
J Sci Comput (2013) 56:494–514
DOI 10.1007/s10915-013-9687-y

Fast Fourier-Galerkin Methods for Nonlinear Boundary
Integral Equations

Xiangling Chen · Rui Wang · Yuesheng Xu

Received: 6 October 2012 / Revised: 3 January 2013 / Accepted: 15 January 2013
Published online: 1 February 2013
© Springer Science+Business Media New York 2013

Abstract We develop in this paper a fast Fourier-Galerkin method for solving the nonlinear
integral equation which is reformulated from a class of nonlinear boundary value problems.
By projecting the nonlinear term onto the approximation subspaces, we make the Fourier-
Galerkin method more efficient for solving the nonlinear integral equations. A fast algorithm
for solving the resulting discrete nonlinear system is designed by integrating together the
techniques of matrix compressing, numerical quadrature for oscillatory integrals, and the
multilevel augmentation method. We prove that the proposed method enjoys an optimal
convergence order and a nearly linear computational complexity. Numerical experiments are
presented to confirm the theoretical estimates and to demonstrate the efficiency and accuracy
of the proposed method.
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1 Introduction

We consider in this paper the Laplace equation with nonlinear boundary conditions, which
serves as mathematical models for many important applications, such as acoustics, elasticity,
electromagnetics, and fluid dynamics. Suppose that D is a simply connected bounded domain
in R

2 with a C2 boundary�.Specifically, we shall solve the nonlinear boundary value problem

⎧
⎨

⎩

�u(x) = 0, x ∈ D,
∂u(x)

∂nx
= −g(x, u(x))+ g0(x), x ∈ �, (1.1)

where nx denotes the exterior unit normal to � at x . Throughout this paper we assume that
g(x, u) is continuous with respect to x ∈ � and Lipschitz continuous with respect to u ∈ R,

the partial derivative Du g of g with respect to the variable u exists and is Lipschitz continuous,
and for each u ∈ C(�), g(·, u(·)), Du g(·, u(·)) ∈ C(�).

The boundary integral equation approach is commonly used in solving (1.1). It transforms
the boundary problem into an integral equation defined on the boundary �. In contrast to the
Laplace equation with linear boundary conditions, the reformulation of nonlinear boundary
value problem (1.1) leads to a nonlinear boundary integral equation. In the literature, various
numerical methods for solving nonlinear integral equations reformulated from a broad range
of boundary value problems were developed. Specifically, a degenerate kernel scheme was
introduced in [13,19]. Nyström’s method and the product integration method were discussed
in [17,22]. Projection methods, including the Galerkin scheme and the collocation scheme,
were discussed in [2,3,6,12,16,20,21,24–27,29]. Recently, a series of schemes based on
the projection method were proposed in [4,7,8]. Also, an extrapolation algorithm based on
Nyström’s method was developed in [11].

In this paper, we shall develop a fast algorithm based on the Fourier-Galerkin method for
solving the nonlinear boundary integral equation reformulated from (1.1). The main difficul-
ties of the numerical solution of the integral equations are caused by the nonlinearity. Typi-
cally, solving the corresponding discrete nonlinear system by the classical Newton’s method
and its variants demands a significantly large amount of computational efforts. Specifically,
in each iteration step, we have to evaluate and update the Jacobian matrix in the entire approx-
imate subspace. Moreover, the dimension of the approximate subspace is usually required to
be large so that one can get good approximation accuracy.

The resulting boundary integral equation contains both linear and nonlinear components.
The nonlinear component involves an integral operator with the logarithmic kernel. This
will lead us to compute double singular integrals when we implement Newton’s method. As
in the case of solving linear boundary integral equations [30], we decompose the integral
operator into the form A+ B, where A is a singular operator carrying the main singularity
characteristic of the integral operator and B is a compact operator with a smooth kernel.
It is worth to point out that the singular operator A has the Fourier basis functions as its
eigenfunctions. Motivated by the features of A and B,we choose the subspaces generated by
the Fourier basis functions as the approximate subspaces in the Galerkin methods. Moreover,
we project the nonlinear term arising in the nonlinear integral operator onto the approximate
subspace. This idea was used in [7], where a collocation method was considered. By doing
this, we avoid evaluating the double singular integrals which appear in the related Jacobian
matrix. Instead, we only need to generate once the matrix representation of operators A and
B under the Fourier basis and in each iteration step multiply the matrix representation by
vectors generated by evaluating single integrals.
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Since operator A has the Fourier basis functions as its eigenfunctions, the matrix repre-
sentation of A is diagonal and the entries on the diagonal can be obtained directly. However,
the matrix representation of operator B and the integral operator in the linear components
are usually dense. Hence, generating these matrices and multiplying them by vectors will
still need large computational costs. Furthermore, the multiplications of vectors and dense
matrices have to be carried out in each iteration step of Newton’s method because the Jaco-
bian matrices need to be established and updated during the iteration. To overcome these
computational challenges so as to develop a fast solver for the Fourier-Galerkin method, we
adopt three techniques. A matrix truncation strategy has been proposed in [5] for solving
linear boundary integral equations. In the spirit of [5], the matrix representation of smooth
kernels under the Fourier basis can be compressed to sparse ones. Here, we also employ the
numerical quadrature scheme proposed in [15] for computing all the nonzero entries of the
representation matrices. The multilevel augmentation method has been presented in [10] and
developed in [7,8] for solving nonlinear boundary integral equations. In this method, one
inverts the nonlinear operator in a much smaller subspace rather than in the whole approxi-
mate subspace. It reduces the computational complexity to a nearly linear order. Combining
these three techniques together, we develop a multilevel augmentation method for solving
the resulting fully discrete truncated nonlinear system.

We organize this paper in four sections. In Sect. 2 we review the boundary integral equation
reformulation of nonlinear boundary value problem (1.1), then we describe a Fourier-Galerkin
method based on nonlinear term projection for solving the resulting nonlinear boundary
integral equation. In Sect. 3 we show that the Fourier-Galerkin method enjoys the exponential
convergence order if the exact solution is analytic. For the case that the exact solution has
a Sobolev regularity, we develop in Sect. 4 a fully discrete fast Fourier-Galerkin method by
employing a matrix truncation strategy, a quadrature formula for oscillatory integrals, and
the multilevel augmentation method. To show the proposed method is a fast and efficient
solver, we establish optimal estimates of its computational complexity and its convergence
order. Moreover, we present numerical examples to show the computational efficiency and
the approximate accuracy of the proposed method.

2 The Fourier-Galerkin Method for Nonlinear Boundary Integral Equation

In this section, we describe the Fourier-Galerkin method for solving the nonlinear boundary
integral equation reformulated from the nonlinear boundary value problem (1.1).

