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Abstract In this paper, we analyze vertex-centered finite volume method (FVM) of any
order for elliptic equations on rectangular meshes. The novelty is a unified proof of the inf-
sup condition, based on which, we show that the FVM approximation converges to the exact
solution with the optimal rate in the energy norm. Furthermore, we discuss superconvergence
property of the FVM solution. With the help of this superconvergence result, we find that
the FVM solution also converges to the exact solution with the optimal rate in the L2-norm.
Finally, we validate our theory with numerical experiments.
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1 Introduction

During the past several decades, the finite volume method (FVM) has attracted much attention.
We refer to [2,3,5,6,11,15,17,18,25,31,35,39] for an incomplete list of references. Due to
its local conservation of numerical fluxes and other advantages, the FVM is very popular
in scientific and engineering computations, especially in computational fluid dynamics, see,
e.g., [18,25,26] and [31–35]

Comparing to its wide applications, the mathematical theory of FVM (cf., [4,22,27,28])
has not been fully developed, at least, not as satisfactory as that for the finite element method
(FEM). Most works concentrate on lower-order FV schemes. In fact, a linear FV scheme can
be regarded as a small perturbation of its corresponding linear FE scheme, whose convergence
properties have been well studied, see e.g., [3,7,19,23]. On the other hand, higher-order
FV schemes depends heavily on the underlying meshes, the error analysis in the literature
was often done case-by-case. Since high-order FV schemes are substantially different from
their corresponding FE schemes, therefore only a few special high-order schemes have been
studied, see [8,10,11,29,34,36,39]. So far, we have not seen analysis for FV schemes of an
arbitrary order.

In this paper, we provide a unified analysis for vertex-centered FV schemes of any order
on rectangular meshes. We construct our FV schemes under the framework of the Petrov–
Galerkin method by letting the trial space be the Lagrange finite element space with the
interpolation points being the Lobatto points and by constructing control volumes with the
Gauss points in a rectangular element. Note that this idea of control volumes construction
was used on constructing quadratic FV schemes on rectangular meshes, see e.g., [30].

Stability analysis is a challenging task in error estimates for higher order FV schemes.
To accomplish this task, most earlier works (see, e.g., [11,28,29,39]) utilized element
stiffness matrix analysis, which often requires to calculate all eigenvalues of an element
stiffness matrix. This local result is stronger than a global one, but is difficult to be gen-
eralized to schemes of any order. Our new approach to prove stability is to establish a
global inf-sup condition, which is weaker than element-wise stability, however is suf-
ficient for optimal and superconvergent error estimates. Towards this end, a novel and
non-traditional global mapping from the trial space to the test space is introduced. This
special mapping avoids calculating eigenvalues of an element stiffness matrix and makes
the establishment of the global inf-sup condition for any order possible. Once the inf-
sup property has been established, the error analysis in the energy norm is then a routine
work.

Another work of the paper is the superconvergence analysis. We prove that the FV solution
uP is super-close to the Lobatto interpolant uI of the exact solution, namely, |uP −uI |1 con-
verges one order higher than the optimal rate. The result simulates the counterpart result
in the FEM. A by-product of this superconvergence result is the optimal L2 error esti-
mate. Conventionally, the L2 error estimate is accomplished by the duality argument or
the so-called Aubin–Nitsche trick. Unfortunately, this technique is very difficult to be used
in our case for higher-order FVM. The adoption of the superconvergence analysis avoids this
difficulty.

We organize the rest of the paper as follows. In Sect. 2 we present FV schemes of any
order for elliptic equations on rectangular meshes. In Sect. 3 we provide convergence analysis
and establish the optimal convergence rate in both H1 and L2 norms. The superconvergence
property of the FVM solution has also been studied in this section. Next, numerical examples
are provided in Sect. 4 to confirm our theory. And lastly, some concluding remarks are given
in Sect. 5.
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In the rest of this paper, “A � B” means that A can be bounded by B multiplied by a
constant which is independent of the parameters which A and B may depend on. “A ∼ B”
means “A � B” and “B � A”.

2 FVM Schemes of Any Order

In this section, we present finite volume schemes of any order to solve the following second-
order elliptic boundary value problem

− � · (α�u) = f in �, (2.1)

u = 0 on �, (2.2)

where � = [a, b] × [c, d] is a rectangle, � = ∂�, α ∈ L∞ and it is bounded from below:
There exists a constant α0 > 0 such that α(x) ≥ α0 for almost all x ∈ �, and f is a
real-valued function defined on �.

We present our finite volume schemes under the framework of Petrov–Galerkin method.
We first construct the primal partition and the trial space. Let P be a partition of � which
consists a finite number of rectangles. We denote by N and E , respectively the set of all
vertices and all edges of P . Moreover, let N ◦ = N \ ∂�, E◦ = E \ ∂� be the set of interior
vertices and internal edges of P , respectively.

We choose the trial space as the standard FEM space defined by

Ur
P = {v ∈ C(�) : v|τ ∈ Qr ,∀τ ∈ P, v|∂� = 0},

where Qr is the set of all bi-polynomials of degree no more than r .
We next describe the dual partition and the test space. We begin with a description of Gauss

and Lobatto points in a rectangle τ ∈ P . Let τ̂ = [−1, 1]2 be the reference element. For all
τ = �P1 P2 P3 P4 ∈ P , where Pi , i = 1, . . . , 4 are four vertices of τ , let Fτ : τ̂ → τ be the
affine mapping satisfying Fτ (−1,−1) = P1, Fτ (1,−1) = P2, Fτ (1, 1) = P3, Fτ (−1, 1) =
P4. Note that if we denote by (xi , yi ), i = 1, . . . , 4 the coordinates of Pi , i = 1, . . . , 4, then
the Fτ maps a point (ξ, η) ∈ τ̂ to a point (x, y) ∈ τ which satisfies

x = x1 + ατ2 (1 + ξ), y = y1 + βτ4 (1 + η),

where ατ2 = x2−x1
2 , βτ4 = y4−y1

2 . For a positive integer k, let Zk = {1, . . . , k} and Z0
k =

{0, 1, . . . , k}. Let Gi , i ∈ Zr be r Gauss points, i.e., zeros of the Legendre polynomial of r th
degree, on the interval [−1, 1]. Let

gτi, j = Fτ (Gi ,G j ), i, j ∈ Zr ,

be all Gauss points in τ . We denote by Gτ = {gτi, j |i, j ∈ Zr } and G = ∪τ∈PGτ the set of Gauss

points in τ and that in the whole partition, respectively. Let {Lm |m ∈ Z0
r } be r + 1 Lobatto

points of degree r in the interval [−1, 1], that is, L0 = −1, Lr = 1 and {Lm |m ∈ Zr−1}
are the r − 1 zeros of the derivative of the Legendre polynomial of degree r in [−1, 1]. We
denote the set of Lobatto points in τ as

