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Abstract In this paper, using the bubble functions, we construct two C0-nonconforming
triangular prism elements for the fourth order elliptic problem in three dimensions. By the
abstract convergence theorem in (Chen et al. in Numer. Math. (2012, accepted)), one element
is proved to be of first order convergence and the other one is proved to be of second order
convergence.

Keywords Fourth order elliptic problem · Bubble functions · C0-nonconforming
elements · Error estimates

1 Introduction

The construction of appropriate finite element spaces for the fourth order elliptic boundary
value problem is an appealing subject. This problem has been well-studied in two dimen-
sional spaces [4, 5, 8, 13, 16, 23, 27]. Recently some papers for three dimensional fourth
order elliptic problem were presented [24–27]. In those papers, the domain is divided into
triangles or rectangles in two dimensional spaces and tetrahedrons or cuboid in three dimen-
sional spaces, respectively. However, there has been very little work devoted to triangular
prism elements.
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A conforming finite element space for the fourth order elliptic problem consists of piece-
wise polynomials that are globally continuously differentiable (C1). To meet this smooth-
ness requirement, the degree of piecewise polynomials must be very high. In two dimen-
sional case, Argyris element [8] with 5-degree polynomials, Bell element [8] with incom-
plete 5-degree polynomials are conforming triangular elements. Bogner-Fox-Schmit (BFS)
element [8] with bicubic degree polynomials is a conforming rectangular element. To lower
the polynomial degree, some macroelements were created on triangle grids, see e.g., [8, 15].
Recently, a macro type of biquadratic C1 finite element was constructed on rectangle grids
[10], which is a rectangular version of the C1 Powell-Sabin element [15]. In three dimen-
sional case, the situation becomes more complicated. A conforming tetrahedral element was
first constructed in [28] using 9-degree polynomials, The number of degrees of freedom is
220. In [5], a three-dimensional conforming BFS element on cuboid mesh with tri-cubic de-
gree polynomials and 64 degrees of freedom was developed. This element is of second order
convergence. Macroelements have also been developed for the three-dimensional problems,
see, e.g. [10].

To reduce the order of polynomials and degrees of freedom on each element, many lower
order nonconforming elements have been constructed and used in practice. In two dimen-
sions, there are many well-known nonconforming elements. Morley element [8, 9, 11–13,
18], Veubeke element [8, 23] are triangular elements and they are even not C0-continuous.
Zienkiewicz element [8, 13] is a C0-triangular element, but this element is convergent only
on some special meshes [16], because the mean values of normal derivatives on the bound-
ary of the element are not continuous across the elements. The rectangle Morley element
[27] is not C0-continuous. Adini or ACM element [8, 13] is a C0-rectangular element. The
mean values of normal derivatives on the boundary of Adini element are not continuous
across the elements, and its convergence depends on the special geometric property of the
rectangular mesh.

In three-dimensional case, several nonconforming elements for the fourth order prob-
lems were developed in [24–27]. On the tetrahedral meshes, the three-dimensional Morley
element was presented in [24]. The three-dimensional Zienkiewicz element, and a quasi-
conforming element by modifying the three-dimensional Zienkiewicz element were pre-
sented in [25, 26]. On the cuboid meshes, the three-dimensional Morley-like element, the
three-dimensional Adini element, and the three-dimensional BFS-like element were pre-
sented in [27]. All of these nonconforming elements are of first order convergence and
they are the generalizations of the corresponding two-dimensional elements. Among them,
three-dimensional Zienkiewicz element and three-dimensional BFS-like element are C0-
continuous, others are non-C0-continuous. It should be pointed out that the above three-
dimensional BFS-like element is different from the one in [5]. It is nonconforming and
only of first order convergence, while the one in [5] is conforming and of second order
convergence. We note that the degrees of freedom of these nonconforming elements are
substantially smaller than those of known conforming elements. There are some other ways
constructing elements. Quasi-conforming elements [22, 29], Generalized-conforming ele-
ments [14, 19] and Double set parameter elements [4, 6] are nonstandard elements. We do
not describe them in detail here.

In [21] Stummel presented a sufficient and necessary condition for the convergence of
nonconforming finite elements, named Generalized Patch-Test, but it is difficult to use in
practice. In [17] Shi presented a sufficient condition, named F-E-M Test, which is easier to
use in practice. For the fourth-order elliptic problem, to satisfy the strong F-E-M Test, the
function values and the first-order derivatives of the shape functions should be continuous
in the mean across the elements. In three-dimensional case it makes the order of element
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interpolation matrix very high. As a result, it is difficult to check the nonsingularity of this
matrix.

