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Abstract Computational science has advanced significantly over the past decade and has
impacted almost every area of science and engineering. Most numerical scientific computa-
tion today is performed with double-precision floating-point accuracy (64-bit or ∼15 decimal
digits); however, there are a number of applications that benefit from a higher level of numer-
ical precision. In this paper, we describe such an application in the research area of black hole
physics: studying the late-time behavior of decaying fields in Kerr black hole space-time.
More specifically, this application involves a hyperbolic partial-differential-equation solver
that uses high-order finite-differencing and quadruple (128-bit or ∼30 decimal digits) or octal
(256-bit or ∼60 decimal digits) floating-point precision. Given the computational demands
of this high-order and high-precision solver, in addition to the rather long evolutions required
for these studies, we accelerate the solver using a many-core Nvidia graphics-processing-unit
and obtain an order-of-magnitude speed-up over a high-end multi-core processor. We thus
demonstrate a practical solution for demanding problems that utilize high-precision numerics
today.

Keywords CUDA · GPU · Precision · Tails · Quadruple · Octal

1 Introduction

Computation has joined theory and experiment as a third pillar of science and engineering
research today. One aspect of scientific computing that perhaps is not discussed as much cur-
rently, is the issue of numerical floating-point precision. Most scientific applications and algo-
rithms utilize double-precision floating-point (64-bit) accuracy, which translates to numerical
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computations accurate to ∼15 decimal digits. It was in the early 1960s that mainframe manu-
facturers like IBM began offering support for double-precision numerics, to prevent problems
due to accumulation of round-off errors.1 Now, there is a growing list of applications and areas
that benefit from higher than double-precision accuracy i.e. quadruple (128-bit) and even octal
(256-bit) precision. Examples include: Chaotic aspects of Climate Modeling, Supernova Sim-
ulations, Quantum Calculations in Atomic and Nuclear Physics, Electromagnetic Scattering,
Vortex studies in Fluid Flows, Experimental Mathematics, Planetary Orbit Computations etc.
More detail on why these different problems benefit from high-precision numerics may be
found in Ref. [1] and the references therein. The need for high-precision numerics is expected
to grow rapidly as the scientific community is in a position to perform even larger and longer
scale simulations [2]. Computations utilizing higher-order methods (pseudo-spectral, radial-
basis-functions, etc.) are likely to benefit from high-precision numerics [4,5]. There may also
be some benefits in using high-precision numerics in the context of studying some borderline
ill-conditioned problems; and not necessarily only cases where very high accuracy is desir-
able [6]. Now, single- and double-precision floating-point hardware support is available in all
major compute hardware today, but support for higher precision is severely lacking. One can
easily emulate such high levels of numerical precision through CPU software libraries, but
these often perform orders-of-magnitude slower than the full hardware-supported double-
precision equivalents [1], thus making such an option somewhat impractical. In addition, it
is highly unlikely that the computer industry will develop a commodity processor in the near
future that natively supports quadruple or higher floating-point precision. We suggest here
an interim solution to this major challenge, leveraging the massive parallelism offered by the
many-core GPU architecture. These compute technologies are expected to play a critical role
in the future of supercomputing, especially in scaling up from the peta-scale to the exa-scale
regime.

In this paper, we make use of a many-core Nvidia Tesla M2050 “Fermi” CUDA GPU [7] to
accelerate an application from the Numerical Relativity (NR) community: a Teukolsky equa-
tion solver for studying late-time radiative “tails” in Kerr black hole spacetime [8–12]. This
solver is essentially a hyperbolic partial-difference-equation (PDE) code that uses high-order
finite-differencing. One distinguishing aspect of this application is that the numerical simula-
tions are such that they require high numerical precision i.e. quadruple and octal floating-point
precision. In this work, we focus on the outcome of implementing high-precision floating-
point computation on a many-core GPU and compare the resulting performance with that
from a traditional multi-core CPU.

This paper is organized as follows: In Sect. 2, we briefly introduce the Teukolsky
equation, the relevant background gravitational physics and the numerical method used by
the solver code. We also emphasize the need for high numerical precision and high-order
finite-differencing for the study of late-time Kerr tails. In Sect. 3, we provide a very brief
introduction to CUDA GPUs and emphasize those aspects that are relevant to the CUDA
implementation we present. In Sect. 4, we describe the parallel CUDA code’s implementa-
tion details and then in Sect. 5 we present this code’s overall performance results. Finally, in
Sect. 6, we summarize this work and make some conclusive remarks.