Nτ = {lτi, j

∣
∣i, j ∈ Z0

r },
where lτi, j = Fτ (Li , L j ). Let NL = ∪τ∈PNτ be the set of all Lobatto points. In Fig. 1, we
plot all Gauss and Lobatto points in a rectangular element for a simple case where r = 2. In
this figure, Gauss points are depicted with ‘◦’ while Lobatto points are depicted with ‘∗’.
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Fig. 1 Gauss (‘open circle’) and
Lobatto (‘star’) points in a
rectangular element (r = 2)

Fig. 2 Contribution to control
volumes from an element τ
(r = 2)

We are ready to present control volumes in the dual partition. Each control volume is a
rectangle surrounding a Lobatto point P ∈ NL designed as follows. Let τ ∈ P be a rectangle
which contain the Lobatto point P . Then P can be represented as P = lτi, j for some i, j ∈ Z0

r .
The contribution from τ to the control volume VP is the rectangle

Vτ,P = �gτi, j gτi+1, j g
τ
i+1, j+1gτi, j+1,

where the definition of Gauss point gτi, j has been generalized to all indices i, j ∈ Z0
r+1 by

letting gτi, j = Fτ (Gi ,G j ) with G0 = −1,Gr+1 = 1, see Fig. 2 for a simple case where
r = 2. Note that in this simple case, the generalized Gauss points gτ0,0 = lτ0,0, gτ3,0 =
lτ2,0, gτ3,3 = lτ2,2, gτ0,2 = lτ0,2.

The whole control volume surrounding P is then defined as

VP =
⋃

τ�P

Vτ,P .

For the simple case r = 2, whole control volumes surrounding Lobatto points in a rectangular
element are plotted in Fig. 2. In this figure, each control volume is a rectangle surrounded by
dash lines.

The dual mesh P ′ consists of all control volumes VP , P ∈ NL . That is,

P ′ = {VP
∣
∣P ∈ NL}.
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The test space VP ′ consists of the piecewise constants with respect to the partition P ′
which vanishes on the boundary control volumes. Precisely, the test space

VP ′ = Span{ψVP

∣
∣P ∈ N ◦

L },
where N ◦

L = NL \ ∂� is the set of all interior Lobatto points and ψA is the characteristic
function of some set A ⊂ �. From the above construction, we have

dim Ur
P = dim VP ′ = #N ◦

L ,

where #S is the cardinality of some set S.
We are now ready to present our finite volume schemes. The finite volume solution of

(2.1) and (2.2) is a function uP ∈ Ur
P which satisfies the following conservation law

−
∫

∂VP

α
∂uP
∂n

ds =
∫

VP

f dxdy (2.3)

on each control volume VP , P ∈ N ◦
L , where n is the unit outward normal on the boundary

∂VP . Let wP ′ ∈ VP ′ , wP ′ can be written as

wP ′ =
∑

P∈N ◦
L

wPψVP

where the coefficients wP , P ∈ N ◦
L are constants. Multiplying (2.3) with wP and then

summing up for all P ∈ N ◦
L , we obtain

−
∑

P∈N ◦
L

wP

∫

∂VP

α
∂uP
∂n

ds =
∫

�

fwP ′dxdy.

Defining the FVM bilinear form for all v ∈ H1
0 (�),wP ′ ∈ VP ′ as

aP (v,wP ′) = −
∑

P∈N ◦
L

wP

∫

∂VP

α
∂v

∂n
ds, (2.4)

the finite volume method for solving Eqs. (2.1) and (2.2) reads as: Find uP ∈ Ur
P such that

aP (uP , wP ′) = ( f, wP ′),∀wP ′ ∈ VP ′ . (2.5)

3 Error Analysis

The error analysis of FVM can also be done under the framework of Petrov–Galerkin methods,
see [3,28], and [39]. Following this approach, our FVMs error analysis requires the study of
the continuity (boundedness) and inf-sup property of the FVM bilinear form.

3.1 Continuity

Let EP ′ be the set of interior edges of the dual partition P ′. A simple calculation yields that
for all v ∈ H1

0 (�), wP ′ ∈ VP ′ ,

aP (v,wP ′) =
∑

E∈EP ′
[wP ′ ]E

∫

E

α
∂v

∂n
ds, (3.1)
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where [wP ′ ]E = wP ′ |τ2 − wP ′ |τ1 across the common edge E = τ1 ∩ τ2 of two rectangles
τ1, τ2 ∈ P ′ and n denotes the normal vector on E pointing from τ1 to τ2.

To study the continuity of aP (·, ·) , we define a semi-norm in the test space VP ′ for all
wP ′ ∈ VP ′ by

∣
∣wP ′

∣
∣P ′ =

⎛

⎝
∑

E∈EP ′
h−1

E

∫

E

[wP ′ ]2
E ds

⎞

⎠

1
2

,

where hE is the diameter of an edge E , and a semi-norm in the so-called broken H2 space

H2
P (�) = {v ∈ C(�) : v|τ ∈ H2,∀τ ∈ P}

for all v ∈ H2
P (�) by

∣
∣v

∣
∣P =

(
∑

τ∈P
|v|21,τ + h2

τ |v|22,τ
) 1

2

,

where hτ is the diameter of τ . Note that the mesh-dependent semi-norm
∣
∣ · ∣∣P has been used

in the discontinuous Galerkin method (cf., [1]) and was introduced first into the FVM in [39].

