
J Sci Comput (2013) 55:718–737
DOI 10.1007/s10915-012-9654-z

Reduced Collocation Methods: Reduced Basis Methods
in the Collocation Framework

Yanlai Chen · Sigal Gottlieb

Received: 19 January 2012 / Revised: 24 August 2012 / Accepted: 3 October 2012 /
Published online: 13 October 2012
© Springer Science+Business Media New York 2012

Abstract In this paper, we present the first reduced basis method well-suited for the col-
location framework. Two fundamentally different algorithms are presented: the so-called
Least Squares Reduced Collocation Method (LSRCM) and Empirical Reduced Collocation
Method (ERCM). This work provides a reduced basis strategy to practitioners who prefer
a collocation, rather than Galerkin, approach. Furthermore, the empirical reduced colloca-
tion method eliminates a potentially costly online procedure that is needed for non-affine
problems with Galerkin approach. Numerical results demonstrate the high efficiency and
accuracy of the reduced collocation methods, which match or exceed that of the traditional
reduced basis method in the Galerkin framework.

Keywords Collocation method · Reduced basis method · Reduced collocation method ·
Least squares · Greedy algorithms

1 Introduction

Reduced basis methods (RBM) [1, 6, 14, 16, 18, 19] were developed for scenarios that re-
quire a large number of numerical solutions to a parametrized partial differential equation
in a fast/real-time fashion. Examples of such situations include simulation-based design, pa-
rameter optimization, optimal control, multi-model/scale simulation etc. In these situations,
we are willing to expend significant computational time to pre-compute data that can be
later used to compute accurate solution in real-time.
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The RBM splits the solution procedure into two parts: an offline part where the parameter
dependence is examined and a greedy algorithm is utilized to judiciously select N parameter
values for pre-computation; and an online part when the solution for any new parameter is
efficiently computed based on these N basis functions.

The motivation behind the RBM is the recognition that parameter-induced solution man-
ifolds can be well approximated by finite-dimensional spaces. For linear affine problems,
RBM can improve efficiency by several orders of magnitude. For nonlinear or non-affine
problems, there are remedies which allow the RBM methods to be used efficiently [2, 8,
15]. The offline selection of the N parameter values for the pre-computed bases is enabled
by a rigorous a posteriori error estimate which guarantees the accuracy of the solution. Ex-
ponential convergence with respect to N has been commonly observed, see [6, 19] and the
reference therein. Theoretically, a priori convergence is confirmed for a one dimensional
parametric problem [13]. More recently, exponential convergence of the greedy algorithm
for continuous and coercive problems with parameters in any dimension has been estab-
lished in [4], and improved in [3].

The development and analysis of RBM has been previously carried out in the Galerkin
framework. That is, the truth approximations (the numerical approximation from a presum-
ably very accurate numerical scheme) are obtained from a (Galerkin) finite element method,
and the reduced basis solution is sought as a Galerkin projection onto a low dimensional
space. However, to date RBM have not been developed, applied, or analyzed in the context
of collocation methods. While Galerkin methods are derived by requiring that the projec-
tion of the residual onto a prescribed space is zero, collocation methods require the residual
to be zero at some pre-determined collocation points. Compared to collocation methods,
Galerkin methods have a weaker regularity requirement on the solution. For example, for
second-order problems, collocation methods require the solution to be at least H 2 over the
domain Ω , while Galerkin methods only require solutions in H 1(Ω), due to the adoption of
the weak formulation. Unlike collocation methods, Galerkin methods do not require a ten-
sorial grid and handle curved boundaries with ease. On the other hand, collocation methods
are particularly attractive for their ease of implementation, particularly for time-dependent
nonlinear problems [9, 20, 21].

In this paper, we develop the RBM idea for collocation methods. Given a highly ac-
curate collocation method that is used as the truth solver for the parametric problem, we
wish to study the performance of the system under variation of certain parameters using a
collocation-based RBM. That is, the new method uses collocation for both the truth solver
and the online reduced solver.

The paper is organized as follows. In Sect. 2, we present two approaches to collocation
RBM. The first one utilizes a least squares approach. The second one relies on a projection
of the fine collocation grid problem onto a (carefully-chosen) coarse collocation grid. Theo-
retical analysis and discussions on the offline-online decomposition are provided in Sect. 3.
Numerical results are shown in Sect. 4. Finally, some concluding remarks and future direc-
tions are in Sect. 5.

2 The Algorithms

We begin with a parametrized partial differential equation of the form

L(μ)uμ(x) = f (x;μ), x ∈ Ω ⊂ R
n (2.1)
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with appropriate boundary conditions. We are interested in the solutions of the differential
equation over a range of parameter values μ, where μ = (μ1, . . . ,μd) ∈ D, a prescribed d-
dimensional real parameter domain. The parameters can be, for example, heat conductivity,
wave speed, angular frequency, or geometrical configurations etc.

