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Abstract In this paper entropy-stable numerical schemes for the Euler equations in one space
dimension subject to far-field and wall boundary conditions are derived. Furthermore, a stable
numerical treatment of interfaces between different grid domains is proposed. Numerical
computations with second- and fourth-order accurate schemes corroborate the stability and
accuracy of the proposed boundary treatment.
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1 Introduction

Consider the 1-D system of conservation laws

ur(x, 1) + fu(x, 1))y =0 (1.1)
and the related convection-diffusion problem
ur(x, 1) + fulx, 1)y = €(Q@ux(x,1))x (1.2)

on the domain is (0, 1). u denotes the solution vector and f the flux vector. The conservation
law is augmented with bounded compactly supported initial data, u®(x), and appropriate
boundary conditions. We will generically express the boundary conditions using boundary
operators Lo, 1)(u({0, 1}, ), gyz,r}) = 0. gyi,r) are known boundary data at the left and right
boundaries and we assume that gy ,; € L. We will return to their specific form of the
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boundary conditions below. Furthermore, we assume that boundary and initial data are not
violating any physical admissibility conditions of the conservation law. (For instance, we
require that p is bounded away from O for the Euler equations.) Solutions to (1.1) may
develop discontinuities in finite time (shock waves) and are therefore interpreted in a weak
sense.

Definition 1.1 A locally integrable function u is defined as a weak solution to (1.1) if it
satisfies the following integral identity for all ¢ € C°°([0, 1] x R4),

1

1
//u @+ fu) - ¢dedz+/u°(x) - (x, 0)dx
0

R, 0

=—/¢(0, D(f (0, 1)) — Lo(u(0, 1), g; (1)) dt

Ry

+/¢(1,t)(f(u(1,t)) — Li(u(l,1), g, (1)) dt. (1.3)

Ry

Weak solutions are not unique and an extra entropy condition is needed. (Although, we
emphasize that it is not clear if this is sufficient for uniqueness in the case of a system of
conservation laws.) We will use the following form of the entropy condition.

Definition 1.2 Let (U, F) be any pair of smooth functions such that U is strictly convex
and FuT =U, uT fu- Such a pair of functions is defined as an entropy-entropy flux pair. Then,
u € Llloc((O, 1) x R4) is an entropy solution of (1.1) if for all entropy-entropy flux pairs,
(U, F), and for all 0 < ¢ € C3°((0, 1) x Ry ), the following inequality holds,

1
//U(u)wt + F(u)pxdxdt > 0. (1.4)

Ry 0

Given an entropy pair (U, F) the entropy variables are defined as w = U,,. It was observed by
Mock [12] that by rewriting the flux using the entropy variables, i.e. by defining g(w) = f(u),
the system is symmetric in the sense that g, = gg.

The rationale for Definition 1.2 is: if U,, Q(#) > 0 and upon convergence of (1.2) as
€ — 0, the limiting solution will satisfy the entropy inequality (1.4). [Hence, the entropy
condition is intended to single out the limiting solution of (1.2).] If the entropy variables
symmetrize Q, then the condition U,, Q(u) > 0 is satisfied. By symmetrizing it is meant
that Q(u)u, = Q(w)wx and Q = QT > 0.

The prototype for (1.1) is the Euler equations of gas dynamics and for (1.2) the Navier—
Stokes equations. The Euler equations are given as

Mz-i-fo:O, O<x<l1, 0<t<T (1.5)

where u = (p, pq, £); p is the density of the fluid; ¢ is the velocity; £ = ”%2 + % is
the energy; p is the static pressure. Furthermore, ! = (pq, pg* + p, q(€ + p)) is the flux
function. 6(x, ) > 0 denotes the absolute temperature and C, 06 = ¢ where e = £ — ’2”—; is
the internal energy. C, > 0 is the specific heat at constant volume. The static pressure can
be expressed as, p = (y — 1)e where y is the specific heat ratio.
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Arichness of entropy functions is valuable for theoretical developments but for systems of
conservation laws (1.1) entropy functions are scarce. Even more so if their related convection-
diffusion form (1.2) is to be symmetrized by the entropy function. In particular, while there are
anumber of entropies that symmetrize the Euler equations, there is only one that symmetrizes
the Navier—Stokes. (See [8]). Namely, it is the physical entropy function U = —p S where S is
the thermodynamic entropy (usually referred to as “entropy” by physicists). We will adopt the
convention to use entropy for any U and thermodynamic entropy for S. In this work, we will
focus on the Euler equations. However, we stress that this study is a stepping stone towards
entropy stable schemes for the initial-boundary-value Navier—Stokes equations and for this
reason we will solely use the physical entropy U = —pS. The extension to Navier—Stokes
equations is the topic of a forthcoming article.

Although, general results for existence and uniqueness for (1.1) and (1.2) are evasive, there
has been progress towards proving a priori estimates of solutions and stability of numerical
approximations of solutions. The theory of entropy stable numerical schemes was reviewed
in [21]. A bound on the entropy can in turn be translated to L? estimates of the independent
variables u (see [2]). This is not enough to prove convergence to weak entropic solutions,
but it is nevertheless a step towards that end.

Our main interest is the much less studied problems on bounded domains and we will
discuss some previous results before stating our objectives. In [3] a boundary entropy
inequality

F(up) — F(g) — w' (@) (f (o) = f(g) <0 (1.6)

was derived from the viscous limit of (1.2) assuming that the diffusion matrix Q is non-
singular (and that the solution is stable in a sufficiently strong sense). (See also [1,11].) We
remark that their analysis does not immediately hold for the Navier—Stokes equations since
Q is singular. Hence, we will not require that our scheme satisfies (1.6). We also refer to [13]
where the effect on the solution due to the choice of the Q matrix is discussed.

In [17] the question of stability of conservation laws on bounded domain was studied
and an entropy stable numerical scheme proposed. The key to this result was the use of a
specific entropy that made the flux, expressed in entropy variables homogeneous. (See [7]
for the original proof. We will refer to this entropy as “homogeneous”.) A drawback of this
technique is that this entropy does not symmetrize the Navier—Stokes equations. (See [8].)
Should that have been the case, the extension to the Navier—Stokes equations would have
been easier.

In this study, we specifically aim to derive schemes for the Euler equations that satisfy the
following criteria:

1. The numerical solution satisfies a local entropy inequality...
2. ...and a global entropy estimate.
3. The correct number of boundary conditions are enforced.

As already mentioned, we must use the entropy U = —p S and its corresponding entropy
flux F = qU = —pgqS as this is the only choice that symmetrizes the Navier—Stokes
equations. This entropy poses a challenge when deriving suitable boundary conditions. The
difficulty appears already in the 1-D Euler equations. To see this, we multiply the Euler
equations (1.5) (perturbed by a vanishing parabolic diffusion) by U,, = w, which yields the
local entropy inequality

Ut+Fx§0~
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Integrating in space gives
o0
/U,dx — F(w(0,1)) <0. (1.7)
0

We wish to limit the growth of U to infer stability on u. Hence, we must bound F(w (0, t))
by using appropriate boundary conditions. Let us consider supersonic outflow, when no
boundary conditions should be supplied. If the flow is well into the supersonic region then in
aneighborhood of the boundary all characteristics will point out of the domain and specifying
no boundary condition appears reasonable in accordance with linear theory. However, the
sign of F = —gpS is undetermined. We know that ¢ < 0 and p > 0 but S can take both
positive and negative values and f U;dx may be unbounded.

