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Abstract In this paper, we propose a spectral method for the n-dimensional Navier–Stokes
equations with slip boundary conditions by using divergence-free base functions. The numeri-
cal solutions fulfill the incompressibility and the physical boundary conditions automatically.
Therefore, we need neither the artificial compressibility method nor the projection method.
Moreover, we only have to evaluate the unknown coefficients of expansions of n − 1 com-
ponents of the velocity. These facts simplify actual computation and numerical analysis
essentially, and also save computational time. As the mathematical foundation of this new
approach, we establish some approximation results, with which we prove the spectral accu-
racy in space of the proposed algorithm. Numerical results demonstrate its high efficiency
and coincide the analysis very well. The main idea, the approximation results and the tech-
niques developed in this paper are also applicable to numerical simulations of other problems
with divergence-free solutions, such as certain partial differential equations describing
electro-magnetic fields.
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1 Introduction

The Navier–Stokes equations play an important role in studying incompressible viscous fluid
flows, see, e.g., [28,29,36]. We were mostly concerned with the fluid flows with non-slip
boundary conditions. But, in some practical cases, we have to consider slip boundary con-
ditions. Ma and Wang [30,31] discussed steady problems with slip boundary conditions.
Guermond and Quartpelle [10], and Orszag et al.[34] dealt with a special problem with sim-
ilar boundary conditions. Mucha [33] studied the fluid flows in an infinite pipe, with more
general boundary conditions. Recently, Guo [16] investigated the n-dimensional Navier–
Stokes equations with slip boundary conditions, and proved the existence, uniqueness and
regularity of solutions. On the other hand, in various numerical methods with domain decom-
positions, we should impose other kinds of boundary conditions on the interfaces of adjacent
subdomains, see Feitauer and Schwab [6], and Gatica and Hsiao [7]. We also refer to the
work of John and Liakos [26].

In numerical simulations of incompressible viscous fluid flows, we usually considered
the primitive form of the Navier–Stokes equations with the velocity and the pressure, for
which finite difference method and finite element method have been used successfully, see,
[3,4,8,13,27,28,35] and the references therein. Some authors also provided spectral schemes
for the Navier–Stokes equations, see, e.g., [1,2,12,14,19,24,32]. Whereas, all of the above
work are only available for the fluid flows with periodical or non-slip boundary conditions.
As we know, in actual computations, the main difficulty for non-periodical problems is
how to ensure the incompressibility of numerical solutions. For finite difference method,
we approximated the incompressibility by certain finite difference equation as in [13,28].
For finite element method, we approximated a weak form of the continuity equations as in
[8]. But for spectral method, it is not easy to construct non-periodical and divergence-free
base functions. In order to remove this trouble, we may adopt the artificial compressibility
method given by Chorin [3], which brings additional errors unfortunately. The mostly used
method is the projection method started by Chorin [4] and Téman [35]. However, it is non-
trivial to deal with the value of pressure on the boundaries, cf. [9]. Meanwhile, some authors
designed spectral schemes based on the stream function form of the Navier–Stokes equations,
see [17,23]. In this case, the numerical solutions fulfill the incompressibility and the non-
slip boundary conditions automatically. But, we need to solve nonlinear partial differential
equations of fourth order. On the other hand, the vorticity-stream function form of the Navier–
Stokes equations was also adopted for numerical simulations of incompressible fluid flows,
see [11,29,36] and the references therein. Whereas, for the fluid flows with non-slip boundary
conditions, how to deal with the boundary values of vorticity is rather a problem. In some
literatures, one assumed that the value of vorticity is given on the boundary. Indeed, this
treatment is not physical and so also brings additional errors.

In this work, we investigate the spectral method for the Navier–Stokes equations with slip
boundary conditions. The main strategy is to use the generalized Jacobi functions proposed
by Guo et al. [20,21] recently. More precisely, we introduce an orthogonal family induced
by the generalized Jacobi functions, and then use it to approximate the unknown velocity.
Since these base functions are divergence-free, the corresponding numerical solutions fulfill
the incompressibility automatically. Therefore, in this case, we need neither the artificial
compressibility method nor the projection method. This fact simplifies actual computation
and numerical analysis essentially. Moreover, for the n-dimensional problems, we only need
to evaluate the unknown coefficients of expansions of n − 1 components of the velocity
actually. This feature also saves computational time. As the mathematical foundation of the
proposed new approach, we establish some approximation results, with which we prove the
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spectral accuracy in space of the proposed new method. The numerical results demonstrate its
high effectiveness and coincide with the analysis very well. The main idea, the approximation
results and the techniques developed in this paper are also applicable to numerical simulations
of other problems with divergence-free solutions, such as certain partial differential equations
describing electro-magnetic fields.

This paper is organized as follows. The next section is for preliminaries. In Sect. 3,
we provide the spectral scheme and present some numerical results. Section 4 is for some
approximation results. In Sect. 5, we prove the spectral accuracy in space of the numerical
solutions of two dimensional fluid flows. In Sect. 6, we analyze the numerical error for three
dimensional fluid flows. The final section is for concluding remarks, as well as discussions
on the possibility of using the proposed method for the Darwin model of approximation to
the Maxwell equations, cf. Degond and Raviat [5].

2 Preliminaries

In this section, we introduce a new orthogonal system, and explore the reasonable expansions
of divergence free functions, which play important roles in designing and analyzing the
spectral method for the Navier–Stokes equations with slip boundary conditions.

2.1 A New Orthogonal System in One Dimension

Let I = { x | |x | < 1} and χ(x) be a certain weight function. For any integer r ≥ 0, we define
the weighted Sobolev spaces Hr

χ (I ) and Hr
0,χ (I ) in the usual way, with the inner product

(u, v)Hr
χ (I ), the semi-norm |v|Hr

χ (I ) and the norm ||v||Hr
χ (I ). In particular, L2

χ (I ) = H0
χ (I ),

with the inner product (u, v)L2
χ (I )

and the norm ||v||L2
χ (I )

. For simplicity, we omit the subscript
χ in notations whenever χ(x) ≡ 1.

Let α, β > −1. The Jacobi polynomials are given by

(1 − x)α(1 + x)β J (α,β)l (x) = (−1)l

2l l! ∂
l
x ((1 − x)l+α(1 + x)l+β), l ≥ 0. (2.1)

In particular, the Legendre polynomials Ll(x) = J (0,0)l (x), l ≥ 0. We have

∂x J (α,β)l (x) = 1

2
(l + α + β + 1)J (α+1,β+1)

l−1 (x), l ≥ 1. (2.2)

The Jacobi weight function χ(α,β)(x) = (1 − x)α(1 + x)β . We have
∫

I

J (α,β)l (x)J (α,β)
l ′ (x)χ(α,β)(x)dx = γ

(α,β)
l δl,l ′ , l, l

′ ≥ 0, (2.3)

where δl,l ′ is the Kronecker symbol, and

γ
(α,β)
l = 2α+β+1�(l + α + 1)�(l + β + 1)

(2l + α + β + 1)�(l + 1)�(l + α + β + 1)
. (2.4)

We introduce the polynomials

Gl(x) = (−1)l

2l−2(l − 1)!∂
l−2
x ((1 − x2)l−1), l ≥ 2. (2.5)
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Clearly, Gl(±1) = 0. Moreover, we see from (2.1) that

Gl(x) = 1

l − 1
(1 − x2)J (1,1)l−2 (x), l ≥ 2. (2.6)

The polynomial (l − 1)Gl(x) is exactly the same as the generalized Jacobi function
j (−1,−1)
l (x) proposed in [20,21]. In fact, in order to derive the divergence-free basis simply,

we use the notation Gl(x) = 1

l − 1
j (−1,−1)
l (x). Thus, by virtue of (2.16) of [21], we have

∂x Gl+1(x) = −2Ll(x), l ≥ 1. (2.7)

Thanks to (2.6) and (2.2) with α = β = 0, we obtain

Gl+1(x) = 2

l(l + 1)
(1 − x2)∂x Ll(x), l ≥ 1. (2.8)

On the other hand, we use (B.9) of [21] to derive that

Gl+1(x) = 2

2l + 1
(Ll−1(x)− Ll+1(x)), l ≥ 1. (2.9)

Obviously, ∂k
x Gl+1(x) = 0 for k > l +1 ≥ 2. Furthermore, we use (2.7) and (2.2) repeatedly

to obtain

∂k
x Gl+1(x) = − (l + k − 1)!