In this work, we assume that the operator is linear and affine with respect to functions
of μ. That is, L(μ) can be written as a linear combination of parameter-dependent coeffi-
cients and parameter-independent operators:

L(μ) =
Qa∑

q=1

aL

q (μ)Lq . (2.2)

We make a similar assumption for f :

f (x;μ) =
Qf∑

q=1

af
q (μ)fq(x). (2.3)

In the Galerkin framework, these are common assumptions in the reduced basis literature
[19]. There are remedies available when the parameter-dependence is not affine [2, 8, 15].

For any value of the parameter μ, we can approximate the solution to this equation us-
ing a collocation approach: we define a discrete differentiation operator LN (μ) so that the
approximate solution uN

μ satisfies the equation

LN (μ)uN
μ (xj ) = f (xj ;μ), (2.4)

exactly on a given set of N collocation points CN = {xj }N
j=1, usually taken as a tensor

product of Nx collocation points for each dimension. Obviously, for Ω ⊂ R
n we have N =

N n
x . We assume that the scheme (2.4) produces highly accurate numerical solutions uN

μ to
the problem (2.1). We refer to the solution uN

μ as the “truth approximation”.
Although solving (2.4) gives highly accurate approximations, it is prohibitively expen-

sive and time-consuming to repeat for a very large number of parameter values μ. The
reduced basis method allows for highly accurate solutions to be computed quickly and ef-
ficiently when needed (the “online” computation) based on a set of possibly expensive of-
fline computations. The idea of the reduced basis method is that we first pre-compute the
truth approximations for a set of N � N well-chosen parameter values {μ1,μ2, . . . ,μN }
by solving (2.4) with the corresponding parameter value. Then when the solution for any
parameter value μ∗ in the (prescribed) parameter domain D is needed, instead of solving
for the (usually expensive) truth approximation uN

μ∗ , we combine uN
μ1 , u

N
μ2 , . . . , u

N
μN in some

way to produce a surrogate solution u
(N)

μ∗ :

u
(N)

μ∗ =
N∑

j=1

cj

(
μ∗)uN

μj .

Thus, the design of the reduced basis method requires two components:

1. Offline: how to select the pre-computed basis.
2. Online: how to combine the pre-computed basis functions to produce the surrogate solu-

tion.
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In the following sections, we describe two variants of the reduced collocation algorithm. We
first explain our approaches for the online computation of the surrogate solution from the
pre-computed reduced basis in Sect. 2.1, and then the related question of the selection of the
reduced basis in Sect. 2.2.

2.1 Online Algorithms

For the surrogate solution u
(N)

μ∗ to approximate the truth approximation uN
μ∗ reasonably well,

we require that u
(N)

μ∗ provides, in some sense, a good approximation to the solution of the
discretized differential equation

LN
(
μ∗)

(
N∑

j=1

cju
N
μj

)
≈ f

(
x;μ∗).

By exploiting the linearity of the operator we observe that our task is to find coefficients
cj (μ

∗) so that the residual

N∑

j=1

cj

(
μ∗)

LN
(
μ∗)uN

μj − f
(
x;μ∗)

is small.
In the Galerkin framework [6, 19], the coefficients are found by requiring that the L2-

projection of this residual onto the reduced space is zero. For the collocation case, the system
of equations we wish to solve is

N∑

j=1

cj

(
μ∗)

LN
(
μ∗)uN

μj (xk) = f
(
xk;μ∗) k = 1, . . . , N . (2.5)

However, this system is over-determined: we have only N unknowns, but N � N equations.
To approximate the solution to this system, our task is to identify an appropriate operator P
such that the following holds

P

(
N∑

j=1

cj

(
μ∗)

LN
(
μ∗)uN

μj

)
= P

(
f

(
x;μ∗)). (2.6)

By considering two different ways to choose the operator P in Eq. (2.6), we propose two
approaches for finding the coefficients of the reduced basis solutions. These two approaches
are the least squares approach and the reduced collocation method.

Least-Squares Approach Our first approach is a very standard approach to approximat-
ing the solution to an over-determined system. We determine the coefficients by satisfying
Eq. (2.6) in a least squares sense. Given {uN

μ1 , u
N
μ2 , . . . , u

N
μN }, we define, for any μ∗, an

N × N matrix

AN

(
μ∗) = (

LN
(
μ∗)uN

μ1 ,LN
(
μ∗)uN

μ2 , . . . ,LN
(
μ∗)uN

μN

)
,

and vector of length N

fN
j = f

(
xj ;μ∗) xj ∈ CN ,
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and solve the least squares problem

A
T
N

(
μ∗)

AN

(
μ∗) �c = A

T
N

(
μ∗)fN (2.7)

to obtain �c = (c1(μ
∗), c2(μ

∗), . . . , cN(μ∗))T .