This problem was recognized by Dutt in [4]. To fix this problem he scaled the entropy
U (u) = U(u) + U, ()(u — u). This is a standard transformation and it is easy to see that
if i is a constant state, then U satisfies an entropy inequality if U does. The corresponding
entropy flux is given by F=F (u)+ Uy, (u)(f(u)— f(u)). Dutt carefully chooses a reference
state so that F changes sign at the boundary corresponding to inflow and outflow and thereby
solves the problem described above. To obtain an estimate Dutt has to assume that there are
positive and minimal states of p, p and T. These are fairly standard assumptions (we tacitly
make the same assumption) and required for U to be convex. However, he also assumes that
0 < Pmax Which is difficult to justify a priori although sensible from a physical point of view.
The approach in this paper will bound the numerical counterpart of F(w(0, t)) from above.
(Its sign will remain indefinite, but the bound ensures a bounded growth.)

The paper is organized as follows: In Sect. 2 we will begin with a review of entropy-
stable schemes for initial-value problems. We will develop the scheme in a second-order
framework to keep notation to a minimum. In Sect. 2.1 we turn to the initial-boundary-
value conservation law and propose a set of far-field conditions. We prove that the scheme
is globally stable. In the subsequent Sect. 2.2, we apply the theory to Burgers equation. In
Sect. 2.3, we derive expressions for far-field boundary conditions for the Euler equations.
We derive stable implementations of wall boundary conditions in Sect. 2.3.1 and interface
conditions between two connected grid domains in Sect. 2.4. In Sect. 3, we will briefly outline
the generalization to a high-order scheme. Furthermore, we present numerical computations,
both for a second- and a fourth-order scheme (see [20]). Finally, we give some concluding
remarks in Sect. 4.

2 Entropy Stability

In the subsequent analysis, we will consider the following generic 1-D system of conservation
laws,

ur+ fu)yy =0, xeQ >0, 2.1

subject to the initial conditions u(x,0) = u%(x), where as usual u is the solution vector
and f the, generally non-linear, flux function. We will begin by reviewing the theory for the
Cauchy problem where Q2 = (—o00, 00). (See [21].)

To this end, let x; = i % is the set of discrete points in space at which we seek approximate
solutions. & denotes the grid spacing and i = 0, £1, &2, .. .. Furthermore, u; (¢) will be the
discrete solution vector at x;. We will also use f; = f(u;) and g; /2 will denote the flux
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approximation at x; 12 = (x; + x;+1)/2. Moreover, (U, F) will denote the entropy pair
and U; = U(u;), F; = F(u;). Numerical entropy-flux approximations will be defined below
and denoted Fj 1,2 at x;y1/2. The entropy variables are U, = w and we use w; = w(u;) =
U, (u;). The entropy potential ¥ = wT f — F is similarly discretized as ¥; = W (u;). At this
point, we define the numerical scheme,

8i+1/2 — 8i-1/2

(ui) + 7

0, i=0,%£1,42,43,... (2.2)

where

Jir1 + fi — Qiv12(wip1 — w;)
2

git1)2 = (2.3)

and Q; 1,2 is a diffusion matrix.

Definition 2.1 [21] The scheme (2.2) is entropy stable if

1 1
E(wi+1 - wi)TgH—l/Z - 5(‘1’[+1 -¥;) <0

and termed entropy conservative in the case of equality.

Definition 2.2 A scheme is globally entropy stable, if its solution satisfies a global entropy
estimate/bound

> hpi(U i) < C, 2.4)

ieZ

where p; are bounded positive weights and 7 the set of all grid points. C is a constant
depending only on the initial conditions (and for initial-boundary-value problems also the
boundary data).

The following theorem summarizes some key results from [21] for the Cauchy problem.

Theorem 2.3 Let g; 1,2 be an entropy stable flux and define,

1 1
Fiv10= E(wi +wir ) giv1/2 — 5(%+1 + ). (2.5)

Then the solution of the numerical scheme (2.2) satisfies:

F; — Fi_
U + —H2 T2 : 2 <9 (2.6)
and the global estimate
D U @i(0)) < D hUwi0)), 2.7)
i€l ieZ

i.e. the solution is globally entropy stable. Furthermore, if U is strictly convex, u € leo .
Proof Multiply (2.2) by w].

7 8i+1/2 — 8i—1/2

wl-T(u,-), + w; A 0.
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Add and subtract suitable terms.

1 1
h(U: + = Wi +wis ) giv1y2 + = (wi —wir) gig1p

2 2
1 T 1 T
_E(wi +wi—1) gi—1/2 — E(wi —wi-1)" &-12=0. (2.8)

Use (2.5) in (2.8) to obtain

1 1
h(Ui)t + Fiy12 + E(wi —wir) gip12 + E(WHI + W)

1 1
—Fi—1p2 — E(wi —wi- g1 — E(‘I’i +W¥;—1) =0.

or
1 , 1
h(Ui): + Fiy12 — Fi—12 =§(wi+1 —w;)" git+1/2 — 5(‘111'+1 - )
1 , 1
+ E(wi —Wwi—1) &i-1/2 — E(‘Iji -V )

Using that g;11,2 is entropy stable, we obtain (2.6). Summing by parts and integrating in
time give the global estimate (2.7) with p; = 1. Thanks to strict convexity of U, the estimate
(2.7) can be translated to L,20 . estimates of the conservative variables u by an argument due
to Dafermos [2]. (On a bounded domain, one gets u € L?) O

It is clear that global entropy stability follows directly from entropy stability in Cauchy
case (Definition 2.1) and in [21] the notion of a global entropy bound is therefore never
introduced. However, when boundary conditions are added the implication from entropy
stability (in the sense of Definition 2.1) to a global bound is in general not true. Finally, we
remark that an entropy stable flux (2.3) is one where Q; 1> is sufficiently large and many
examples of such schemes can be found in [21]. They include entropy-fixed Roe and the
Rusanov flux. See also [22] and [6] for more examples.

2.1 Boundary Schemes

‘We will now turn our attention to the boundaries. Hence, we consider (2.1) with Q = (0, 00).
Furthermore, we will enforce an appropriate subset of a Dirichlet type boundary condition,
u(0, t) = g(t),in a weak sense. g(¢) is the data vector and we will use a notational convention
and sometimes write wg = w(g) and ug = u(g) = g(t).

The discretization of the x-axis is x; = ih withi =0, 1, 2, . ... The scheme (2.2) is used
fori > 0, 1i.e.,

8i+1/2 — 8i—1/2

(ui): + . =0, i=12,3,... (2.9)
and at the boundary we will use the scheme
(o), + S12 80 . (2.10)

h/2

Here, go denotes the approximation at xo (not necessarily equal to fy = f(ug) = g(wg) =
g0). For the moment, we leave gp undefined.
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Lemma 2.4 Let (2.9) and (2.10) be a consistent approximation of (2.1) on Q2 = (0, co) and
assume that giy1,2, i > 0, are entropy stable numerical fluxes. Then (2.6) holds with the
numerical entropy flux (2.5) and at the boundary

Fip — Fo
U — <0 2.11
(Uo): + nr o 2.11)
where Fy = wg go — VYo. Furthermore,
h . -
2 W0l + 2 (Ui < Fo = wg & — Wo. (2.12)

i>0
Proof Since g;i11/2,1 > 0 are entropy stable fluxes, (2.6) holds. Next, we will derive the

corresponding relation for the boundary scheme. Multiply (2.10) by wg to obtain,

wggl/Z — 80 —0.

on(uo)t + h2

Adding and subtracting terms

h 1 1 -
S W0+ Fipp + 5 (wo = w)' g1 + 5 (1 + Wo) — w go = 0
Introduce
Fo = wd g0 — Yo (2.13)
and obtain
h . r 1
E(UO)’ +Fipp—Fo+ E(wo —wy) g2+ 5(‘1/1 — W) =0

since g1,2 is an entropy stable/conservative flux. We get the desired entropy inequality (2.11)
at the boundary.
We multiply (2.6) by & and (2.11) by &/2 and sum

h ~ -
2 W0l + > (Unih = Fo = wg o — Wo.

i>0

Generally, for approximations of (1.1), we want gy to satisfy the following conditions:

1. go is a consistent approximation of f (ug), i.e., gp(. LU, L) = fu).
2. Ityields a global entropy estimate, i.e., bounds Fj.
3. It enforces the correct number of boundary conditions.