2k−2l! J (k−1,k−1)
l−k+1 (x), k ≤ l + 1, l ≥ 1. (2.10)

Consequently, we use (2.10) and (2.3) to obtain
∫

I

∂k
x Gl+1(x)∂

k
x Gl ′+1(x)(1 − x2)k−1dx = Dl,kδl,l ′ , k ≤ l + 1, l ≥ 1, (2.11)

with

Dl,k = 8(l + k − 1)!
(2l + 1)(l − k + 1)! , k ≤ l + 1, l ≥ 1. (2.12)

In numerical analysis of spectral method for incompressible flows with slip boundary
conditions, we need some approximation results in one dimension. For any non-negative
integer N, P N (I ) stands for the set of all algebraic polynomials of degree at most N, and

QN (I ) = span { Gl+1(x) | 1 ≤ l ≤ N − 1} .
The orthogonal projection PN ,I : L2(I ) → PN (I ) is defined by

(PN ,I v − v, φ)L2(I ) = 0, ∀ φ ∈ PN (I ). (2.13)

The orthogonal projection P̃N ,I : L2
χ(−1,−1) (I ) → QN (I ) is defined by

(P̃N ,I v − v, φ)L2
χ(−1,−1) (I )

= 0, ∀ φ ∈ QN (I ). (2.14)

The orthogonal projection P1,0
N ,I : H1

0 (I ) → QN (I ) is defined by

(∂x (P
1,0
N ,I v − v), ∂xφ)L2(I ) = 0, ∀ φ ∈ QN (I ). (2.15)
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By virtue of Theorems 2.1 of [22] (also cf. [15]), we have that if v ∈ L2(I ), ∂r
xv ∈

L2
χ(r,r)

(I ), integers r ≥ 0 and r ≤ N + 1, then

‖PN ,I v − v‖L2(I ) ≤ cN−r‖∂r
xv‖L2

χ(r,r)
(I ). (2.16)

Since the basis functions lGl+1(x) are exactly the same as the generalized Jacobi functions
j (−1,−1)
l+1 (x), we know from (2.39) of [21] that if v ∈ L2

χ(−1,−1) (I ), ∂
r
xv ∈ L2

χ(r−1,r−1) (I ),
integers N ≥ 2, 1 ≤ r ≤ N + 1 and 0 ≤ μ ≤ r , then

‖∂μx (P̃N ,I v − v)‖L2
χ(μ−1,μ−1) (I )

≤ cNμ−r‖∂r
xv‖L2

χ(r−1,r−1) (I )
. (2.17)

Moreover, it was shown in (3.10) of [21] that

P1,0
N ,I v = P̃N ,I v, ∀ v ∈ H1

0 (I ). (2.18)

Accordingly, we obtain from (2.17) that if v ∈ H1
0 (I ), ∂

r
xv ∈ L2

χ(r−1,r−1) (I ), integers N ≥ 2
and 1 ≤ r ≤ N + 1, then

‖∂μx (P1,0
N ,I v − v)‖L2

χ(μ−1,μ−1) (I )
≤ cNμ−r‖∂r

xv‖L2
χ(r−1,r−1) (I )

, μ = 0, 1. (2.19)

2.2 Expansions of Divergence Free Functions

Let x = (x1, x2, . . . , xn)
T ,
 = { x | |xi | < 1, 1 ≤ i ≤ n} with the boundary ∂
, and 
̄ =


 ∪ ∂
. Also, let χi (x) = (1 − x2
i ) and the space

L2
χ−1

i
(
) =

{
v | v is measurable on 
 and ‖v‖L2

χ
−1
i
(
) < ∞

}
,

equipped with the following inner product and norm,

(u, v)L2
χ

−1
i
(
) =

∫




(1 − x2
i )

−1u(x)v(x)dx, ‖v‖L2
χ

−1
i
(
) = (v, v)

1
2

L2
χ

−1
i
(
)
, 1 ≤ i ≤ n.

The vector function v(x) = (v(1)(x), v(2)(x), . . . , v(n)(x))T . We introduce the space

W (
) =
{

v( x) | v( j)(x) ∈ L2
χ−1

j
(
), 1 ≤ j ≤ n

}
.

If v ∈ W (
), then

v( j)(x) = 0, for |x j | = 1, 1 ≤ j ≤ n. (2.20)

Let li be non-negative integers and l = (l1, l2, . . . , ln)T . For any l with l j ≥ 1 and
li ≥ 0(i �= j), we introduce the following polynomials (cf. [16]),

ψ
( j)
l (x) = ψ

( j)
l1,l2,...,ln

(x) = Gl j +1(x j )
∏

1≤i≤n
i �= j

Lli (xi ). (2.21)

The set of all ψ( j)
l (x) is a complete L2

χ−1
j
(
)-orthogonal system. Thanks to (2.3) with α =

β = 0 and (2.11) with k = 0, we deduce that for 1 ≤ j ≤ n,∫




(1 − x2
j )

−1ψ
( j)
l (x)ψ( j)

l ′ (x)dx = η
( j)
l δl,l ′ , l j ≥ 1 and li ≥ 0 for i �= j, (2.22)
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where δl,l ′ is the n-dimensional Kronecker symbol, and

η
( j)
l =η( j)

l1,l2,...,ln
= 2n+2

l j (l j + 1)

( ∏
1≤ν≤n

(2lν + 1)
)−1

, l j ≥ 1 and li ≥ 0 for i �= j. (2.23)

For any v ∈ W (
), its components can be expanded as

v( j)(x) =
∞∑

l j =1

∑
1≤i≤n

i �= j

∞∑
li =0

v̂
( j)
l ψ

( j)
l (x) =

∞∑
l j =1

∑
1≤i≤n

i �= j

∞∑
li =0

v̂
( j)
l1,l2,...,ln

ψ
( j)
l1,l2,...,ln

(x), 1 ≤ j ≤ n,

(2.24)

where

v̂
( j)
l = v̂

( j)
l1,l2,...,ln

= 1

η
( j)
l

∫




(1 − x2
j )

−1v( j)(x)ψ( j)
l (x)dx. (2.25)

Now, by using (2.25), (2.21), (2.8), an integration by parts and (2.23) successively, we
derive that if l j ≥ 1 and li ≥ 0 for i �= j , then

v̂
( j)
l = 2

l j (l j + 1)η( j)
l

∫




v( j)(x)∂x j Ll j (x j )

⎛
⎜⎜⎝

∏
1≤ν≤n
ν �= j

Llν (xν)

⎞
⎟⎟⎠ dx

= − 2

l j (l j + 1)η( j)
l

∫




∂x j v
( j)(x)

⎛
⎝ ∏

1≤ν≤n

Llν (xν)

⎞
⎠ dx

= − 1

2n+1

⎛
⎝ ∏

1≤ν≤n

(2lν + 1)

⎞
⎠
∫




∂x j v
( j)(x)

⎛
⎝ ∏

1≤ν≤n

Llν (xν)

⎞
⎠ dx. (2.26)

Due to (2.26), we find that if v ∈ W (
),∇ · v(x) = 0 and all li ≥ 1, then

n∑
j=1

v̂
( j)
l = − 1

2n+1

⎛
⎝ ∏

1≤ν≤n

(2lν + 1)

⎞
⎠
∫




∇ · v(x)

⎛
⎝ ∏

1≤ν≤n

Llν (xν)

⎞
⎠ dx = 0. (2.27)

Next, let B j be the set consisting of all l = (l1, l2, . . . , ln)T with l j ≥ 1, and at least one
component li (i �= j) vanishes. Then, we use (2.24), (2.7) and (2.27) successively to deduce
that

∇ · v(x) =
n∑

j=1

∞∑
l j =1

∑
1≤i≤n

i �= j

∞∑
li =0

v̂
( j)
l ∂x jψ

( j)
l (x) = −2

n∑
j=1

∑
l∈B j

v̂
( j)
l

⎛
⎝ ∏

1≤ν≤n

Llν (xν)

⎞
⎠ . (2.28)

We multiply (2.28) by
∏

1≤ν≤n Ll ′ν (xν) and integrate the resulting equality over the domain


. Then, we use (2.3) with α = β = 0 to obtain v̂( j)
l ′ = 0 for l ′ ∈ B j .

The previous statements imply that if v ∈ W (
) and ∇ · v(x) = 0 on 
̄, then we could
expand the components of v(x) as

v( j)(x) =
n∑

i=1

∞∑
li =1

v̂
( j)
l ψ

( j)
l (x) =

n∑
i=1

∞∑
li =1

v̂
( j)
l1,l2,...,ln

ψ
( j)
l1,l2,...,ln

(x), 1 ≤ j ≤ n, (2.29)
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where the coefficients v̂( j)
l satisfy the equality

n∑
j=1

v̂
( j)
l =

n∑
j=1

v̂
( j)
l1,l2,...,ln

= 0, for all li ≥ 1, 1 ≤ i ≤ n. (2.30)

3 Spectral Method for Flows with Slip Boundary Conditions

3.1 Spectral Scheme

We denote the velocity by U(x, t) = (U (1)(x, t),U (2)(x, t), . . . ,U (n)(x, t))T , and the pres-
sure by P(x, t). The constant ν > 0 stands for the kinetic viscosity. The body force
f(x, t) = ( f (1)(x, t), f (2)(x, t), . . . , f (n)(x, t))T . U0(x) describes the initial state of veloc-
ity. We denote by n the unit vector in the outward normal direction, and denote by τ the
unit vector in the tangential direction on ∂
. The notation ∂n means the outward normal
derivative of U(x, t) on ∂
. Let T > 0. The primitive form of Navier–Stokes equations with
slip boundary conditions described in [16,30,31] is as follows,
⎧⎪⎪⎨
⎪⎪⎩

∂t U(x, t)+ (U(x, t) · ∇)U(x, t)− ν�U(x, t)+ ∇ P(x, t) = f(x, t), in 
, 0 < t ≤ T,
∇ · U(x, t) = 0, on 
̄, 0 ≤ t ≤ T,
U(x, t) · n = ∂n(U(x, t) · τ ) = 0, on ∂
, 0 ≤ t ≤ T,
U(x, 0) = U0(x), on 
̄.

