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Abstract We develop probabilistic upper bounds for the matrix two-norm, the largest singu-
lar value. These bounds, which are true upper bounds with a user-chosen high probability, are
derived with a number of different polynomials that implicitly arise in the Lanczos bidiag-
onalization process. Since these polynomials are adaptively generated, the bounds typically
give very good results. They can be computed efficiently. Together with an approximation
that is a guaranteed lower bound, this may result in a small probabilistic interval for the
matrix norm of large matrices within a fraction of a second.
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1 Introduction

(Golub–Kahan–) Lanczos bidiagonalization [5] (see also, e.g., [6]) is a popular method to
approximate singular values of large sparse matrices. Let A be a real m × n matrix with
singular value decomposition (SVD) A = X�Y T with singular values

0 ≤ σmin = σp ≤ σp−1 ≤ · · · ≤ σ2 ≤ σ1 = σmax = ‖A‖,
where p:= min{m, n}, and ‖·‖ stands for the 2-norm. Denote the corresponding right singular
vectors by y1, . . . , yn . Usually, Lanczos bidiagonalization approximates the largest singular
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values, and, to a lesser extent, the smallest singular values, well. However, the results of the
method depend on the choice of the initial vector v1. The obtained approximation to largest
singular value σmax is always a lower bound. However, if a poor choice is made for v1, that
is, if v1 is almost deficient in the direction y1, the true value of ‖A‖ may be arbitrarily larger.
Often there is no apriori information on y1 available. For this reason a random choice for v1

is considered relatively safe; v1 is usually selected randomly in (industrial) codes.
Using the fact that v1 is chosen randomly, we will develop probabilistic bounds for ‖A‖;

i.e., bounds that hold with a user-selected probability 1 − ε, for ε � 1. The bounds may be
viewed as a side-product or post-processing step of Lanczos bidiagonalization and may be
computed efficiently: for large A, the computational costs are very modest compared to the
Lanczos bidiagonalization process itself.

The fact that it is unlikely that a random vector is near-deficient in y1 enables us to develop
probabilistic inclusion intervals for the matrix norm. Hereby we exploit the fact that the Lanc-
zos polynomials tend to increase rapidly to the right of its largest zero (see Sect. 2). Therefore,
with our new low-cost process as addition to the Lanczos bidiagonalization method, we usu-
ally not only get good lower bounds to ‖A‖, but also get sharp upper bounds with a high
probability.

Efficient state-of-the-art methods based on Lanczos bidiagonalization use some restart
mechanism; see, e.g., [1,11]. We will not consider restarts in this paper for two main reasons:
first, the unrestarted case makes possible the theoretical analysis of Sects. 2, 3 and 4; and sec-
ond, it will turn out that usually a modest number of Lanczos bidiagonalization steps already
suffices for quality probabilistic inclusion intervals. We will also assume exact arithmetic; in
the experiments in Sect. 5 we exploit a stable variant with reorthogonalization.

This paper is inspired by [13] and has been organized as follows. Section 2 studies poly-
nomials that are implicitly formed in the Lanczos bidiagonalization process. These are used
in Sects. 3 and 4 to develop probabilistic upper bounds for the matrix 2-norm. Numerical
experiments are presented in Sect. 5, and a discussion and some conclusions can be found in
Sect. 6.

2 Polynomials Arising in Lanczos Bidiagonalization

Given a vector v1 with unit norm, the defining relations of Lanczos bidiagonalization are
β0 = 0, u0 = 0, and for k ≥ 1:

αkuk = Avk − βk−1uk−1

βkvk+1 = ATuk − αkvk
(1)

where

α j = uT
j Av j , β j = uT

j Av j+1 (2)

are nonnegative. After k steps of the method, these relations can be written in matrix form as

AVk = Uk Bk,

AT Uk = Vk+1̂BT
k = Vk BT

k + βkvk+1eT
k ,
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where ek is the kth unit vector, and Uk = [u1 · · · uk] and Vk = [v1 · · · vk] have orthonormal
columns spanning the subspaces Uk and Vk , respectively. The k × k matrix

Bk =

⎡

⎢

⎢

⎢

⎣

α1 β1
. . .