In analogy with Definition 2.1, we introduce:
Definition 2.5 A boundary flux gpoundary is termed entropy conservative if
(wo — w(8))" boundary = Vo — W(g). (2.14)

We will now define go. Let o denote an entropy conservative flux that satisfies (2.14). We
note that entropy conservative fluxes are not unique. Obviously, they depend on the choice
of entropy but even for a given entropy there are numerous choices of go. (See [21,22].)
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Next, we define Roe averages. In [15] an averaged Jacobian matrix, A~./’+1 /2 for the Euler
equations was constructed that satisfies,
Flujp) — fu)) = Ajp@ji —uj).
It was shown in [9] that such a matrix exists in the general case and it is given by

12 12 -1

Ajpip = / g0 (Ws12(E)) dE / (w51 2(8)) dE 2.15)

—-1/2 —1/2

where wjy1/2(8) = %(le +w;)+EAwj12 and Awjy1/2 = wjy — w;. Furthermore,
we can write

1/2 1/2
(ujpr —uj) = / dé_”(w]-&-lﬁ(%_)) d§ = / (uw(Wjt1/2(8)) d§ - (Wjp1 — wj).
—1/2 —1/2
(2.16)
Hence, there is a Roe-average matrix expressed in w such that
gwit) —gw)) = fujp) — fu) =Ajp1pWjn —uj) = Bip1pwjt —w))
hold, where
1/2
Bjtip = / guw(wjt1/2(5)) dé&. 2.17)
—1/2
Since g, is symmetric we can diagonalize B i+1/2 as
Bjiijp= kj+1/21~\j+]/21§jf+1/2, (2.18)

where RT R = I. (I is the identity matrix of the same size.) Specifically, we will denote the
Roe-average between the boundary point and data as By which satisfies g(wop) — g(wy) =
Bo(wp — wg).

The entropy conservative flux gy can be viewed as an averaged flux between the two states
wo and wg. If wg # wg, go will differ from the arithmetic average and the difference will
depend on the distance wo — wy. Assume that u, w and f, g have N components. We will
try to find gg on the form

D
o = w J(wo — wy) (2.19)

where Dy is an unknown symmetric matrix. It is non-unique since it has N2 /2+ NJ2
components while (2.19) only makes N equations. For instance, we can choose Dy to act
along the eigenvectors of the Roe matrix by setting Do R()AOR0 Consequently,

EOT (éo . g(wo) + g(wg)

= —&RT(U)() — wy). (2.20)
2 2 0 g

[\0 is a diagonal matrix and its entries can be obtained from the N uncoupled equations (2.20).
Hence, A are the diffusion coefficients (positive or negative) of the entropy conservative
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scheme in the directions of the Roe eigenvectors. We will also use the notation ﬁar =

M = R’OAg ﬁg where Aar contains the positive entries of AO.

Remark We use the word “diffusion coefficient” to describe ﬁo as it resembles Q; 11,2 in
(2.3). However, it should be kept in mind that the entropy conservative flux is non-diffusive
and Dy ~ |wo — wygl.

At this point we define the boundary flux in (2.10)

fo = SMOLEWD) Doy @21

where
Qo = |Bo| + Do + 1 Dy|.

Theorem 2.6 Let gi11/2, i > 0 be consistent entropy-stable fluxes. Then the solution of
(2.9), (2.10) and (2.21) is globally entropy stable, i.e., it satisfies

h
W0l +h Z(Ui)t <C
i>0
and ||lull2 < K, where C, K are two constants.
Proof First, we note that g; 11/ is consistent by assumption. Furthermore, go defined in
(2.21) is clearly consistent as well.

The assumption of entropy stable fluxes in the interior allows us to use Lemma 2.4 and
specifically (2.12) holds. To obtain the global bound we must show that the right-hand side
of (2.12) is bounded. The argument is the same as in [17].

Using the definition of the entropy flux in Fy,

Fo = w( g — Yo + F(9) — F(g)
= wj g0 — Yo — w f(9) + ¥y + F(g)
= (wo — wg)" g0+ w (8o — f (@) — (Wo — W) + F(g)

Inserting go in the expression for Fo yields,

Fo =w(g)" (80 — f(9) + F(g) — (Wo — W)
_ |Bol + | Dol

+ (wo — wy)” (8o 5

(wo — wg))

Byl + 1D
—w(@) o — F(@) + Fg) — (wo — wg)" 20l

2
=w(g)" (By — D) (wo — wg) + F(g)
1 - ~
= 5 (wo = wg) (1Bol + |Dol)(wo — wy). (2.22)

Let r; denote the ith eigenvector of By, i.e., the ith column of Ry. Define wh =7l

wf) 0= riT (wo — wg). We also denote the number of components of w by N. Then

wg and

N
. T L
Fo=F(@) + D wiy(G)™ = G Dwpy — Suwhg (21 + 1 Duwh,  223)
i=1
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where (M)~ = min(A{, 0) and it is an eigenvalue of f?o_. wg is bounded since r! is of unit
length. Furthermore, aH~™ — ()AJ')'*‘ < ||+ |)A\i| and since |A/| + |5J| > (0, the last term in
(2.23) must be non-positive.

To simplify notation, we will continue the argument for the A contribution only. We can
make the same argument independently for X in exactly the same way and eventually conclude
that 17“0 is bounded. Hence, we write,

N
~ C A . 1 . ~. .
Fo= F(g) + 2 —w;(xl)w()g — Ewbgw |wog + BT;.

i=1
where BTj; represents the A contribution. Moreover, we rewrite the expression as,

Fo = F(g) + BTy + BToy + BT;.

~ 1 ~
BT, = —w (0. wy, — Ewggmwgg (2.24)
N o 1. .
BTy = Y —wh () wj, — Ewg)gp\' |whg
i=2

To simplify notation further and since the argument is independent for each direction, we
assume without loss of generality that the contribution from the 5»2,,,, N terms, i.e., BTy are
bounded and consider BT;. We recall that wé is bounded since it is obtained from data and
a unit length eigenvector.

First consider the case when A! is bounded. If wé g is bounded, then BT is bounded from
below and from above and if wtl) g Srows then the last term in BT} will dominate and BT is
bounded from above.

Next, we allow that |5»1 | grows, possibly unboundedly. From (2.24), we see that if |w(') 9| >

2|wé| then BT; < 0 independently of |A!]. Hence, we have an upper bound in this case.
However, if |w(1) gl < 2w él then BTy > 0. If i! grows unboundedly, it would appear that

BT can grow arbitrarily large and hence Fj is not bounded. However, this can not occur
for a conservation law equipped with an entropy. (One could possibly construct some other
PDE where it might occur.) The reason is that A1is not independent of w and, vice versa, a
growth in Iill can not leave w[l) g unaffected. To demonstrate this we write the conservation
law, e.g. (2.1), as

ur+ fr =0; uyw, + guwy =0 (2.25)

Since u,, is positive definite a growth of the eigenvalue A1 will affect the eigendirection r;
(and possibly the other directions as well). Locally in time and space, this is easily seen from
the linearized equation where u,, and g, are frozen. (Denoted with a bar.)

ﬁww, + gwwx =0.
RTi,R(RTw), + A(RTw), = 0. (2.26)
Since RT i1, R > 0 is bounded away from 0, the conclusion follows.

In conclusion, for entropy conservation laws where the coupling between variables is
strong, w(l)g can not remain unaffected and small if the corresponding eigenvalue grows.