Theorem 3.1 The finite volume bilinear form aP (·, ·) is variationally exact: let u ∈ H1
0 (�)

be the solution of (2.1) and (2.2), then

aP (u, wP ′) = ( f, wP ′)∀ wP ′ ∈ VP ′ , (3.2)

and continuous: for all v ∈ H1
0 (�) ∩ H2

P (�), wP ′ ∈ VP ′ ,

|aP (v,wP ′)| ≤ M |v|P |wP ′ |P ′ , (3.3)

where the constant M > 0 depends only on α and r.

Proof First, (3.2) follows by multiplying (2.1) with an arbitrary function wP ′ ∈ VP ′ and
then using Green’s formula in each control volume τ ∈ P ′.

Secondly we prove (3.3). By the Cauchy–Schwartz inequality, for all v ∈ H1
0 (�) and all

wP ′ ∈ VP ′ , there holds

aP (v,wP ′) ≤ ‖α‖∞|wP ′ |P ′

⎛

⎝
∑

E∈EP ′
hE

∫

E

(
∂v

∂n

)2

ds

⎞

⎠

1
2

.

By the trace inequality and the shape regularity of P,

⎛

⎝hE

∫

E∩τ

(
∂v

∂n

)2

ds

⎞

⎠

1
2

� |v|1,τ + hτ |v|2,τ
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where τ ∈ P and τ ∩ E �= ∅. Since for any given E ∈ EP ′ , there are at most two elements
τ ∈ P such that τ ∩ E �= ∅, we have

aP (v,wP ′) � |wP ′ |P ′

⎛

⎝
∑

E∈EP ′

∑

τ∈P,τ∩E �=∅
|v|21,τ + h2

τ |v|22,τ
⎞

⎠

1
2

� |wP ′ |P ′

(
∑

τ∈P
|v|21,τ + h2

τ |v|22,τ
) 1

2

.

Then there exists a positive M which depends only on α and r such that (3.3) holds. ��
3.2 Inf-sup Condition

This subsection is the core of the paper. The analysis here is technical, and yet, it is new and
no-traditional. A key step is the introduction of a global projection (3.6) based on the idea of
the Gauss quadrature.

We begin with some definitions and notations. We denote by A j , j ∈ Zr the weights of
the Gauss quadrature

Qr (F) =
r

∑

j=1

A j F(G j )

for computing the integral

I (F) =
1∫

−1

F(x)dx .

It is well-known that Qr (F) = I (F) for all F ∈ P2r−1(−1, 1). For any given τ ∈ P , we
denote by hx

τ , hy
τ the length of x- and y-directional edges of the rectangle τ . We define

Aτx, j = 1

2
hx
τ A j , Aτy, j = 1

2
hy
τ A j , j ∈ Zr

as the Gauss weights of x- and y-directions in τ , respectively.
For a test functionwP ′ = ∑

P∈N ◦
L
wPψVP ∈ VP ′ , we define its jump at each Gauss point

gτi, j as

�w�gτi, j
= wP ′(lτi, j )+ wP ′(lτi−1, j−1)− wP ′(lτi−1, j )− wP ′(lτi, j−1), ∀i, j ∈ Zr .

The jump at Gauss points is related to the conventional jump across dual edges in EP ′ . In
fact, since

EP ′ ∩ τ = {Eτ,yi, j

∣
∣i ∈ Zr , j ∈ Z0

r } ∪ {Eτ,xi, j

∣
∣i ∈ Z0

r , j ∈ Zr },
where the segments Eτ,yi, j = gτi, j g

τ
i, j+1, Eτ,xi, j = gτi, j g

τ
i+1, j , see Fig. 2. Since

[wP ′ ]Eτ,yi, j
= wP ′(lτi, j )− wP ′(lτi−1, j ), [wP ′ ]Eτ,xi, j

= wP ′(lτi, j )− wP ′(lτi, j−1),

we have

�w�gτi, j
= [wP ′ ]Eτ,yi, j

− [wP ′ ]Eτ,yi, j−1
= [wP ′ ]Eτ,xi, j

− [wP ′ ]Eτ,xi−1, j
, ∀i, j ∈ Zr . (3.4)
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Fig. 3 Gauss points in G◦◦
(depicted by ‘open circle’) and
G \ G◦◦ (depicted by ‘star’)

We next define a subset of G whose cardinality equals to the dimension of the test space.
Note that the boundary ∂� = Ea ∪ Eb ∪ Ec ∪ Ed where

Ea = {(a, y)|c ≤ y ≤ d}, Eb = {(b, y)|c ≤ y ≤ d},
and

Ec = {(x, c)|a ≤ x ≤ b}, Ed = {(x, d)|a ≤ x ≤ b}.
Moreover, for i = a, b, c, d , let

Pi = {τ ∈ P|τ ∩ Ei �= ∅}
be the subset of boundary elements which are closed to the boundary Ei . We define

Ga = {gτ1, j |τ ∈ Pa, j ∈ Zr }, Gb = {gτr, j |τ ∈ Pb, j ∈ Zr }
and

Gc = {gτ1,i |τ ∈ Pc, i ∈ Zr }, Gd = {gτi,r |τ ∈ Pd , i ∈ Zr }
the four subsets of G which consists of Gauss points closing to Ea, Eb, Ec, Ed , respectively.
We define the subset

G◦◦ = G \ (Gb ∪ Gd).

We plot Gauss points in G◦◦ and G \ G◦◦ in Fig. 3 (r = 2). In this figure, Gauss points in G◦◦
are depicted by ‘◦’ and Gauss points corresponding in G \ G◦◦ are depicted by ’�’.

We have the following relationship

#G◦◦ = #N ◦
L . (3.5)

In fact, let m = #Pa(= #Pb) and n = #Pc(= #Pd). A straightforward calculation yields
that

#N ◦
L = (mr − 1)(nr − 1).

Moreover, #G = mnr2, #Gb = mr, #Gd = nr and #(Gb ∩ Gd) = 1, then

#G◦◦ = mnr2 − mr − nr + 1 = (mr − 1)(nr − 1).