We begin with reviewing the boundary integral equation reformulation. Following [2,24],
solving (1.1) leads to the following nonlinear integral equation defined on �

u(x)− 1

π

∫

�

u(y)
∂

∂ny
log |x − y|dsy − 1

π

∫

�

g(y, u(y)) log |x − y|dsy

= − 1

π

∫

�

g0(y) log |x − y|dsy, x ∈ �. (2.1)

Making use of the solution of Eq. (2.1) and the boundary condition in (1.1), we can obtain
the value of u at x ∈ D by the following formula

u(x) = 1

2π

∫

�

u(y)
∂

∂ny
(log |x − y|) dsy − 1

2π

∫

�

∂u(y)

∂ny
log |x − y|dsy .
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From this viewpoint, in this paper, we aim at solving the nonlinear boundary integral equation
(2.1) numerically. Suppose that the boundary � has a parametrization

x(t) = (ξ(t), η(t)), t ∈ I := [0, 2π].
Let Z be the set of all integers. We define three kernels at t, τ ∈ I as

K (t, τ ) :=

⎧
⎪⎪⎨

⎪⎪⎩

1

π

η′(τ )(ξ(τ )− ξ(t))− ξ ′(τ )(η(τ )− η(t))
(ξ(τ )− ξ(t))2 + (η(τ )− η(t))2 , t − τ �= 2kπ, k ∈ Z,

1

π

η′(t)ξ ′′(t)− ξ ′(t)η′′(t)
2(ξ ′(t)2 + η′(t)2) , otherwise,

A(t, τ ) := − 1

π
log

∣
∣
∣
∣2e−1/2 sin

t − τ
2

∣
∣
∣
∣ ,

and

B(t, τ ) :=

⎧
⎪⎨

⎪⎩

− 1
π

log

∣
∣
∣
∣
e1/2
√
(ξ(t)−ξ(τ ))2+(η(t)−η(τ))2

2 sin t−τ
2

∣
∣
∣
∣ , t − τ �= 2kπ, k ∈ Z,

− 1
π

log
∣
∣
∣e1/2

√
ξ ′(τ )2 + η′(τ )2

∣
∣
∣ , otherwise.

We also introduce functions

u(t) := u (x(t)) , g (t, u(t)) := g (x(t), u(x(t))) , g0(t) := g0 (x(t)) , t ∈ I.

With these notations, Eq. (2.1) can now be rewritten as

u(t)−
∫

I

K (t, τ )u(τ )dτ +
∫

I
A(t, τ )g(τ, u(τ ))|x ′(τ )|dτ +

∫

I

B(t, τ )g(τ, u(τ ))|x ′(τ )|dτ

=
∫

I

A(t, τ )g0(τ )|x ′(τ )|dτ +
∫

I

B(t, τ )g0(τ )|x ′(τ )|dτ, t ∈ I.

(2.2)

We next represent Eq. (2.2) in an operator form. To this end, we introduce three linear integral
operators defined, respectively, by

(Ku)(t) :=
∫

I

K (t, τ )u(τ )dτ, t ∈ I,

and

(Au)(t) :=
∫

I

A(t, τ )u(τ )dτ, (Bu)(t) :=
∫

I

B(t, τ )u(τ )dτ, t ∈ I,

and define a nonlinear operator by

(	u)(t) := g (t, u(t)) |x ′(t)|, t ∈ I.

With these operators, Eq. (2.2) is represented as the operator equation

u − (K−A	 − B	) u = f, (2.3)

where f := (A+ B)(g0
√
ξ ′2 + η′2).
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We observe from the definition of the kernels that K is of Cs−2 and B is of Cs−1 when
the boundary � is of Cs, s ≥ 2. By the smoothness of the two kernels, we have that the
operators K and B are both compact operators. The operator A has weak singularity and it
has trigonometric monomials as its eigenfunctions, that is, there holds

A : eikt → 1

max{1, |k|}e
ikt , k ∈ Z.

We note that the sum A+B is the boundary integral operator with logarithmic kernel, which
has weak singularity. In particular, A carries the main singularity characteristic of the bound-
ary integral operator and B is a compact operator with a smooth kernel. This decomposition
has two advantages. One is that A has good properties that its matrix representation under
some basis can be calculated with less efforts. For instance, in [8], the entries of the matrix
representation of A under the multi-scale wavelet basis can be calculated exactly by explicit
formulas. In our case, since operator A has the Fourier basis functions as its eigenfunctions,
its matrix representation under the Fourier basis is diagonal and the entries on the diagonal
can also be obtained exactly. The other is that the matrix representation of the compact oper-
ator B under the same basis can be compressed to a sparse matrix without loss of critical
information encoded in the matrix.

Taking advantages of the operator decomposition, we will establish the Galerkin method
using the Fourier basis for solving operator equation (2.3). Let N denote the set of all positive
integers and set N0 := N ∪ {0}. To enumerate finite sets, we also introduce index sets
Z
+
n := {1, 2, · · · , n − 1} and Zn := Z

+
n ∪ {0}. For any k ∈ Z, for x ∈ I we set

ek(x) :=

⎧
⎪⎨

⎪⎩

1√
π

cos kx, k ∈ N,

1√
2π
, k = 0,

1√
π

sin(−kx), k ∈ Z \ N0.

For each n ∈ N, we define a finite dimensional subspace Xn by

Xn := span{ek : |k| ∈ Zn}.
Let Pn be the orthogonal projection operator from L2(I ) to Xn .The Fourier-Galerkin method
for solving Eq. (2.3) is to seek un in Xn such that

un − Pn (K−A	 − B	) un = Pn f. (2.4)

The following theorem gives the unique solvability of Eq. (2.4), which can be proved by
making use of Theorem 2 of [27,28].

Theorem 2.1 Suppose that u ∈ L2(I ) is an isolated solution of (2.3) and 1 is not an eigen-
value of the linear operator K− ((A+B)	)′(u). Then for sufficiently large n, Eq. (2.4) has
a unique solution un ∈ B(u, δ) for some δ > 0 and there exist positive constants c1 and c2

such that

c1||u − Pnu|| ≤ ||u − un || ≤ c2||u − Pnu||.
To describe the regular property of the solution and then estimate the convergence order

of the Fourier-Galerkin method, we introduce appropriate Sobolev spaces. For each μ ≥ 0,
we denote by Hμ(I ) the Sobolev space of functions φ ∈ L2(I ) with the property

∑

k∈Z

(
1+ k2)μ |φk |2 <∞,
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where φk is the kth Fourier coefficient of φ defined by φk :=
∫

I φ(x)ek(x)dx . The inner
product of the Sobolev space Hμ(I ) is defined for φ,ψ ∈ Hμ(I ) by

〈φ,ψ〉μ :=
∑

k∈Z

(
1+ k2)μ φkψk,

and its norm is defined by ||φ||μ := 〈φ, φ〉
1
2
μ. It is well-known [1,18] that there exists a

positive constant c such that for any v ∈ Hμ(I ),

||v − Pnv|| ≤ cn−μ||v||μ. (2.5)

The following corollary is a direct result of Theorem 2.1 and estimation (2.5).

