‖2

L∞‖en+1
h ‖L2

≤ C‖en+1
h ‖2

L2 + C‖en
h‖2

L2 + Ch2r+2,

where we have used the embedding inequality ‖∇
n+1‖L∞ ≤ C‖
n+1‖W 2,4 in Lemma 2.1
and noted ‖
n+1‖W 2,4 ≤ C and ‖U‖Hr+1 ≤ C which have been proved in Theorem 3.1.
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By inverse inequality, for the third term we have

I n+1
3 (en+1

h ) ≤ 2‖σ(U n
h )− σ(U n)‖L2‖∇
n+1‖L∞‖∇(
n+1

h −
n+1)‖L3‖en+1
h ‖L6

≤ ε‖en+1
h ‖2

H1 + ε−1C(‖en
h‖2

L2 + h2r+2)(h−d/3‖∇ηn+1
h ‖2

L2 + h2r+2)

≤ ε‖en+1
h ‖2

H1 + ε−1C(‖en
h‖2

L2 + h2r+2)(h−d/3‖∇ηn+1
h ‖2

L2 + Ch2r+2) .

Moreover, for the fourth term

I n+1
4 (en+1

h ) ≤ ‖σ(U n
h )‖L∞‖∇(
n+1

h −
n+1)‖L2‖∇(
n+1
h −
n+1)‖L3‖en+1

h ‖L6

≤ C‖en+1
h ‖H1(h−d/6‖∇ηn+1

h ‖2
L2 + hr‖∇ηn+1

h ‖L2 + h2r )

≤ ε‖en+1
h ‖2

H1 + ε−1C(h−d/6‖∇ηn+1
h ‖2

L2 + hr‖∇ηn+1
h ‖L2 + h2r )2.

Finally, by integration by parts and noting the fact that −∇ · (σ (U n)∇
n+1) = 0, we
have

I n+1
5 (en+1

h ) = −2
(

n+1

h −
n+1,∇ · (σ (U n)∇
n+1en+1
h )

)

= −2
(

n+1

h −
n+1, σ (U n)∇
n+1 · ∇en+1
h

)

≤ C‖
n+1
h −
n+1‖L2‖σ(U n)‖L∞‖∇
n+1‖L∞‖∇en+1

h ‖L2

≤ ε‖en+1
h ‖2

H1 + ε−1C(‖ηn+1
h ‖2

L2 + h2r+2).

On the other hand, taking ξφ = ηn+1
h into the Eq. (4.7) gives

‖∇ηn+1
h ‖L2 ≤ C‖(σ (U n

h )− σ(U n))∇
n+1
h ‖L2 + C‖σ(U n)∇(
n+1 −h


n+1)‖L2

≤ C‖U n
h − U n‖L6‖∇ηn+1

h ‖L3 + C‖U n
h − U n‖L2 + Chr

≤ Ch−d/6(‖en
h‖H1 + hr )‖∇ηn+1

h ‖L2 + C‖en
h‖L2 + Chr . (4.8)

By the assumption of the induction that (4.3) holds for n ≤ k − 1 and applying inverse
inequality, we have

‖en
h‖L2 ≤ C1hr+1, ‖en

h‖H1 ≤ CC1hr .

Thus, taking the above inequalities into (4.8) results in

‖∇ηn+1
h ‖L2 ≤ (CC1hr+1−d/6 + Chr−d/6)‖∇ηn+1

h ‖L2 + CC1hr+1 + Chr ,

and therefore, requiring CC1hr+1−d/6 + Chr−d/6 ≤ 1/2 and C1h ≤ 1 yields

‖∇ηn+1
h ‖L2 ≤ Chr . (4.9)

Moreover, we use Aubin–Nitsche technique [6] to estimate ‖ηn
h‖L2 . Rewriting (4.7) by