The equality (3.5) is valid.
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We are now in a perfect position to define our special mapping. Let� be a mapping from
the the trial space Ur

P to the test space VP ′ defined by :

�vP =
∑

P∈N ◦
L

(�vP )PψVP ∈ VP ′ , vP ∈ Ur
P , (3.6)

where the coefficients (�vP )P∈N are determined by the constraints

��vP�gτi, j
= Aτx,i Aτy, j

∂2vP
∂x∂y

(gτi, j ), (3.7)

for all gτi, j ∈ G◦◦.

Remark 3.2 We have defined a special projector from the trial to test space in [9] for one
dimensional FV scheme. Apparently,� defined above is not a simple tensor-product of that
in [9].

Remark 3.3 By (3.5), the degree of freedom of�vP equals to the number of equations given
by (3.7). To explain that� is well defined, we next explain how to successively calculate all
coefficients of �vP by (3.7) with the following “lexicographic” ordering. We observe that
since �vP ∈ VP ′ , for all P ∈ NL ∩ ∂�,

�vP = 0 inVP .

Let τ1 be the unique element in Pa ∩ Pc, see Fig. 4. By (3.7), we have

��vP�g
τ1
1,1

= Aτ1
x,1 Aτ1

y,1
∂2vP
∂x∂y

(gτ1
1,1).

By the definition of the jump of the test function, we have

(�vP )(lτ1
1,1)+ (�vP )(lτ1

0,0)− (�vP )(lτ1
0,1)− (�vP )(lτ1

1,0) = Aτ1
x,1 Aτ1

y,1
∂2vP
∂x∂y

(gτ1
1,1).

Since lτ1
0,0 ∈ Ea ∩ Ec, l

τ1
1,0 ∈ Ec, l

τ1
0,1 ∈ Ea and Ea, Ec ⊂ ∂�, we have

(�vP )(lτ1
0,0) = (�vP )(lτ1

0,1) = (�vP )(lτ1
1,0) = 0.

Therefore, we obtain

(�vP )lτ11,1
= (�vP )(lτ1

1,1) = Aτ1
x,1 Aτ1

y,1
∂2vP
∂x∂y

(gτ1
1,1).

We next explain how to calculate all coefficients (�vP )lτi, j
for all lτi, j ∈ N ◦

L . By (3.7) and the
definition of jump at Gauss points, we have

(�vP )(lτi, j ) = (�vP )(lτi, j−1)+ (�vP )(lτi−1, j )+ (�vP )(lτi−1, j−1)

+Aτx,i Aτy, j
∂2vP
∂x∂y

(gτi, j ). (3.8)

This equation implies that when (�vP )(lτi, j−1), (�vP )(lτi−1, j ), and (�vP )(lτi−1, j−1), are
known, (�vP )(lτi, j ) can be straightforwardly calculated. Since (�vP )lτ11,1

and (�vP )P , P ∈
NL ∩ ∂� are known, all coefficients (�vP )(lτi, j ) can be successively calculated following
some given ordering such as that presented in Fig. 4.

Actually, the definition of� is independent of ordering, it depends only on the location of
the Gauss points. There are many different “lexicographic” orders, the ordering we provide
here is only one of them.
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Fig. 4 Order to calculate the
coefficients of �vP

We next discuss properties of �. First, we have

Lemma 3.4 Let vP ∈ Ur
P , the equality (3.7) holds for all Gauss points in G.

Proof Noticing G \ G◦◦ = Gb ∪ Gd , we only need to prove (3.7) for all Gauss points in
Gd , since (3.7) for Gauss points Gb can be shown by the same arguments. We observe that
Gd = {gτi,r |τ ∈ Pd , i ∈ Z j }.

Since vP = 0 on the boundary ∂�,

∂vP
∂x

(x, c) = ∂vP
∂x

(x, d) = 0, ∀x ∈ [a, b].

Then for any given x0 ∈ [a, b],
d∫

c

∂2vP
∂x∂y

(x0, y)dy = ∂vP
∂x

(x0, d)− ∂vP
∂x

(x0, c) = 0.

Let the segment Ex0 = {(x0, y)|c ≤ y ≤ d} and the subset of partition Px0 = {τ ∈
P|τ ∩ Ex0 �= ∅}. We write the coordinates of the Gauss point gτi, j = (gτx,i , gτy, j ). We now

choose x0 = gτ0
x,i0

for some fixed τ0 ∈ Pd and i0 ∈ Zr . Then for all τ ∈ Px0 , we have

gτx,i0
= x0. Therefore, noting that in each τ ∈ Px0 ,

∂2vP
∂x∂y (x0, y) is a polynomial of degree

r − 1 with respect to the second variable y, we have

0 =
d∫

c

∂2vP
∂x∂y

(x0, y)dy =
∑

τ∈Px0

∫

Ex0 ∩τ

∂2vP
∂x∂y

(x0, y)dy

=
∑

τ∈Px0

∑

j∈Zr

Aτy, j
∂2vP
∂x∂y

(gτx,i0
, gτy, j ).

Since Aτx,i0
= Aτ0

x,i0
for all τ ∈ Px0 , we have

Aτ0
x,i0

Aτ0
y,r
∂2vP
∂x∂y

(gτ0
i0,r
) = −

∑

τ∈Px0

∑

j∈Zr ,gτi0, j /∈Gd

Aτx,i0
Aτy, j

∂2vP
∂x∂y

(gτi0, j ).
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By the fact that (3.7) holds for all Gauss points in G◦◦, we obtain

Aτ0
x,i0

Aτ0
y,r
∂2vP
∂x∂y

(gτ0
i0,r
) = −

∑

τ∈Px0

∑

j∈Zr ,gτi0, j /∈Gd

��vP�gτi0, j

On the other hand, by (3.4) and the fact that �vP = 0 in τ ∈ Pc ∪ Pd ,
∑

τ∈Px0

∑

j∈Zr

��vP�gτi0, j
= 0.