Hence, | w(l) o will grow and BT} will become negative. (We remark that for the Euler equations
Uy > constant > 0 holds under the standard positivity assumptions, p, p > § > 0.)
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Hence, we have proved that the scheme satisfies a global bound. The L? bound on the
conservative variables follows from convexity of U [2]. (Some further explanations of this
proof are found in “Appendix”.) O

Remark We used the property that u,, > 0 above to exclude the pathological growth case.
We note that other properties could be used to the same end. For instance, if |wé ol is small
such that BT} > 0, the growth would be proportional to A!. Furthermore, the growth of A!
has to affect wg’g”'N (but maybe not A%>V). This means that BT>y would grow negative at
N
)

a rate of (wé’g"' 2 which in most cases would be a faster growth than ! and hence bound

Fy. However, such a condition might be difficult to check for a particular conservation law.

Proposition 2.7 The number of boundary conditions imposed by g is consistent with linear
theory and go enforce data on the characteristic variables corresponding to in-going waves.

Proof Linearization of the scheme (2.9) and (2.10) around a smooth solution results in a
scheme of the same form but

Liy1+L; — Q,-L+1/2(yi+1 = Yi)
2

where L is the linear flux A(x, )y, A is a bounded matrix and y the linearized variables.

Q" is the linear diffusion coefficient. (If we employ the entropy conservative scheme for the

conservation law, QiL+1 n= 0. This choice is not important for the boundary conditions.) In

particular at the boundary Qé = |A(0, 1)|. This corresponds to |1§0| in (2.21) (ﬁo = 0 for

the linearized scheme), such that

g0 = A(xo, 1)yo — AT (x0, )(y0 — Yg)- (2.28)

where yg is the boundary data for the linearized scheme. (In fact, yg = 0 but we keep y, for
consistency with previous notation.) As usual, A" denotes the positive part of the matrix.
From (2.28) we see that the in-going characteristic variables are enforced by shifting in data
in the flux. This automatically implies the correct number of boundary conditions.

8i+1/2 = (2.27)

Remark We note that the boundary scheme (2.10) reduces to

812 = & A(xy, )y — Alxo, )yo A" (xo, 1)
=— =— - — 2.29
(o) %) 2 h2 (o = yg) (2.29)
and the interior scheme is simply the second-order central scheme. Hence, the scheme is the
second-order Summation-by-parts/Simultaneous Approximation Term scheme (SBP-SAT).

(See e.g. [14,16] and references therein for more details on SBP-SAT.)

Finally, we show that the scheme is conservative by proving that it approximates a weak
solution.

Proposition 2.8 Let {ulh} be a solution generated by (2.9), (2.10) and (2.21) with grid size
h. Assume that uf’ € L and converges almost everywhere as h — 0. Furthermore, assume
that ug converges as h — 0. Then {uf’} converges to a weak solution (1.3).

Proof By observing that the boundary flux can be written as (2.28) the proof is very similar
to the corresponding theorem in [20]. In short, introduce a smooth test function ¢ and project
onto grid as ¢ (x;) = ¢;. Multiply the scheme by ¢;/ and the boundary scheme by ¢oh /2,
sum by parts and integrate in time. The result is,
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1 iv1— @i 1
u/(zuﬂ¢wr+§:@ﬂm?+§:hﬁ¢+2¢+2uwkw¢o+§:¢mo@0)dt

R+ i>0 i>0 i>0
=—/mamm+®;+%x%—w@m. (2.30)
R+
Using (2.16) in the last term, we obtain the same form as (1.3). ]

2.2 The Inviscid Burgers Equation
We will briefly exemplify the boundary flux for the inviscid Burgers equation
u2
u,—i—(—) =0, 0<x <o0.
2 X

The scheme is augmented with the boundary condition u(0, r) = g(¢). We consider the
semi-discretization for x; = ih

i) + 8i+1/2 ;&'—1/2 —0 i>0
g1/2 — 80
= =0.
(uo)r + 12
The flux
b TS L e
8i+1/2 ) 2 i+1 i

where f; = ulz /2 is entropy conservative with respect to U = u?. (See [21].) Furthermore,
we have the Roe-flux

fiv1 + fi luis1 + il
gﬁfle/zz l+2 - — l+4 “ (i1 — up).

Based on these two fluxes it is straightforward, following the recipe above, to write down the
boundary flux:

- + + 1
g0 = Jo ng _(|u0 4ug| +§(uo—g)+) (uo — g).

2.3 The Euler Equations

The Euler equations were given in the introduction but we restate them here for convenience.
w4 fl=0, 0<x<oo, 0<t<T (2.31)

where u = (p, pg, £) and the flux f! = (pq, pg> + p.q(E + p)). p. q, E, p are density,
velocity, energy and pressure. Also, e = £ — ’5’7 and p = (y — 1)e where y is the specific
heat ratio.

To define the flux (2.21), we need an entropy conservative flux and the Roe matrices. There
are various different ways of defining entropy conservative numerical fluxes (see [6,10,22]).
We will use the entropy conservative flux proposed in [10]. To define their numerical flux we
need
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(Aa)jyia =ajr1 —aj
_ |
ajrijz = 5(@j+ajt1)
and the logarithmic mean

i (Aa)jy1)2
2T (Alog(@) 12

The numerical flux is conservative with respect to the (physical) entropy pair:

S S
Ue_PS g _PdS
y —1 y —1

where the thermodynamic entropy S = log(p) — y log(p). The entropy variables are

- S 2

Wl = (L _pda” pa _8) . (232)
y=1 2p p p

Then the entropy conservative flux given in [10] is

. | 2 3 T
8j+1/2 =(8j41/2: 812 8j+12) " »
1 — In
8j+1/2 =22j+1/2(23)j 110
Z3;+1/2 Z2j+1/2

|
g3 = g (2.33)
M2 Zl,/+1/2 itz

!

g3 _ lz22jrip fv+1 (23)]~"+1/2 +g2

i+12 = 5= i+1/2
2T p \y — 1 @) s

0
2= (z1,22,23)] = J;(Lq, »’.

The boundary scheme also requires that Ao in (2. 20) is computed, which in turn requires
the Roe averaged eigenvectors of g 8w = B [denoted R and defined in (2.18)]. However, it is
the Roe-averaged eigenvectors of f, = A that are well-known with closed form expressions.
We denote the eigenvector matrix of A by X such that XI'X ~! = A where I" is the (diagonal)
eigenvalue matrix and Ao(uo —ug) = f(ug) — f(g). (The tilde on a matrix signifies that the
matrix is evaluated at a Roe-averaged state.)

It would be convenient if one could use the conservative variables instead of the entropy
variables when the boundary flux is computed. In the next proposition, we will show that this
can be done and the boundary flux can be calculated as

where

so = L)+ 1@ _ Aol +1Mo| + Mo

5 2 (uo —ug) (2.34)

where
Mo = XoloXy! (2.35)

and

(o —ug).