Reduced Collocation Approach A more natural approach from the collocation point-of-
view is to determine the coefficients c by enforcing (2.6) at a reduced set of collocation
points CN

R . In other words, we solve

N∑

j=1

cj

(
μ∗)

I
N
N

(
LN

(
μ∗)uN

μj

) = f
(
x;μ∗), for x ∈ CN

R (2.8)

where I
N
N is the interpolation operator for functions defined in the N -dimensional space

corresponding to the fine-domain collocation points CN at the smaller reduced set of collo-
cation points CN

R . In other words, we define the N vectors of length N by their elements

(
vj

μ∗
)
k
= (

LN
(
μ∗)uN

μj

)∣∣
x=xk

and
(
fN

)
k
= f (xk) for xk ∈ CN

R

and solve the N × N system of equations

N∑

j=1

cj

(
μ∗)vj

μ∗ = fN . (2.9)

The choice of reduced collocation points CN
R can be any set of N points in the computational

domain. Later we will demonstrate how this set of points can be determined, together with
the choice of basis functions, through the greedy algorithm (Algorithm 2). Although the
coefficients are computed based on collocation on a coarser mesh, the quality of the reduced
solution is not degraded since the differentiations are performed first, by the highly accurate
operator LN (μ∗) whose accuracy is dependent on N . This differentiation is then followed
by an interpolation at the set of N points.

Once the coefficients {cj (μ
∗)} are determined, whether by the least squares approach or

the reduced collocation approach, we define the reduced basis solution

u
(N)

μ∗ =
N∑

j=1

cj

(
μ∗)uN

μj .

In both the least squares and reduced collocation cases, the coefficients are determined by
solving an N × N system. Furthermore, due to the affine assumption on the operator, the
online cost of assembling the system is also independent of N (as will be seen in Sect. 3).
Thus, the online component requires only modest computational cost because N is not large.

2.2 The Pre-computation Stage

Appropriate selection of the basis functions is a major determinant of how well the reduced
basis method will work. The pre-computation and selection of basis solutions may be ex-
pensive and time-consuming, but this cost is acceptable because it is offline and done once-
for-all. Once the reduced basis solutions are computed and selected, the online component
can proceed efficiently, as described above.
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In this section we describe algorithms for choosing the reduced basis set {uN
μ1 , . . . , u

N
μN }.

The selection of the reduced basis is performed in order to enable us to certify the accuracy
of the reduced solution. The critical piece of information is that given a pre-computed re-
duced basis set {uN

μ1 , . . . , u
N
μi } we can compute an upper bound �i(μ) for the error of the

reduced solution u(i)
μ for any parameter μ. This upper bound is given by

�i(μ) = ‖fN − LN (μ)u(i)
μ ‖�2√

βLB(μ)
. (2.10)

where βLB(μ) is the lower bound for the smallest eigenvalue of LN (μ)T
LN (μ). This upper

bound is enabled by the a posteriori error estimate which will be proved in Sect. 3.1. In the
following, we present the greedy algorithms used for the selection of the pre-computed basis
for the least squares and the reduced collocation approaches.

2.2.1 Least Squares Reduced Collocation Method (LSRCM)

The idea behind the greedy algorithm is to discretize the parameter space, and scan the dis-
crete parameter space to select the best reduced solution space. To do this, we first randomly
select one parameter and call it μ1, and compute the associated highly accurate solution uN

μ1 .
Next, we scan the entire discrete parameter space and for each parameter in this space com-
pute its least squares reduced basis approximation u(1)

μ . We now compute the error estimator
�1(μ). The next parameter value we select, μ2, is the one corresponding to the largest error
estimator. We then compute the highly accurate solution uN

μ2 , and thus have a new basis set

consisting of two elements {uN
μ1 , u

N
μ2}.

This process is repeated until the maximum of the error estimators is sufficiently small.
At every step we select the parameter which is approximated most badly by the current so-
lution space, with the goal being that in this way we select a solution space that will approx-
imate any parameter reasonably well. The detailed algorithm is provided in Algorithm 1.
To ensure the reduced system is well-conditioned, we apply the modified Gram-Schmidt
transformation with weighted inner product.

Algorithm 1 Least Squares Reduced Collocation Method (LSRCM): Offline Procedure
1. Discretize the parameter domain D by Ξ , and denote the center of D by μc.
2. Randomly select μ1 and solve LN (μ1)uN

μ1(x) = f (x;μ1) for x ∈ CN .
3. For i = 2, . . . ,N do

1). Form Ai−1 = (LN uN
μ1 ,LN uN

μ2 , . . . ,LN uN
μi−1).

2). For all μ ∈ Ξ , solve A
T
i−1Ai−1�c = A

T
i−1fN to obtain u(i−1)

μ = ∑i−1
j=1 cju

N
μj .

3). For all μ ∈ Ξ , calculate �i−1(μ).
4). Set μi = argmaxμ�i−1(μ).

5). Solve LN (μi)uN
μi (x) = f (x;μi) for x ∈ CN .