. . .

αk−1 βk−1

αk

⎤

⎥

⎥

⎥

⎦

and the k × (k + 1) matrix ̂Bk = [Bk 0] + βkekeT
k+1 are both upper bidiagonal matrices. We

will not consider the rather exceptional situation of a breakdown of the method (a zero α j or
β j ) in this paper.

Introduce the bilinear forms

〈 f, g〉:=vT
1 f (ATA) g(ATA) v1

and

[ f, g]:=vT
1 AT f (AAT ) g(AAT ) Av1 = vT

1 f (ATA) ATA g(ATA) v1

for functions f and g that are analytic in a neighborhood of the squares of the singular values
of A. The following result is the starting point for this paper.

Proposition 1 The uk and vk can be written as a polynomial of degree k − 1 in AAT , resp.
ATA, applied to Av1, resp. v1:

uk = pk−1(AAT ) Av1, vk = qk−1(ATA) v1.

The following recurrence relations hold: p−1(t) = 0, q0(t) = 1, and for k ≥ 0:

αk+1 pk(t) = qk(t) − βk pk−1(t),
βk+1 qk+1(t) = t pk(t) − αk+1 qk(t).

Moreover,

αk = 〈pk−1, t qk−1〉 = [pk−1, qk−1],
βk = 〈pk−1, t qk〉 = [pk−1, qk].

Proof This follows by induction; the recurrence relations follow from substitution into (1).
The inner products can be derived from (2). 	

We now study several useful properties of these Lanczos bidiagonalization polynomials pk

and qk that will be used in the rest of the paper. First, we point out close relations between
Lanczos bidiagonalization and two other Lanczos processes. Note that

ATAVk = AT Uk Bk

= Vk BT
k Bk + βkvk+1eT

k Bk (3)

= Vk BT
k Bk + αkβkvk+1eT

k

and

AAT Uk = AVk BT
k + βk Avk+1eT

k

= Uk Bk BT
k + βkUk+1 Bk+1ek+1eT

k (4)

= Uk ̂Bk ̂BT
k + αk+1βkuk+1eT

k .
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We see from these equations that Lanczos bidiagonalization simultaneously performs a Lanc-
zos process on ATA with starting vector v1, and a Lanczos process on AAT with starting
vector u1:=α−1

1 Av1 (the normalized Av1). The symmetric tridiagonal matrices BT
k Bk and

̂Bk ̂BT
k , respectively, that arise in the Lanczos methods are decomposed as the product of the

bidiagonal matrices that arise in Lanczos bidiagonalization. We use (3) and (4) to characterize
the zeros of the polynomials pk and qk ; see Proposition 2.

Denote the singular values of Bk by

θ
(k)
k ≤ · · · ≤ θ

(k)
1

and the corresponding right singular vectors by d(k)
k , …, d(k)

1 . We write ̂θ
(k)
k ≤ · · · ≤ ̂θ

(k)
1

for the singular values of ̂Bk and ĉ(k)
k , . . . , ĉ(k)

1 for its left singular vectors. To avoid a heavy
notation we will often omit the superscript (k) in the sequel. A key aspect of Lanczos bidi-
agonalization is that often the singular values of both Bk and ̂Bk are good approximations
to the singular values of A; in particular to the largest and (to a lesser extent) to the smallest
singular values.

In the next proposition, Ik stands for the identity of dimension k.

Proposition 2 (a) The zeros of qk are exactly θ2
1 , . . . , θ2

k .
This implies that qk(t) is a nonzero multiple of det(t Ik − BT

k Bk).
(b) The zeros of pk are exactly ̂θ2

1 , . . . ,̂θ2
k .

This implies that pk(t) is a nonzero multiple of det(t Ik − ̂Bk ̂BT
k+1).

Proof From (3) it may be checked that the pairs (θ2
j , Vkd j ), j = 1, . . . , k, satisfy the Galerkin

condition

ATAVkd j − θ2
j Vk d j ⊥ Vk .