Then,

��vP�g
τ0
i0,r

= −
∑

τ∈Px0

∑

j∈Zr ,gτi0, j /∈Gd

��vP�gτi0, j
= Aτ0

x,i0
Aτ0

y,r
∂2vP
∂x∂y

(gτ0
i0,r
).

In other words, (3.7) holds for the Gauss point gτ0
i0,r

. Since i0 ∈ Zr , τ0 ∈ Gd are arbitrary, the
Eq. (3.7) holds for all Gauss points in Gd . By the same reasoning, (3.7) holds for all Gauss
points in Gb. The statement of the lemma is proved. ��

In the next lemma, we show that � is a bounded operator from the trial space to the test
space. To this end, we let a = x0 < x1 < · · · < xm = b, c = y0 < y1 < · · · < yn = d be
distinct points in [a, b] and [c, d] such that P = {τk,l |k ∈ Zm, l ∈ bZn} where the rectangular
element τk;l = [xk−1, xk] × [yl−1, yl ].
Lemma 3.5 If P is shape regular, then for any vP ∈ Ur

P ,

|�vP |P ′ � |vP |1, (3.9)

where the hidden constant depends only on r.

Proof By the definition of the semi-norm | · |P ′ , we have

|�vP |2P ′ =
∑

τ∈P

∑

E∈EP ′ ,E∩τ �=∅
h−1

E

∫

E∩τ
[�vP ]2

E ds. (3.10)

Therefore, to prove (3.9), we only to prove that for all τ ∈ P ,
∑

E∈EP ′ ,E∩τ �=∅
[�vP ]2

E � |vP |21,τ . (3.11)

Noticing ∂2vP
∂x∂y ∈ Qr−1(τ ) for τ = τk,l , we have

∑

i∈Zr

��vP�gτi, j
= Aτy, j

∑

i∈Zr

Aτx,i
∂2vP
∂x∂y

(gτi, j ) = Aτy, j

xk∫

xk−1

∂2vP
∂x∂y

(x, gτy, j )dx

= Aτy, j
∂vP
∂y

(xk, gτy, j )− Aτy, j
∂vP
∂y

(xk−1, gτy, j ).

On the other hand, by (3.4), we have
∑

i∈Zr

��vP�gτi, j
= [�vP ]Eτ,xr, j

− [�vP ]Eτ,x0, j
.
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Then,

[�vP ]
E
τk,l ,x
r, j

− [�vP ]
E
τk,l ,x
0, j

= A
τk,l
y, j
∂vP
∂y

(xk, g
τk,l
y, j )− A

τk,l
y, j
∂vP
∂y

(xk−1, g
τk,l
y, j ). (3.12)

We note that for all k,

[�vP ]
E
τk−1,l ,x
r, j

= [�vP ]
E
τk,l ,x
0, j

,

Moreover since ∂vP
∂y is continuous across the edge of τk,l ∩ τk−1,l , we have

A
τk−1,l
y, j

∂vP
∂y

(xk, g
τk−1,l
y, j ) = A

τk,l
y, j
∂vP
∂y

(xk, g
τk,l
y, j ).

Then (3.12) can be rewritten as

[�vP ]
E
τk+1,l ,x
0, j

− [�vP ]
E
τk,l ,x
0, j

= A
τk+1,l
y, j

∂vP
∂y

(xk, g
τk,l
y, j )− A

τk,l
y, j
∂vP
∂y

(xk−1, g
τk,l
y, j ). (3.13)

Since vP = 0 and �vP = 0 on ∂�, we have

∂vP
∂y

(g
τk,l
x,r+1, g

τk,l
y, j ) = 0, [�vP ]

E
τk,l ,x
r, j

= 0.

Then by (3.13), for all τ = τk,l ∈ P, j ∈ Zr , we have

[�vP ]Eτ,x0, j
= Aτy, j

∂vP
∂y

(gτx,0, gτy, j ). (3.14)

Therefore, by the inverse inequality and shape regularity of P , and the fact that Aτy, j ∼ hτ ,
we have

∣
∣
∣[�vP ]Eτ,x0, j

∣
∣
∣ ≤ hτ

∥
∥
∥
∥

∂vP
∂y

(·, gτy, j )

∥
∥
∥
∥

L∞(xk−1,xk )

� hτ (h
τ )−

1
2

∥
∥
∥
∥

∂vP
∂y

(·, gτy, j )

∥
∥
∥
∥

L2(xk−1,xk )

� h
1
2
τ

∥
∥
∥
∥

∂vP
∂y

(·, gτy, j )

∥
∥
∥
∥

L2(xk−1,xk )

.

For i ∈ Zr ,

[�vP ]Eτ,xi, j
= [�vP ]Eτ,x0, j

+
i

∑

i ′=1

��vP�gτ
i ′, j

= [�vP ]Eτ,x0, j
+ Aτy, j

i
∑

i ′=1

Aτx,i ′
∂2vP
∂x∂y

(gτi ′, j ),
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and by the inverse inequality and the fact that Aτx,i ∼ hτ ,
∣
∣
∣
∣
∣

i
∑

i ′=1

Aτx,i ′
∂2vP
∂x∂y

(gτi ′, j )

∣
∣
∣
∣
∣

� hτ

∥
∥
∥
∥

∂2vP
∂x∂y

(·, gτy, j )

∥
∥
∥
∥

L∞(xk−1,xk )

� h
1
2
τ

∥
∥
∥
∥

∂2vP
∂x∂y

(·, gτy, j )

∥
∥
∥
∥

L2(xk−1,xk )

� h
− 1

2
τ

∥
∥
∥
∥

∂vP
∂y

(·, gτy, j )

∥
∥
∥
∥

L2(xk−1,xk )

,

Therefore for all i ∈ Z0
r , there holds
∣
∣
∣[�vP ]Eτ,xi, j

∣
∣
∣ � h

1
2
τ

∥
∥
∥
∥

∂vP
∂y

(·, gτy, j )

∥
∥
∥
∥

L2(xk−1,xk )

.