4. Apply a modified Gram-Schmidt transformation, with inner product defined by
(u, v) ≡ (LN (μc)u,LN (μc)v)L2(Ω), on the basis {uN

μ1 , u
N
μ2 , . . . , u

N
μN } to obtain a more

stable basis {ξ N
1 , ξ N

2 , . . . , ξ N
N } for the least squares reduced collocation method.
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2.2.2 Empirical Reduced Collocation Method (ERCM)

The least squares approach above can not be immediately adapted to the collocation case
because collocation requires the same number of collocation points as basis functions. Thus
we face an additional problem of having to choose an appropriate set of collocation points
CN

R at which to enforce the PDE. In fact, the choice of the reduced set of collocation points
is crucial for the accuracy of the algorithm. For example, as we will show in the numerical
example in Sect. 4, naively using the coarse Chebyshev grid does not yield an accurate result.
In the following, we propose the Empirical Reduced Collocation Method for choosing the
basis functions and reduced collocation points.

The idea behind the empirical reduced collocation method is similar to the greedy al-
gorithm used quite often by the reduced basis method and it has the same structure as the
Empirical Interpolation Method [2, 8, 15]. We build the set of collocation points hierarchi-
cally with the each point chosen from the set of candidate points X (taken to be the set of
fine collocation grid CN ). We begin by picking a parameter μ1 randomly and computing
the corresponding basis function uN

μ1 , and selecting the collocation point x1 at which the
absolute value of the basis function attains its maximum. (We note that it is also possible to
choose the collocation point which maximizes one of the partial derivative of the basis func-
tion however, this choice did not perform well in numerical tests.) Now we can say we have
a set of basis functions {uN

μj }i−1
j=1 and a set of collocation points {xj }i−1

j=1. We compute the re-

duced basis solution u(i−1)
μ for all μ in the discretized parameter domain, and the associated

error estimator �i−1(μ). To get the next basis function, we find the parameter value μi at
which the error estimator is maximized, and we compute the highly accurate solution uN

μi .
To ensure well-conditioning of the process, we orthonormalize the basis functions in the
sense that if we define BN

ij = ξ N
j (xi), then the matrix BN is lower triangular with unit diag-

onal. We now obtain the set of orthonormalized basis functions {ξ N
1 , . . . , ξ N

N }. Finally, the

Algorithm 2 Empirical Reduced Collocation Method (ERCM): Offline Procedure

1. Randomly select μ1 and solve LN (μ1)uN
μ1(x) = f (x;μ1), and let x1 =

argmaxx∈X|uN
μ1(x)|, ξ N

1 = uN
μ1

uN
μ1 (x1)

.

2. For i = 2, . . . ,N do

1). Let Ci−1
R = {x1, . . . , xi−1}.

2). For all μ ∈ Ξ , solve
∑i−1

j=1 cjP
N
N (LN (μ)uN

μj ) = f (x;μ) for x ∈ Ci−1
R to obtain

u(i−1)
μ = ∑i−1

j=1 cju
N
μj .

3). For all μ ∈ Ξ , calculate �i−1(μ).
4). Set μi = argmaxμ∈Ξ�i−1(μ).

5). Solve LN (μi)uN
μi (x) = f (x;μi).

6). Find α1, . . . , αi−1 such that, if we define ξ N
i = uN

μi − ∑i−1
j=1 αj ξ N

j , we have

ξ N
i (xj ) = 0 for j = 1, . . . , i − 1.

7). Set xi = argmaxx |ξ N
i | and ξ N

i = ξ N
i

ξ N
i

(xi )
.

8). Apply modified Gram-Schmidt transformation on {ξ N
1 , . . . , ξ N

i }.
3. Set the reduced set of collocation points CN

R = {x1, x2, . . . , xN } and use the set
{ξ N

1 , ξ N
2 , . . . , ξ N

i } as the basis for the reduced collocation method.
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ith collocation point is chosen to be that at which the absolute value of the basis function ξ N
i

is maximized. Repeatedly following this procedure, given in Algorithm 2, we obtain the set
of orthonormalized basis functions {ξ N

1 , . . . , ξ N
N } and the reduced set of collocation points

CN
R = {x1, x2, . . . , xN } that will be used to find the surrogate solution.

Remark The choice of collocation points described above is different from the “best point”
and “hierarchical point” approximations described in [15]. In our approach, we used the
rather ad-hoc—and inexpensive—approach of choosing a collocation point which max-
imizes the corresponding basis function. The “best point” and “hierarchical point” ap-
proaches choose the interpolation points by minimizing, in some sense, the difference be-
tween the interpolation and projection coefficients. However, we compared these approaches
in numerical tests based on the problems considered in Sect. 4, and the sophisticated “best
point” and “hierarchical point” approaches performed no better than the simple algorithm
above in terms of size of errors and rate of convergence of the reduced collocation solution
to the truth approximation.

3 Analysis of the Reduced Collocation Method

In this section, we provide some analysis of the proposed algorithms and some details for the
offline-online decomposition that is crucial to the traditional tremendous speedup of reduced
basis method.

3.1 A Posteriori Error Estimate

The essential ingredient of the accuracy of the reduced collocation method is the upper
bound which is used for error estimation. In this section, we state and prove the theorem
relating to this error estimator.