1 Perhaps the most significant and tragic event that occurred due a limited numerical precision issue in recent
history was the failure of the Patriot Missle during the Persian Gulf War in the early 1990s. This was attributed
to the limited precision capabilities of the control computer that was unable to operate accurately over long
periods of time due to the accumulation of round-off error [3].
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2 Late-Time Kerr Black Hole Tails

Several operating gravitational wave observatories all over the world are currently being
upgraded: LIGO in the United States, GEO/Virgo in Europe and TAMA in Japan. These
upgraded observatories will open a new window onto the Universe by enabling scientists
to make astronomical observations using a completely new medium— gravitational waves
(GWs), as opposed to electromagnetic waves (light). These waves were predicted by Ein-
stein’s relativity theory, but have not been directly observed because the required experimental
sensitivity was simply not advanced enough, until very recently.

Numerical Relativity [13,14] is an area of computational science that emphasizes the
detailed modeling of strong sources of GWs—collisions of compact astrophysical objects,
such as neutron stars and black holes. Thus, it plays an extremely important role in the area of
GW astronomy and gravitational physics, in general. Moreover, the NR community has also
contributed to the broader computational science community by developing an open-source,
modular, parallel computing infrastructure called Cactus [15].

The specific NR application we have chosen for consideration in this work is one that very
accurately evolves the perturbations of a rotating (Kerr) black hole i.e. solves the Teukol-
sky equation in the time-domain [8–12]. This equation is essentially a linear wave-equation
in Kerr space-time geometry. The following subsections provide more detailed information
on this equation and the associated numerical solver code. There are also other applica-
tions in gravitational physics where high-precision numerics could potentially be beneficial:
Critical phenomena associated to gravitational collapse [16] and also in other contexts; par-
ticle self-force computations that are necessary for modeling extreme-mass-ratio inspirals
(EMRIs) [17] that are important sources of GWs for future space-borne missions.

2.1 Teukolsky Equation

The Teukolsky master equation describes scalar, vector and tensor field perturbations in the
space-time of Kerr black holes [18]. In Boyer–Lindquist coordinates, this equation takes the
form
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where M is the mass of the black hole, a its angular momentum per unit mass, Δ = r2 −
2Mr+a2 and s is the “spin weight” of the field. The s = 0 versions of these equations describe
the radiative degrees of freedom of a simple scalar field and are the equations of interest in
this work. As mentioned previously, this equation is an example of linear, hyperbolic (3+1)D
PDEs which are quite common in several areas of science and engineering and can be solved
numerically using a variety of finite-difference schemes.
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2.2 Teukolsky Code

Reference [20] demonstrated stable numerical evolution of Eq. (1) for using the well-
known second-order, time-explicit, two-step Lax–Wendroff numerical evolution scheme.
The Teukolsky code presented in this paper uses a similar approach, therefore the contents
of this section are largely a review of the work presented in the relevant literature [20].

Our code uses the tortoise coordinate r∗ in the radial direction and azimuthal coordinate
φ̃. These coordinates are related to the usual Boyer–Lindquist coordinates by

dr∗ = r2 + a2

Δ
dr (2)

and

dφ̃ = dφ + a

Δ
dr . (3)

These coordinates are better suited for performing numerical evolutions in a Kerr space-time
background for a number of reasons that are detailed in Ref. [20] that we will not repeat here.
Next, we factor out the azimuthal dependence and use the ansatz,

Ψ (t, r∗, θ, φ̃) = eimφ̃r3Φ(t, r∗, θ) (4)

that allows us to reduce the dimensionality of the PDE to (2+1)D. Defining

Π ≡ ∂tΦ + b ∂r∗Φ , (5)

b ≡ r2 + a2

Σ
, (6)

and

Σ2 ≡ (r2 + a2)2 − a2 Δ sin2 θ (7)

allows the Teukolsky equation to be rewritten in first order form as

∂t u + M∂r∗u + Lu + Au = 0, (8)

where

u ≡ {ΦR, ΦI ,ΠR,ΠI } (9)

is the solution vector. The subscripts R and I refer to the real and imaginary parts respectively
(note that the Teukolsky function Ψ is a complex valued quantity). Explicit forms for the
matrices M, A and L can be easily found in the relevant literature [20]. Rewriting Eq. (8) as