(3.1)

Let L2(
) = (L2(
))n and H1(
) = (H1(
))n . For any vector functions u, v ∈ L2(
),
the inner product and the norm are given by

(u, v)L2(
) =
n∑

j=1

(u( j), v( j))L2(
), ||v||L2(
) = (v, v)
1
2
L2(
)

.

We define the inner product (u, v)Hr (
), the semi-norm |v|Hr (
) and the norm ||v||Hr (
)

similarly.
We shall use the following notations,

a(u,w) =
n∑

j=1

n∑
i=1

∫




∂xi u
( j)(x)∂xiw

( j)(x)dx, ∀ u,w ∈ H1(
),

b(u, z,w) =
n∑

j=1

n∑
i=1

∫




z(i)(x)∂xi u
( j)(x)w( j)(x)dx, ∀ u, z,w ∈ H1(
).

According to (2) of [16], we know that if w(x) · n = ∂n(w(x) · τ ) = 0 on ∂
, then

(�u,w)L2(
) = −a(u,w). (3.2)

Thanks to (3) of [16], we assert that if u,w, z ∈ H1(
),∇ · z(x) = 0 in 
 and z(x) · n = 0
on ∂
, then

b(u, z,w) = −b(w, z,u). (3.3)

123



256 J Sci Comput (2014) 58:249–274

Let

V (
) = {
w | w ∈ H1(
),∇ · w(x) = 0 on 
̄ and w(x) · n = 0 on ∂


}
,

H (
) = {
w | w ∈ L2(
),∇ · w(x) = 0 on 
̄ and w(x) · n = 0 on ∂


}
.

The dual space of V (
) is denoted by V ′(
).
By using (3.2) and (3.3), we derive a weak formulation of (3.1). It is to seek U ∈

L2(0, T ; V (
)) ∩ L∞(0, T ; H (
)), such that
{
(∂t U(t),w)L2(
) + b(U(t),U(t),w)+ νa(U(t),w) = (f(t),w)L2(
), ∀ w ∈ V (
), 0 < t ≤ T,

U(x, 0) = U0(x), on 
̄.

(3.4)

According to Theorem 2.1 of [16], we know that if U0 ∈ H (
) and f ∈ L2(0, T ; V ′(
)),
then (3.4) admits at least one solution. Especially, such solution is unique for n = 2.
Moreover, it was shown in Theorem 4.1 of [16] that if n = 3 and U ∈ L2(0, t; V (
))⋂

L8(0, T ; L4(
))
⋂

L∞(0, T ; H (
)), then it is the unique solution of (3.4). More results
on the regularity of solutions could be found in [16].

We are going to design the spectral method for solving (3.4). For this purpose, we introduce
the following finite-dimensional sets,

Q( j)
N (
) = span

{
ψ
( j)
l (x) | 1 ≤ li ≤ N , 1 ≤ i ≤ n

}
, 1 ≤ j ≤ n,

QN (
) = Q(1)
N (
)⊗ Q(2)

N (
)⊗ · · · ⊗ Q(n)
N (
), VN (
) = V (
)

⋂
QN (
).

Let χ−1(x) = (χ−1
1 (x1), χ

−1
2 (x2), . . . , χ

−1
n (xn)). We define the space

L2
χ−1(
) = L2

χ−1
1
(
)⊗ L2

χ−1
2
(
)⊗ · · · ⊗ L2

χ−1
n
(
),

with the following inner product and norm,

(u, v)L2
χ−1 (
)

=
n∑

j=1

(u( j), v( j))L2
χ

−1
j
(
), ||v||L2

χ−1 (
)
= (v, v)

1
2

L2
χ−1 (
)

.

The orthogonal projection P̃N ,
 : L2
χ−1(
) → VN (
) is defined by

(P̃N ,
v − v, φ)L2
χ−1 (
)

= 0, ∀ φ ∈ VN (
). (3.5)

The spectral scheme for solving (3.4) is to find uN (t) ∈ VN (
) for all 0 ≤ t ≤ T , such
that
{
(∂t uN (t), φ)L2(
)+b(uN (t),uN (t), φ)+νa(uN (t), φ)=(f(t), φ)L2(
), ∀ φ ∈ VN (
), 0 < t ≤ T,
uN (x, 0) = u0,N (x) = P̃N ,
U0(x), on 
̄.

(3.6)

We now check the boundedness of numerical solutions. We set

E(v, σ, t) = ||v(t)||2L2(
)
+ σ

t∫

0

|v(ξ)|2H1(
)
dξ, σ ≥ 0. (3.7)
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Let H−1(
) be the dual space of H1(
). Taking φ = 2uN (t) in (3.6), we use (3.3) and the
Poincaré inequality to deduce that

∂t‖uN (t)‖2
L2(
)

+ 2ν|uN (t)|2H1(
)
≤ c‖f(t)‖H−1(
)‖uN (t)‖H1(
)

≤ ν|uN (t)|2H1(
)
+ c

ν
‖f(t)‖2

H−1(
)
.

Integrating the above inequality with respect to t , we reach that

E(uN , ν, t) ≤ ‖u0,N ‖2
L2(
)

+ c

ν

t∫

0

‖f(ξ)‖2
H−1(
)

dξ. (3.8)

Remark 3.1 We may consider the slip boundary conditions as

U(x, t) · n = 0, ∂n(U(x, t) · τ ) = g(x, t), on ∂
, 0 < t ≤ T .

More precisely, let Si = { x | xi = ±1} and ∂nU ( j)(x, t) = g( j)
i (x, t) on Si , for i �= j, 1 ≤

i, j ≤ n. Besides,

Q(g(t),w) =
n∑

j=1

∑
1≤i≤n

i �= j

∫

Si

g( j)
i (x, t)w( j)(x)d S.

Then, the weak formulation of the related problem is to seek U ∈ L2(0, T ; V (
)) ∩
L∞(0, T ; H (
)), such that⎧⎨
⎩
(∂t U(t), w)L2(
) + b(U(t),U(t),w)+ νa(U(t),w)

= Q(g(t),w)+ (f(t),w)L2(
), ∀ w ∈ V (
), 0 < t ≤ T,
U(x, 0) = U0(x), on 
̄.

(3.9)

We can deal with the existence, uniqueness and regularity of solutions of the above problem
by an argument similar to the proof of Theorems 2.1 and 4.1 of [16]. The corresponding
spectral scheme is to find uN (t) ∈ VN (
) for all 0 ≤ t ≤ T , such that⎧⎨
⎩
(∂t uN (t), φ)L2(
) + b(uN (t), uN (t), φ)+ νa(uN (t), φ)

= Q(g(t), φ)+ (f(t), φ)L2(
), ∀ φ ∈ VN (
), 0 < t ≤ T,
uN (x, 0) = u0,N (x) = P̃N ,
U0(x), on 
̄.

(3.10)

Moreover,

E(uN , ν, t) ≤ ‖u0,N ‖2
L2(
)

+ c

ν

t∫

0

(‖f(ξ)‖2
H−1(
)

+
∑

1≤i≤n
i �= j

||g( j)
i ||2L2(Si )

)dξ.

3.2 Numerical Implementation

In this subsection, we describe the numerical implementation for the spectral scheme (3.6).
For simplicity, we focus on the two-dimensional fluid flows.

Let ψ̃l1,l2(x) = (ψ̃
(1)
l1,l2

(x), ψ̃(2)l1,l2
(x))T with the components ψ̃(1)l1,l2

(x) = ψ
(1)
l1,l2

(x) and

ψ̃
(2)
l1,l2

(x) = −ψ(2)l1,l2
(x). Due to (2.21) and (2.7), we have ∇ · ψ̃l1,l2(x) = 0. Thus, they

are divergence-free base functions. According to (2.29) and (2.30), we could expand the
components of the numerical solution uN (x, t) of (3.6) with n = 2, as follows,

u( j)
N (x, t) =

N∑
l1=1

N∑
l2=1

dN ,l1,l2(t)ψ̃
( j)
l1,l2

(x), j = 1, 2. (3.11)
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Clearly, ∇ · uN (x, t) = 0. In other words, the numerical solution uN (x, t) fulfills the incom-
pressibility automatically. Moreover, with the base functions ψ̃( j)

l1,l2
(x), the expansions of the

two components u( j)
N (x, t) ( j = 1, 2) possess the same coefficients dN ,l1,l2(t). This feature

saves the work essentially.
By inserting the expansions (3.11) into (3.6) with φ(x) = ψ̃k1,k2(x), we obtain the fol-

lowing nonlinear system of ordinary differential equations,

N∑
l1=1

N∑
l2=1

ak1,k2,l1,l2∂t dN ,l1,l2(t)+ ν

N∑
l1=1

N∑
l2=1

bk1,k2,l1,l2 dN ,l1,l2(t)

= qk1,k2(t)+ gk1,k2(t), 1 ≤ k1, k2 ≤ N , (3.12)

where

ak1,k2,l1,l2 =
∑
j=1,2

∫∫




ψ̃
( j)
k1,k2

(x1, x2)ψ̃
( j)
l1,l2

(x1, x2)dx1dx2, 1 ≤ k1, k2 ≤ N ,

bk1,k2,l1,l2 =
∑
j=1,2

∑
i=1,2

∫∫




∂xi ψ̃
( j)
k1,k2

(x1, x2)∂xi ψ̃
( j)
l1,l2

(x1, x2)dx1dx2, 1 ≤ k1, k2 ≤ N ,

qk1,k2(t) = −
∑
j=1,2

∫∫




(
u(1)N (x1, x2, t)∂x1 u( j)

N (x1, x2, t)

+u(2)N (x1, x2, t)∂x2 u( j)
N (x1, x2, t)

)
ψ̃
( j)
k1,k2

(x1, x2)dx1dx2, 1 ≤ k1, k2 ≤ N ,

gk1,k2(t) =
2∑

j=1

∫∫




f ( j)(x1, x2, t)ψ̃( j)
k1,k2

(x1, x2)dx1dx2, 1 ≤ k1, k2 ≤ N .