Since Vkd j ∈ Vk , we can write

Vkd j = s j (ATA) v1 (5)

for a polynomial s j = s(k)
j of degree at most k − 1. For all j = 1, . . . , k, we have that

(ATA − θ2
j I )Vkd j is in Vk+1 but is orthogonal to Vk . Therefore, these vectors have to be

nonzero multiples of the vector vk+1 = qk(ATA) v1. Hence, qk(t) should contain all factors
(t − θ2

j ), and therefore is a nonzero multiple of

μ(t) = (t − θ2
1 ) · · · (t − θ2

k ).

Part (b) follows in a similar manner starting with the Galerkin condition

AATUk ĉ j − ̂θ2
j Uk ĉ j ⊥ Uk

for the pairs (̂θ2
j , Uk ĉ j ). Since Uk ĉ j ∈ Uk , we can write

Uk ĉ j = r j (AAT )Av1 (6)

for a polynomial r j = r (k)
j of degree at most k − 1. For all j = 1, . . . , k, we have that

(AAT − ̂θ2
j I )Uk ĉ j is in Uk+1 but is orthogonal to Uk . Therefore, these vectors have to be

nonzero multiples of the vector uk+1 = pk(AAT )Av1. Hence, pk(t) should contain all factors
(t − ̂θ2

j ), and therefore is a nonzero multiple of
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μ̂(t) = (t − ̂θ2
1 ) · · · (t − ̂θ2

k );
cf. also the discussion in [10, p. 266–267]. 	

Corollary 3

Vkd j = ν j (ATA)v1 / ‖ν j (ATA)v1‖ ( j = 1, . . . , k),

‖μ(ATA)v1‖ = min ‖ω(ATA)v1‖,
Uk ĉ j = ν̂ j (AAT )Av1 / ‖̂ν j (AAT )Av1‖, ( j = 1, . . . , k),

‖μ̂(AAT )Av1‖ = min ‖ω(AAT )Av1‖,
where ν j (t) = μ(t)/(t − θ2

j ), ν̂ j (t) = μ̂(t)/(t − ̂θ2
j ), and the minimum is taken over all

monic polynomials ω of degree k.

Proof This follows from the proof of the previous proposition; cf. also [10, p. 266]. 	

The following results will be used for an efficient numerical procedure in the next section.

Proposition 4 The polynomials pk and qk have positive leading coefficients and increase
strictly monotonically to the right of their largest zeros ̂θ2

1 and θ2
1 , respectively.

Proof This follows from Proposition 2 and the fact that pk and qk are polynomials of degree k.
	


Proposition 5 For 1 ≤ j ≤ k the convergence to the largest singular values is monotonic:

θ
(k)
j ≤ ̂θ

(k)
j ≤ θ

(k+1)
j ≤ σ j .

Proof This follows from the fact that ̂Bk is the matrix Bk expanded with an extra (k + 1)st
column. Likewise, Bk+1 is ̂Bk expanded with an extra (k +1)st row. Now apply [8, (3.3.17)],
see also [7, Theorem 4.3]. 	

Taking j = 1 in Proposition 5, this implies that the largest singular values of Bk and ̂Bk are
guaranteed lower bounds for ‖A‖ of increasing quality. Furthermore, the polynomials pk and
qk will be used for probabilistic bounds for the matrix norm in the next section.

3 Probabilistic Bounds for the Matrix Norm

We will now develop probabilistic bounds for ‖A‖ (= σ1 = σmax), making use of the fact
that the polynomials pk and qk tend to increase rapidly to the right of their largest zeros ̂θ1

and θ1, respectively. Let

v1 =
n

∑

j=1

γ j y j

be the decomposition of the starting vector v1 with respect to the right singular vectors.

Lemma 6 We have pk(σ
2
1 ) > 0 and qk(σ

2
1 ) > 0.

Proof This follows from the combination of Propositions 4 and 5.
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We now arrive at the main argument. From

1 = ‖vk+1‖2 = ‖qk(ATA)v1‖2 =
n

∑

j=1

γ 2
j qk(σ

2
j )

2

and qk(σ
2
1 ) > 0 (see Lemma 6) it follows that

1 ≥ |γ1| qk(σ
2
1 ).