Consequently,

∑

i∈Z0
r

∣
∣
∣[�vP ]Eτ,xi, j

∣
∣
∣

2
� hτ

xk∫

xk−1

∣
∣
∣
∣

∂vP
∂y

(x, gτy, j )

∣
∣
∣
∣

2

dx . (3.15)

Since
∫ xk

xk−1

(
∂vP
∂y (x, ·)

)2
dx is a polynomial (w.r.t y) of degree less than 2r − 1, we have

∑

j∈Zr

Aτy, j

1∫

−1

(
∂vP
∂y

(x, gτy, j )

)2

dx =
yl∫

yl−1

xk∫

xk−1

(
∂vP
∂y

(ξ, η)

)2

dξdη =
∥
∥
∥
∥

∂vP
∂y

∥
∥
∥
∥

2

L2(τ )

.

Noticing (3.15) and the fact that Aτy, j ∼ hτ , we obtain

∑

i∈Z0
r , j∈Zr

(

[�vP ]Eτ,xi, j

)2
�

∥
∥
∥
∥

∂vP
∂y

∥
∥
∥
∥

2

L2(τ )

.

Similarly,

∑

i∈Zr , j∈Z0
r

(

[�vP ]Eτ,yi, j

)2
�

∥
∥
∥
∥

∂vP
∂x

∥
∥
∥
∥

2

L2(τ )

.

Recall EP ′ ∩ τ = {Eτ,yi, j

∣
∣i ∈ Zr , j ∈ Z0

r } ∪ {Eτ,xi, j

∣
∣i ∈ Z0

r , j ∈ Zr }, we obtain

∑

E∈EP ′ ∩τ
([�vP ]E )

2 � |vP |21,τ .

That is, (3.11) is verified. The inequality (3.9) then follows. ��
With the help of �, we obtain a bilinear form aP (·,�·) which is defined only on the

trial space Ur
P . We next show the coercivity of aP (·,�·). An essential idea in the proof is to

express aP (·,�·) as a Gauss quadrature of some finite element bilinear form.

Theorem 3.6 If α is piecewise constant with respect to P , then

aP (vP ,�vP ) ≥ α0|vP |21, ∀vP ∈ Ur
P . (3.16)
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Proof We define two functions for all (x, y) ∈ � by

v1(x, y) =
y∫

c

α(x, y′) ∂vP
∂x

(x, y′)dy′, v2(x, y) =
x∫

a

α(x ′, y)
∂vP
∂y

(x ′, y)dx ′.

A straightforward calculation yields that

aP (vP ,�vP ) = −
∑

τ∈P

∑

i, j∈Zr

��vP�gτi, j

(

v1(gτi, j )+ v2(gτi, j )
)

.

Noticing that (3.7) holds for all gτi, j ∈ G, we obtain

aP (vP ,�vP ) = I1 + I2,

where

I1 = −
∑

τ∈P

∑

i, j∈Zr

Aτx,i Aτy, j
∂2vP
∂x∂y

(gτi, j )v
1(gτi, j ),

and

I2 = −
∑

τ∈P

∑

i, j∈Zr

Aτx,i Aτy, j
∂2vP
∂x∂y

(gτi, j )v
2(gτi, j ).

We next estimate I1. To this end, for all τ = τk,l ∈ P, i ∈ Zr , we denote by

Errτ,i =
yl∫

yl−1

∂2vP
∂x∂y

(gτx,i , y)v1(gτx,i , y)dy −
∑

j∈Zr

Aτy, j
∂2vP
∂x∂y

(gτx,i , y)v1(gτx,i , gτy, j )

the error of the Gauss quadrature of the function ∂2vP
∂x∂y (g

τ
x,i , ·)v1(gτx,i , ·) in the interval

[yl−1, yl ]. Moreover, let

Res =
∑

τ∈P

∑

i∈Zr

Aτx,i Errτ,i .

With this notation,

I1 = −
∑

τ∈P

∑

i∈Zr

Aτx,i

yl∫

yl−1

∂2vP
∂x∂y

(gτx,i , y)v1(gτx,i , y)dy + Res

Since α is a constant in each τ ∈ P , and for any given y ∈ [yl−1, yl ],
∂2vP
∂x∂y

(·, y)v1(·, y) ∈ P2r−2([xk−1, xk])

Then

∑

i∈Zr

Aτx,i
∂2vP
∂x∂y

(gτx,i , y)v1(gτx,i , y) =
xk∫

xk−1

∂2vP
∂x∂y

(x, y)v1(x, y)dx .
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Consequently,

I1 = −
∑

τ∈P

yl∫

yl−1

xk∫

xk−1

∂2vP
∂x∂y

(x, y)v1(x, y)dxdy + Res

= −
d∫

c

b∫

a

∂2vP
∂x∂y

(x, y)v1(x, y)dxdy + Res

=
d∫

c

b∫

a

α(x, y)

(
∂vP
∂x

(x, y)

)2

dydx + Res, (3.17)

where we have used integration by parts in the last equality.
We next estimate Res. Using the fact that α is a constant τ , we have

∂2vP
∂x∂y

(gτx,i , ·)v1(gτx,i , ·) ∈ P2r ([yl−1, yl ]).

Then for all y ∈ [y j−1, y j ],
∂(2r)

∂y(2r)

(
∂2vP
∂x∂y

(gτx,i , ·)v1(gτx,i , ·)
)

= α(2r)! r

r + 1
a2
τ,i ≥ 0.

where aτ,i is the leading coefficient of the polynomial ∂vP
∂x (g

τ
x,i , y) in τ . Consequently,

Errτ,i ≥ 0,∀τ ∈ P, i ∈ Zr ,

and thus

Res ≥ 0.

In summary,

I1 ≥ α0

b∫

a

d∫

c

(
∂vP
∂x

(x, y)

)2

dydx . (3.18)

By the same arguments,

I2 ≥ α0

d∫

c

b∫

a

(
∂vP
∂y

(x, y)

)2

dxdy. (3.19)

Combining (3.18) and (3.19), the inequality (3.16) follows. ��

Remark 3.7 We can extend the above result to the case that α =
(

α11 α12

α21 α22

)

is a positive

definite matrix where αi j , 1 ≤ i, j ≤ 2 are piecewise constants with respect to Th . In fact, in
this case, we have

aP (vP ,�vP ) = −
∑

τ∈P

∑

i, j∈Zr

��vP�gτi, j

(

v1(gτi, j )+ v2(gτi, j )
)

= I1 + I2,
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with

v1(x, y) =
y∫

c

(

α11
∂vP
∂x

+ α12
∂vP
∂y

)

(x, y′)dy′,

and

v2(x, y) =
x∫

a

(

α21
∂vP
∂x

+ α22
∂vP
∂y

)

(x ′, y)dx ′.