∂t u + D∂r∗u = S , (10)

where

D ≡

⎛
⎜⎜⎝

b 0 0 0
0 b 0 0
0 0 −b 0
0 0 0 −b

⎞
⎟⎟⎠ , (11)

S = −(M − D)∂r∗u − Lu − Au, (12)
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and using the two-step Lax–Wendroff iterative scheme, we obtain stable evolutions. Each
iteration consists of two steps: In the first step, the solution vector between grid points is
obtained from

un+1/2
i+1/2 = 1

2

(
un

i+1 + un
i

)
(13)

−δt
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[
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]
.

This is used to compute the solution vector at the next time step,
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i

]
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The angular subscripts are dropped in the above equation for clarity.
Following Ref. [20], we set Φ and Π to zero on the inner and outer radial boundaries.

Symmetries of the spheroidal harmonics are used to determine the angular boundary con-
ditions: For even |m| modes, we have ∂θΦ = 0 at θ = 0, π while Φ = 0 at θ = 0, π for
modes of odd |m|.
2.3 The Tails Problem

The main science goal for the development of such a Teukolsky equation solver in the context
of this work is to study the “controversial” Kerr black hole “tails” problem. The statement
of the problem is simple: place an observer in a circular orbit around a black hole, and have
them measure at late times a generic perturbation field, that had compact support at some
initial time. It is generally accepted that the observer measures the late-time perturbation
field to drop off as an inverse power-law of time, specifically as t−n . In the case of a non-
rotating Schwarzschild black hole, n = 2�+3, where � is the multipole moment of the initial
perturbation field [21]. Namely, if the initial (compactly supported) perturbation field has
the angular dependence of Y m

� , the angular dependence remains unchanged (due the hole’s
spherical symmetry) and the decay rate of the field is governed by the � value of the initial
perturbation. However, in the context of rotating black holes, it is the value of n that has been
controversial in the literature, with some conflicting results reported. See for example [10]
for a recent and detailed review of the controversy.

Generating accurate numerical simulations in this context involves a number of challenges.
Firstly, these simulations need to be rather long—this is because typically the observed field
exhibits an exponentially decaying oscillatory behavior in the initial part of the evolution
and only much later this transitions over to a clean power-law decay. Therefore, one needs
to wait for the initial oscillations (so called “quasi-normal ringing”) to dissipate away. Sec-
ondly, because each multipole has its own decay rate (which increases with an increase in
�) at late times one ends up with numerical data in which different multipoles have widely
different amplitudes (often 30–40 orders of magnitude apart!). For this reason, not only does
the numerical solution scheme have to be high-order (to reduce the discretization errors to
the required levels) but it also requires high-precision floating-point numerical computa-
tion (due to the large range of amplitudes involved). Figure 1 clearly demonstrates all these
computational challenges of the problem, using a sample Kerr tails evolution.
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Fig. 1 Kerr tails for a range of � multipoles (0–8) starting with a pure �′ = 0 multipole. These tails obey
the tail formula (� + �′ + 3) [11]. It is clear from the wide range of amplitudes involved, that such numerical
simulations require octal-precision floating-point computations.

2.4 Second-Order Finite-Differencing

The standard of scientific computation in the finite-difference approach has been second-
order algorithms for decades. Second-order convergence strikes a balance between accuracy,
computational cost and ease of implementation. Convergence is typically guaranteed by the
Lax Equivalence Theorem [19] which basically states if the discrete formula approximating
the PDE is consistent, and that if numerical errors do not grow unboundedly (stability), then
the solution is convergent in the sense that as the grid spacing goes to zero, the solution would
approach the correct one.

Early codes to calculate the late-time Kerr tails were therefore designed to be second–
order in all coordinates i.e. temporally, radially, and also in the angular coordinate [20]. We
demonstrate below that while this approach seems compelling, it can mislead into qualita-
tively wrong solutions.