If γ1 would be known, this estimate would provide an upper bound σup for ‖A‖ = σmax: let
σup be the largest zero of

f1(t) = qk(t
2) − 1/|γ1|. (7)

One may check that this number σup exists and is larger than θ1 = θ
(k)
1 ; it may for instance

be determined numerically efficiently by bisection on the interval [θ(k)
1 , ‖A‖F ] which is

guaranteed to contain σmax. (Note that σup might incidentally even be larger than ‖A‖F for
small k; in this case we proceed with a larger k, as the information is not useful.)

Since we generally do not know (an estimate to) γ1 in practice, we are interested in the
probability that |γ1| is smaller than a given (small) constant. A small |γ1| corresponds to an
unlucky choice of an initial vector: in this case v1 is almost orthogonal to y1. The following
lemma states a suitable result and enables us to establish probabilistic bounds, i.e., bounds
that hold with a certain (user-defined, high) probability. The proof uses the fact that if v1 has
been chosen randomly with respect to the uniform distribution over the unit sphere Sn−1 in
R

n , then, as a result, (γ1, . . . , γn) is also random in Sn−1. It is easy to construct this random
vector (Matlab code: v1=randn(n,1); v1=v1/norm(v1)); see, e.g., [9, p. 1116].

Lemma 7 Assume that the starting vector v1 has been chosen randomly with respect to the
uniform distribution over the unit sphere Sn−1 and let δ ∈ [0, 1]. Then

P(|γ1| ≤ δ) = 2 G( n−1
2 , 1

2 )−1 ·
arcsin(δ)
∫

0

cosn−2(t) dt,

where G denotes Euler’s Beta function: G(x, y) = ∫ 1
0 t x−1(1 − t)y−1dt.

Proof See [13, Lemma 3.1]. 	

If we would like to have an upper bound for ‖A‖ that is correct with probability at least 1−ε,
then we first determine the value of δ for which

arcsin(δ)
∫

0

cosn−2(t) dt = ε
2 G( n−1

2 , 1
2 )

⎛

⎝= ε

π/2
∫

0

cosn−2(t) dt

⎞

⎠ (8)

holds, e.g., by bisection on the interval [0, π
2 ]. The integrals in (8) may be computed using

an appropriate quadrature formula.
Moreover, for small ε, which is our main interest, the behavior of δ as a function of ε

is roughly δ = δ(ε) ≈ ε · 1
2 G( n−1

2 , 1
2 ) as is proven in the next result. As an example, we

mention that for n = 1000 and ε = 0.01, the true and estimated value for δ with Proposition 8
differ only ≈ 2.6 · 10−5 relatively.
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Proposition 8 Given 0 < ε � 1, let δ = δ(ε) satisfy (8). Then

δ′(0) = lim
ε→0

δ(ε)

ε
= 1

2 G
( n−1

2 , 1
2

)

.

Proof First note that arcsin(δ) = δ + O(δ3) for δ → 0. Let F(δ(ε)) = ∫ δ(ε)

0 cosn−2(t) dt .
Then

lim
ε→0

F(δ(ε)) − F(0)

ε
= cosn−2(0) · δ′(0) = 1

2 G( n−1
2 , 1

2 ),

which proves the statement.

When we replace |γ1| in (7) by the value δ computed from (8) and determine the zero
σup > θ

(k)
1 , this σup is an upper bound for the largest singular value σmax of A with probability

at least 1−ε, which we call a probabilistic upper bound. This zero may be computed efficiently,
since the evaluation of pk and qk may be carried out via the recurrence relations as in
Proposition 1. (Note that a loop is often preferable over a recursion for a fast implementation.)

A similar line of reasoning can also be followed for the pk polynomials: from

1 = ‖uk+1‖2 = ‖pk(AAT )Av1‖2 =
n

∑

j=1

γ 2
j σ 2

j pk(σ
2
j )

2

it follows that (using Lemma 6)

1 ≥ |γ1| σ1 pk(σ
2
1 ).