Let cλ = 2

2λ+ 1
. Clearly,

1∫

−1

Lλ(z)Lμ(z)dz = cλδλ,μ. (3.13)

On the other hand, by virtue of (2.9) and (2.3) with α = β = 0, a calculation shows

1∫

−1

Gλ+1(z)Gμ+1(z)dz =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2cλcμ

(
1

2λ− 1
+ 1

2λ+ 3

)
, λ = μ,

−2cλcμ
1

2λ− 1
, λ = μ+ 2,

0, otherwise.

(3.14)

Therefore,

ak1,k2,l1,l2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2ck1 cl1 ck2

(
1

2k1 − 1
+ 1

2k1 + 3

)
+2ck2 cl2 ck1

(
1

2k2 − 1
+ 1

2k2 + 3

)
, k1 = l1, k2 = l2,

−2ck1 cl1 ck2

1

2k1 − 1
, k1 = l1 + 2, k2 = l2,

−2ck2 cl2 ck1

1

2k2 − 1
, k1 = l1, k2 = l2 + 2,

0, otherwise.
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Furthermore, we have

∂z Lλ(z) =

[
λ−1

2

]
∑
σ=0

(2λ− 4σ − 1)Lλ−2σ−1(z).

Let βλ,μ = min(λ, μ)(min(λ, μ)+1). With the aid of the above equality and (3.13), a careful
calculation leads to

1∫

−1

∂z Lλ(z)∂z Lμ(z)dz =
{
βλ,μ, if both of λ and μ are even (or odd),
0, otherwise.

(3.15)

Besides, we use (2.7) and (2.3) with α = β = 0 to obtain

1∫

−1

∂zGλ+1(z)∂zGμ+1(z)dz = 4cλδλ,μ. (3.16)

Thereby, we use (3.13)–(3.16) to deduce that

bk1,k2,l1,l2 =
3∑

σ=1

b(σ )k1,k2,l1,l2

where

b(1)k1,k2,l1,l2
=

{
8ck1 ck2 , k1 = l1, k2 = l2,
0, otherwise.

b(2)k1,k2,l1,l2
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2ck1 cl1

(
1

2k1 − 1
+ 1

2k1 + 3

)
βk2,l2 , k1 = l1, and both of l2 and k2 are even (or odd),

−2ck1 cl1
1

2k1 − 1
βk2,l2 , k1 = l1 + 2, and both of l2 and k2 are even (or odd),

0, otherwise.

b(3)k1,k2,l1,l2
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2ck2 cl2

(
1

2k2 − 1
+ 1

2k2 + 3

)
βk1,l1 , k2 = l2, and both of l1 and k1 are even (or odd),

−2ck2 cl2
1

2k2 − 1
βk1,l1 , k2 = l2 + 2, and both of l1 and k1 are even (or odd),

0, otherwise.

We could rewrite the system (3.12) as a compact matrix form.

Remark 3.2 For the n-dimensional flows, we may take the base functions

ψ̃l(x) = (ψ̃
(1)
l (x), ψ̃(2)l (x), . . . , ψ̃(n)l (x))T ,

with the components ψ̃( j)
l (x) = ψ

( j)
l (x) for 1 ≤ j ≤ n −1, and ψ̃(n)l (x) = −(n −1)ψ(n)l (x).

Then ∇ · ψ̃l(x) = 0. Accordingly, we expand the components of the numerical solution as

u( j)
N (x, t) =

∑
1≤i≤n

∑
1≤li ≤N

d( j)
N ,l(t)ψ̃

( j)
l (x), 1 ≤ j ≤ n − 1,

u(n)N (x, t) = 1

n − 1

∑
1≤i≤n

∑
1≤li ≤N

∑
1≤ j≤n−1

d( j)
N ,l(t)ψ̃

(n)
l (x).

Therefore, we only need to evaluate n − 1 groups of unknown coefficients d( j)
N ,l(t), 1 ≤ j ≤

n − 1. This is one of advantages of our new method.
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3.3 Numerical Results

We now use the spectral scheme (3.6) [or equivalently (3.12)] to solve problem (3.1) with
n = 2 numerically. In actual computation, we use the explicit fourth order Runge–Kutta
approximation in time, with the step size τ . The corresponding numerical solution is denoted
by uN ,τ (x, t) = (u(1)N ,τ (x, t), u(2)N ,τ (x, t))T . For description of numerical errors, we denote
the nodes and the weights of the Legendre–Gauss quadrature by ξi and ωi , respectively. The
numerical errors are measured by the quantity

EN ,τ (t) =
( N∑

i=0

N∑
j=0

(
(U (1)(ξi , ξ j , t)− u(1)N ,τ (ξi , ξ j , t))2

+(U (2)(ξi , ξ j , t)− u(2)N ,τ (ξi , ξ j , t))2
)
ωiω j

) 1
2 ≈ ‖U(t)− uN ,τ (t)‖L2(
).

We first take the test function U(x1, x2, t) with the components:

U (1)(x1, x2, t)=
(

1

12
x4

1 − 1

2
x2

1 + 5

12

)(
1

3
x3

2 − x2

)
+ √

t + 1 sin πx1 cosπx2,

U (2)(x1, x2, t)=−
(

1

3
x3

1 − x1

)(
1

12
x4

2 − 1

2
x2

2 + 5

12

)
− √

t + 1 cosπx1 sin πx2.

(3.17)

In Table 1, we list the numerical errors EN ,τ (1) of scheme (3.6) with different mode N and
time step τ . Obviously, the numerical errors decay fast when N increases and τ decreases.
It coincides very well with the analysis presented in Sect. 5, see the error estimate (5.12) of
this paper. We also observe that the spectral scheme (3.6) works well even for the flows with
small kinetic viscosity ν.

We next take the test function U(x1, x2, t) with the components:

U (1)(x1, x2, t)=−(1 − x2
1 )(−

1

2
x3

2 + 5

2
x2)e

− x2
1 +x2

2
4 − 6x2(1 − x2

1 )
3(1 − x2

2 )
2 sin kt,

U (2)(x1, x2, t)=(−1

2
x3

1 + 5

2
x1)(1 − x2

2 )e
− x2

1 +x2
2

4 + 6x1(1 − x2
2 )

3(1 − x2
1 )

2 sin kt.
(3.18)

In actual computation, we take k = 2. In Table 2, we list the numerical errors EN ,τ (1) of
scheme (3.6) with different mode N and time step τ . They indicate again the rapid conver-
gence of scheme (3.6) as N increases and τ decreases. This also confirms well the error
estimate of numerical solutions, see (5.12) of this paper.

Finally, we check the stability of long-time calculation of scheme (3.6). For instance,
we consider problem (3.1) with the test function (3.18). In Fig. 1, we plot the values of

Table 1 Numerical errors ENτ (1) of scheme (3.6) with test function (3.17)

ν = 10−2 ν = 10−4

τ = 0.01 τ = 0.001 τ = 0.0001 τ = 0.01 τ = 0.001 τ = 0.0001

N = 4 6.93E−2 6.93E−2 6.93E−2 6.98E−2 6.98E−2 6.98E−2

N = 8 1.37E−4 1.37E−4 1.37E−4 1.60E−4 1.60E−4 1.60E−4

N = 12 3.91E−8 3.91E−8 3.91E−8 5.33E−8 5.33E−8 5.33E−8

N = 16 7.81E−12 3.71E−12 3.71E−12 1.06E−11 5.61E−12 5.61E−12

N = 20 7.36E−12 4.73E−15 9.89E−15 9.65E−12 2.97E−14 1.65E−14
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Table 2 Numerical errors ENτ (1) of scheme (3.6) with test function(3.18)

ν = 10−2 ν = 10−4

τ = 0.01 τ = 0.001 τ = 0.0001 τ = 0.01 τ = 0.001 τ = 0.0001

N = 4 5.35E−1 5.35E−1 5.35E−1 6.24E−1 6.24E−1 6.24E−1

N = 8 1.90E−5 1.90E−5 1.90E−5 4.34E−5 4.34E−5 4.34E−5

N = 12 1.59E−8 4.45E−9 4.45E−9 1.91E−8 1.21E−8 1.21E−8

N = 16 1.46E−8 1.44E−12 3.46E−13 1.45E−8 1.96E−12 1.17E−12

N = 20 1.46E−8 1.45E−12 1.20E−14 1.44E−8 1.44E−12 2.88E−14

0 5 10 15 20 25 30
−16

−14

−12

−10

−8

−6

−4

−2

0

t

lo
g 10

E
N

, τ
(t

)

Fig. 1 Error evaluation of scheme (3.6) with test function (3.18)

log10 EN ,τ (t) for 0 ≤ t ≤ 30, with ν = 10−2, N = 16 and τ = 0.001. They show the
stability of long-time calculation.