Corollary 2.2 If the solution u ∈ Hμ(I ), μ ≥ 0, there exists a constant c > 0 such that

||u − un || ≤ cn−μ||u||μ.
Based upon the Fourier basis of the subspace Xn, the Fourier-Galerkin method (2.4) is

equivalent to a system of nonlinear equations. Specifically, it suffices to seek a function
un ∈ Xn with the form

un(t) =
∑

|l|∈Zn

alel(t), t ∈ I,

which satisfies the nonlinear system

〈un − (K−A	 − B	) un, ek〉 = 〈 f, ek〉 , |k| ∈ Zn . (2.6)

Newton’s method is a standard iterative method for solving nonlinear system (2.6). However,
at each iteration step of this method we have to establish and invert the Jacobian matrix,
which is usually dense and has the size of (2n − 1)× (2n − 1). Moreover, each entry of the
Jacobian matrix is of the form

〈el , ek〉 − 〈Kel , ek〉 +
〈
(A+ B)	 ′

(
u(m)n

)
el , ek

〉
, |k|, |l| ∈ Zn, (2.7)

which involves double integrals. Hence, solving (2.6) by Newton’s method demands a large
amount of computational efforts.

To develop a fast algorithm for solving (2.6), we first need to consider the computation of
the Jacobian matrix. We observe from (2.7) that the first term need not be evaluated because
of the orthogonality of ek’s. For the second term, we need to compute it only once during the
iteration. In addition, we will point out later that the quantities 〈Kel , ek〉, |k|, |l| ∈ Zn, can be
evaluated efficiently by compressing the matrix representation of operator K. In fact, it is the
third item that involves the nonlinear operator and carries the main computational difficulties.
Motivated by the operator decomposition and the fact that the Fourier basis functions are
the eigenfunctions of operator A, we consider overcoming the difficulties of evaluating the
third term by projecting the nonlinear terms 	 ′(u(m)n ) into the subspace Xn . By doing so,
we will transform the computation of double singular integrals into setting up the matrix
representations of A and B and the multiplication of matrices and vectors.

To implement the above idea, we do not solve (2.4) directly and instead, we consider
solving the following equation

ûn − Pn (K−APn	 − BPn	) ûn = Pn f (2.8)
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for a solution

ûn :=
∑

|l|∈Zn

âlel ∈ Xn .

By proofs similar to those of Theorem 2.1 and Corollary 2.2, we obtain in the following
theorem regarding the existence and the error estimation of the solution of Eq. (2.8).

Theorem 2.3 Suppose that u ∈ L2(I ) is an isolated solution of (2.3) and 1 is not an eigen-
value of the linear operator K− ((A+B)	)′(u). Then for sufficiently large n, Eq. (2.8) has
a unique solution ûn ∈ B(u, δ) for some δ > 0 and there exists a constant c > 0 such that

||u − ûn || ≤ c||u − Pnu||.
Furthermore, if the solution u ∈ Hμ(I ), μ ≥ 0, then there exists a constant c > 0 such that

||u − ûn || ≤ cn−μ||u||μ.
In the rest of this section, we establish a matrix form of the nonlinear equation (2.8) and

then describe Newton’s method for solving the resulting nonlinear system, from which one
will see the advantages of introducing the projection operator. In terms of the Fourier basis
of Xn, Eq. (2.8) is equivalent to the nonlinear system

〈
ûn − (K−APn	 − BPn	) ûn, ek

〉 = 〈 f, ek〉 , |k| ∈ Zn . (2.9)

In order to rewrite (2.9) in a matrix form, we begin with describing the matrix representation of
the operators appearing in (2.9) under the Fourier basis. In this paper, we write v = [vk, v−k :
k ∈ Z

+
n ] to denote the vector v = [v1, v−1, . . . , vn−1, v−(n−1)] and v = [vk, v−k : k ∈ Zn]

to denote the vector v = [v0, v1, v−1, . . . , vn−1, v−(n−1)]. For each |k|, |l| ∈ Zn, we let

Kk,l :=
∫

I

∫

I

K (t, τ )ek(t)el(τ )dtdτ

and introduce 2× 2 matrix

Kk,l :=
[

Kk,l Kk,−l

K−k,l K−k,−l

]

.

By defining the matrix blocks

K := [Kk,l : k, l ∈ Z
+
n

]
, K′ := [K0,0

]
, K′′ := [K0,k, K0,−k : k ∈ Z

+
n

]
,

K′′′ := [Kk,0, K−k,0 : k ∈ Z
+
n

]T
,

the matrix representation of operator K can be written as

Kn =
[

K′ K′′
K′′′ K

]

.

Likewise, the matrix representation of operators A and B can be described by replacing the
kernel K by A and B, respectively. Since for each k ∈ Z, ek is an eigenfunction of the
operator A, the matrix An is diagonal. Specifically, there holds

An := diag

(

1, 1, 1,
1

2
,

1

2
, . . . ,

1

n − 1
,

1

n − 1

)

.
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It follows that

Pn	ûn(t) =
∑

|k|∈Zn

b̂kek(t), t ∈ I,

where b̂k := 〈	ûn, ek〉, |k| ∈ Zn . Associated with ûn = ∑
|l|∈Zn

âlel we introduce two
vectors

ûn :=
[
âk, â−k : k ∈ Zn

]T and v̂n :=
[
b̂k, b̂−k : k ∈ Zn

]T
.

We note that each b̂k is a nonlinear function of 2n−1 variables âl , |l| ∈ Zn . For each |k| ∈ Zn,

we set

fk := 〈 f, ek〉 and fn :=
[

fk, f−k : k ∈ Zn
]T
.

Let En denote the identity matrix which has the same order as matrix Kn .By using the matrix
and vector notation, we have the equivalent matrix form of (2.9)

(En −Kn) ûn + (An + Bn) v̂n = fn . (2.10)

For solving Eq. (2.10), we describe the classic Newton’s method in the following algo-
rithm. For any u ∈ L2(I ) and each k, l ∈ Z, we let ψk,l(u) := 〈	 ′(u)ek, el〉.

Algorithm 1: The Newton Iteration Scheme

Set m := 0, fn := [〈 f, ek〉, 〈 f, e−k〉 : k ∈ Zn]T and choose an initial guess û(0)n and an
iteration stopping threshold δ.