Again, if γ1 would be known, the largest zero of

f2(t) = t pk(t
2) − 1/|γ1|

would yield an upper bound σup for σmax; where we replace the unknown γ1 by δ. Hence we
have proved the following theorem.

Theorem 9 Assume that we have carried out k steps of Lanczos bidiagonalization with
starting vector v1 which has been chosen randomly with respect to the uniform distribution
over Sn−1, and let ε ∈ (0, 1). Then the largest zero of the polynomials

f1(t) = qk(t
2) − 1/δ (9)

f2(t) = t pk(t
2) − 1/δ (10)

with δ given by (8), are upper bounds for ‖A‖ with probability at least 1 − ε.

In Fig. 1 we give an idea of the behavior of the polynomials p and q . For A = diag(1 : 100),
we carry out 10 steps of Lanczos bidiagonalization with a random starting vector.

We take ε = 0.01, then it follows from (8) that 1/δ ≈ 792. The largest singular value
of B10 is θ1 ≈ 99.83, while that of ̂B10 is ̂θ1 ≈ 99.86. Determining the t > θ1 for which
q10(t2) = 1/δ gives the probabilistic bound σup ≈ 105.87 which is correct with probability
at least 99 %. Likewise, t p10(t2) = 1/δ yields σup ≈ 105.35. We refer to Sect. 5 for many
more numerical experiments.
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Fig. 1 The Lanczos polynomials q10(t2) and t p10(t2) after 10 steps of Lanczos bidiagonalization, with
ε = 0.01. Their largest zeros determine guaranteed lower bounds for ‖A‖. The intersection points with the
line 1/δ determine upper bounds for ‖A‖ with probability at least 99 %. The only difference between the two
figures is the scale on the vertical axis

4 Ritz Polynomials

In Sect. 2 we have also introduced, in addition to the “Lanczos” polynomials pk and qk ,
the “Ritz” polynomials r j = r (k)

j and s j = s(k)
j , for j = 1, . . . , k; see (5) and (6). These

polynomials are associated with the approximate right and left singular vectors Vkd j and
Uk ĉ j , which are sometimes called Ritz vectors in the context of eigenvalue problems; we
will use the same terminology in this situation. We will now exploit the polynomials r1 and
s1 corresponding to the largest approximate singular vectors (that is, the approximate left
and right singular vectors corresponding to the largest approximate singular values ̂θ

(k)
1 and

θ
(k)
1 , respectively). The following result is similar to Proposition 4.

Proposition 10 The polynomials r1 and s1 have positive leading coefficients and increase
strictly monotonically to the right of their largest zeros ̂θ2

2 and θ2
2 , respectively.

Proof This follows from Corollary 3 and the fact that r1 and s1 are polynomials of degree
k − 1. 	

Recall from (5) that Vkd1 = s1(ATA) v1 is the approximation to the right singular vector cor-
responding to the largest singular value θ1 of Bk , which is an approximation (more precisely,
a lower bound) for ‖A‖. Since

θ2
1 = ‖AVkd1‖2 =

n
∑

j=1

γ 2
j σ 2

j s1(σ
2
j )

2

we derive

θ1 ≥ |γ1| σ1 s1(σ
2
1 ).

Analogously, since from (6) we have Uk ĉ1 = r1(AAT )Av1, we get

̂θ2
1 = ‖ATUk ĉ1‖2 =

n
∑

j=1

γ 2
j σ 4

j r1(σ
2
j )

2

so

̂θ1 ≥ |γ1| σ 2
1 r1(σ

2
1 ).
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The next result follows in a similar way as Theorem 9.

Theorem 11 Assume that the starting vector v1 has been chosen randomly with respect to
the uniform distribution over Sn−1 and let ε ∈ (0, 1). Then the largest zero of the polynomials

f3(t) = t s1(t
2) − θ1/δ (11)

f4(t) = t2 r1(t
2) − ̂θ1/δ (12)

with δ given by (8), are upper bounds for ‖A‖ with probability at least 1 − ε.