A |
%! (§0 St f(ug>) - ok
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Proposition 2.9 For the Euler equations (2.31), the boundary flux (2.21) can be expressed
as (2.34) where My is given in (2.35).
Proof We begin by stating a few relations. We recall the Roe averaged Jacobian (2.17):
1/2
By = / gw(w_12(8)) d&
—1/2
where w_1,2(§) = %(wo + wg) +EAw_12 and Aw_1/2 = wo — wy. Furthermore,
172
Fo= [ oo

-1/2

It should be noted that By is symmetric and Hy is symmetric positive definite for strictly
convex entropies. (Convexity in turn requires p, p > 0 in the case of the Euler equations.)
Furthermore,

Ho(wo — wg) = (o — ug)

and the following relation holds, Ao =By - I:I(; I Multiplying from left by I:IO_ 12 and right
~1/2 .
by H,'" yields
1:10—1/2140}}01/2 _ I:IO—I/2EOI_~IO—1/2
and after diagonalization
F—125 = oo 112 5—1/25 5 ST f—1/2
Hy P XoToXy Hy? = Hy ' RoAoRY Hy 2.
Hence, we have that
F120 B o=l 512 5=1/25 % AT 5—1/2
Hy ' Xo|Tol X5 Hy* = Hy "*Rol Aol RY Hy °.
such that |Ag| = |1§0|f~1(; I Consequently,
| Bol(wo — wg) = | Bol Hy ' Ho(wo — wg) = Aol (uo — ug). (236)

By a similar argument, we can replace (2.20) by

s 1~ &wo)+ g(wy) FoX,!
Xol(go_ : ) _ _ 20

(o — ug)

where the standard Roe averaged eigenvectors are used. In conclusion, we may equivalently
compute the boundary flux (2.20) using only the Roe eigenvectors

_ fuo)+ flug) Aol + Mol + Mo
g0 = ) — > (o — ug).

[m}
We remark that the boundary flux as defined in (2.21) can be readily used as well by
computing the necessary matrices numerically. Proposition 2.9 offers a way to calculate

the flux, go, directly in conservative variables and with the closed form expressions for the
eigensystem of A = f,.
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The boundary conditions proposed in (2.21) and Proposition 2.9 are usually referred to,
and used as, far-field (or open) boundary conditions in aerodynamics. However, objects
immersed in a fluid interact with the fluid via different boundary conditions. Hence, there
is a need to specifically study such boundary conditions and derive bounds on the solution.
That is the topic of the next section for the Euler equations.

2.3.1 No-Penetration Wall Boundary Condition

The conventional boundary condition for an Euler wall enforces “no penetration”, i.e., the
normal velocity on the wall is set to 0. Here, we study the 1-D Euler equations (2.31) and
this condition would amount to setting ¢ = 0 at x = 0. However, we will not set ¢ = 0 in
the data vector but instead “mirror” the velocity (which is a fairly standard technique).

Throughout this section we will only consider the solution at the boundary point and
therefore suppress the 0 index on its components. That is, we write

uo = (p, pqg. )" (2.37)

Since we use weak imposition of the boundary condition, ¢ need not be 0 and with this
notation we define the data vector as

u—g=(p,—pgq, . (2.38)

Note that g enters the energy £ as a square and does not affect its sign. Furthermore, the
boundary condition g = u_, constitutes a condition on the velocity alone since it is only
satisfied if ¢ = 0. Hence, this is a consistent way of enforcing the no-penetration condition.
Here, we will use the entropy variables as given in [10] in the calculations below. These are
derived from the physical entropy U = —pS/(y — 1) which yields ¥ = m = pgq.

Proposition 2.10 Let g; 12,1 > 0 be entropy stable fluxes and and let gy be defined as
in Proposition 2.9 using the two states uy and u_; = ug given in (2.37) and (2.38). Then
(2.9), (2.10) and (2.34) is a consistent discretization of the Euler equations (2.31) subject
to a no-penetration boundary condition at the left boundary. Furthermore, the solution is
globally entropy stable.

Remark Note that we define go by using u_; as u 4 in (2.34). We emphasize that in Proposition
2.9 and Theorem 2.6, u g, wy are bounded vectors. Here, u_, is not a bounded vector and we
can not use the previous results.

Proof The statement of consistency is true by construction since by inserting ug = u_, we
get go = f(up). Furthermore, ug = u_ is a statement of ¢ = 0 as discussed above.

The non-trivial statement is the global entropy bound. Since u_, is not a bounded data
vector, Theorem 2.6 is not applicable. We must check global stability directly for this case by
computing Fp as defined in (2.13). To this end, we need the entropy variables for the physical
entropy given by
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(See [10]). We calculate

gwo) +g(w—q) _ fluo) + flu—q)
2 2
_ (m,gm+p,qE+ T+ (=m,gm + p, —q(E + p)T
2

=(0,gm+ p,0)"

where we have used the notation m = pgq. Next, we compute the entropy conservative flux
between the two states using (2.33). For that, we need the arithmetic average, z between the
two states ug, ug. A direct calculation gives:

z=/Emef.
p

Since the second component is 0, we obtain
20=(0,p,0)".

Next, we calculate Mo as,

A &(wo) +g(w—g) My
80— —F7H =

2 m Wo—tg)-

Inserting the particular vectors

M
0.0 = O.qm+p.0) = ==20.2m.0)".
We see immediately that
My = diag(0, ¢, 0).

However, to compute the | Ao| matrix, we need the Roe averaged diagonalization matrices.
Hence, we need the Roe averaged variables that arise in this particular case. They are:

p=p, G=0, h=h

where h = % is the enthalpy. The eigenvector matrices are given e.g. in [10]:

A

2c 2k
111
Xo=| -cO0c
h 0Oh

Furthermore, I’y = diag(—c, 0,c¢) and ¢ = /% is the speed of sound. From this we obtain

000
L‘2

|Aol = XolTolXg' = 0c <
000
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Using these results in (2.34) give

__g(wo) +g(wy) Aol +2My
80 = ) — 2 (o — u—_g)

=(0,gm+ p,0)" —(0,2¢7m,0)" — (0, cm, 0)"
=(0.(q —2q")m —cm+ p,0)".

Finally, with Wy = pg = m, we calculate

- 5 m
Fozwggo—woz;((q—2q+>m—cm+p)—m

2
:m?((q—2q+)—c)§0.

[m}

Remark Note, we only use one boundary condition irrespective of inflow, outflow or sub- or
supersonic flow and still we are able to bound the entropy. This may seem counter intuitive
but is a consequence of our choice of u_, not being a priori bounded.

2.4 Grid Interfaces

In this section, we derive a stable procedure to link two domains via an interface. We consider,
for simplicity, the whole x-axis and assume that there is a grid interface at x = 0. We denote
the left and right grid spacing by &, and hg. u; with positive/negative indices correspond to
approximations in the right/left domain. We introduce gg R and ué‘R as the numerical fluxes
and numerical solutions at x = 0. (The left and right discretization scheme will have their
own approximation at x = (.) The numerical scheme is defined as:

8i+1/2 — 8i—1)2

(ui) + =0, i=1,2,3,...
hg
R 812 — 8K
— =0, 2.39
(ug)e + Y (2.39)
L
L 8y —8-1/2 _
(ug): + 7}“/2 =0,
(ui)t+w:0’ i=—1,-2—3,...
hr

As always, we assume that g; /2, i # 0 is entropy stable in the sense of Definition 2.1. We
multiply the equations in (2.39) respectively by thiT, hR(w(f)T/Z, hyp, (wé)T/Z and thiT,
and sum to obtain

hr, hg
D WU+ 2 hRWUD:+ = (U + - (U
i<0 i>0
< f) 7ol = ¥ - " + v = BT,
We require that the numerical fluxes are consistent and for stability that BT is bounded.
We will need a generalization of Definition 2.1: A numerical flux approximation

8o(w1, wo) between any two states, is said to be entropy conservative if (wy —w2)T go(wy, w)
= V(wy) — ¥(wy).

@ Springer



78 J Sci Comput (2014) 58:61-89

Definition 2.11 The grid interface at x = 0 in the scheme (2.39) is said to be entropy stable,
if

wiH gk —wf — whT gt +w§ <o. (2.40)
In the case of equality, we say that it is entropy conservative.

Proposition 2.12 Let By be a symmetric positive semi-definite matrix and go(wé, w(lf)
denote an entropy conservative flux. Then the scheme (2.39) with

R By
86 = &o(wg;. wi) + = (wf — wf)
) Bo
% = &o(wg, wg) = =~ (wg = w§) 2.41)

is globally entropy stable and with By = 0, the interface is entropy conservative.