Before we state our theorem, we must assume that we have a lower bound βLB(μ) for
the smallest eigenvalue of LN (μ)T

LN (μ),

β(μ) = min
v

vT
LN (μ)T

LN (μ)v

vT v
. (3.1)

Theorem 3.1 For any μ, suppose uN
μ is the truth approximation solving (2.4) and u(N)

μ is
the reduced basis solution solving (2.8) or (2.7), we define

�N(μ) = ‖fN − LN (μ)u(N)
μ ‖�2√

βLB(μ)
. (3.2)

Then we have ‖uN
μ − u(N)

μ ‖�2 ≤ �N(μ).

Proof We have the following error equation on the N -dependent fine domain collocation
grid thanks to the equation satisfied by the truth approximation (2.4):

LN (μ)
(
uN

μ − uN
μ

) = f − LN (μ)uN
μ .

Taking the discrete �2-norm and using basic properties of eigenvalues gives

∥∥uN
μ − uN

μ

∥∥
�2 ≤ ‖f − LN (μ)uN

μ ‖�2√
βLB(μ)

. �
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This a posteriori error estimate is used repeatedly in the greedy algorithm to determine
the reduced basis set {uN

μ1 , u
N
μ2 , . . . , u

N
μN }. In addition, the a posteriori error estimate also

serves the role of certifying the accuracy of the reduced solution: given a tolerance εtol, it
is trivial to modify the algorithms so that they will find an appropriate number N and a
corresponding set {uN

μ1 , u
N
μ2 , . . . , u

N
μN } such that the resulting reduced solver will have error

below εtol for μ ∈ Ξ . While this is not enough to guarantee accuracy for any μ ∈ D, it
suggests that if Ξ is a discretization that represents D well, the reduced basis method will
work well for any μ ∈ D.

3.2 Offline-Online Decomposition

As is well-known [19], the tremendous speedup of the reduced basis method comes from
the decomposition of the computation into two-stages, called offline and online stages. The
offline stage is done once for all and is N -dependent (thus expensive). The online stage
should be independent of N thus economical and can be afforded for every new value of the
parameter μ in the prescribed domain D.

Thus the key to the efficiency of the reduced collocation method is the ability to de-
compose the computation into an offline component and an efficient online component. In
this section, we describe how a complete offline-online decomposition is achieved for the
two algorithms. We also include an estimate of the computational complexity, which makes
evident the dependence of the computational cost on N in the offline computation and its
independence in the online computation.

3.2.1 Least Squares

We begin with the least-squares equation (2.7),

A
T
N

(
μ∗)

AN

(
μ∗)�c = A

T
N

(
μ∗)fN .

Invoking the affine assumption for L (Eq. (2.2)) and f (Eq. (2.3)) gives

(
A

T
NAN

)
ij

= (
LN uN

μi

)T (
LN uN

μj

) =
Qa∑

q1=1

Qa∑

q2=1

aL

q1

(
μ∗)aL

q2

(
μ∗)(

Lq1u
N
μi

)T (
Lq2u

N
μj

)
,

(
(AN)T fN )

i
= (

LN uN
μi

)T
fN =

Qa∑

q1=1

Qf∑

q2=1

aL

q1

(
μ∗)af

q2

(
μ∗)(

Lq1u
N
μi

)T
fN
q2

.

Hence, the decomposition and operation count can be summarized as follows

Offline Calculate (Lq1u
N
μi )

T (Lq2u
N
μj ) and (Lqu

N
μi )

T fN
q2

for i, j ∈ {1, . . . ,N}, with complex-

ity of order N2Q2
a N 2 + NQaQf N .

Online Form the N × N matrix A
T
N AN and N × 1 vector (AN)T fN for any μ∗ ∈ D and

solve the reduced N × N system for coefficients cj (2.7). Online complexity is of
order N2Q2

a + N3 + QaQf N .
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3.2.2 Empirical Collocation

Here, we demonstrate the offline-online decomposition for the reduced collocation ap-
proach. The reduced equation in this case is

N∑

j=1

cjP
N
N

(
LN

(
μ∗)uN

μj

) = f
(
x;μ∗), for x ∈ CN

R (3.3)

which becomes

N∑

j=1

cj

Qa∑

q=1

aL

q

(
μ∗)

P
N
N

(
Lqu

N
μj

) =
Qf∑

q=1

af
q

(
μ∗)fq(x)

with the affine assumptions (2.2) and (2.3).
This means that, given {μ1,μ2, . . . ,μN } and the set of N reduced collocation points CN

R ,
the splitting of the computation is done as follows:

Offline Calculate Lqu
N
μj , their P

N
N projections, and fq(x) for x ∈ CN

R . The complexity is of

order N2Qa N 3 (see Sect. 4.1.1 for the complexity for the projection P
N
N ).

Online Form aL

q (μ∗)PN
N (Lqu

N
μj ) for any j and q , evaluate a

f
q (μ∗) and form a

f
q (μ∗)fq(x)

at the reduced set of collocation points CN
R , and finally solve the reduced N × N

system for cj ’s (2.8). Online complexity is of the order QaN
2 + N3 + Qf .