Remark In [13], Chebyshev polynomials of the first kind were also studied. These polynomi-
als on a given interval have the property that their absolute value is at most 1 on this interval
and that they tend to sharply increase outside this interval. Nevertheless, experience in [13]
shows that the Lanczos and Ritz polynomials, which are implicitly generated and “adapted”
to the problem at hand, naturally tend to give better probabilistic bounds than “fixed” Cheby-
shev polynomials that only use partial information, such as the approximations θ1 and θk

to the largest, respectively smallest singular value. Therefore, we do not study this type of
polynomial in this paper.

5 Numerical Experiments

First, we give a pseudocode for Lanczos bidiagonalization with reorthogonalization and the
computation of the probabilistic bounds.

Algorithm: Lanczos bidiagonalization method with probabilistic upper bounds.

Input: Matrix A, random starting vector v1, probability level ε, Krylov dimension k.
Output: A lower bound approximation̂θ1 to ‖A‖ and a probabilistic upper bound σup, where
‖A‖ ≤ σup holds with probability at least 1 − ε.

1: Determine δ from n and ε, see (8)
2: for j = 1, . . . , k
3: u = Av j

4: if j > 1
5: u = u − β j−1u j−1

6: u = u − U j−1(uT U j−1)
T

7: end
8: α j = ‖u‖
9: u j = u / α j

10: v = ATu
11: v = v − α j v j

12: v = v − Vj (vT Vj )
T

13: β j = ‖v‖
14: v j+1 = v / β j

15: end
16: Determine largest singular value ̂θ1 of ̂Bk

17: Determine probabilistic upper bound σup for ‖A‖ with probability ≥ 1 − ε

using f2 (see (10))

A few remarks about the algorithm: lines 6 and 12 implement reorthogonalization in a
computationally efficient way. (Although reorthogonalization turned out to be unnecessary
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Fig. 2 Ritz values ̂θ1 and
probabilistic upper bounds
(ε = 0.01) for the matrix norm of
A = diag(1:1000)

5 10 15 20 25 30 35
900

1000

1100

1200

1300

1400
q−Lanczos (f

1
)

p−Lanczos (f
2
)

s−Ritz (f
3
)

r−Ritz (f
4
)

θ
1

in the experiments, we still recommend it to ensure stability.) The probabilistic bounds may
be computed in line 16, but also if desired after lines 8 or 13. We propose to use polynomial
f2 (see (10) and below for the motivation). As explained earlier in the paper, breakdowns as
well as restarts are not included.

Experiment 1 To get an idea of the behavior of the probabilistic bounds, we first take
n = 1000, A = diag(1:1000), ε = 0.01, and a random v1 on Sn−1 as explained before
Lemma 7; see Fig. 2. Indicated are as a function of the iteration number k:

– the largest singular values ̂θ
(k)
1 of the bidiagonal k × (k + 1) matrices ̂Bk , which are

guaranteed lower bounds for ‖A‖ (dots);
– the probabilistic upper bounds based on the polynomials f1 using the Lanczos polyno-

mials qk (see (9), dashed);
– the probabilistic upper bounds based on the polynomials f2 using the Lanczos polyno-

mials pk (see (10), solid);
– the probabilistic upper bounds based on the polynomials f3 using the Ritz polynomials

s(k)
1 (see (5) and (11), dash-dotted); and

– the probabilistic upper bounds based on the polynomials f4 using the Ritz polynomials
r (k)

1 (see (6) and (12), dotted).

As may be seen and expected, the Lanczos polynomials pk and qk (degree k, largest zero ̂θ1

and θ1, respectively) yield better bounds than the Ritz polynomials r1 and s1 (degree k − 1,
largest zero ̂θ2 and θ2, respectively; recall that ̂θ1 ≥ ̂θ2 and θ1 ≥ θ2). Comparing the two
Lanczos polynomials, f2 with degree 2k + 1 gives better results than the polynomial f1 with
degree 2k; note also that the largest zero ̂θ1 of pk is not smaller than the largest zero θ1 of qk .