Consider a non-rotating Schwarzschild black hole, excited by an azimuthally symmetric
(m = 0) field with � = 4. The decay rate of the well-known t−2�−3 Price tail [21] is incon-
trovertible in this case: since the background is spherically symmetric, spherical harmonic
modes evolve independently, and the decay rate is therefore t−11. The numerical solution
with a second-order (2+1)D numerical code may lead however to the erroneous conclusion
that the decay rate is t−3. In Fig. 2 we show the late-time field as a function of time for three
choices of the angular grid spacing, and for fixed radial and temporal grid spacings. As can be
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Fig. 2 Strong dependence of the tail amplitude on angular grid resolution, upon using a second-order differ-
encing stencil. The power-law decay rate is incorrect, because the tail data is purely dominated by numerical
noise. Higher-order accuracy is clearly necessary for reliable results here.

easily inferred the decay rate is t−3, which is definitely wrong. The origin of this wrong result
is indicated in the same figure: the field values themselves reduce considerably in amplitude
under refinement of the grid! The signal seen is therefore not the physical field, but purely an
evolved numerical noise (“leakage of multipoles”). While the physical signal indeed drops
like t−11, it is swamped by this evolved numerical noise, which has a monopole component
that drops like t−3. Higher angular grid resolution can postpone the numerical-noise domi-
nated regime, but cannot completely eliminate it. If the grid is fine enough, the noise level
at a particular value of the time reduces to below the level of the physical field; however,
as the former drops more slowly than the latter, at very late times the field is dominated by
numerical noise. Therefore, any very long time evolution will be dominated by numerical
noise.

Thus, we have here a situation in which the Lax Equivalence Theorem appears to provide
us false confidence in our numerical results: the numerical noise does not grow unboundedly.
In fact, it even drops quadratically with the grid spacing, and drops with time. However, it
does so, slower than the physical signal, so that the signal may be dominated by numerical
noise even though the regular theorem criteria are satisfied. The key point here is to note
that convergence guarantees the correct solution only in an asymptotic sense i.e. in the limit
of zero grid spacing. It makes no statement whatsoever about the accuracy of the numerical
result in the context of a practical, non-zero grid spacing. And that is the reason for the
unexpected outcome we mention above in the context of the non-rotating Schwarzschild
case.
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2.5 High-Order and High-Precision

As noted above, it is clear that we require higher-order finite-differencing to solve the Teukol-
sky equation in the context of these Kerr tails simulations2. It turns out that it is sufficient
that only the angular differentiation (i.e. θ -derivatives of the field) be implemented using a
higher-order numerical stencil. The temporal and the radial direction related operations can
simply stay second-order and such a mixed approach yields sufficiently good results [10].
This is likely because the dependence of the field on radius and time is significantly more
gradual when compared to the polar-angle dependence. In addition, the angular differentiation
involves computing first- and second-order derivatives (see Eq. 1), whereas the radial-time
part is cast into first-order form (see Eq. 10). For this reason, in this work we choose the
finite-difference angular differentiation operator to be 10th-order accurate and leave the rest
of the numerical scheme as a standard second-order Lax–Wendroff algorithm. In addition,
as pointed out before, we also require high-numerical precision: in particular, quadruple and
octal precision may be required depending upon the details of Kerr tails simulation being
attempted.

Both these computationally demanding requirements make performing scientifically
meaningful Kerr tails numerical simulations rather difficult, especially using traditional desk-
top processors. For this reason, in this work we turn to hardware accelerators such as GPUs.
Now, double-precision (64-bit) floating-point operations are supported on nearly all compute
hardware including CUDA GPUs and multi-core processors. Therefore, no special consid-
erations are necessary for double-precision computations. On the other hand, only a few
options support quadruple-precision (128-bit) datatype and operations. And to the best of
our knowledge, no options directly support octal-precision (256-bit) arithmetic.

Therefore, finding a software solution for these high-precision requirements is necessary.
After examining a number of open-source high-precision floating point arithmetic pack-
ages, we find that the LBNL QD library is one that is well suited for both CPU [25] and
GPU [26] architectures. In this library, the high-precision datatypes (quadruple and octal
precision types) are implementing using a representation based on the appropriate number of
double-precision floats (double-double (DD) for quadruple, and quad-double (QD) for octal
precision) and similarly the high-precision floating-point operations are performed ultimately
using standard double-precision operations. Fig. 1 depicts some sample results from a Kerr
tails simulation that makes use of all these enhancements in floating-point precision and also
a high-order accurate numerical evolution scheme.