Step 1: Let û(m)n :=∑|k|∈Zn
(û(m)n )kek . Compute 2× 2 matrices

Fk,l :=
⎡

⎣
ψk,l

(
û(m)n

)
ψk,−l

(
û(m)n

)

ψ−k,l

(
û(m)n

)
ψ−k,−l

(
û(m)n

)

⎤

⎦ , k, l ∈ Z
+
n ,

and vectors F ′ := [ψ0,0(û
(m)
n )] and

F ′′ :=
[
ψ0,k

(
û(m)n

)
, ψ0,−k

(
û(m)n

)
: k ∈ Z

+
n

]
,

F ′′′ :=
[
ψk,0

(
û(m)n

)
, ψ−k,0

(
û(m)n

)
: k ∈ Z

+
n

]T
.

Set

F1 :=
[
Fk,l : k, l ∈ Z

+
n

]
, F(m)n :=

[
F ′ F ′′
F ′′′ F1

]

and compute the Jacobian matrix

J
(

û(m)n

)
:= En −Kn + (An + Bn)F(m)n .

Step 2: Compute

v̂(m)n :=
[〈
	
(

û(m)n

)
, ek

〉
,
〈
	
(

û(m)n

)
, e−k

〉
: k ∈ Zn

]T
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and

F(û(m)n ) := (En −Kn)û(m)n + (An + Bn)v̂
(m)
n − fn .

Step 3: Solve �(m)n from J(û(m)n )�
(m)
n = −F(û(m)n ) and compute û(m+1)

n := û(m)n +�(m)n .

Step 4: Set m ← m + 1 and go back to Step 1 until ||�(m)n ||∞ < δ.

We observe from Algorithm 1 that through introducing the projection on the nonlinear
term 	(un), we reduce the difficulties of computing the Jacobian matrices J(û(m)n ) and
F(û(m)n ) in each iteration step of Newton’s method. In fact, instead of computing double
integrals involved in the entries of J(û(m)n ) and F(û(m)n ) in each iteration step, we only need
to set up the matrices Kn,An and Bn once, evaluate the single integrals 〈	 ′(û(m)n )ek, el〉 and
〈	(û(m)n ), ek〉, |k|, |l| ∈ Zn and then compute the multiplications of matrices and vectors.
Especially for the operator A,we even avoid calculating the double singular integrals because
of the eigenfunctions property of A.

In spite of this, we still face large computational costs for solving nonlinear system (2.10)
by Algorithm 1. Although matrix An is diagonal and its entries on the diagonal are known,
we still have to treat matrices Kn and Bn . By the smoothness of the kernel functions K
and B, matrices Kn and Bn are usually dense. The density will lead to large computational
costs for setting up the matrices and in each iteration step, computing the multiplications
of the matrices and some vectors. Moreover, since the Jacobian matrix J(û(m)n ) and F(û(m)n )

need to be updated during the iteration, the generating of vectors and the multiplications of
vectors and dense matrices have to be carried out in each iteration step. All these demand the
availability of a fast solver for the nonlinear system (2.10).

3 Exponential Convergence Order for Analytic Solutions

We consider fast solutions of the nonlinear system (2.10) on two cases according to the
regularity of the exact solution of (2.3). We discuss in this section the case of periodic analytic
solutions and postpone the case of solutions with general regularity to the next section.

It is known [1,18] that the projection error of a periodic analytic function decays expo-
nentially. That is, for a periodic analytic function v, there exist positive constants c and s
such that

||v − Pnv|| ≤ ce−sn . (3.1)

This together with the error estimate given in Theorem 2.3 leads to the following result about
the convergence property of the approximate solution of (2.8):

Corollary 3.1 If the solution u is a periodic analytic function, there exist positive constants
c and s such that

||u − ûn || ≤ ce−sn .

The above corollary shows that the Fourier-Galerkin method (2.8) enjoys the exponential
convergence order if the exact solution of the boundary integral equation is analytic. There-
fore, for this special case, there is no need to develop a fast solver for the Fourier-Galerkin
method, since for a small n the approximate solution ûn will get enough accuracy.

To close this section, we present a numerical example for the case of periodic analytic
solutions to illustrate the exponential convergence of the approximate solution of (2.8).
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Table 1 Numerical results of
Algorithm 1 for analytic solutions

n dn Err

4 7 8.71e–2

6 11 4.60e–3

8 15 1.31e–4

10 19 2.47e–6

12 23 3.49e–8

14 27 3.70e–10

16 31 3.03e–12

All computer programs for the numerical experiments presented in this paper are run on
a personal computer with 2.8G CPU and 8G memory.

Example 3.2 We consider solving the nonlinear boundary integral equations (2.2) reformu-
lated from the boundary value problem (1.1) in an elliptical region

D : x2
1 +

x2
2

4
< 1.

Utilizing the parametrization of the boundary � as x(t) = (cos t, 2 sin t), t ∈ I,we establish
the boundary integral equation (2.2) with the kernel functions K , A and B defined respectively
by

K (t, τ ) = 1

2π

2

sin2 t + τ
2
+ 4 cos2 t + τ

2

and

A(t, τ ) = − 1

π
log

∣
∣
∣
∣2e−1/2 sin

t − τ
2

∣
∣
∣
∣ ,

B(t, τ ) = − 1

2π

[

1+ log

(

sin2 t + τ
2
+ 4 cos2 t + τ

2

)]

.

We assume that the nonlinear function g is with the form g(t, u(t)) := u(t)+ sin(u(t)) and
choose g0 so that the function

u(t) = ecos(t) cos(2 sin(t)), t ∈ I,

is the exact solution of (2.2). Here, we note that the solution u is analytic.
In this example, the integral equation is solved directly by Algorithm 1. We report the

numerical results in Table 1. The second column in Table 1 lists the dimensions of the
approximate subspaces. We present the relative error “Err” of the approximate solution in
the third column, which is computed by Err := ||u−ûn ||

||u|| . We observe from the numerical
results that the approximation error decays quite fast so that for n = 16 the approximate
solution ûn has already got enough accuracy. Hence, we need not to consider a fast solver
for the Fourier-Galerkin method.

4 Fast Fully Discrete Fourier-Galerkin Method

We know from Theorem 2.3 that if u ∈ Hμ(I ), μ ≥ 0, the approximation error of ûn can
not decay as fast as the error in the case of analytic solutions. Hence, in this section when the
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exact solution has a general regularity, we develop a fast solver for the nonlinear system (2.10)
which requires only nearly linear number of multiplications to implement it. This will be done
by implementing three approximation techniques. They include a matrix truncation strategy,
a quadrature formula for oscillatory integrals, and the multilevel augmentation method. We
then show theoretically and numerically that the use of these approximation techniques does
not ruin the convergence order of the conventional Fourier-Galerkin method.