We see that for rather modest k we already obtain reasonably sharp guaranteed lower
bounds and probabilistic upper bounds. Based on this experience, we will only consider the
lower bounds ̂θ

(k)
1 in the following experiments (note that ̂θ

(k)
1 ≥ θ

(k)
1 ), and the probabilistic

upper bounds derived from the polynomials f2, based on the Lanczos polynomials pk , as
these tend to be sharper than those obtained with the other polynomials.

Experiment 2 We now experiment with some common SVD test matrices of relatively
small size, available either from the MatrixMarket [12] or from SVDPACK,1 to be able to
compare with the exact ‖A‖. In Table 1 we compare the performances of Matlab’s normest,
a power method on ATA (third column), and Lanczos bidiagonalization (fourth column),

1 www.netlib.org/svdpack/
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Table 1 For several SVD test matrices: normest: the error ‖A‖ − ν, where ν is the approximation obtained
with 20 steps of the power method on AT A as implemented in Matlab’s normest; bidiag: the error ‖A‖ −̂θ1,
wherêθ1 is the approximation acquired with 20 steps of Lanczos bidiagonalization; bdprob: the error σup−‖A‖,
where the probabilistic upper bound σup, computed after 20 steps of Lanczos bidiagonalization, is a true upper
bound for ‖A‖ with probability at least 99 %.

Matrix Size normest bidiag bdprob

abb313 313 × 176 1.20 × 10−3 8.88 × 10−15 8.25 × 10−7

hor131 434 × 434 7.07 × 10−2 1.11 × 10−16 1.15 × 10−10

pores3 532 × 532 1.67 × 103 1.41 × 10−3 3.12 × 102

sherman1 1000 × 1000 3.48 × 10−2 7.30 × 10−8 6.64 × 10−3

illc1033 1033 × 320 3.15 × 10−2 7.25 × 10−8 3.83 × 10−3

well1033 1033 × 320 4.42 × 10−2 4.80 × 10−12 4.48 × 10−5

well1850 1850 × 712 1.52 × 10−3 2.68 × 10−10 1.13 × 10−3

amoco 1436 × 330 1.67 × 10−5 3.20 × 10−14 2.49 × 10−14

apple1 3206 × 44 4.77 × 10−7 3.33 × 10−15 1.29 × 10−12

apple2 1472 × 294 5.59 × 10−7 2.22 × 10−15 2.66 × 10−15

jagmesh8 1141 × 1141 1.00 × 10−1 2.06 × 10−3 5.62 × 10−2

fidap004 1601 × 1601 4.81 × 10−3 5.28 × 10−8 2.33 × 10−3

illc1850 1850 × 712 2.16 × 10−2 5.99 × 10−7 5.76 × 10−3

west0479 479 × 479 9.23 × 102 5.82 × 10−12 1.16 × 10−10

west2021 2021 × 2021 7.23 × 102 2.30 × 101 1.75 × 102

diag(1:1000) 1000 × 1000 1.10 × 101 7.10 × 10−1 1.24 × 101

rand-1/2 1000 × 1000 4.04 × 10−1 3.14 × 10−2 7.45 × 10−2

randn 1000 × 1000 1.39 × 100 1.25 × 10−2 7.86 × 10−1

rand(–1,0,1) 1000 × 1000 4.02 × 10−1 1.21 × 10−1 6.69 × 10−1

triu(randn) 1000 × 1000 6.15 × 10−1 1.07 × 10−1 5.74 × 10−1

where we allow 20 iterations in both cases, that is, 20 matrix-vector products (MVs) with A
and 20 MVs with AT . As expected, Lanczos bidiagonalization always gives better results and
sometimes much better results. The reason for this is that the estimation of normest is based
on ‖ATw‖/‖w‖, where w = (ATA)19 Av1, while Lanczos bidiagonalization maximizes the
same norm over all vectors w in the Krylov space

K20(ATA, Av1):= span(Av1, (ATA)Av1, . . . , (ATA)19 Av1)

In addition, we give the error σup −‖A‖, where we have computed probabilistic upper bounds
σup for ‖A‖ using f2 (see (10)) with ε = 0.01, i.e., which are correct with probability at
least 99 %. We see from Table 1 that the overestimation of the probabilistic upper bounds is
always smaller than the the underestimation of normest; sometimes even much smaller.