3.3 Efficiently Computing the Error Estimator

Although we are primarily interested in minimizing the online cost of computation, it is
also advantageous to be able to efficiently compute the offline component of the reduced
collocation method. In particular, the greedy algorithm requires repeated computations of
the error estimator �i(μ) for i ∈ {1, . . . ,N} and any μ ∈ Ξ . To make this practical, as we
select more and more bases and i goes from 1 to N , we can reuse previously computed
components of the error estimator. This can be achieved in essentially the same fashion as
in the Galerkin framework. Indeed, we have,

∥∥fN − LN (μ)u(i)
μ

∥∥2

�2 = (
fN − LN (μ)u(i)

μ

)T (
fN − LN (μ)u(i)

μ

)
.

The resulting three terms after expansion are

ei
1(μ) := (

fN )T
fN ,

ei
2(μ) := (

LN (μ)u(i)
μ

)T (
LN (μ)u(i)

μ

)
,

ei
3(μ) := (

fN )T (
LN (μ)u(i)

μ

)
.

They can be handled efficiently in the same fashion. To do that, we invoke the affine as-
sumptions (2.2)–(2.3) and the expansion of the reduced solution u(i)

μ = ∑i

j=1 cj (μ)uN
μj to

obtain

ei
1(μ) =

Qf∑

q3,q4=1

af
q3

(μ)af
q4

(μ)f T
q3

fq4 ,
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ei
2(μ) =

i∑

j1,j2=1

Qa∑

q1,q2=1

cj1(μ)cj2(μ)aL

q1
(μ)aL

q2
(μ)

(
uN

j1

)T
L

T
q1

Lq2u
N
j2

,

ei
3(μ) =

Qa∑

q1=1

Qf∑

q3=1

i∑

j1=1

aL

q1
(μ)af

q3
(μ)cj1(μ)f T

q3
Lq1u

N
j1

.

The Offline-Online decomposition of these terms and their computational complexities are
as follows.

Offline Calculate

f T
q3

fq4 ,

(
uN

j1

)T
L

T
q1

Lq2u
N
j2

,

f T
q3

Lq1u
N
j1

for q1, q2 ∈ {1, . . . ,Qa}, q3, q4 ∈ {1, . . . ,Qf } and j1, j2 ∈ {1, . . . , i}. The cost is of
order Q2

f N + N2 N 2 + QaQf N N 2.
Online Evaluate the coefficients

af
q3

(μ)af
q4

(μ),

cj1(μ)cj2(μ)aL

q1
(μ)aL

q2
(μ),

aL

q1
(μ)af

q3
(μ)cj1(μ),

and form

ei
1(μ) := (

fN )T
fN ,

ei
2(μ) := (

LN (μ)u(i)
μ

)T (
LN (μ)u(i)

μ

)
,

ei
3(μ) := (

fN )T (
LN (μ)u(i)

μ

)
.

The online computation has complexity of order Q2
f + N2Q2

a + QaQf N .

3.4 Comparison with the Galerkin RBM

In this section, we show a particular advantage of the proposed Empirical Reduced Collo-
cation Method over the traditional reduced basis method in the Galerkin framework. When
the operator is non-affine, that is, we have instead of (2.2)

L(μ) =
Qa∑

q=1

aL

q (x,μ)Lq . (3.4)

The Galerkin approach has to use the Empirical Interpolation Method [2, 8] to achieve the
offline-online decomposition and the traditional speedup. In fact, aL

q (x,μ) has to be approx-
imated by the affine expansion

aL

q (x,μ) =
Mq∑

m=1

φq
m(μ)a

q

aff,m(x), (3.5)
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so that (Lqu
N
μi , u

N
μj a

q

aff,m(x))Ω are computed offline for all i, j, q,m. During the online stage

for any given μ, φ
q
m(μ) are obtained and

∑Qa

q=1

∑Mq

m=1(Lqu
N
μi , u

N
μj a

q

aff,m(x))Ω are formed.

Obviously, the online performance is dependent on
∑Qa

q=1 Mq . The proliferation from Qa to
∑Qa

q=1 Mq adversely affects the online performance of the reduced basis method and limits
its practical scope. This is particularly the case for geometrically complex problems with
parameters describing the geometry [7, 17, 19]:

∑Qa

q=1 Mq can be one to two magnitudes
larger than Qa . The online efficiency is thus significantly worse than the affine problems.

However, this significant barrier does not exist for the proposed empirical reduced col-
location method. Since to form the online solver we only need to evaluate aL

q (x,μ∗) for

x ∈ CN
R . This can be done without the expansion (3.5). Note that P

N
N (Lqu

N
μj ) is readily

available from the offline calculation.
Unfortunately, this advantage of the empirical reduced collocation method over the

Galerkin framework does not translate to the least squares reduced collocation method:
when aq(μ) = aq(x,μ), we need to perform the expansion (3.5) to have the online pro-
cedure of forming N × N matrix A

T
NAN independent of N . The fundamental reason is that

least squares is intrinsically a projection method and thus our least squares reduced colloca-
tion method is closely related to the Galerkin RBM framework.