4.1 A Fast Solver for the Nonlinear System

To develop a fast algorithm, we first compress the matrices Kn and Bn to sparse ones by
using the matrix truncation strategy proposed in [5]. For each n ∈ N, we introduce the index
set

Ln := {[k, l] ∈ Z
2
n : kl ≤ n},

which will be used to compress the matrices. Specifically, we define the truncation matrix of
Kn by setting

K̃k,l :=
{

Kk,l , [k, l] ∈ Ln ∩ (Z+n )2,
02×2, otherwise,

K̃ := [K̃k,l : k, l ∈ Z
+
n ]

and letting

K̃n :=
[

K′ K′′
K′′′ K̃

]

.

In the same way, we also define the truncation matrix of Bn . Clearly, the matrices K̃n and B̃n

are sparse. In Eq. (2.10), we replace the dense matrices Kn and Bn by K̃n and B̃n, respectively.
We then obtain the truncated nonlinear system

(En − K̃n)ũn + (An + B̃n)ṽn = fn, (4.1)

where ũn := [ãk, ã−k : k ∈ Zn]T is the corresponding solution to be determined and
ṽn := [b̃k, b̃−k : k ∈ Zn]T with

b̃k :=
〈

	

⎛

⎝
∑

|l|∈Zn

ãlel(t)

⎞

⎠ , ek

〉

.

Before solving numerically the truncated nonlinear system (4.1), we are required to effi-
ciently evaluate the nonzero entries of matrices K̃n and B̃n, defined by the integrals

Kk,l :=
∫

I

∫

I

K (t, τ )ek(t)el(τ )dtdτ,

Bk,l :=
∫

I

∫

I

B(t, τ )ek(t)el(τ )dtdτ, |k|, |l| ∈ Ln . (4.2)

It is clear that we have to compute the oscillatory integrals when k � 1 or l � 1.An efficient
quadrature formula for dealing with the integrals in (4.2) was developed in [14] by using the
notion of the refinable set which was initiated in [9]. Following [9,14], we first construct
multi-scale piecewise Lagrange interpolations of kernel functions K and B on sparse grids.
The multi-scale piecewise Lagrange interpolation requires the interpolation points used in
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the current scale contain those used in the previous scale. To this end, we need the notion of
the refinable set. We introduce two contractive mappings from R to R by

ϕ0(x) := x

2
, ϕ1(x) := x + 2π

2
, x ∈ I,

and set � := {ϕ� : � ∈ Z2}. It is clear that I is the invariant set related to the mappings �.
A subset V of I is called a refinable set relative to the mappings � if V ⊆ �(V ).

To establish the multi-scale piecewise Lagrange interpolation formula, we need to con-
struct the Lagrange polynomials on I. For m ∈ N, we assume that V := {vr : 0 < v0 <

v1 < · · · < vm−1 < 2π, r ∈ Zm} is refinable relative to �. These points will be used to
construct the Lagrange interpolation polynomial of the initial scale. The set � j (V ) is used
to generate the interpolation points of for the Lagrange interpolation polynomials of scale j.
Specifically, for any N ∈ N and pN := [�γ : γ ∈ ZN ] ∈ Z

N
2 , we let

ϕpN
:= ϕ�N−1 ◦ · · · ◦ ϕ�0 and μ(pN ) :=

∑

γ∈ZN

�γ 2γ .

For any N ∈ N and r ∈ Z2N m, we define vN ,r := ϕpN
(vr ′), where pN ∈ Z

N
2 and r ′ ∈ Zm

satisfy r = mμ(pN )+ r ′. For any r ∈ Zm, we also let v0,r := vr . We set VN := {vN ,r , r ∈
Z2N m}, N ∈ N0, and accordingly define the Lagrange polynomials of degree m − 1 on I by

l0,r (x) :=
m−1∏

q=0,q �=r

x − v0,q

v0,r − v0,q
, x ∈ I and r ∈ Zm,

and

lN ,r (x) :=

⎧
⎪⎪⎨

⎪⎪⎩

mμ(pN )+m−1∏

q=mμ(pN ),q �=r

x − vN ,q

vN ,r − vN ,q
, x ∈ ϕpN

(I ),

0, x ∈ I \ ϕpN
(I ),

N ≥ 1 and r ∈ Z2N m,

where pN ∈ Z
N
2 and r ′ ∈ Zm satisfy r = mμ(pN )+ r ′. We also need to define some useful

linear functionals on C(I ). For any r ∈ Zm and κ ∈ Z2m, let ar,κ := l0,r (v1,κ ). We define
linear functionals η j,r , j ∈ N0, r ∈ Z2 j m, by

η0,r ( f ) := f (v0,r ),

η j,r ( f ) := f (v j,r )−
∑

q∈Zm

f (v j−1,m� r
2m �+q)aq,r mod 2m, for all f ∈ C(I ).

Here, we denote by �x� the largest integer not greater than x .
Making use of the Lagrange polynomials and the linear functionals defined above, we now

describe the multi-scale piecewise Lagrange interpolation of kernel function K on sparse
grids. We define index sets W0 := Zm and for any N ∈ N, WN := {r ∈ Z2N m : vN ,r ∈ VN \
VN−1}. For any j := [ j0, j1] ∈ N

2
0, we let Wj :=W j0 ⊗W j1 , and for any j := [ j0, j1] ∈ N

2
0

and r := [r0, r1] ∈Wj, we set

ηj,r := η j0,r0 ⊗ η j1,r1 and lj,r := l j0,r0 ⊗ l j1,r1 .

For any N ∈ N, we introduce the index set by

SN := {j := [ j0, j1] ∈ Z
2
N+1 : max{ j0, 1} +max{ j1, 1} ≤ N }.
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With these notations, we get the multi-scale piecewise Lagrange interpolation of K on sparse
grids

SN K =
∑

j∈SN

∑

r∈Wj

ηj,r(K )lj,r, N ∈ N.

Replacing K by SN K in the second term of (4.2), we establish a numerical quadrature
formula for evaluating the coefficients Kk,l , |k|, |l| ∈ Ln, as

K̃k,l :=
∑

j∈SN

∑

r∈Wj

ηj,r(K )Kj,r(k, l), (4.3)

where for any j ∈ SN , r ∈Wj and |k|, |l| ∈ Ln,

Kj,r(k, l) :=
∫

I

∫

I

lj,r(t, τ )ek(t)el(τ )dtdτ.