Remark 3.3 For the two-dimensional Navier–Stokes equations with slip boundary condi-
tions, we might design the spectral method based on the vorticity-stream function form, see
[25]. But in that case, we have to solve a system consisting of the vorticity equation and
the Poisson equation for the stream function. Conversely, if we use the proposed scheme
(3.6), we only need to solve the primitive equation directly. Moreover, due to the incom-
pressibility of the base functions (cf. (2.30)), we are required only to evaluate one group of
unknown coefficients, which are the common coefficients of expansions for the components
u( j)

N ,τ (x, t), j = 1, 2, see (3.11). This simplifies computation and saves computational time.

Remark 3.4 For three dimensional fluid flows, we set ψ̃(1)l1,l2,l3
(x) = ψ

(1)
l1,l2,l3

(x), ψ̃(2)l1,l2,l3
(x) =

ψ
(2)
l1,l2,l3

(x) and ψ̃(3)l1,l2,l3
(x) = −ψ(3)l1,l2,l3

(x). We expand the components of the numerical
solution uN (x, t) as follows,
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u( j)
N (x, t) =

N∑
l1=1

N∑
l2=1

N∑
l3=1

d( j)
N ,l1,l2,l3

(t)ψ̃( j)
l1,l2,l3

(x), j = 1, 2,

u(3)N (x, t) =
N∑

l1=1

N∑
l2=1

N∑
l3=1

(d(1)N ,l1,l2,l3
(t)+ d(2)N ,l1,l2,l3

(t))ψ̃(3)l1,l2,l3
(x).

According to (2.29) and (2.30) with n = 3, we have ∇ · uN (x, t) = 0. Therefore, the
incompressibility and the boundary conditions are fulfilled automatically. Moreover, we only
have to evaluate the two groups of the coefficients d(1)N ,l1,l2,l3

(t) and d(2)N ,l1,l2,l3
(t), and so save

the work.

4 Some Approximation Results

In this section, we establish some results on several orthogonal approximations, which serve as
the mathematical foundation of the spectral method using the divergence-free base functions.
To do this, we need some preparations.

We set Ii = { xi | − 1 < xi < 1 }. For any scalar function v(x), the projections PN ,Ii v(x)
and P̃N ,Ii v(x) are defined by (2.13) and (2.14), respectively. Also, let

PN ,
/I j v(x) = PN ,I1 ◦ PN ,I2 ◦ · · · ◦ PN ,I j−1 ◦ PN ,I j+1 ◦ · · · PN ,Inv(x).

For any vector function v(x) with the components v( j)(x), 1 ≤ j ≤ n, we introduce the
related vector function ∗vN (x), with the components as

∗v( j)
N (x) = P̃N ,I j PN ,
/I j v

( j)(x)
= PN ,I1 ◦ PN ,I2 ◦ · · · ◦ PN ,I j−1 ◦ P̃N ,I j ◦ PN ,I j+1 ◦ · · · ◦ PN ,Inv

( j)(x), 1 ≤ j ≤ n.
(4.1)

Proposition 4.1 For the orthogonal projection P̃N ,
v(x) defined by (3.5), we have

P̃N ,
v(x) = ∗vN (x), ∀ v ∈ V (
). (4.2)

Proof Clearly, ∗vN ∈ QN (
) and so ∗vN (x) · n = 0 on ∂
. Next, with the aid of (2.13),
(2.14) and (2.29), we have

∗v( j)
N (x) =

n∑
i=1

N∑
li =1

v̂
( j)
l1,l2,...,ln

ψ
( j)
l1,l2,...,ln

(x), 1 ≤ j ≤ n. (4.3)

Thanks to (2.7) and (2.30), we deduce that

∇ · ∗vN (x) = −2
n∑

i=1

N∑
li =1

n∑
j=1

v̂
( j)
l1,l2,...,ln

∏
1≤ν≤n

Llν (xν) = 0.

The previous statements implies ∗vN ∈ VN (
).
Furthermore, we use (2.29) and (4.3) to obtain

v( j)(x)−∗ v( j)
N (x) =

n∑
i=1

(

i−1∑
p=1

N∑
l p=1

(

∞∑
li =N+1

(

n∑
q=i+1

∞∑
lq =1

v̂
( j)
l1,l2,...,ln

ψ
( j)
l1,l2,...,ln

(x)))), 1 ≤ j ≤ n.

(4.4)
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Let φ(x) = (φ(1)(x), φ(2)(x), . . . , φ(n)(x))T ∈ VN (
). By virtue of (4.4), (2.3) with α =
β = 0 and (2.11) with k = 0, it can be checked that

(v( j) −∗ v( j)
N , φ( j))L2

χ
−1
j
(
) = 0, ∀ φ ∈ VN (
), 1 ≤ j ≤ n.

This fact leads to

(v − ∗vN (x), φ)L2
χ−1 (
)

= 0, ∀ φ ∈ VN (
).

Consequently, P̃N ,
v(x) = ∗vN (x) for any v ∈ V (
). ��

In the forthcoming discussions, we need another orthogonal projection. For this purpose,
we let 
m = {

(x1, x2, . . . , xm)
T | |xi | < 1 for 1 ≤ i ≤ m

}
and define the scalar function

space L2(
m) and the weighted space L2
χ (
m) as usual. Meanwhile, PN (
m) = PN (I1)⊗

PN (I2)⊗· · ·⊗PN (Im). The orthogonal projection PN ,
m : L2(
m) → PN (
m) is defined
by

(v − PN ,
mv, φ)L2(
m )
= 0, ∀ φ ∈ PN (
m).

In particular, L2(
) = L2(
n),P(
) = P(
n) and PN ,
v(x) = PN ,
nv(x).
Throughout this paper, we denote by c a generic positive constant independent of any

function and N .

Proposition 4.2 If the scalar function v ∈ L2(
m), integers r ≥ 0 and r ≤ N + 1, then

‖v − PN ,
mv‖L2(
m )
≤ cN−r

m∑
i=1

‖∂r
xi
v‖L2

χr
i
(
m )

, (4.5)

provided that the norms involved at the right side of the above inequality is finite.

Proof We prove the desired result by induction. Clearly, (2.16) implies the result (4.5) with
m = 1. We now assume that the inequality (4.5) is valid in m − 1 dimensions. Since,
PN ,
mv(x) = (PN ,
m−1 ◦ PN ,Im )v(x), we have

‖PN ,
mv − v‖L2(
m )
≤ J1 + J2 (4.6)

where

J1 = ‖PN ,
m−1 ◦ PN ,Imv − PN ,Imv‖L2(
m )
, J2 = ‖PN ,Imv − v‖L2(
m )

.

By virtue of the assumption of induction and (2.16), we verify that

J1 ≤ cN−r
m−1∑
i=1

‖∂r
xi

PN ,Imv‖L2
χr

i
(
m )

≤ cN−r
m−1∑
i=1

‖∂r
xi
v‖L2

χr
i
(
m )

.

Evidently,

J2 ≤ cN−r‖∂r
xm
v‖L2

χr
m
(
m )

.

Substituting the above inequalities into (4.6), we complete the induction. ��
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We are now in position to estimate ‖P̃N ,
v − v‖L2
χ−1 (
)

. We introduce the quantity

Ar (v) =
n∑

j=1

(
∑

1≤i≤n
i �= j

‖∂r
xi
v( j)‖L2

χr
i
(
/I j ;L2

χ
−1
j
(I j ))

+ ‖∂r
x j
v( j)‖L2(
/I j ;L2

χ
r−1
j

(I j ))
).

Lemma 4.1 If v ∈ V (
) and Ar (v) is finite for integers N ≥ 2 and 1 ≤ r ≤ N + 1, then

‖P̃N ,
v − v‖L2
χ−1 (
)

≤ cN−r Ar (v). (4.7)

Proof We denote the j’th component of (P̃N ,
v)(x) by (P̃N ,
v)
( j)(x). Due to (4.1) and

(4.2), we have (P̃N ,
v)
( j)(x) = P̃N ,I j PN ,
/I j v

( j)(x). Hence,

‖(P̃N ,
v)
( j) − v( j)‖L2

χ
−1
j
(
) ≤ J ( j)

1 + J ( j)
2 (4.8)

where

J ( j)
1 = ‖P̃N ,I j PN ,
/I j v

( j) − PN ,
/I j v
( j)‖L2

χ
−1
j
(
), J ( j)

2 = ‖PN ,
/I j v
( j) − v( j)‖L2

χ
−1
j
(
).

By virtue of (2.17) with μ = 0 and (4.5), we deduce that

J ( j)
1 ≤ cN−r ||∂r

x j
PN ,
/I j v

( j)||L2(
/I j ;L2
χ

r−1
j

(I j ))
≤ cN−r ||∂r

x j
v( j)||L2(
/I j ;L2

χ
r−1
j

(I j ))
.

Using (4.5) again yields

J ( j)
2 ≤ cN−r

∑
1≤i≤n

i �= j

‖∂r
xi
v( j)‖L2

χr
i
(
/I j ;L2

χ
−1
j
(I j ))

.