(
σ(U n)∇(
n+1 −
n+1

h ), ∇ξφ
)
+

(
(σ (U n)− σ(U n

h ))∇
n+1
h , ∇ξφ

)
=0, ∀ ξφ ∈ Vh,

(4.10)

and defining ψ as the solution to the elliptic equation

− ∇ · (
σ(U n)∇ψ) = 
n+1 −
n+1

h , (4.11)

with Dirichlet boundary condition ψ = 0 on ∂�. With Lemma 3.1, it can be deduced that
‖ψ‖H2 ≤ C‖
n+1 −
n+1

h ‖.
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It is easy to see that taking ξφ = hψ into (4.10) gives

(
σ(U n)∇(
n+1 −
n+1

h ), ∇hψ
)

+
(
(σ (U n)− σ(U n

h ))∇
n+1
h , ∇hψ

)
= 0.

With the help of the estimate (4.9) and the above identity, by multiplying (
n+1 −
n+1
h ) at

both sides of Eq. (4.11), we have

‖
n+1 −
n+1
h ‖2

L2 =
(
σ(U n)∇(
n+1 −
n+1

h ), ∇ψ
)

=
(
σ(U n)∇(
n+1 −
n+1

h ), ∇(ψ −hψ)
)

−
(
(σ (U n)− σ(U n

h ))∇
n+1
h , ∇hψ

)

≤ C‖∇(
n+1 −
n+1
h )‖L2‖∇(ψ −hψ)‖L2

+C‖U n − U n
h ‖L2(‖∇ηn+1

h ‖L3 + ‖∇h

n+1‖L3)‖∇hψ‖L6

≤ Ch‖∇(
n+1 −
n+1
h )‖L2‖ψ‖H2

+C‖U n − U n
h ‖L2(h−d/6‖∇ηn+1

h ‖L2 + C)‖ψ‖H2

≤ Chr+1‖ψ‖H2 + CC1(h
2r+1−d/6 + hr+1)‖ψ‖H2 ,

which in fact implies that when C1(hr+1−d/6 + h) ≤ 1

‖
n+1 −
n+1
h ‖L2 ≤ Chr+1. (4.12)

Therefore, with (4.9) and (4.12) and estimates for I n+1
j , j = 1, . . . , 5, by taking ξu =

en+1
h into the spatial error Eq. (4.6), we can derive

Dτ
(
‖en+1

h ‖2
L2

)
+ ‖∇en+1

h ‖2
L2 ≤ ε‖en+1

h ‖2
H1 + Cε−1‖en+1

h ‖2
L2 + Cε−1‖en

h‖2
L2

+C(ε−1 + ‖DτU n+1‖2
Hr∗ )h2r+2.

Thus we can choose a small positive number ε and use Gronwall’s inequality with induction
to obtain that there exists a τ0 > 0 such that when τ < τ0

‖en+1
h ‖2

L2 + τ

n+1∑

m=1

‖em
h ‖2

H1 ≤ exp(
T C

1 − τC
)(CT + C2)h

2r+2

≤ exp(2T C)(CT + C2)h
2r+2,

where we have used
∑N

n=1 ‖DτU n‖2
Hr∗ τ ≤ C and noted the homogeneous Dirichlet bound-

ary condition. Thus, (4.3) holds for n = k if we take C1 ≥ exp(2T C)(CT + C2). We
complete the induction.

With the above estimates, we have the following result directly from (4.12)

‖
n −
n
h‖L2 ≤ Chr+1. (4.13)

The proof of Theorem 4.1 is complete. ��

We complete the proof of Theorem 2.1 by combining Theorem 3.1, Theorem 4.1, the
interpolation error estimate (2.3) and the projection error estimate (2.4). ��
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Fig. 1 The FEM meshes of the unit circle and the unit square with M = 10

5 Numerical Results

In this section, we provide some numerical examples to confirm our theoretical analysis. The
computations are performed with free software FEniCS [22]. We set the final time T = 1.0
in all the computations.