Proof We begin by checking the statement for By = 0. Using 8o = g& = gt in BT, we
obtain

BT = (w§f —wi)" g — (¥¢ — wf) =0. (2.42)

With the additional diffusion and (2.42), we have

BT = (wf)T (—%mg - woL)) — w7 (%(wé - w(’f))

Bo
= —(w(I)e — w(l)‘)T7 w(If — w(I)‘) <0.

Just as for the interior scheme, the entropy conservative flux is the marginal case for
stability. For further damping, which may be necessary if a non-linear wave is crossing the
interface, some more diffusion can be added. For instance, one may set By = |1§0| and
obtain the Roe scheme. Furthermore, in the linear case f = Au this choice reduces to the
second-order SBP scheme, see [14].

Remark In [5] grid interfaces for entropy stable WENO schemes are studied and similar
interface fluxes are proposed.

Next, we prove that the interface treatment is conservative in the sense of Lax—Wendroff.
For this we use the notation 47 = max(hy, hg).

Proposition 2.13 Let {ul’.'} be a solution generated by (2.39) and (2.41) with grid sizes
hp,hg. Assume that ulh € L* and converges almost everywhere as h — 0. Then {ul}"}

converges to a weak solution (1.3).
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Proof Let ®(x) be a test function with compact support in space and inject it onto the grid
as @ (x;,t) = ®;(¢). Then

<I>i(<u,->t w) 0, i=123,...

1 g2 —
7q> 0, 2.43
O(( o)z A /2 ) ( )
1s by, + S0 =8-12) _ ¢
2 0 0/t ]’l /2 — Y
@; ((ui)t g,+1/2 8- 1/2) =0, i=-1,-2-,3,...
Sum all rows
T
N L R
D Dilu)s + 5 @o((ug) + @)
o \i#0
| — D — D,
_z l+ z+1/2 Ziﬂrh lgﬁl/z—l—Cbogé —dDOgée)dt =0.
i<0 i>0 R

L R
From (2.41) we have gf = gk. Let ug(r) = 0340 We obtain

Z ®(0)u; (0)

+1— % Dy —
/( 2 (@i =2 #giﬁl/z +2 lthgiIil/z)df =0.

i<0 i>0

With the assumption of convergence this expression tends to

oo T oo
/ O (x, 0)u(x,0)dx —/ / (Piu + D, f) =0. (2.44)
—00 0 —oo

3 Numerical Simulations

To demonstrate the robustness of the proposed boundary schemes, we have run a number
of test cases for the Euler equations. We have used the version of the scheme enforcing
the boundary conditions using conservative variables and standard expressions for the Roe-
averaged Jacobian, i.e., (2.9), (2.10), (2.34) with the straightforward extension to allow a
boundary on the right. The scheme is discretized with the standard 4th-order Runge-Kutta
scheme in time, so as to reduce the errors from time integration and highlight the properties
of the spatial discretization.

Up until now we have mainly discussed the boundary schemes and assumed that an entropy
stable flux is used in (2.9). To carry out the computations we must choose a suitable flux. The
least diffusive choice would be an entropy conservative scheme such as (2.33). However, an
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entropy conservative scheme will lead to large oscillations around shocks [22]. Hence, we
will add more diffusion where necessary and use the following numerical flux,

R Kit1/21Aiv12]
8i+1/2 = &i+1/2 — %(WH —u;) 3.1

where §i+1/2 is calculated using (2.33). The extra diffusion, |A~,-+1/2|, is the standard Roe
diffusion (without entropy fix since that is redundant with the use of g;y1/2). However,
in smooth regions it is unnecessary to add the Roe diffusion and the scalar grid function
ki+1/2 € [0, 1] will localize the addition of diffusion to regions with entropy production.
k41,2 1s obtained as follows. Consider the entropy stability condition

(Wit1 —w)  giv12 < (Wig1 — W)). (3.2)

If we plug in (3.1) it will be satisfied even if |Ag| = 0 so it will not tell us where entropy
might be produced. However, we can equivalently write the flux (3.1) as

firi+ fi  Mivip + ki1l Aol
2 2

By setting the last term in (3.3) to O we can monitor the entropy production of the non-diffusive
central scheme. We calculate

8i+1/2 = (Wiv1 — ui). (3.3)

firi+ fi

Eiv12 = (Wipr —w)’ ( >

) — (Wi — W) (3.4)

If &412>0 then n41p=1 else niy12=0.
The value of 1 is binary and we will smoothen the behavior somewhat by a simple averaging.

Ni4+3/2 + Ni—1/2
- 5
(At the boundary points we use one-sided averages.) Again, we stress that none of these
choices affect the stability proofs. Furthermore, we refer [20] for a proof that (3.1) generates
a second-order scheme for smooth solutions.

For all the three boundary cases, far-field, wall and interface, the boundary flux is computed
in exactly the same way. The only difference is the data vector that is fed to the routine.
Either it is given as a bounded vector function (we use g; ,(f) = uf (x1.)), or it is the solution
vector with a negative velocity, or it is the solution vector at the corresponding block in the
neighboring grid block.

If niy12=0, then kiy1p0= else Kiy12 =nit1)2. (3.5)

3.1 Shock Entropy Wave Interaction

The first example was proposed in [18]. It is an entropy wave interacting with a strong shock.
The domain is —5 < x < 5 and the initial conditions given by

(p,q, P) = (3.857143,2.629369, 10.33333) for x < —4,

(p,q, P) = +e€sin(5x),0,1) for x > —4, 3.6)
with € = 0.2. Here, we use g;(t) = u®(—5) and g, (t) = u°(5). In the literature, the solution
at T = 1.8is usually reported and we display that case in Fig. 1 with 800 and 3000 grid points

in space. The performance of the first/second-order scheme is as expected and comparable
with similar schemes.
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Fig. 1 Plots of p approximation at 7 = 1.8. a 800 grid points, b 3000 grid points

In this work we are interested in the performance of the boundary schemes and therefore
we run the scheme with 400 grid points beyond 7 = 1.8 until the strong shock wave reaches
and passes through the boundary. In Fig. 2 the p-solution is depicted at 7 = 2.5, just before
the shock reaches the boundary, and at 7 = 2.8 when the shock has passed through the
boundary. The scheme is stable just as predicted by the analysis.

3.2 Sod’s Shock Tube

The next set of initial conditions was proposed in [19] and is given by

(p.q, P)=(1,0,1) x =0,
(0,q, P)=(0.125,0,0.1) x>0,

on the domain —5 < x < 5. The initial jump will develop into a rarefaction wave, a shock
and a contact discontinuity. This example is often presented at 7 = 2.0 which is included in
Figs. 3 and 4 computed with 100 and 200 grid points, respectively. Furthermore, we continue
the simulations and show solutions at 7 = 4.0 and note that the shock has passed through
the boundary without any stability problems.

3.3 Shock Interacting with Wall

This test case can be found in [23] and it is stated on the domain —5 < x < 5. Itis originally
a test case for the interaction of strong shock waves but we use it since it is defined with
wall boundary conditions with which strong shocks will interact. The initial data are given
by:

(p,q, P)= (1,0, 1000) 0<x<0.1,
(p,q, P)=1(1,0,0.01) 0.1 <x <0.9,
(p,q, P)=(1,0,100) 0.9 <x < 1.0.