By substituting the above two inequalities into (4.8), we assert that for 1 ≤ j ≤ n,

‖(P̃N ,
v)
( j) − v( j)‖L2

χ
−1
j
(
) ≤ cN−r

⎛
⎝ ∑

1≤i≤n i �= j

‖∂r
xi
v( j)‖L2

χr
i
(
/I j ;L2

χ
−1
j
(I j ))

+ ‖∂r
x j
v( j)‖L2(
/I j ;L2

χ
r−1
j

(I j ))

⎞
⎠ . (4.9)

Then, by summing (4.9) for 1 ≤ j ≤ n, the desired result (4.7) follows immediately. ��
We now turn to the orthogonal projection P̃1

N ,
 : V (
) → VN (
), defined by

a(v − P̃1
N ,
v, φ) = 0, ∀ φ ∈ VN (
). (4.10)

This projection plays an important role for estimating the errors of numerical solutions of the
spectral method (3.6). In order to describe the approximation error, we introduce the quantity

Br (v) =
n∑

j=1

( ∑
1≤i≤n

i �= j

‖∂r−1
xi

∂x j v
( j)‖L2

χ
r−1
i

(
) +
∑

1≤k≤n
k �=i, j

‖∂xi ∂
r−1
xk

v( j)‖L2
χ

r−1
k

(
/I j ;L2
χ

−1
j
(I j ))

+‖∂r
x j
v( j)‖L2(
/I j ;L2

χ
r−1
j

(I j ))
+ ‖∂xi ∂

r−1
x j

v( j)‖L2(
/I j ;L2
χ

r−2
j

(I j ))

+‖∂r
xi
v( j)‖L2(
/Ii ;L2

χ
r−1
i

(Ii ))

)
.
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Lemma 4.2 If v ∈ V (
) and Br (v) is finite for integers N ≥ 2 and 1 ≤ r ≤ N + 1, then

‖P̃1
N ,
v − v‖H1(
) ≤ cN

3
2 −r Br (v). (4.11)

Proof Let ∗vN (x) be the same as in (4.2), with the components ∗v( j)
N (x) = P̃N ,I j PN ,
/I j v

( j)

(x) as in (4.1). By projection theorem,

|P̃1
N ,
v − v|H1(
) = inf

φ∈VN (
)
|φ − v|H1(
) ≤ |∗vN − v|H1(
). (4.12)

We first estimate ‖∂x j (∗v
( j)
N − v( j))‖L2(
). By using (2.17) with μ = 1 and (4.5) twice,

we derive that

‖∂x j (∗v
( j)
N − v( j))‖L2(
)

≤ ‖∂x j (P̃N ,I j PN ,
/I j v
( j) − PN ,
/I j v

( j))‖L2(
) + ‖∂x j (PN ,
/I j v
( j) − v( j))‖L2(
)

≤ cN 1−r
(‖PN ,
/I j ∂

r
x j
v( j)‖L2(
/I j ;L2

χ
r−1
j

(I j ))
+

∑
1≤i≤n

i �= j

‖∂r−1
xi

∂x j v
( j)‖L2

χ
r−1
i

(
)

)

≤ cN 1−r
(‖∂r

x j
v( j)‖L2(
/I j ;L2

χ
r−1
j

(I j ))
+

∑
1≤i≤n

i �= j

‖∂r−1
xi

∂x j v
( j)‖L2

χ
r−1
i

(
)

)
.

(4.13)

We next deal with the upper-bound of ‖∂xi (PN ,Ii v
( j) − v( j))‖L2(Ii )

for i �= j . We can
follow the same line as the proof of Theorem 2.4 of [15], coupled with the inequality (2.16),
to show that if scalar function v ∈ L2(Ii ), ∂

s
xi
v ∈ L2

χ s−1
i
(Ii ) and integer s ≥ 1, then

‖∂xi (PN ,Ii v − v)‖L2(Ii )
≤ cN

3
2 −s‖∂s

xi
v‖L2

χ
s−1
i

(Ii )
. (4.14)

This also implies that for s ≥ 1,

‖∂xi (PN ,Ii v)‖L2(Ii )
≤ ‖∂xi v‖L2(Ii )

+ cN
3
2 −s‖∂s

xi
v‖L2

χ
s−1
i

(Ii )
. (4.15)

Now, let

P̃N ,
/Ii v
( j)(x) = PN ,I1 ◦ PN ,I2 ◦ · · · ◦ PN ,Ii−1 ◦ PN ,Ii+1 ◦ · · · ◦ PN ,I j−1 ◦ P̃N ,I j

◦PN ,I j+1 ◦ · · · ◦ PN ,Inv
( j)(x), for j ≥ i.

The meaning of P̃N ,
/Ii v
( j)(x) for j < i is similar. Obviously,

‖∂xi (∗v
( j)
N − v( j))‖L2(
) ≤ J ( j)

1 + J ( j)
2 (4.16)

where

J ( j)
1 = ‖∂xi (P̃N ,
/Ii PN ,Ii v

( j) − PN ,Ii v
( j))‖L2(
), J ( j)

2 = ‖∂xi (PN ,Ii v
( j) − v( j))‖L2(
).

By using an inequality similar to (4.9), we deduce that for r ≥ 1 and i �= j ,

J ( j)
1 ≤ cN 1−r ( ∑

1≤k≤n
k �=i, j

‖∂xi ∂
r−1
xk

PN ,Ii v
( j)‖L2

χ
r−1
k

(
/I j ;L2
χ

−1
j
(I j ))

+ ‖∂xi ∂
r−1
x j

PN ,Ii v
( j)‖L2(
/I j ;L2

χ
r−2
j

(I j ))

)
.

Moreover, the inequality (4.15) with v(x) = ∂r−1
xk

v( j)(x) and s = 1 implies

‖∂xi ∂
r−1
xk

PN ,Ii v
( j)‖L2

χ
r−1
k

(
/I j ;L2
χ

−1
j
(I j )))

≤ (1 + cN
1
2 )‖∂xi ∂

r−1
xk

v( j)‖L2
χ

r−1
k

(
/I j ;L2
χ

−1
j
(I j ))

.
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Similarly,

‖∂xi ∂
r−1
x j

PN ,Ii v
( j)‖L2(
/I j ;L2

χ
r−2
j

(I j ))
≤ (1 + cN

1
2 )‖∂xi ∂

r−1
x j

v( j)‖L2(
/I j ;L2
χ

r−2
j

(I j ))
.

On the other hand, we use (4.14) with s = r to obtain

J ( j)
2 ≤ cN

3
2 −r‖∂r

xi
v( j)‖L2(
/Ii ;L2

χ
r−1
i

(Ii ))
.

Inserting the above four inequalities in to (4.16), we conclude that for r ≥ 1 and i �= j ,

‖∂xi (∗v
( j)
N − v( j))‖L2(
) ≤ cN

3
2 −r

( ∑
1≤k≤n

k �=i, j

‖∂xi ∂
r−1
xk

v( j)‖L2
χ

r−1
k

(
/I j ;L2
χ

−1
j
(I j ))

+‖∂xi ∂
r−1
x j

v( j)‖L2(
/I j ;L2
χ

r−2
j

(I j ))
+ ‖∂r

xi
v( j)‖L2(
/Ii ;L2

χ
r−1
i

(Ii ))

)
.

(4.17)

Finally, by substituting (4.13) and (4.17) into (4.12), together with the Poincaré inequality,
we reach the desired result (4.11). ��
Remark 4.1 Let P1,0

N ,Ii
be the orthogonal projection from H1

0 (Ii ) onto PN (Ii ) ∩ H1
0 (Ii ).

Usually, we take the compared function φ(x)with the components φ( j)(x) = P1,0
N ,I1

◦ P1,0
N ,I2

◦
· · · ◦ P1,0

N ,In
v( j)(x), 1 ≤ j ≤ n, in the inequality like (4.12). But, in this case, ∇ · φ �= 0.

Thus, it can not be used in our case. In opposite, we took φ(x) = ∗vN (x) in the proof of
Lemma 4.2, with ∇ · ∗vNφ = 0. Consequently, we obtained the approximation result (4.11),
which in turn, ensures the spectral accuracy of scheme (3.6) for incompressible fluid flows
with slip boundary conditions.

5 Error Analysis for Two-Dimensional Flows

In this section, we analyze the error of numerical solution of spectral scheme (3.6) with
n = 2. Let U∗

N = P̃1
N ,
U. By virtue of (4.10), we have from (3.4) that

(∂t U∗
N (t), φ)L2(
) + b(U∗

N (t),U∗
N (t), φ)+ νa(U∗

N (t), φ)

+
3∑

j=1

G j (φ, t) = (f(t), φ)L2(
), ∀ φ ∈ VN (
) (5.1)

where

G1(φ, t) = (∂t (U(t)− U∗
N (t)), φ)L2(
),

G2(φ, t) = b(U∗
N (t),U(t)− U∗

N (t), φ),

G3(φ, t) = b(U(t)− U∗
N (t),U(t), φ).

Furthermore, we put ŨN = uN − U∗
N . By subtracting (5.1) from (3.6), we obtain

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(∂t ŨN (t), φ)L2(
) + b(ŨN (t),U∗
N (t)+ ŨN (t), φ)+ b(U∗

N (t), ŨN (t), φ)+ νa(ŨN (t), φ)

=
3∑

j=1

G j (φ, t), ∀φ ∈ VN (
),

ŨN (0) = P̃N ,
U0 − P̃1
N ,
U0.