We note that by rewriting (4.3) in the form of discrete Fourier transforms of matrices [ηj,r(K ) :
r ∈Wj], j ∈ SN , and then employing the well-known fast Fourier transform, we can design
a fast quadrature algorithm for computing K̃k,l , |k|, |l| ∈ Ln . For a detailed description of the
algorithm, the readers are referred to Appendix in [15]. We denote by K̃n,N the matrix K̃n

with Kk,l being evaluated by the quadrature formula (4.3), where N is the number of partition
level of the multiscale Lagrange interpolation for kernel K . Likewise, we also define matrix
B̃n,N . We thus obtain a fully discrete truncated nonlinear system

(
En − K̃n,N

)
ũn,N +

(
An + B̃n,N

)
ṽn,N = fn . (4.4)

We next consider solving Eq. (4.4) by the multilevel augmentation method. The key idea
of the multilevel augmentation method is to solve the nonlinear system by inverting the
nonlinear operator in a subspace of a much lower dimension with a compensation of high
frequency by matrix–vector multiplications. To apply this idea to Eq. (4.4), we assume that
n := 2k+m, k,m ∈ N,where k is fixed and denotes the initial level of approximation, and we
split the matrices in this equation into “low frequency” and “high frequency” components.
Specifically, we write the matrix K̃n,N in the block form

K̃n,N =

⎡

⎢
⎢
⎣

K 00 K 01 · · · K 0m

K 10 K 11 · · · K 1m

· · · · · · · · · · · ·
K m0 K m1 · · · K mm

⎤

⎥
⎥
⎦ ,

where K 00 has order (2k+1 − 1) × (2k+1 − 1), K 0q has order (2k+1 − 1) × 2k+q , K q0

has order 2k+q × (2k+1 − 1) for q = 1, 2, . . . ,m and K pq has order 2k+p × 2k+q for
p, q = 1, 2, . . . ,m. For each l = 0, 1, . . . ,m, we denote by K̃k,l,N the submatrix of K̃n,N

that has the form

K̃k,l,N =

⎡

⎢
⎢
⎣

K 00 K 01 · · · K 0l

K 10 K 11 · · · K 1l

· · · · · · · · · · · ·
K l0 K l1 · · · K ll

⎤

⎥
⎥
⎦ ,

123



J Sci Comput (2013) 56:494–514 507

and split K̃k,l,N into its “low frequency” and “high frequency” components:

K̃
L
k,l,N =

[
K 00 K 01 · · · K 0l

]
and K̃

H
k,l,N =

⎡

⎣
K 10 K 11 · · · K 1l

· · · · · · · · · · · ·
K l0 K l1 · · · K ll

⎤

⎦ .

By the same way, we also introduce the submatrices and corresponding “low frequency”
components and “high frequency” components for matrices En,An and B̃n,N . In the light of
the idea of the multilevel augmentation methods, we establish the following fast algorithm.

Algorithm 2: The Fast Multilevel Augmentation Method

Let k be a fixed positive integer. Set f2k+m := [〈 f, e j 〉, 〈 f, e− j 〉 : j ∈ Z2k+m ]T .
Step 1: According to Algorithm 1, solve the nonlinear system

(E2k − K̃k,0,N )uk,0,N + (A2k + B̃k,0,N )vk,0,N = f2k ,

for the solution uk,0,N = [(uk,0,N ) j , (uk,0,N )− j : j ∈ Z2k ]T , where

vk,0,N :=
[〈
	
(
uk,0,N

)
, e j
〉
,
〈
	
(
uk,0,N

)
, e− j

〉 : j ∈ Z2k

]T

and uk,0,N :=∑| j |∈Z2k
(uk,0,N ) j e j . Set l := 1.

Step 2: Set fk,l := [〈 f, e j 〉, 〈 f, e− j 〉 : j ∈ Z2k+l \ Z2k ]T .
• Compute v̂k,l,N =

[〈
	
(
uk,l−1,N

)
, e j
〉
,
〈
	
(
uk,l−1,N

)
, e− j

〉 : j ∈ Z2k+l

]T
.

• Augment the matrices K̃
H
k,l−1,N ,AH

k,l−1 and B̃
H
k,l−1,N to form K̃

H
k,l,N ,AH

k,l and

B̃
H
k,l,N , respectively.

• Augment the vector uk,l−1,N by setting ûk,l,N =
[

uk,l−1,N

02k+l×1

]

.

• Compute

uH
k,l,N := fk,l + K̃H

k,l,N ûk,l,N −
(

AH
k,l + B̃H

k,l,N

)
v̂k,l,N . (4.5)

Let u H
k,l,N :=

∑
| j |∈Z2k+l \Z2k

(
uH

k,l,N

)

j
e j .

Step 3: Augment the matrices K̃
L
k,l−1,N ,AL

k,l−1 and B̃
L
k,l−1,N to form K̃

L
k,l,N ,AL

k,l and B̃
L
k,l,N ,

respectively. According to Algorithm 1, solve the nonlinear system

(
EL

k,l − K̃L
k,l,N

) [uL
k,l,N

uH
k,l,N

]

+
(

AL
k,l + B̃L

k,l,N

)
vk,l,N = f2k (4.6)

for the solution uL
k,l,N = [(uL

k,l,N ) j , (uL
k,l,N )− j : j ∈ Z2k ]T , where

vk,l,N :=
[〈
	
(

uL
k,l,N + u H

k,l,N

)
, e j

〉
,
〈
	
(

uL
k,l,N + u H

k,l,N

)
, e− j

〉
: j ∈ Z2k+l

]T

and uL
k,l,N :=

∑
| j |∈Z2k

(uL
k,l,N ) j e j . Define uk,l,N :=

[
uL

k,l,N
uH

k,l,N

]

and uk,l,N :=
uL

k,l,N + u H
k,l,N .

Step 4: Set l ← l + 1 and go back to Step 2 until l = m.
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We remark that in Algorithm 2, we use the fast Fourier transform to evaluate the vectors
vk,l,N and v̂k,l,N . The output uk,m,N of Algorithm 2 is regarded as an approximate solution
of the nonlinear system (4.4). The next theorem gives an estimation of the computational
cost required for Algorithm 2, which shows that the fully discrete Fourier-Galerkin method
developed in this section is indeed a fast algorithm.

Theorem 4.1 If for each (t, τ ) ∈ I 2, the number of multiplications used to evaluate K (t, τ )
and B(t, τ ) is constant, then the total number of multiplications required for obtaining uk,m,N

in Algorithm 2 is O((k + m)32k+m).

Proof The total number of multiplications required for obtaining uk,m,N is composed of
two parts. One involves the multiplication for generating the sparse matrices K̃2k+m ,N and
B̃2k+m ,N . The other is that for carrying out the computing steps listed in Algorithm 2.