Example 5.1 (2d) We rewrite the system (1.1)–(1.2) by

∂u

∂t
−�u = σ(u)|∇φ|2 + f1, (5.1)

−∇ · (σ (u)∇φ) = f2, (5.2)

and the electric conductivity σ takes the form

σ(u) = 1

1 + u2 + 1.

The functions f1, f2 and the initial and boundary conditions are determined correspondingly
by the exact solution

u(x, y, t) = exp(x + y − t), φ(x, y, t) = 1 + sin(x + y + t).

Here we only present convergence rate results of the scheme (2.5)–(2.6), and it should be
remarked that the fully decoupled scheme (2.7)–(2.8) has similar convergence results. We
test the scheme (2.5)–(2.6) on two different domains, one is the unit circle with� = {(x, y) :
x2 + y2 < 1} and another is the unit square with� = (0, 1)× (0, 1). A regular triangulation
with M elements in the radial direction is made on the unit circle, and a uniform triangulation
with M + 1 nodes in both horizontal and vertical directions is made on the unit square, see
Fig. 1 for the case M = 10. Here we can see the mesh size h = O(1/M). We solve Eqs. (5.1)–
(5.2) by the two linearized backward Euler scheme (2.5)–(2.6) and the fully decoupled scheme
(2.7)–(2.8), denoted by Scheme I and Scheme II, respectively.

To confirm our error estimates in Theorem 2.1, we choose τ = hr+1, r = 1, 2, 3, for the
linear, quadratic and cubic FE methods, respectively. Thus, from our theoretical analysis the
L2-norm errors are of scale O(hr+1 + hr+1) ∼ O(hr+1) and the errors in H1-norm are of
scale O(hr+1 +hr ) ∼ O(hr ). We present the L2 and H1-norm errors of Scheme I in Table 1
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Table 1 L2 and H1 errors of Scheme I for the unit circle (Example 5.1. (2d))

Linear (τ = h2) Quadratic (τ = h3) Cubic (τ = h4)

L2 H1 L2 H1 L2 H1

L2 and H1 errors of U N
h − u(·, 1)

M = 5 1.8169e−02 2.0747e−01 6.1606e−04 1.1769e−02 9.8082e−05 5.2944e−04

M = 10 4.6111e−03 1.0088e−01 8.1802e−05 2.9602e−03 6.4353e−06 5.9366e−05

M = 20 1.1563e−03 4.9836e−02 1.0727e−05 7.4498e−04 4.1246e−07 7.1520e−06

Order 1.99 1.03 2.92 1.99 3.95 3.10

L2 and H1 errors of 
N
h − φ(·, 1)

M = 5 2.6713e−02 2.4261e−01 6.4313e−04 1.3113e−02 7.7874e−05 5.8134e−04

M = 10 6.8652e−03 1.2175e−01 8.4243e−05 3.3166e−03 5.0630e−06 6.6763e−05

M = 20 1.7398e−03 6.0891e−02 1.0900e−05 8.3713e−04 3.2026e−07 8.2091e−06

Order 1.97 1.00 2.94 1.98 3.96 3.07

Table 2 L2 and H1 errors of Scheme I for the unit square (Example 5.1. (2d))

Linear (τ = h2) Quadratic (τ = h3) Cubic (τ = h4)

L2 H1 L2 H1 L2 H1

L2 and H1 errors of U N
h − u(·, 1)

M = 5 1.2792e−02 2.2304e−01 2.6174e−04 8.9883e−03 3.0465e−05 2.7032e−04

M = 10 3.0923e−03 1.0833e−01 3.3569e−05 2.2344e−03 1.8984e−06 2.9916e−05

M = 20 7.6450e−04 5.3636e−02 4.2697e−06 5.5831e−04 1.1988e−07 3.5972e−06

Order 2.03 1.03 2.97 2.00 3.99 3.12

L2 and H1 errors of 
N
h − φ(·, 1)