(5.2)
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Taking φ = 2ŨN ∈ VN (
) in the first formula of (5.2), we use (3.3) to reach that

∂t‖ŨN (t)‖2
L2(
)

+2b(U∗
N (t), ŨN (t), ŨN (t))+ 2ν|ŨN (t)|2H1(
)

=2
3∑

j=1

G j (ŨN , t). (5.3)

According to (21) of [16], for any v ∈ V (
),

‖v‖2
L4(
)

≤ ‖v‖L2(
)|v|H1(
). (5.4)

Therefore, we use the Hölder inequality, (5.4) and (4.11) with r = 2 successively to deduce
that

2|b(U∗
N (t), ŨN (t), ŨN (t))| ≤ 2‖ŨN (t)‖2

L4(
)
|U∗

N (t)|H1(
)

≤ c‖ŨN (t)‖L2(
)|ŨN (t)|H1(
)|U∗
N (t)|H1(
)

≤ ν

4
|ŨN (t)|2H1(
)

+ c

ν
|U∗

N (t)|2H1(
)
‖ŨN (t)‖2

L2(
)

≤ ν

4
|ŨN (t)|2H1(
)

+ c

ν
(|U(t)|2H1(
)

+N− 1
2 B2

2 (U(t)))‖ŨN (t)‖2
L2(
)

. (5.5)

Next, by using the Cauchy inequality, the Poincaré inequality and (4.11), we derive that

2|G1(ŨN , t)| ≤ 2‖∂t (U(t)− U∗
N (t))‖L2(
)‖ŨN (t)‖L2(
)

≤ c‖∂t (U(t)− U∗
N (t))‖L2(
)|ŨN (t)|H1(
)

≤ ν

4
|ŨN (t)|2H1(
)

+ c

ν
N 3−2r B2

r (∂t U(t)). (5.6)

Furthermore, we use (3.3), the Hölder inequality, the Poincaré inequality, (5.4) and (4.11)
successively, to verify that

2|G2(ŨN , t)| = 2|b(ŨN (t),U(t)− U∗
N (t),U∗

N (t))|
≤ 2|ŨN (t)|2H1(
)

‖U(t)− U∗
N (t)‖L4(
)‖U∗

N (t)‖L4(
)

≤ ν

4
|ŨN (t)|2H1(
)

+ c

ν
‖U(t)− U∗

N (t)‖2
L4(
)

‖U∗
N (t)‖2

L4(
)

≤ ν

4
|ŨN (t)|2H1(
)

+ c

ν
‖U(t)− U∗

N (t)‖L2(
)|U(t)
−U∗

N (t)|H1(
)‖U∗
N (t)‖L2(
)|U∗

N (t)|H1(
)

≤ ν

4
|ŨN (t)|2H1(
)

+ c

ν
N 3−2r (‖U(t)‖L2(
) + N− 1

2 B2(U(t)))(|U(t)|H1(
)

+N− 1
2 B2(U(t)))B2

r (U(t)). (5.7)

Similarly, we use (3.3), the Hölder inequality, (5.4) and (4.11) to deduce that

2|G3(ŨN , t)| = 2|b(ŨN (t),U(t),U(t)− U∗
N (t))|

≤ ν

4
|ŨN (t)|2H1(
)

+ c

μ
‖U(t)‖L2(
)|U(t)|H1(
)‖U(t)− U∗

N (t)‖L2(
)|U(t)
−U∗

N (t)|H1(
)

≤ ν

4
|ŨN (t)|2H1(
)

+ c

ν
N 3−2r‖U(t)‖L2(
)|U(t)|H1(
)B

2
r (U(t)). (5.8)
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In addition, with the aid of (4.7) and (4.11), we have

‖ŨN (0)‖L2(
) ≤ ‖P̃N ,
U0 − U0‖L2(
) + ‖P̃1
N ,
U0 − U0‖L2(
)

≤ ‖P̃N ,
U0 − U0‖L2
χ−1 (
)

+ ‖P̃1
N ,
U0 − U0‖L2(
)

≤ cN 1−r Ar−1(U0)+ cN
3
2 −r Br (U0). (5.9)

We now set

V (v, t) = |v(t)|2H1(
)
+ N− 1

2 B2
2 (v(t)),

Rr (v, t) = B2
r (∂t v(t))+ ‖v(t)‖L2(
)|v(t)|H1(
)B

2
r (v(t))

+(‖v(t)‖L2(
) + N− 1
2 B2(v(t)))(|v(t)|H1(
) + N− 1

2 B2(v(t)))B2
r (v(t)).

Besides,

ρr (v) = N− 1
2 A2

r−1(v)+ B2
r (v).

Let E(v, σ, t) be the same as in (3.7). Substituting (5.5)–(5.8) into (5.3), we reach that

∂t‖ŨN (t)‖2
L2(
)

+ ν|ŨN (t)|2H1(
)
≤ c

ν
V (U, t)‖ŨN (t)‖2

L2(
)
+ c

ν
N 3−2r Rr (U, t).

It reads

∂t E(ŨN , ν, t) ≤ c

ν
V (U, t)E(ŨN (t), ν, t)+ c

ν
N 3−2r Rr (U, t).

Multiplying the above inequality by e− c
ν

∫ t
0 V (U,ξ)dξ , integrating the resulting inequality with

respect to t , and using (5.9), we obtain

E(ŨN , ν, t) ≤ cN 3−2r e
c
ν

∫
0t V (U,ξ)dξ

⎛
⎝1

ν

t∫

0

e− c
ν

∫ ξ
0 V (U,η)dηRr (U, ξ)dξ + ρr (U0)

⎞
⎠ .
(5.10)

On the other hand, (4.11) implies

E(U∗
N − U, ν, t) ≤ cN 3−2r (B2

r (U(t))+ ν

t∫

0

B2
r (U(ξ))dξ). (5.11)

Finally, a combination of (5.10) and (5.11) leads to the following conclusion.

Theorem 5.1 Let U(x, t) and uN (x, t) be the solutions of (3.4) and (3.6) with n = 2,
respectively. Then for integers N ≥ 2 and 1 ≤ r ≤ N + 1,

E(uN − U, ν, t) ≤ cN 3−2r
(

e
c
ν

∫ t
0 V (U,ξ)dξ (1

ν
N− 1

2

t∫

0

e− c
ν

∫ ξ
0 V (U,η)dηRr (U, ξ)dξ + ρr (U0)

)

+B2
r (U(t))+ ν

t∫

0

B2
r (U(ξ))dξ

)
, (5.12)

provided that the norms appearing at the right side of the above inequality are finite.
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Remark 5.1 We could derive the same error estimate of numerical solution of scheme (3.10)
for solving problem (3.9) with n = 2.

6 Error Analysis for Three-Dimensional Flows

In this section, we analyze the error of numerical solution of spectral scheme (3.6) with
n = 3. Let U∗

N = P̃1
N ,
U and ŨN = uN − U∗

N . Following the same line as in the derivation
of (5.3), we also obtain

∂t‖ŨN (t)‖2
L2(
)

+ 2b(U∗
N (t), ŨN (t), ŨN (t))+ 2ν|ŨN (t)|2H1(
)

= 2
3∑

j=1

G j (ŨN , t), (6.1)

where G j (ŨN , t) are the same as in (5.3), but n = 3.
By using the imbedding theory, interpolation between the spaces L2(
) and H1(
), and

the Poincaré inequality successively, we deduce that for any v ∈ V (
),

‖v‖L4(
) ≤ c‖v‖
H

3
4 (
)

≤ c‖v‖
1
4
L2(
)

‖v‖
3
4
H1(
)

≤ c‖v‖
1
4
L2(
)

|v|
3
4
H1(
)

. (6.2)

Therefore, we use (3.3), the Hölder inequality and (6.2) to deduce that

2|b(U∗
N (t), ŨN (t), ŨN (t))| = 2|b(ŨN (t), ŨN (t),U∗

N (t))|
≤ 2‖ŨN (t)‖L4(
)|ŨN (t)|H1(
)‖U∗

N (t)‖L4(
)

≤ c‖ŨN (t)‖
1
4
L2(
)

|ŨN (t)|
7
4
H1(
)

‖U∗
N (t)‖L4(
)

≤ ν

4
|ŨN (t)|2H1(
)

+ c

ν
‖U∗

N (t)‖8
L4(
)

‖ŨN (t)‖2
L2(
)

.

Moreover, using (6.2) again yields

‖U∗
N (t)‖L4(
) ≤ c‖U∗

N (t)‖
1
4
L2(
)

|U∗
N (t)|

3
4
H1(
)

.

This fact, together with (4.11) with r = 2, implies

‖U∗
N (t)‖L4(
) ≤ c(‖U(t)‖L2(
) + N− 1

2 B2(U(t)))
1
4 (|U(t)|H1(
) + N− 1

2 B2(U(t)))
3
4 .

The previous statements lead to

2|b(U∗
N (t), ŨN (t), ŨN (t))| ≤ ν

4
|ŨN (t)|2H1(
)

+ c

ν
(‖U(t)‖L2(
) + N− 1

2 B2(U(t)))2(|U(t)|H1(
) + N− 1
2 B2(U(t)))6‖ŨN (t)‖2

L2(
)
.