3 Nvidia CUDA GPU

All processor manufacturers have moved towards multi-core designs today in the quest
for higher performance. At the time of the writing of this article, high-end processors by
Intel have a maximum of eight (8) cores. On the other hand, there are other computing
technologies that have been in existence for several years that have traditionally had many
more compute cores than standard desktop processors. These are sometimes referred to as

2 A pseudo-spectral approach is better suited to address the challenges mentioned in this context; however, our
higher-order finite-difference implementation requires relatively modest changes to our original second-order
code, therefore we simply proceed with that approach. It is worth pointing out that other work in the same
context using a pseudo-spectral approach posed similar precision issues [22], and thus made use of quadruple
precision numerics on a CPU.
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hardware accelerators and have a many-core design. The best example of such an accelerator
is a graphics-processing-unit (GPU).

In the context of Nvidia’s CUDA, a many-core GPU (called device) is accessible to the
CPU (called host) as a co-processor with its own memory. The device executes a function
(usually referred to as a kernel) in a data-parallel model i.e. a number of threads run the same
program on different data. The many-core architecture of the GPU makes it possible to apply
a kernel to a large quantity of data in one single call. If the hardware has a large number of
cores, it can process them all in parallel (for example: Nvidia’s Tesla M2050 GPU used in
this work has as many as 448 compute cores clocked at 1.3 GHz). In the context of high-
performance computing, this approach of massive parallelism plays a critical role. GPUs
also provide significant flexibility in terms of memory management: Six (6) main types of
memory exist in the form of registers, local memory, shared memory, global memory, constant
memory and texture memory. We will not attempt to go into detail with these different memory
arrangements in this document; instead we will simply refer the reader to online resources
on this somewhat involved topic [7].

4 Implementation Details

In this section we briefly document our approach towards parallelism, designed to take
advantage of the many cores of a CUDA GPU. We describe here the main idea we adopted,
while the resulting final performance details appear in the next section. Most of the ideas
presented here have been borrowed from a double-precison OpenCL implementation of the
Teukolsky EMRI code, which is a second-order, Teukolsky equation solver with a complex
particle-source-term [23,24].

A data-parallel model is relatively straightforward to implement in a code like the one we
consider here. We simply perform a domain-decomposition of the finite-difference numerical
grid and allocate the different parts of the grid to different cores. More specifically, on the
CUDA GPU, each thread performs all the computations for a single pair of r∗ and θ grid
values. In addition, it is necessary to establish the appropriate data communication between
the GPU cores—we make use of global memory on the GPU to simplify communication
between the GPU cores. We estimate that this simplification (only making use of global
memory) will not impact overall performance significantly because of the relatively intense
computation involved in the high-precision floating-point calculations i.e. the arithmetic
intensity of the computation is very high.

Its worth pointing out that, we port all the Lax–Wendroff related compute routines (such as
the computation of the evolved fields half-way between grid points, the boundary condition
imposition, updating of the fields using the right-hand-side data) as separate kernels onto the
GPU. In this manner, no communication would be necessary with the rest of the computer
system and we would thus overcome the challenge of working with the relatively poor
bandwidth of the system’s PCIe bus where the GPU is located. It is worth noting that some
of these routines are perhaps not ideal for execution on the GPU (for example, some don’t
quite have the same level of parallelism that would be essential to obtain high performance
from the GPU architecture) but we still port these over for execution on the GPU regardless,
simply because the goal is to minimize data transfer back and forth from main memory.

Below, we depict a sample kernel from the CUDA code. This kernel updates the fields
after the right-hand-side computation and gets them ready for the next time-step. The array
variables are defined as follows: qre and qim are the real and imaginary parts of the solution
Φ, while pre and pim are the real and imaginary parts of the “momentum” Π . The integers
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a and b label the array indices that are relevant to the r and θ grid values involved in the
kernel that have sizes N and M respectively.
/* -------------------------------------------------- */

#include <gqd.cu> /* load GQD library functions */
#define idx(b,a) (N*(b)+(a)) /* 2D field index map */

__global__ void update (gdd_real* qre, gdd_real* qim,
gdd_real* pre, gdd_real* pim)

{
int b;
int a;