According to Theorem A.3 of Appendix in [15], the number of multiplications for gen-
erating K̃2k+m ,N and B̃2k+m ,N is O((k + m)32k+m). To carry out the computing steps listed
in Algorithm 2, we need to compute only once of step 1 and update for l = 0, 1, 2, . . . ,m
in steps 2 and 3. The computational cost of step 1, used to provide an initial approximate
solution, can be considered as a constant. In step 2, the number of multiplications used for
computing v̂k,l,N by using the fast Fourier transform is O((k+ l)2k+l). An estimation of the
numbers of nonzero entries of the truncated matrices K̃H

k,l,N and B̃H
k,l,N has been given in [5],

that is, they are O((k+l)2k+l).As a result, the number of multiplications in the matrix-vector
multiplication is also O((k + l)2k+l). In each iteration step of Newton’s method for solving
(4.6), the number of multiplications for evaluating the Jacobian matrix can be obtained as
O((k + l)2k+l) by a similar analysis used in step 2. Since the nonlinear system (4.6) has the
same size as (4.1), we consider the computational cost for inverting the Jacobian matrix as a
constant. So the total number of multiplications in step 3 is O((k+ l)2k+l) since the number
of iteration steps is finite.

Adding up the above estimates together, we get the desired result of this theorem. ��
4.2 Convergence Analysis

The convergence order of the approximate solution obtained by Algorithm 2 can be estimated
by a similar analysis used in [7,8] for estimating the multilevel augmentation method for the
multiscale collocation method.

We first represent Algorithm 2 in an operator form. For n := 2k+m and N := k + m,
we let Kn := PnK|Xn and K̃n,N : Xn → Xn be the linear operator such that its matrix
representation under the Fourier basis is K̃n,N . For each l ∈ Zm+1, we denote by K̃k,l,N the
linear operator from X2k+l to X2k+l , which has K̃k,l,N as its matrix representation. Similarly,
we also define the operators Bn, B̃n,N and B̃k,l,N and Ak,l , l ∈ Zm+1. For each l ∈ Zm+1,

we split the operator K̃k,l,N into its “lower frequency” and “higher frequency” components
by letting

K̃L
k,l,N := P2k K̃k,l,N P2k+l , K̃H

k,l,N :=
(
P2k+l − P2k

)
K̃k,l,N P2k+l .

It is clear that the matrices K̃
L
k,l,N and K̃

H
k,l,N are exactly the matrix representation of the

operators K̃L
k,l,N and K̃H

k,l,N , respectively. Likewise, by replacing K̃k,l,N with B̃k,l,N and

Ak,l , we also introduce B̃L
k,l,N , B̃

H
k,l,N ,A

L
k,l and AH

k,l . We point out that for each l ∈ Zm+1,

Eq. (4.5) is equivalent to

u H
k,l,N =

(
P2k+l − P2k

)
f +

[
K̃H

k,l,N −
(
AH

k,l + B̃H
k,l,N

)
P2k+l	

]
uk,l−1,N ,
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and nonlinear system (4.6) is equivalent to
[
P2k − K̃L

k,l,N +
(
AL

k,l + B̃L
k,l,N

)
P2k+l	

] (
uL

k,l,N + u H
k,l,N

)
= P2k f.

Moreover, it can be verified that the approximate solution uk,l,N , l ∈ Zm+1, satisfy the
nonlinear operator equations

[
I − K̃L

k,l,N +
(
AL

k,l + B̃L
k,l,N

)
P2k+l	

]
uk,l,N = P2k+l f + K̃H

k,l,N uk,l−1,N

−
(
AH

k,l + B̃H
k,l,N

)
P2k+l	uk,l−1,N , l ∈ Zm+1. (4.7)

We shall need to estimate the differences between Kn and K̃n,N and also between Bn and
B̃n,N . To this end, we introduce two appropriate spaces of functions. For any α := [α0, α1] ∈
N

2
0, let |α|∞ := max{α0, α1} and |α| := |α0| + |α1|. For a function f ∈ Cσ (I 2) and for
α := [α0, α1] ∈ N

2
0, we write

f (α)(x) :=
(

∂ |α|

∂xα0∂yα1
f

)

(x), x := [x, y] ∈ I 2

and define the space

Xσ (I 2) :=
{

f : I 2 → R : f (α) ∈ C(I 2), |α|∞ ≤ σ
}
.

For μ ≥ 0, we also define the space Hμ(I 2) of functions φ ∈ L2(I 2) whose Fourier
coefficients {φk,l : k, l ∈ Z} satisfy

∑

k∈Z

∑

l∈Z

(
1+ k2)μ (1+ l2)μ |φk,l |2 <∞.

According to Lemma 3.3 in [15], we have the desired result for the difference between Kn

and K̃n,N in the following lemma.

Lemma 4.2 If N := �log2 n� and K ∈ Xσ (I 2) ∩ Hμ(I 2) with σ ≥ μ + 1/2 + ε, μ ≥ 0,
ε > 0, then there exist a positive constant c and n0 ∈ N such that for all n ∈ N with n ≥ n0

and for all w ∈ L2(I ),

||(Kn − K̃n,N )Pnw|| ≤ c||w||n−μ. (4.8)

For the difference between operators Bn and B̃n,N , we also have a similar estimate.

Lemma 4.3 If N := �log2 n� and B ∈ Xσ (I 2)∩Hμ(I 2)with σ ≥ μ+1/2+ε, μ ≥ 0, ε >
0, then there exist a positive constant c and n0 ∈ N such that for all n ∈ N with n ≥ n0 and
for all w ∈ L2(I ),

||(Bn − B̃n,N )Pn	w|| ≤ c||w||n−μ. (4.9)

Proof By an estimate similar to that presented in Lemma 4.2, there exist a positive constant
c1 and n0 ∈ N such that for all n ∈ N with n ≥ n0 and for all w ∈ L2(I )

||(Bn − B̃n,N )Pn	w|| ≤ c1||	w||n−μ. (4.10)

Since g is continuously differentiable with respect to the second variable, it follows from the
standard estimate for nonlinear operator (see, for Example, [23]) that there exists a positive
constant c2 such that for all w ∈ L2(I )

||	w|| ≤ c2||w||. (4.11)
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Combining (4.11) and (4.10), we obtain that

||(Bn − B̃n,N )Pn	w|| ≤ c1c2||w||n−μ,
which prove the estimation (4.9) by letting c := c1c2. ��

By making use of Lemmas 4.2 and 4.3, we estimate in the following theorem the error of
the approximate solution generated by Algorithm 2.

Theorem 4.4 If kernel functions K and B ∈ Xσ (I 2)∩ Hμ(I 2) with σ ≥ μ+ 1/2+ ε, μ ≥
0, ε > 0 and u ∈ Hμ(I ), then there exist a positive constant c and a positive integer N0,

such that for all k ≥ N0 and for all m ∈ N0,

||uk,m,N − u|| ≤ c2−μ(k+m)||u||μ, (4.12)

where N = k + m.

Proof We prove this theorem by induction on m. The proof for the case m = 0 is trivial. We
assume that (4.12) holds for the case of m − 1 and consider the case of m.