(6.3)

Like (5.6), we have

2|G1(ŨN , t)| ≤ ν

4
|ŨN (t)|2H1(
)

+ c

ν
N 3−2r B2

r (∂t U(t)). (6.4)
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Next, we use (3.3), the Hölder inequality, (6.2) and (4.11) successively, to verify that

2|G2(ŨN , t)| = 2|b(ŨN (t),U(t)− U∗
N (t),U∗

N (t))|
≤ 2|ŨN (t)|H1(
)‖U(t)− U∗

N (t)‖L4(
)‖U∗
N (t)‖L4(
)

≤ ν

4
|ŨN (t)|2H1(
)

+ c

ν
‖U(t)− U∗

N (t)‖2
L4(
)

‖U∗
N (t)‖2

L4(
)

≤ ν

4
|ŨN (t)|2H1(
)

+ c

ν
‖U(t)− U∗

N (t)‖
1
2
L2(
)

|U(t)

−U∗
N (t)|

3
2
H1(
)

‖U∗
N (t)‖

1
2
L2(
)

|U∗
N (t)|

3
2
H1(
)

≤ ν

4
|ŨN (t)|2H1(
)

+ c

ν
N 3−2r (‖U(t)‖L2(
) + N− 1

2 B2(U(t)))
1
2 (|U(t)|H1(
)

+N− 1
2 B2(U(t)))

3
2 B2

r (U(t)). (6.5)

Similarly, we use (3.3), the Hölder inequality, (6.2) and (4.11) to deduce that

2|G3(ŨN , t)| = 2|b(ŨN (t),U(t),U(t)− U∗
N (t))|

≤ μ

4
|ŨN (t)|H1(
) + c

μ
‖U(t)‖

1
2
L2(
)

|U(t)|
3
2
H1(
)

‖U(t)− U∗
N (t)‖

1
2
L2(
)

|U(t)

−U∗
N (t))|

3
2
H1(
)

≤ ν

4
|ŨN (t)|2H1(
)

+ c

ν
N 3−2r‖U(t)‖

1
2
L2(
)

|U(t)|
3
2
H1(
)

B2
r (U(t)). (6.6)

Moreover,

‖ŨN (0)‖L2(
) ≤ cN 1−r Ar−1(U0)+ cN
3
2 −r Br (U0). (6.7)

We now set

V (v, t) = (‖v(t)‖L2(
) + N− 1
2 B2(v(t)))2(|v(t)|H1(
) + N− 1

2 B2(v(t)))6,

Rr (v, t) = B2
r (∂t v(t))+ ‖v(t)‖

1
2
L2(
)

|v(t)|
3
2
H1(
)

B2
r (v(t))

+(‖v(t)‖L2(
) + N− 1
2 B2(v(t)))

1
2 (|v(t)|H1(
) + N− 1

2 B2(v(t)))
3
2 B2

r (v(t)).

Besides,

ρr (v) = N− 1
2 A2

r−1(v)+ B2
r (v).

Let E(v, σ, t) be the same as in (3.7). Substituting (6.3)–(6.6) into (6.1), we reach that

∂t‖ŨN (t)‖2
L2(
)

+ ν|ŨN (t)|2H1(
)
≤ c

ν
V (U, t)‖ŨN (t)‖2

L2(
)
+ c

ν
N 3−2r Rr (U, t).

Finally, an argument similar to the last part of the derivation of (5.12) leads to the following
conclusion.
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Theorem 6.1 Let U(x, t) and uN (x, t) be the solutions of (3.4) and (3.6) with n = 3,
respectively. Then for integers N ≥ 2 and 1 ≤ r ≤ N + 1,

E(uN − U, ν, t) ≤ cN 3−2r
(

e
c
ν

∫ t
0 V (U,ξ)dξ (1

ν
N− 1

4

t∫

0

e− c
ν

∫ ξ
0 V (U,η)dηRr (U, ξ)dξ + ρr (U0)

)

+B2
r (U(t))+ ν

t∫

0

B2
r (U(ξ))dξ

)
,

provided that the norms appearing at the right side of the above inequality are finite.

Remark 6.1 We could derive the same error estimate of numerical solution of scheme (3.10)
for solving problem (3.9) with n = 3.

7 Concluding Discussion

In this paper, we proposed the spectral method for Navier–Stokes equations with slip bound-
ary conditions. We introduced an orthogonal family induced by the generalized Jacobi func-
tions, which are divergence-free. By using such base functions, the corresponding numerical
solutions fulfill the incompressibility automatically. Therefore, we need neither the artificial
compressibility method nor the projection method. Moreover, we only have to evaluate the
unknown coefficients of expansions of n−1 components of the velocity. These facts simplify
actual computations and numerical analysis essentially, and also save computational time.
The numerical results demonstrated the high effectiveness of the suggested algorithm, even
for problems with small kinetic viscosity.

In this paper, we also established some approximation results, with which we prove the
spectral accuracy in space of the proposed spectral method for two and three dimensional
fluid flows with slip boundary conditions.

The main idea, the approximation results and the techniques developed in this work are
also very useful for spectral methods of other problems with divergence-free solutions, such
as certain partial differential equations describing electro-magnetic fields. As an example, we
consider the Darwin model of approximation to the Maxwell equations. Let
 be a cube and
Si = { x | xi = ±1} , 1 ≤ i ≤ 3. B(x, t) denotes the magnetic field with the components
B( j)(x, t), 1 ≤ j ≤ 3. B0(x) describes the initial magnetic field. J(x, t) stands for the
density of electric current with the components J ( j)(x, t), 1 ≤ j ≤ 3. The constant μ is the
relative permeability. As pointed out by Degond and Raviat [5], for solving this model, we
need to solve three boundary value problems for any fixed time t . For instance, one of them
is of the following form,

⎧⎪⎪⎨
⎪⎪⎩

−�B(x, t) = μRotJ(x, t), in 
, 0 ≤ t ≤ T,
∇ · B(x, t) = 0, on 
̄, 0 ≤ t ≤ T,
B(x, t) · n = B0(x) · n, on ∂
, 0 ≤ t ≤ T,
RotB(x, t)× n = μJ(x, t)× n, on ∂
, 0 ≤ t ≤ T .

(7.1)

According to the boundary conditions, B( j)(x, t) = B( j)
0 (x) on S j , 1 ≤ j ≤ 3. Moreover, a

careful calculation shows that
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∂x1 B(2)(x, t) = μJ (3)(x, t)+ ∂x2 B(1)0 (x), ∂x1 B(3)(x, t) = −μJ (2)(x, t)+ ∂x3 B(1)0 (x),
on S1,

∂x2 B(3)(x, t) = μJ (1)(x, t)+ ∂x3 B(2)0 (x), ∂x2 B(1)(x, t) = −μJ (3)(x, t)+ ∂x1 B(2)0 (x),
on S2,

∂x3 B(1)(x, t) = μJ (2)(x, t)+ ∂x1 B(3)0 (x), ∂x3 B(2)(x, t) = −μJ (1)(x, t)+ ∂x2 B(3)0 (x),
on S3.

(7.2)

Clearly, the right sides of the above six equalities are known functions. Furthermore, all
B( j ′)(x, t) are the tangential components of B(x, t) on S j , j �= j ′. Therefore,

∂n(B(x, t) · τ ) = G(x, t), on ∂
, 0 ≤ t ≤ T,

where G(x, t) is a known vector function with the components as the right sides of (7.2).
Next, let B(x, t) = B(x, t)+ B0(x). Since ∇ · B0(x) = 0, the problem (7.1) is reformulated
to ⎧⎪⎪⎨

⎪⎪⎩

−�B(x, t) = �B0(x)+ μRotJ(x, t), in 
, 0 ≤ t ≤ T,
∇ · B(x, t) = 0, on 
̄, 0 ≤ t ≤ T,
B(x, t) · n = 0, on ∂
, 0 ≤ t ≤ T,
∂n(B(x, t) · τ ) = G(x, t)− ∂n(B0(x) · τ ), on ∂
, 0 ≤ t ≤ T .

(7.3)

We could solve the above problem by using the spectral method proposed in this paper, as
discussed in Remark 3.1.

For solving the Navier–Stokes equations with non-slip boundary conditions, we need
another special divergence-free basis. To do this, we let J (α,β)l (x) be the Jacobi polynomials
as before, and introduce the following polynomials,

Gl(x) = 1
l−1 (1 − x2)J (1,1)l−2 (x), l ≥ 2,

Fl(x) = 1
(l−2)(l−3) (1 − x2)2 J (2,2)l−4 (x), l ≥ 4.

Furthermore,

σ
( j)
l (x) = σ

( j)
l1,l2,...,ln

(x) = Fl j +1(x j )
∏

1≤i≤n
i �= j

Gli (xi ).

For any n-dimensional divergence-free vector v satisfying homogeneous boundary condi-
tions, we could expand its components as (cf. [18])

v( j)(x) =
n∑

i=1

∞∑
li =3

v̂
( j)
l σ

( j)
l (x) =

n∑
i=1

∞∑
li =3

v̂
( j)
l1,l2,...,ln

σ
( j)
l1,l2,...,ln

(x), 1 ≤ j ≤ n,

where the coefficients v̂( j)
l satisfy the equality

n∑
j=1

v̂
( j)
l =

n∑
j=1

v̂
( j)
l1,l2,...,ln

= 0, li ≥ 3, 1 ≤ i ≤ n.
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