By the same arguments in the proofs of Theorem 3.6, we obtain

I1 ≥ −
d∫

c

b∫

a

∂2vP
∂x∂y

v1(x, y)dxdy

=
d∫

c

b∫

a

∂vP
∂x

(

α11
∂vP
∂x

+ α12
∂vP
∂y

)

dxdy.

Similarly,

I2 ≥
d∫

c

b∫

a

∂vP
∂y

(

α21
∂vP
∂x

+ α22
∂vP
∂y

)

dxdy.

Consequently,

aP (vP ,�vP ) ≥
b∫

a

2∫

c

(�vP )Tα�vPdxdy.

The inequality (3.16) follows from the positive definitness of α.

Summarizing the above two lemmas, we obtain the following inf-sup property.

Theorem 3.8 Let P be a shape regular and quasi-uniform partition with the meshsize h. If
the coefficient α is piecewise constant with respect to P , then the inf-sup property

inf
vP∈Ur

P
sup

wP ′ ∈VP ′

aP (vP , wP ′)

|vP |1|wP ′ |P ′
� 1 (3.20)

holds for all h. If α is piecewise continuous with respect to P , then (3.20) holds when the
meshsize h is sufficiently small.

Proof When α is piecewise constant, by (3.16) and (3.9), for any vP ∈ Ur
P ,

sup
wP ′ ∈VP ′

aP (vP , wP ′)

|wP ′ |P ′
≥ aP (vP ,�vP )

|�vP |P ′
≥ α0|vP |21

|�vP |P ′
� |vP |1.

The inf-sup condition (3.20) is proved.
When α is only piecewise continuous, let

ᾱ(x, y) = 1

|τ |
∫

τ

α(x, y)dxdy, ∀(x, y) ∈ τ ∈ P
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and denote the piecewise modulus of continuity of α by

mP (α, h) = sup
{∣
∣α(x1)− α(x2)

∣
∣ : ∣

∣x1 − x2
∣
∣ ≤ h, ∀x1, x2 ∈ τ, ∀ τ ∈ P

}

.

The fact that α is piecewise continuous implies that mP (α, h) converges to 0 when h goes
to 0. Since ᾱ is piecewise constant, by Lemma 3.6,

āP (vP ,�vP ) :=
∑

E∈EP ′
[�vP ]

∫

E

ᾱ
∂v

∂n
ds ≥ α0|vP |21.

On the other hand, by the same arguments in Theorem 3.1, we have

|aP (vP ,�vP )− āP (vP ,�vP )| � mP (α, h)|vP |21,
Then when h is sufficiently small,

aP (vP ,�vP ) ≥ (α0 − cmP (α, h))
∣
∣vP

∣
∣2
1,� ≥ α0

2

∣
∣vP

∣
∣2
1,�.

The inf-sup condition (3.20) is proved. ��
3.3 H1 Error Estimate

We begin with some preparations. First, by the inverse inequality,
∣
∣vP

∣
∣P ∼ ∣

∣vP
∣
∣
1, ∀vP ∈ Ur

P .

With this equivalence, we deduce from the inf-sup condition (3.20) that

inf
vP∈Ur

P
sup

wP ′ ∈VP ′

aP (vP , wP ′)

|vP |P |wP ′ |P ′
≥ c0, (3.21)

where the constant c0 = c0(r) depends only on r .
Let uI ∈ Ur

P be the interpolation of u that satisfies

uI (P) = u(P), ∀P ∈ NL .

Note that similar interpolations have been used in the literature for superconvergence analysis,
see, e.g., [41,42] for the one-dimensional situation.

We are now ready to present our main result.

Theorem 3.9 Let u ∈ H1
0 (�) ∩ H2

P (�) be the solution of (2.1) and (2.2), uP the solution
of (2.5). Then for sufficiently small h,

∣
∣u − uP

∣
∣P ≤ M

c0
inf

vP∈UP

∣
∣u − vP

∣
∣P . (3.22)

Consequently, if u ∈ Hr+1(�),

|u − uP |1 � hr |u|r+1, (3.23)

where the hidden constant is independent of the mesh size h.

Proof By (3.2), (3.3) and the inf-sup condition (3.21), for all vP ∈ UP , there holds

∣
∣u − uP

∣
∣P ≤ ∣

∣u − vP
∣
∣P + ∣

∣vP − uP
∣
∣P ≤

(

1 + M

c0

)
∣
∣u − vP

∣
∣P .
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Using a technique in Xu and Zikatanov [38], the constant 1 + M
c0

in the above inequality can

be reduced to M
c0

. That is, (3.22) holds.
We conclude from the definition of | · |P and (3.22) that

|u − uP |1 ≤ |u − uP |P � inf
vP∈Ur

P
|u − vP |P .

Note that

inf
vP∈Ur

P
|u − vP |P ≤ |u − uI |1 + h|u − uI |2,

where uI is the Lagrange interpolation of u at the Lobatto points in the trial space Ur
P . By

the standard approximation theory, we obtain the estimate (3.23). ��
3.4 Superconvergence and L2 Error Estimates

We first present a superconvergence result and then use it to establish our L2 error estimate.