Experiment 3 Next, we consider the 11390 × 1265 term-by-document matrix hypatia,2 a
term-by-document matrix with 109056 nonzeros. The computation of a few of the largest
singular triplets is commonly asked for such a matrix. These determine a low-rank approxima-
tion of the matrix, and the angles between the search vectors and the columns of the computed

2 Available via www.math.uri.edu/∼jbaglama/
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low-rank approximation are used for informational retrieval; see [2] and references. After 10
steps of Lanczos bidiagonalization applied to this matrix we get ̂θ1 ≈ 342.2469 while the
upper bound with probability at least 99 % is ̂θ1 + 2.43 · 10−5, leaving just a small interval
for ‖A‖. The upper bound with probability at least 99.9 % is ̂θ1 + 2.43 · 10−4; therefore, we
may have confidence in the value of ̂θ1.

Experiment 4 Finally, we take the 23560×23560 matrix af23560 [12], with 460598 nonze-
ros, arising in computational fluid dynamics. Ten steps of Lanczos bidiagonalization applied
to this matrix yields ̂θ1 ≈ 645.7. The probabilistic upper bound with ε = 0.01 (probability
at least 99 %) is σup ≈ 646.8, while ε = 0.001 leads to σup ≈ 652.0. We may therefore
conclude that ‖A‖ is in the interval [̂θ1, 1.01̂θ1] with probability at least 99.9 %. This small
probabilistic interval (the lower bound̂θ1 as well as the probabilistic upper bound) is obtained
in about 0.15 second on a laptop with processor speed about 7 · 109 flops/sec. This clearly
indicates the usefulness of the developed probabilistic bounds for large (sparse) matrices.

6 Discussion and Conclusions

We have developed probabilistic upper bounds for the matrix norm. The bounds may be
efficiently computed during or after the Lanczos bidiagonalization process. As we have seen
from the experiments, Lanczos bidiagonalization with the probabilistic bounds may give very
good results and may be superior to the power method on ATA, as for instance implemented
in Matlab’s function normest, using the same number of MVs.3 We have proposed various
functions f1, f2, f3, and f4; for reasons described in Experiment 1 we advocate the use of
f2 (see (10)).

Multiple runs of the method may also be combined to increase the reliability of the
estimates. If v1 and v̂1 are two independently chosen random initial vectors leading to prob-
abilistic upper bounds σ

(1)
up and σ

(2)
up with probability at least 1 − ε, then max{σ (1)

up , σ
(2)
up } is

an upper bound with probability at least 1 − ε2.
As many other iterative subspace methods, the proposed method is matrix-free, which

means that A need not be known explicitly, as long as Av and ATu can be computed for
arbitrary vectors v and u of appropriate sizes.

It would be very desirable to be able to develop probabilistic upper bounds for the con-
dition number κ(A) = ‖A‖ ‖A−1‖. Unfortunately, the polynomials generated in Lanczos
bidiagonalization are not useful for this, as they do not increase near the origin; in fact the
polynomials are either even or odd. The Lanczos bidiagonalization process only provides
guaranteed upper bounds (̂θk or θk) for σmin. Indeed, finding a lower bound for the smallest
singular value is known to be difficult; see, e.g., [3] and references. (Note that the results in [4]
are based on expensive matrix factorizations.) In the context of Lanczos bidiagonalization,
the best available “probabilistic estimate” for κ(A) might be σup/̂θk , where ̂θk is the smallest
singular value of ̂Bk and σup is the probabilistic upper bound of f2. However, we note that
since the approximation ̂θk ≈ σmin might be arbitrarily poor, this is not a bound of any type.
Indeed, experiments with the matrices of Table 1 sometimes gave disappointing results (such
as underestimation by a factor 1000). Further progress in reliable and inexpensive estimation
of the matrix condition number would be very welcome.

3 We hereby would like to make a case for the replacement of normest in Matlab by a procedure based on
Lanczos bidiagonalization.
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