Let û2k+m be the solution of Eq. (2.8) with n = 2k+m . By the triangle inequality, we have
that

||uk,m,N − u|| ≤ ||û2k+m − u|| + ||uk,m,N − û2k+m ||.
The first term in the right hand side of the above inequality can be estimated directly by
Theorem 2.3, that is, there holds

||u − û2k+m || ≤ c02−μ(k+m)||u||μ, (4.13)

for some positive constant c0.Hence, it remains to estimate the second term. For this purpose,
we first present the difference uk,m,N − û2k+m according to Eqs. (2.8) and (4.7). Letting

T := ((Ak,m + B̃k,m,N )P2k+m	
)′ (

û2k+m

)
,

we have that
(
I − P2k+m (K̃k,m,N − T )

) (
uk,m,N − û2k+m

) = uK + uB + P2k+m R
(
uk,m,N , û2k+m

)

where

uK := P2k+m

(
K̃k,m,N −K2k+m

)
û2k+m + K̃H

k,m,N

(
uk,m−1,N − uk,m,N

)
,

uB := P2k+m

(
B2k+m − B̃k,m,N

)
P2k+m	

(
û2k+m

)

+
(
AH

2k+m + B̃H
k,m,N

)
P2k+m

(
	(uk,m,N )−	(uk,m−1,N )

)

and

R
(
uk,m,N , û2k+m

) := (Ak,m + B̃k,m,N
)
P2k+m

(
	(û2k+m )−	(uk,m,N )

)

−T
(
û2k+m − uk,m,N

)
.

Note that there exist positive constants c1 and c2 such that for sufficiently large integer k,

|| (I − P2k+m (K̃k,m,N − T )
)−1 || ≤ c1

and

||R (uk,m,N , û2k+m

) || ≤ c2||uk,m,N − û2k+m ||2.
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By the last inequality and the fact that ||uk,m,N − û2k+m || → 0 uniformly for all m, as
k →∞, we conclude that for sufficiently large integer k and for all m there holds

||R (uk,m,N , û2k+m

) || ≤ 1

4c1
||uk,m,N − û2k+m ||. (4.14)

According to Lemmas 4.2 and 4.3, there exists a constant c3 such that

||uK|| ≤ c32−μ(k+m)||û2k+m || + ||K̃H
k,m,N ||

(||uk,m−1,N − û2k+m || + ||û2k+m − uk,m,N ||
)
,

and

||uB|| ≤ c32−μ(k+m)||û2k+m || + ||B̃H
k,m,N ||L

(||uk,m−1,N − û2k+m || + ||û2k+m − uk,m,N ||
)
,

where L is the Lipschitz constant. Let

ᾱk,m := ||K̃H
k,m,N || + L||B̃H

k,m,N ||.
Since ||û2k+m −u|| → 0 and ᾱk,m → 0 uniformly for all m, as k →∞, for sufficiently large
integer k and for all m, there exists a constant c4 such that

||uK|| + ||uB|| ≤ c42−μ(k+m)||u||μ + 1

4c1

(||uk,m−1,N − û2k+m || + ||û2k+m − uk,m,N ||
)
.

(4.15)

Combining the inequalities (4.14) and (4.15) with the induction hypothesis, we get that

||uk,m,N − û2k+m || ≤ c′
(
2−μ(k+m)||u||μ + ||uk,m−1,N − û2k+m ||)

≤ c′
(
2−μ(k+m)||u||μ + ||uk,m−1,N − u|| + ||u − û2k+m ||)

≤ c′′2−μ(k+m)||u||μ
(4.16)

for some positive constants c′ and c′′. By (4.13) and (4.16), we prove (4.12) for m. ��
4.3 Numerical examples

In this subsection, we present two numerical examples to demonstrate the approximate accu-
racy and computational complexity of the proposed method.

We consider solving the same nonlinear boundary integral equation as in Example 3.2
by Algorithm 2. The difference is that we choose g0 such that the given function u with a
specific regularity is the exact solution. To demonstrate the numerical results, we define the
relative error “Err” and the approximation order “AO” respectively by

Err := ||u − uk,m,k+m ||
||u|| , and AO := log2

||u − uk,m,k+m ||
||u − uk,m+1,k+m+1|| ,

where uk,m,k+m is the approximate solution obtained by Algorithm 2. We also denote by
“CT” the computing time measured in seconds, which is used for generating the sparse
matrices K̃n,N , B̃n,N and solving the nonlinear system (4.4) by Algorithm 2. To confirm the
quasi-linear computational complexity, we define

CO := log2
CT
(
2k+m+1

)

CT
(
2k+m

) .
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Table 2 Numerical results of Algorithm 2 for Example 4.5

m d24+m Err AO CT CO

1 63 4.86e–2 0.4948 0.062

2 127 3.44e–2 0.4971 0.174 1.4887

3 255 2.44e–2 0.4984 0.485 1.4789

4 511 1.72e–2 0.4997 1.356 1.4833

5 1023 1.21e–2 0.5040 3.688 1.4435

Table 3 Numerical results of Algorithm 2 for Example 4.6

m d24+m Err AO CT CO

1 63 1.11e–3 1.5189 0.062

2 127 3.83e–4 1.5101 0.175 1.4970

3 255 1.35e–4 1.5000 0.489 1.4825

4 511 4.79e–5 1.4989 1.330 1.4435

5 1023 1.69e–5 1.5002 3.598 1.4358

Example 4.5 We consider solving the nonlinear boundary integral equation by Algorithm 2.
Here, the right-hand side function g0 is chosen such that

u(t) =
{

t, 0 ≤ t < π,

2π − t, π ≤ t < 2π,

is the exact solution of the equation. We note that u ∈ H0.5−ε(I ) with ε > 0 being an
arbitrary number.

In this experiment, we solve (4.4) by Algorithm 2 with the initial level k = 4. We report
the numerical results in Table 2. The third and fourth columns in Table 2 list, respectively,
the relative errors and approximation order of the approximate solution of (4.4) obtained by
Algorithm 2. In the fifth and sixth columns, we present respectively the computing time for
implementing Algorithm 2 and computed order of computational complexity. We observe
from these results that the proposed method gives the optimal convergence order 0.5− ε and
the computing time is consistent with the quasi-linear computational complexity estimate.

Example 4.6 In this example, we choose the right-hand side function g0 such that

u(t) = 1

12
(3t2 − 6π t + 2π2), t ∈ I,

is the exact solution of the equation. Here, we have u ∈ H1.5−ε(I ) with ε > 0 being an
arbitrary number.

In Table 3, we list the numerical results for this example when we solve (4.4) by Algorithm
2 with the initial level k = 4. Note that, since the exact solution u ∈ H1.5−ε, the theoretical
convergence order is 1.5 − ε, which is confirmed by the computed order of convergence.
At the same time, the computing time is also consistent with the quasi-linear computational
complexity estimate.
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