/* CUDA thread index labels */
b = blockIdx.y * blockDim.y + threadIdx.y;
a = blockIdx.x * blockDim.x + threadIdx.x;

/* perform time-stepping update */
if (b >= 5 && b < M-5)
if (a >= 1 && a < N-1)
{
qre[idx(b,a)] = qre[idx(b,a)] + dt * rhs_qre[idx(b,a)];
qim[idx(b,a)] = qim[idx(b,a)] + dt * rhs_qim[idx(b,a)];
pre[idx(b,a)] = pre[idx(b,a)] + dt * rhs_pre[idx(b,a)];
pim[idx(b,a)] = pim[idx(b,a)] + dt * rhs_pim[idx(b,a)];
}
}

/* -------------------------------------------------- */
Finally, as mentioned already, we implement high-precision floating-point operations by

using a port of the LBNL QD library for the GPU cores [26]. This library makes a number of
GPU-specific optimizations to deliver high performance: it represents data in an arrangement
that allows for coalesced memory accesses; it utilizes the limited, but fast local memory
storage on the GPU and also uses vector datatypes and operations. Its worth pointing out
that in earlier work [27], we had also developed a port of the QD library for the STI Cell BE
and also Nvidia Tesla GPUs3. Its also worth noting that recently Nvidia has released a beta
version of its own quadruple-precision floating-point software implementation for its CUDA
GPUs.

5 Performance Results

In this section, we report on the final results from the CUDA parallel implementation as
described in the previous section. We use the following hardware for performance tests: a
high-end Linux workstation with dual Intel “Sandy-Bridge” Xeon E5-2600 8-core processors
clocked at 2.2 GHz and 32 GBs of RAM memory. This system is equipped with a Nvidia Tesla

3 The Cell BE port of the QD library performed quite well. However, the GPU implementation performed
poorly, simply because we did not make any GPU-specific optimizations at the time and worked with much
older, relatively low-performing hardware.
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Table 1 The relative
performance of basic arithmetic
operations using quadruple
(double-double) precision
numerical accuracy on a
multi-core Intel Xeon CPU and a
Nvidia Fermi CUDA GPU. The
baseline here is the performance
of a single-core of the Xeon CPU

Operation 16-cores GPU Ratio

DD-add 1.7 6.5 3.8

DD-mul 3.3 13 3.9

DD-div 7.1 31 4.4

DD-sqr 12 51 4.3

DD-exp 14 100 7.1

DD-log 14 110 7.9

DD-sin 14 50 3.6

DD-tan 14 72 5.1

Table 2 The relative
performance of basic arithmetic
operations using octal
(quad-double) precision
numerical accuracy on a
multi-core Intel Xeon CPU and a
Nvidia Fermi CUDA GPU. The
baseline here is the performance
of a single-core of the Xeon CPU

Operation 16-cores GPU Ratio

QD-add 8.6 30 3.5

QD-mul 14 40 2.9

QD-div 14 82 5.9

QD-sqr 14 84 6.0

QD-exp 15 79 5.3

QD-log 14 74 5.3

QD-sin 14 40 2.9

QD-tan 14 38 2.7

M2050 CUDA GPU accelerator with three (3) GBs of video memory. Standard open-source
GCC compiler suite for code development is available on this system.

In Tables 1 and 2 we present the relative performance of basic arithmetic operations
using quadruple (128-bit) and octal (256-bit) precision numerical accuracy, respectively. The
baseline here is the performance of the QD library on a single-core of the Xeon CPU4. For
each operation presented in the tables, an array with 10 million elements was processed
in parallel and careful timing was performed. It is clear from the speed-up presented in the
tables that even though the 16-cores of the dual CPUs provide substantial benefit to the overall
performance, they still are far outperformed by the 448-cores of the GPU by factors in the
range of 3 – 8. The performance data provides strong evidence of an order-of-magnitude level
performance gain from the many-core GPU over a multi-core Xeon CPU on high-precision
floating-point computation.