Theorem 3.10 Assume that u ∈ H1
0 (�) ∩ Hr+2(�) is the solution of (2.1)–(2.2), and uP

is the solution of the FV scheme (2.5). Then for all wP ′ ∈ VP ′ ,

|aP (u − uI , wP ′)| � hr+1|u|r+2,P |wP ′ |P ′ , (3.24)

where |u|r+2,P =
(
∑

τ∈P |u|2r+2,τ

) 1
2
. Consequently,

|uI − uP |1 � hr+1|u|r+2,P . (3.25)

Proof We can derive the following inequality by the standard superconvergence argument,
see, e.g., [43], for all τ ∈ P, i, j ∈ Zp ,
∥
∥
∥
∥

∂(u − uI )

∂x
(gτx,i , ·)

∥
∥
∥
∥

L∞[gτy, j ,g
τ
y, j+1]

,

∥
∥
∥
∥

∂(u − uI )

∂y
(·, gτy, j )

∥
∥
∥
∥

L∞[gτx,i ,gτx,i+1]
� hr |u|r+2,1,τ ,

(3.26)
It follows from (3.1) that

∣
∣ap(u − uI , wp)| ≤ ‖α‖∞|wp|p

⎛

⎝
∑

E∈Ep

hE

∫

E

(
∂(u − uI )

∂n

)2

ds

⎞

⎠

1
2

� hr+1|wp|p|u|r+2,P ,
where in the last step we have used (3.26) and the fact |u|r+2,1,τ � h

1
2 |u|r+2,τ

We next show (3.25). By the inf-sup condition (3.20),

|uI − u p|1 � sup
wp∈Vp

ap(u p − uI , wp)

|wp|p
= sup
wp∈Vp

ap(u − uI , wp)

|wp|p
.

Combining the above inequality with (3.24), we derive (3.25). ��
As a direct consequence of the superconvergence result (3.25), we have the following L2

estimate.

Theorem 3.11 Assume that u ∈ H1
0 (�) ∩ Hr+2(�) is the solution of (2.1)–(2.2), and uP

is the solution of the FV scheme (2.5), then there holds

‖u − uP‖0 � hr+1‖u‖r+2. (3.27)
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Fig. 5 r = 2

Proof By the triangle inequality,

‖u − uP‖0 ≤ ‖u − uI ‖0 + ‖uP − uI ‖0

where uI is the interpolation of u given in the previous subsection.
Since uI = uP = 0 on ∂�, we have by the Poincaré inequality that

‖uP − uI ‖0 � |uP − uI |1 � hr+1|u|r+2.

Moreover,

‖u − uI ‖0 � hr+1‖u‖r+1 ≤ hr+1‖u‖r+2.

Then we have (3.27). ��

Remark 3.12 In the above L2 error estimate, we do not need to use the so-called Aubin–
Nitsche techniques.

Remark 3.13 Comparing with most results in the literature for lower-order FVM, our concern
here is higher-order method. To the best of our knowledge, the superconvergence result and
even optimal convergence result for the arbitrary order of the FVM in our paper has not
been reported in the literature. Apparently, some regularity assumption has to be made in
order to realize the high-order convergence rate. Of course, the restrictive global regularity
assumption makes the method less practical. However, it is a common practice to apply local
mesh refinement and adaptive procedure to overcome this difficulty.

Remark 3.14 Regarding the Remark 3.7, all the results in Theorems 3.8–3.11 can be extended
to the general case that α is a positive definite piecewise continuous matrix.

4 Numerical Results

In this section, we present a numerical example to validate the theoretical results proved
in previous sections. We consider (2.1)–(2.2) with α = 1 and � = [0, 1]2. We choose the
right-hand side function

f (x, y) = 2π2 sin πx sin πy, (x, y) ∈ [0, 1]2
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Fig. 6 r = 3

Fig. 7 r = 4

Fig. 8 r = 5

which allows the exact solution

u(x, y) = sin πx sin πy, (x, y) ∈ [0, 1]2.

We use FV schemes (2.5) with r = 2, 3, 4, 5 to compute FVM approximate solutions of u. The
partition P j , j = 1, . . . , 6, are obtained by uniformly refining the unite square [0, 1]2. For
simplicity, we write u j , instead of uP j , as the finite volume solution uP j ∈ Ur

P j
. Moreover,

we denote by h j the meshsize of P j .
The numerical results are demonstrated in Figs. 5, 6, 7, and 8, respectively. In these figures,

the horizontal coordinate always indicate the quantity −log h j , while the vertical coordinate
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present the logarithm of errors. We depict hr
j by the solid curve with ‘�’ and depict h(r+1)

j
by the dash line. We depict |u − u j |H1 by the solid curve with ‘�’, ‖u − u j‖L2 by the solid
curve with ‘�’, and |uI − u j |H1 by the solid curve with ‘∗’. We observe that |u − u j |H1

decays with the convergence rate hr
j which supports our theory (3.23). We also observe that

both ‖u − u j‖L2 and |uI − u j |H1 decay with h(r+1)
j which support our L2 estimate (3.27)

and superconvergene result (3.25), respectively.

5 Conclusions and Future Works

The design and analysis of high-order FV schemes are challenging tasks. This paper is the
second one in its series that attempts to set up a mathematical foundation for a family of high
order FV schemes. In a previous work [9], we studied convergence and superconvergence
properties of FV schemes of any order for the one-dimensional elliptic equations. In this
article, we only report our results for rectangular meshes. In a forthcoming paper [40], we
extend our results for the rectangular mesh to general quadrilateral meshes with rather loose
mesh conditions.

The higher dimensional case is fundamentally different from, and much more complicated
than the one dimensional case. We would like to stress that the proof in the current paper is
not a simple generalization of the one dimensional situation. The traditional tensor-product
does not apply.

We also would like to mention that the emphases of the rectangular mesh and general arbi-
trary quadrilateral mesh papers are different. In the current rectangular paper, the emphasis
is on arbitrary order instead of a case-by-case study for quadratic, cubic, etc.; in the quadri-
lateral paper, the emphasis is on the nearly arbitrary mesh. The main difficulty is that for
unstructured meshes, we are unable to determine the ordering, and the situation is much more
complicated. The analysis involves a lot of tedious topological and geometrical discussions.
Moreover, for an arbitrary quadrilateral mesh, the transformation from the reference square
to an arbitrary quadrilateral is no longer an affine mapping. As a consequence, the integrand
in the transferred bilinear form are not polynomials anymore. We have to take into account
of residual of the numerical quadrature. Special care and new design must be taken for the
analysis of FVM on a general arbitrary quadrilateral mesh.
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