The data vectors at the walls are constructed as described in Sect. 2.3.1 by mirroring the
velocity. The case is run with 400 grid points in space and the momentum, pgq is depicted at
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Fig. 2 Plots of p approximation with 400 grid points.a7 = 1.8,b7 =2.5,¢T = 2.8

08 R 08

06 06
] " o
£ . £

0.4 = 0.4 -

02 \ 0.2

s 3 1 1 3 5 9% 3 1 1 3 5
X X
(a) (b)

Fig. 3 Plots of p approximation with 100 grid points.a p at T =2.0,b p at T = 4.0

T =0.05T=038T=0.5and T = 0.61in Figs. 5 and 6. At T = 0.5 the shock wave has
just bounced off the right boundary and is moving to the left. This is a severe test for stability
and the scheme copes with the wall-shock interaction without any difficulties.
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Fig. 5 Plots of pg approximation with 400 grid points. a pg at 7 = 0.05, b pg at T = 0.38

3.4 Shock Passing a Grid Interface

In this section, we will demonstrate the robustness of the interface treatment. We will limit
ourselves to the shock-entropy wave test case. In Fig. 7, two computations, at time 7 = 1.8,
with different grid sizes in the left and right domain are displayed. (Denoted as L and R in
the captions.) The computations are stable, despite very different grid sizes. The scheme is
more diffusive in the less resolved region, which is expected.

Next, we will take a closer look at the effect of the interface. We compute the solution
with 200 grid points in both the left and right domain and compare it with the corresponding
399-point solution without an interface. We plot the solution and the pointwise difference
in the p variable, Fig. 8. We see that there is a significant difference between the 1 and 2
domain solutions. The peak in the figure, indicates a one cell difference in the shock position
compared with the non-interface computation. However, we stress that both approximations
are conservative in the sense of Lax—Wendroff and upon convergence, they both will approx-
imate a weak solution. This does not mean that the pointwise difference will vanishas 2 — 0
since convergence can not be expected in L.
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Fig. 8 Plots of p approximation at 7 = 1.8. a L: 200 R: 200 (grid points), b pointwise difference
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3.5 A Fourth-Order Scheme

In [20] an entropy stable fourth-order scheme was developed. As in [17] it was done for a
homogeneous entropy and not the physical entropy (used in this article). However, with minor
changes it can be made entropy stable, in the interior and at the boundaries, with respect to
the physical entropy. There are two modifications that need to be done to make it formally
entropy stable. The first is to change the boundary flux to the one derived in this article. The
second is to change the shock locator. In [20], the shock locator is a refined version of the
one described above, but based on the homogeneous entropy. To be formally entropy stable,
we would need to change that to monitor the physical entropy. However, the focus in this
paper is boundary conditions and deriving a new shock locator is beyond our scope. We will
postpone that to a future article and consequently, we will not make that modification but
use the same shock locator as in [20] and only demonstrate the robustness of the boundary
conditions.

Remark 1If we add diffusion everywhere, i.e., not use a shock limiter, we obtain a scheme
that is formally entropy stable. However, it would be very diffusive which is why we
keep the shock locator. Less diffusion makes a more severe test of the boundary condi-
tions. We merely state that the more diffusive approach also works and is, of course, very
robust.

Before presenting the computational results, we will briefly outline how to adapt the
scheme in [20] to use the boundary procedures in developed in this article. The scheme
(termed dual-diffusion in [20] due to the two diffusion coefficients) is defined (for notational
convenience stated with only one boundary) as

4th s4th
8172~ 8o
(o) + 12— =5 3.7
poh
4th 4th
8 — 8-
W)+ Jt12 7812
pjh
where
1
gt =~ 132+ fi+ Qji(wjpa = w;) (3.8)

8

+ E(fj+1 + fi) = Qjr1pwjr1 —wj)
1

- E(fjJrl +fic1+ Qj(wjrr —wj_1))

and p; > 0 are weights associated with the discrete norm. Close to the boundary (3.8) is
changed to one sided approximations (details found in [20]). The boundary flux is gg' h= f
and S = ;TlhAg(wo — wg) Where Ay is the flux Jacobian at wq (i.e., not the Roe average.)
Here we make the modification of the scheme. We define

_1 - N N
S= ——(By + Do + |Dol)(wo — wg) (3.9
poh
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Fig. 9 Plots of p approximation with 200 grid points.a T =1.8,b T =2.8

where Bo is, as before, the Roe averaged Jacobian between the states wo and wgy. With this
modification we can rewrite (3.7) as

Ath ~4th
812 ~ 80
(o) + === = 0
poh
8 fotfe 1 5 A 5
g = Tg - E(IB()I + Do + [ Do) (wo — wy). (3.10)

In [20] (where definitions of the numerical entropy fluxes can be found), it was proven that if
the diffusion coefficients Q;, Q11,2 are chosen to be larger than the entropy conservative
coefficient, then the scheme satisfies the following inequalities

hpo(Uo): + Fij3 — Fg'" < hpow( S

4th Ath
hpi (U + Fitly )y — i, < 0.

Summing over j yields >, hp;(Uj) — Fé’h < hpow('S where Fé’h = wl fo — Wo.
Using (3.10) and (3.9), it is straightforward to show that

Fo™" 4 hpow!'s = wogg™ — Wy (3.11)

which has been proven to have an upper bound earlier in this paper. Hence, the fourth-order
scheme with S given by (3.9) is globally entropy stable. Using this scheme, we have computed
the shock-entropy wave example. The results are shown in Fig. 9. The solution at 7 = 1.8
shows that this scheme is far superior its second-order counter part in resolving the rapid
oscillations trailing the shock. Furthermore, it lets the shock through the boundary without
any stability issues.

4 Concluding Remarks

In this article, we have derived entropy stable boundary schemes for the Euler equations. The
boundary schemes are consistent with characteristic far-field conditions and we also propose
a way to enforce the no-penetration wall boundary condition. Furthermore, we have derived
schemes for connecting two grid domains in a conservative and entropy stable manner.
Numerical computations with a second-order scheme show that the boundary schemes are
robust even when shocks impinge on the boundaries. Furthermore, we briefly outline how
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to modify a fourth-order entropy stable scheme found in [20] to use the boundary schemes
proposed in this article. With these changes, we demonstrate the robustness of the fourth-order
scheme for the shock-entropy wave example.

Throughout this article, we have considered entropy stability with respect to the physical
entropy. Because of this, the boundary conditions proposed here are very different from the
boundary conditions proposed in [17]. In the latter, the matrix Ag used in (3.7) is a function of
wo, i.e., the notion of inflow and outflow is determined by the interior solution and not data.
Here, on the other hand, we use the Roe-average and hence, data affects the defn of in- and
outflow. Which one, if any of the two, that is correct is unclear since existence and uniqueness
results are lacking. If entropy arguments are to be used to obtain estimates for the Navier—
Stokes equations, it appears that we must use the physical entropy as in the current paper.
However, the derivation and further discussion of boundary conditions for the Navier—Stokes
equations will be the topic of a forthcoming paper.

5 Appendix: Some Comments on the Proof of Theorem 2.6

Here we will further explain the balance of non-linear terms on which the proof relies. These
arguments also appear in the proof of a similar theorem but for another entropy in [17].

5.1 Scalar Conservation Law

The entropy variable is w = u and there is only one eigenvalue and eigenvector. Hence, the
expression (2.23) becomes

- ~ ~ 1 ~ ~
Fo = F(g) +ug((W)™ — (W) uog — Euog(l)‘" + [ADuog- (GRY;

Recall that g is a bounded admissible state in the sense that f(g) and A(g) are both bounded.
The numerical solution u is assumed to be an admissible (but not necessarily bounded) state,
i.e., [L(u)| can only be unbounded if |«| is. In the scalar case the balance is now very simple.
We split the expression into two pieces:

Fo = F(g) + BT; + BT;.