We next turn to the performance of the CUDA GPU implementation of the high-order and
high-precision Teukolsky equation solver code. In Fig. 3 we plot the overall run time of the
code as a function of problem size (in units of a basic 1000(r∗) × 32(θ) grid) for both the
quadruple and octal precision cases. The trends are exactly as expected. The run time doubles
with the doubling of the problem size5. The GPU versions exhibit significantly lower run
times (more detail appears below in Fig. 4.) when compared with the single-core CPU case
depicted here. In addition, it is clear that doubling the precision (quadruple to octal) increases
run time by an order-of-magnitude; no matter what processor architecture is involved.

4 It is worth pointing out that (surprisingly) the performance of the Intel C++ compiler supported long double
datatype is much lower than that of double-double (DD) from the QD library.
5 Note a slight variation to this trend in the CPU-DD plot. This is more clearly seen in Fig. 4.
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Fig. 3 The overall run time of the Teukolsky solver code as a function of problem size (in units of a basic
1000(r∗) × 32(θ) grid) for both the quadruple (DD) and octal (QD) precision cases. The GPU cases exhibit
significantly lower run times.

In Fig. 4 we present the actual speed-up from the CUDA GPU over a single-core of the
Xeon CPU as a function of problem size for both the quadruple and octal precision cases.
As the problem size grows, the speed-up the GPU delivers gets even larger. This is simply
because the larger problem size allows for a better exploitation of the parallel many-core
GPU architecture, thus yielding a higher performance gain in those cases. For the largest
problem size we could fit in the GPU memory, we nearly obtain two orders-of-magnitude gain
in performance using the many-core GPU over a single-core of the Xeon CPU. This is again
strongly suggestive of an order-of-magnitude level performance gain from the many-core
GPU over a multi-core Xeon CPU that we noted earlier. It is worth noting that the speed-up
from the GPU is lower in the octal precision cases, as compared with the quadruple precision
cases. We also observe this in Tables 1 and 2. We think that this is because the algorithms for
octal precision operations are much more complex than those for quadruple precision – they
involve a lot more conditional branching and that typically hurts GPU performance. Finally,
it is also worth pointing out that for the quadruple precision case, the GPU performance
appears to jump disproportionately to a much higher level at the very last data point i.e. for
a grid size of 128000 × 32. This does not occur in the octal precision context. We currently
do not have a clear explanation for this unexpected behavior.

6 Summary & Conclusions

The standard for numerical scientific computation today is double-precision floating-
point accuracy (64-bit or ∼15 decimal digits); however, there are a growing number of
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Fig. 4 The speed-up from the Fermi CUDA GPU over a single-core of the Xeon CPU as a function of problem
size for both the quadruple (DD) and octal (QD) precision cases.

applications that benefit from a higher level of numerical precision, especially as larger
and long-duration simulations become commonplace, and higher-order methods are more
widely used. Although the current generation of processors do not support higher than
double-precision computation, one can easily emulate such high levels of numerical pre-
cision through CPU software libraries, but these often perform orders-of-magnitude slower
than the full hardware-supported double-precision equivalents, thus making such an option
impractical. Since it is highly unlikely that the computer industry will develop a commodity
processor in the near future that natively supports quadruple or higher precision, leveraging
the massive parallelism offered by the many-core GPU architecture is a promising interim
solution to this major challenge.

In this paper, we describe such an application in the research area of black hole physics:
studying the late-time behavior of decaying fields in Kerr black hole space-time. The Teukol-
sky equation solver code requires high-precision numerical computation because of the rather
wide range of amplitudes of the different multipole modes involved. In addition, the high-
order of the numerical method and the long evolutions needed, make the application highly
demanding computationally. These requirements make performing scientifically meaning-
ful Kerr tails numerical simulations rather challenging, especially using traditional desktop
processors. For this reason, in this work we utilize hardware accelerators such as many-core
GPUs. We describe the parallelization approach and its detailed implementation in detail in
this paper, and then present the final performance outcome. The final performance data pro-
vides strong evidence of an order-of-magnitude level performance gain from the many-core
Fermi GPU over a multi-core Xeon CPU for high-precision floating-point computations.
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Such performance gains will allow us to further advance research on the topic of late-time
radiative tails in Kerr black hole space-time. We thus demonstrate a practical solution for
demanding problems that benefit from high-precision numerics today.

Our performance results suggest that high-precision computations can be accelerated quite
well using many-core GPUs, much like double-precision computations. This is an outcome
that is quite likely to be generally applicable to other areas of computational science and
engineering.
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