M = 5 9.2838e−03 1.5860e−01 1.6634e−04 3.9396e−03 2.9810e−05 2.1941e−04

M = 10 2.2941e−03 7.8388e−02 2.1810e−05 9.8571e−04 1.8648e−06 2.2564e−05

M = 20 5.7123e−04 3.9040e−02 2.7859e−06 2.4629e−04 1.1657e−07 2.6397e−06

Order 2.01 1.01 2.95 2.00 4.00 3.19

for the unit circle and in Table 2 for the unit square, respectively. It is clear that for both
unit circle and unit square the L2-norm errors of u and φ are proportional to hr+1 and the
H1-norm errors are proportional to hr , r = 1, 2, 3, which indicate the optimal convergence
rates of the methods.

To show the unconditional convergence of the two schemes, we use the linear FE method
to solve (5.1)–(5.2) with three different time steps τ = 0.01, 0.05, 0.25 on gradually refined
meshes with M = 10i, i = 1, 2, . . . , 6 for both domains. The L2-norm errors are given
in Fig. 2 for Scheme I and in Fig. 3 for Scheme II, respectively. We should remark that
the two schemes with linear FE approximations give L2-norm errors of the scale O(τ +
h2). From Fig. 2 and (3), we can see that for a fixed τ , when refining the mesh gradually,
the L2-norm errors converge to a constant, i.e., the temporal error of the scale O(τ ). It is
easy to see that for both domains the two proposed schemes are unconditionally convergent
(stable).
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Fig. 2 L2-norm errors of scheme I with linear FEM

Example 5.2 (3d) We consider Eqs. (5.1)–(5.2) in three-dimensional space with exact
solution

u(x, y, z, t) = exp(2x + y − z)(2t + sin(t)),

φ(x, y, z, t) = sin(x − 2y) cos(z) exp(t),

where � = {(x, y, z) : x2 + y2 + z2 < 1} is the unit ball. We solve the system by these
two schemes with quadratic FE method. We take the time steps τ = 0.01, 0.05, 0.25 for
the scheme I and τ = 0.005, 0.01, 0.05 for the scheme II. For the spatial discretizations,
We use a regular tetrahedra partition with M elements in the radial direction (see Fig. 4 for
the case M = 10). We refine the mesh gradually by taking M = 5i, i = 1, 2, . . . , 5. Plots
for L2-norm errors against M are given in Fig. 5 for scheme (2.5)–(2.6) and in Fig. 6 for
the fully decoupled scheme (2.7)–(2.8), respectively. From Theorem 2.1, the L2-norm errors
are of scale O(τ + h3). From Figs. 5 and 6, we can see that if we fix τ and refine the mesh
gradually, the L2-norm errors will asymptotically converge to a constant.

This phenomenon also indicates the unconditional stability of the two schemes in three
dimensional space. Previous error analysis for three-dimensional problems often requires
a stronger time step restriction than for two-dimensional problems. Our numerical results
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Fig. 3 L2-norm errors of scheme II with linear FEM
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Fig. 4 The three dimensional mesh: inner structure and the surface of the partition with total 1,331 nodes and
6,000 elements (M = 10)
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Fig. 5 L2-norm errors of scheme I with quadratic FEM on a unit ball

Fig. 6 L2-norm errors of scheme II with quadratic FEM on a unit ball

for both two and three dimensional problems show clearly that no time step condition is
needed.

6 Conclusions

We have presented two linearized backward Euler schemes for the nonlinear Joule heating
equations in two and three dimensional spaces and provided unconditionally optimal error
estimates for the r -order Galerkin FEMs (1 ≤ r ≤ 3) in both L2 and H1 norms. Numerical
results for both two and three dimensional problems confirm our theoretical analysis and
show clearly the unconditional stability of the two schemes. The technique presented in
this paper can be applied to analyze higher order finite element methods for other nonlinear
parabolic equations.
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