N 1 I
BT; = —ug(k)+uog — E”OgMWOg

o 1.
BT; = ug(A) upg — Euog|)\|uog

The task is to show that both BT; and BT; are bounded from above (but not necessarily

negative). We consider BTj. BT; can be treated in the same way. We assume At > Oorelse
BT; is trivially non-positive. If [uog| < 2|ugl, the right-hand side may be positive indicating
a growth. However, |ug —ug| = |uog| < |ug| implies that u( is bounded which in turn means
that A(uo, g) is bounded. Hence, B T; is bounded although it may be positive. An upper bound
is sufficient for a global bound on the entropy. The other option is that |ugg| > 2|ug|. Then,

- 1
BT; = )t (—uguog - EMOQMOE) < 0. 5.2)

Note that the size of A is unimportant and it will give a bound on the entropy. We stress that
the key to the proof is the observation that the eigenvalues are not independent of u. It is
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impossible that BT; > 0 and at the same time At — oo. This ensures an upper bound on
the growth rate of the entropy and an entropy estimate is obtained.

5.2 System of Conservation Laws

Next, we turn to a system such as the Euler equations. Again, we make the assumption that
g is an admissible state. (Specifically, for the Euler equations g must be a bounded state and
bounded away from p = 0.) Furthermore, we also assume that the states u generated by the
scheme are admissible in the sense that p > 0. Both these assumptions are standard. Hence,
|A! (g)| are all bounded. Furthermore, if |wog| < 2|wyg], then wy is a bounded admissible state
and 2/ (wo, g) and A (wo, g) are bounded for all i. So, the first part of the scalar argument
applies to this situation as well. Namely, for states close to wg the entropy might grow but
only at a bounded rate since the eigenvalues remain bounded.

Similarly, if |w6 gl > 2| wf3| for all i then the boundary terms will be negative capping the
growth just like in the scalar case.

However, for a system we must also consider when wf) g remains small for one or more i

but grows in other directions. For the sake of the argument, assume that |wé g| < 2| wé| while

all the other directions satisfy Iwé g| > 2|wg|, i # 1. This would render BTj positive which
may cause a growth of the entropy. (BT>n < O under these assumptions and one might expect
those terms to dominate BT7j. Such an argument would require some assumptions relating
the different eigenvalues. We use another argument.) Here,

. 1, o«
BT, = —wji' Twg, — Ewggmwgm >0 (5.3)

If 2! remains bounded the growth is bounded and stability obtained. (BT; > 0 but since
|w(l) g|, |wé|, |A1] are all bounded we have BT| < constant which is sufficient for stability.)

The only remaining question is if w(l) g can be small while A grows indefinitely. This would

require that 4! does not affect w(l) g or else it would cause wé g to grow which would make
BT negative and the growth would be capped.

The final part of the proof demonstrates that this can not happen for a conservation law. If
it could happen, it would certainly also happen locally. Hence, we can freeze the coefficients
and study the local growth pattern.

By freezing the coefficients the dependency between the solution and the eigenvalues can
be determined. Equation (2.26) is of the form

AU[ + Avx =0.

Since A = AT > 0 it is inevitable that A’ will affect v;. We will spell out the argument for
a 2 x 2 system. Say that v, is small but A; is growing. The growth of A, will cause v; to
grow but not vy, for if it did we would obtain a bound. Consequently, [A]»» = 0. Hence, the
assumption that A > 0, i.e. [A]o2 > 0, is contradicted. (We remark that v; must not affect
vy either, which results in a decoupling of the equations.)

This argument has the general meaning that the coupling is strong in a conservation law
and in particular, the growth of a particular eigenvalue affects the corresponding component.
Hence, the scalar argument for boundedness translates to a system and Fy < Constant.
Therefore, U(t) < Constant.

@ Springer



J Sci Comput (2014) 58:61-89 89

References

20.

21.

22.

23.

. Cockburn, B., Coquel, F.,, LeFloch, P.G.: Convergence of the finite volume method for multidimensional

conservation laws. STAM J. Numer. Anal. 32(3), 687-705 (1995)

Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2000)

Du Bois, F., Le Floch, P.: Boundary conditions for nonlinear hyperbolic systems of conservation laws.
J. Differ. Equ. 71(1), 93—-122 (1988)

Dutt, P.: Stable boundary conditions and difference schemes for Navier—Stokes equations. SIAM J. Numer.
Anal. 25(2), 245-267 (1988)

Fisher, T.C.: High-order L2 stable multi-domain finite difference method for compressible flows.
Ph.D. thesis, Purdue University (2012)

Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high order accurate entropy stable essentially non-
oscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50(2), 544-573 (2012)
Harten, A.: On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49,
151-164 (1983)

Hughes, T.J.R., Franca, L.P., Mallet, M.: A new finite element formulation for computational fluid dynam-
ics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of
thermodynamics. Comput. Methods Appl. Mech. Eng. 54, 223-234 (1986)

Harten, A., Lax, P.D.: A random choice finite difference scheme for hyperbolic conservation laws. SIAM
J. Numer. Anal. 18, 289-315 (1981)

Ismail, F., Roe, P.L.: Affordable, entropy-consistent euler flux functions II: Entropy production at shocks.
J. Comput. Phys. 228, 5410-5436 (2009)

. Joseph, K.T., LeFloch, P.G.: Boundary layers in weak solutions of hyperbolic conservation laws. Arch.

Ration. Mech. Anal. 147, 47-88 (1999)

Mock, M.S.: Systems of conservation laws of mixed type. J. Differ. Equ. 37, 70-88 (1980)

Mishra, S., Spinolo, L.V.: Accurate numerical schemes for approximating intitial-boundary value prob-
lems for systems of conservation laws. Technical report, ETH-SAM report, pp. 2011-57 (2011)
Nordstrom, J., Carpenter, M.H.: Boundary and interface conditions for high-order finite-difference meth-
ods applied to the Euler and Navier—Stokes equations. J. Comput. Phys. 148, 621-645 (1999)

. Roe, P.L.: Approximate riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43,

357-372 (1981)

Svird, M., Carpenter, M.H., Nordstrom, J.: A stable high-order finite difference scheme for the compress-
ible Navier-Stokes equations, far-field boundary conditions. J. Comput. Phys. 225, 1020-1038 (2007)
Svird, M., Mishra, S.: Entropy stable schemes for initial-boundary-value conservation laws. ZAMP 63,
985-1003 (2012)

Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes,
ii. J. Comput. Phys. 83, 32-78 (1989)

Sod, G.: A survery of several finite difference methods for systems of conservation laws. J. Comput. Phys.
17, 1-31 (1978)

Sviérd, M.: Third-order accurate entropy-stable scheme for initial-boundary-value conservation laws.
ZAMP 63, 599-623 (2012)

Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and
related time-dependent problems. Acta Numerica 12, 451-512 (2003)

Tadmor, E., Zhong, W.: Entropy stable approximations of Navier—Stokes equations with no aritificial
numerical viscosity. J. Hyperbolic Differ. Equ. 3(3), 529-559 (2006)

Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks.
J. Comput. Phys. 54, 115-173 (1984)

@ Springer



	Entropy-Stable Schemes for the Euler Equations with Far-Field and Wall Boundary Conditions
	Abstract
	1 Introduction
	2 Entropy Stability
	2.1 Boundary Schemes
	2.2 The Inviscid Burgers Equation
	2.3 The Euler Equations
	2.3.1 No-Penetration Wall Boundary Condition

	2.4 Grid Interfaces

	3 Numerical Simulations
	3.1 Shock Entropy Wave Interaction
	3.2 Sod's Shock Tube
	3.3 Shock Interacting with Wall
	3.4 Shock Passing a Grid Interface
	3.5 A Fourth-Order Scheme

	4 Concluding Remarks
	5 Appendix: Some Comments on the Proof of Theorem 2.6
	5.1 Scalar Conservation Law
	5.2 System of Conservation Laws

	References