4 Numerical Results

In this section, we consider a couple of two-dimensional diffusion-type test problems similar
to those used in [18, 19] to show the accuracy and efficiency of the proposed methods:

1. Diffusion

(1 + μ1x)uxx + (1 + μ2y)uyy = e4xy (4.1)

on Ω = [−1,1] × [−1,1] with zero Dirichlet boundary condition.
2. Anisotropic wavespeed simulation

−uxx − μ1uyy − μ2u = −10 sin
(
8x(y − 1)

)
(4.2)

on Ω = [−1,1] × [−1,1] with zero Dirichlet boundary condition.

Our truth approximations are generated by a spectral Chebyshev collocation method
[9, 21]. For CN and for X, we use the Chebyshev grid based on Nx points in each direction
with N n

x = N . We consider the parameter domain D for (μ1,μ2) to be [−0.99,0.99]2 and
[0.1,4]×[0,2] respectively for the two test problems. For Ξ , they are discretized uniformly
by 64 × 64 and 128 × 64 Cartesian grids. For the purpose of reproducible research, the code
has been posted online [10].

4.1 Preliminaries

4.1.1 Computation of P
N
N

For the empirical reduced collocation method, we need the fine-to-coarse projection P
N
N .

We begin with a set of Chebyshev points in one dimension xj = cos( πj

N ). Given a vector of
function values w(xj ), we define the function w(x) by the Chebyshev expansion [9]

w(x) =
N∑

k=0

akTk(x), (4.3)



730 J Sci Comput (2013) 55:718–737

where

ak = 2

N ck

N∑

j=0

1

cj

w(xj ) cos
(
k arccos(xj )

) = 2

N ck

N∑

j=0

1

cj

w(xj ) cos

(
πjk

N

)
. (4.4)

Here,

ck =
{

2 k = 0, N
1 otherwise

.

This definition relies on the fact that the Chebyshev polynomial is

Tk(x) = cos
(
k arccos(x)

)
,

so that

w(xj ) =
N∑

k=0

ak cos

(
πjk

N

)
.

Now, if we wish to evaluate the function value of w(x) at any set of points {x�}, we
simply plug those points into the Chebyshev expansion

w(x�) =
N∑

k=0

akTk(x�). (4.5)

In particular, the calculation of P
N
N w is done by evaluation at the reduced set of N points CN

R .
For two or three space dimensions, (4.4) becomes a double or triple sum over the points in
each dimension, while (4.5) contains only the reduced collocation points. Thus, computa-
tional complexity to evaluate (4.5) for � ∈ {1, . . . ,N} is of order N N 2, where N is the total
number of points in the fine mesh and N is the number of points in the reduced collocation
grid. Unfortunately, N is a product of the number of points in each dimension, which of
course grows exponentially.

4.1.2 Results of the Fine Solver and Setup for the Reduced Solvers

Before we begin with the reduced basis solver, we must quantify the accuracy of the fine-
domain solver, which produces the truth approximations. Reference solutions computed by
Chebyshev collocation method on a 81 × 81 grid for μ1 = 1 and μ2 = 0.5 are plotted in
Fig. 1. We also compute the truth solutions on a Nx × Nx grid for Nx changing from 20 to
77 and evaluate the L2 and L∞ errors. Exponential convergence of the truth approximation
with respect to N is shown by Fig. 2 as expected.

In the greedy algorithm, we required a lower bound on the eigenvalue of the operator. For
the purposes of this work, we simply calculate the smallest eigenvalue for each μ ∈ Ξ and
use it as the lower bound βLB(μ). That is, the error estimator for the reduced basis solution
u(i)

μ based on a reduced basis set {uN
μ1 , . . . , u

N
μi } is given by

�i(μ) = ‖fN − LN (μ)u(i)
μ ‖�2√

β(μ)
.
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Fig. 1 The truth approximations for diffusion (left) and anisotropic wavespeed simulation (right) for μ1 = 1
and μ2 = 0.5 computed on a 81 × 81 Chebyshev grid

Fig. 2 The accuracy of truth approximations for diffusion (left) and anisotropic wavespeed simulation (right)
for μ1 = 1 and μ2 = 0.5 with reference solution being computed on a 81 × 81 Chebyshev grid

Fig. 3 The eigenvalues for the diffusion problem (left) and anisotropic wavespeed simulation (right)

There are more efficient ways [5, 11, 12]. However, algorithm design and implementation of
how to efficiently calculate βLB(μ) is not an emphasis of this paper. Instead, we are concen-
trating on the design of the overall reduced basis method in the collocation framework. The
eigenvalues β(μ) are plotted in Fig. 3 for the two test problems. The first problem becomes
close to being degenerate at the four corners of the parameter domain.
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Fig. 4 Top: The reduced collocation points selected by the ERCM for anisotropic wavespeed simulation,
and the corresponding convergence plot. Bottom: The result of a (pre-determined) coarse Chebyshev grid
was used

Fig. 5 The parameters picked by
the greedy algorithm for
pre-computation for the
anisotropic wavespeed
simulation. Top: Least Squares
approach, bottom: Empirical
Reduced Collocation Method
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Fig. 6 History of convergence for the error estimate (top), the L2 error (middle) and the L∞ error (bottom)
of the RBM solutions for the anisotropic wavespeed simulation. On the left are for the least squares reduced
collocation method, and the empirical reduced collocation results are on the right

4.2 Results of the Reduced Solver: Anisotropic Wavespeed Simulation

In this section, we present the results of the two reduced collocation methods applied to the
anisotropic wavespeed simulation.

We first perform the offline pre-computation of the reduced basis and collocation points.
The 17 parameter values are chosen from Ξ by Algorithms 1 and 2 are shown in Fig. 5,
with larger marker indicating the earlier that parameter picked. The reduced set of collo-
cation points CN

R for ERCM is shown in Fig. 4 (top left). Ci
R contains the i points in the

computational domain Ω = [−1,1]2 corresponding to the i largest markers.
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Fig. 7 The reduced collocation
points selected by the ECM for
diffusion problem

Fig. 8 The parameter values picked by the greedy algorithm for the diffusion equation. Left: Least squares.
Right: reduced collocation

Next, we solve for the reduced basis solution for a randomly selected set of 2,097 param-
eter values in D and compute the maximum, median, and minimum errors for each selected
value between the reduced solution and the truth approximations. These, together with the
maximum of the error estimate are plotted in Fig. 6. We clearly see exponential convergence
in all cases by both methods. We compare Fig. 2 and Fig. 6 to draw the following remarkable
conclusion: In the worst case scenario, using the empirical reduced collocation method on a
16 = 4×4 grid can produce solution having comparable accuracy of the truth approximation
on a grid 50 × 50. We also see that, on average, the two proposed algorithms have similar
accuracy. But, over a wide range of parameter values, the least squares approach seems to be
more stable (the errors have smaller variance). Moreover, we show in Fig. 4 how the choice
of the reduced set of collocation points CN

R affects the accuracy of the reduced collocation
method: our proposed method generates the reduced grid on the top left. The best case sce-
nario for a randomly selected set of 2,097 parameter values are shown on the top right. On
the other hand, if we naively use a coarse Chebyshev grid as the CN

R (shown bottom left),
the best case convergence plot is on the bottom right: the approximation is very bad with the
system becoming numerically singular for N > 10.

4.3 Results of the Reduced Solver: Diffusion

We set D = [−0.99,0.99]2, apply the empirical and least squares reduced collocation meth-
ods to the diffusion problem and present the results in this section.
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Fig. 9 History of convergence for the error estimate (top), the �2 error (middle) and the L∞ error (bottom) of
the RBM solutions for the diffusion problem. On the left are for the least squares approach, and the reduced
collocation results are on the right

We pick 50 parameter values in D according to the greedy algorithm. The result is in
Fig. 8 with larger marker indicating the earlier it is picked. Correspondingly, the 50 points
in Ω determined by the ERCM for empirical reduced collocation are shown in Fig. 7.

Next, we solve for the RB solutions for randomly selected set of 1,057 parameter values
and compute the maximum of the errors for all selected between the reduced solution and
the truth approximations. These, together with the maximum of the error estimate are plotted
in Fig. 9. We clearly see exponential convergence in all cases for both methods.
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Table 1 Computation times of the methods for the two test problems

Method Offline time Online time for u
(N)
μ Time for uN

μ

Anisotropic LSRCM 1.029 × 103 2.18 × 10−4 1

Anisotropic ERCM 0.996 × 103 2.62 × 10−4 1

Diffusion LSRCM 8.265 × 103 9.71 × 10−4 1

Diffusion ERCM 7.730 × 103 10.69 × 10−4 1

4.4 Computation Time of the Reduced Solver

In this section, we present statistics of the computation time for the reduced collocation
methods. We present in Table 1 the offline and online computational time. We normalize
the time with respect to that for solving truth approximation once. We see that the algo-
rithm achieves savings of three orders of magnitude. From these examples, it seems that the
empirical collocation approach is a little more efficient than the least-squares approach.

5 Concluding Remarks

In this paper, we propose the first reduced basis method for the collocation framework. Two
rather different approaches have been proposed and tested. They are both Galerkin-free but
produce the same fast exponential convergence and speedup as for the traditional Galerkin
approach. In future work, we will examine the accuracy and efficiency of our proposed
methods for non-affine and nonlinear problems. We also plan to study and tailor successive
constraint method, currently used for computation of the lower bound for the eigenvalues
in the Galerkin setting [5, 11, 12], for the collocation setting. It is also very interesting to
apply the methods to more general collocation methods and to perform a detailed numerical
comparison between the Galerkin approach and the collocation approaches introduced in
this paper.
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