For the columnar regions with complex base, the triangular prism elements have ad-
vantages than the tetrahedral and cuboid elements. In this paper, we construct two C0-
nonconforming elements for the fourth order elliptic problem. The idea is to divide the shape
function space into two subspaces using bubble functions. One subspace is responsible for
the C0-continuity of the shape functions and getting the approximation error. Another one,
which contains the bubble functions, is responsible for the continuity in the mean of the
normal derivatives of the shape functions across the elements and getting the consistency
error. The resulting element interpolation matrix is a block lower triangular matrix which
greatly simplifies the proof of the nonsingularity of this matrix. In [7], an abstract con-
vergence theorem was given, which builds a theoretical frame to prove the convergence of
C0-nonconforming elements for the fourth order elliptic problem. In this paper, by using this
convergence theorem, for the two proposed C0-nonconforming triangular prism elements,
we can prove that one element is of first order convergence and the other one is of second
order convergence.

The rest of this paper is organized as follows. Section 2 gives the preliminaries. Section 3
gives the abstract convergence lemma. Section 4 gives detailed descriptions of two triangular
prism elements. Section 5 shows the error estimates of the two elements. Some concluding
remarks will be made at the end of the paper.

2 Preliminaries

We consider the following fourth order elliptic boundary value problem [8]:

⎧
⎨

⎩

Δ2u = f, in Ω,

u = ∂u

∂n
= 0, on ∂Ω,

(2.1)

where Ω ⊂ R3 is a bounded convex domain with Lipschitz continuous boundary ∂Ω , f ∈
L2(Ω), n = (n1, n2, n3)

T is the unit outer normal to ∂Ω and Δ is the standard Laplace
operator.

∀u,v ∈ H 2
0 (Ω), define

a(u, v) =
∫

Ω

3∑

i,j=1

∂iju∂ij vdx, f (v) =
∫

Ω

f vdx. (2.2)

Here ∂ij = ∂2

∂xi ∂xj
. The weak form of (2.1) is: Seek u ∈ H 2

0 (Ω) satisfying

a(u, v) = f (v), ∀v ∈ H 2
0 (Ω). (2.3)

We adopt the standard notation Hm(Ω) for Sobolev space [1] on Ω with norm

‖v‖2
m,Ω =

∑

|α|≤m

∥
∥Dαv

∥
∥2

0,Ω
,
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and semi-norm |v|2m,Ω = ∑
|α|=m ‖Dαv‖2

0,Ω , where α = (α1, α2, α3) is an index,

|α| =
3∑

i=1

αi,D
α = ∂ |α|

∂x
α1
1 ∂x

α2
2 ∂x

α3
3

, ‖w‖2
0,Ω =

∫

Ω

w2dx.

We set

Hm
0 (Ω) =

{

v ∈ Hm(Ω); ∂jv

∂nj
= 0, on ∂Ω, 0 ≤ j ≤ m − 1

}

.

The energy norm of (2.2) is defined by

|||v||| = a(v, v)
1
2 = |v|2,Ω .

By Poincaré inequality [8], it is well known that | · |2,Ω is a norm on H 2
0 (Ω) and is equivalent

to ‖ · ‖2,Ω . Then (2.3) has a unique solution by Lax-Milgram Theorem [8].
Let Th be a triangulation of Ω into triangular prisms with mesh size h, and {Th} be a

family of triangulations with h → 0. Let (T ,PT ,ΣT ) be a finite element where T ∈ Th is
a triangular prism, PT the shape function space and ΣT the vector of degrees of freedom,
and let ΣT be PT -unisolvent [8]. Throughout the paper, we assume that {Th} is regular and
quasi-uniform, namely it satisfies that:

hT /ρT ≤ σ1, hT /h
T

′ ≤ σ2, ∀T ,T
′ ∈ Th, ∀h, (2.4)

where hT and ρT are the diameters of T and the largest ball contained in T , respectively,
σ1 > 0, σ2 > 0 are constants independent of h. Let F ⊂ ∂T be a face of T and Fh = {F ;F ⊂
∂T ,T ∈ Th}.

For each Th, the nonconforming finite element space Vh is a piecewise polynomial space
and Vh 	⊂ H 2

0 (Ω). The discrete problem of (2.3) is: Find uh ∈ Vh satisfying

ah(uh, vh) = f (vh), ∀vh ∈ Vh, (2.5)

where

ah(uh, vh) =
∑

T ∈Th

∫

T

3∑

i,j=1

∂ijuh∂ij vhdx. (2.6)

We introduce the following mesh-dependent energy norm ||| · |||h:

|||vh|||2h =
∑

T ∈Th

|vh|22,T , ∀vh ∈ Vh. (2.7)

3 An Abstract Convergence Lemma

For nonconforming elements, the basic mathematical theory has been established [3, 8, 13,
17, 21, 29] for different problems. In this section, we will give an abstract convergence
lemma for the fourth order elliptic problem, which was proved in [7].

Suppose F = T ∩ T
′
. We define

[w]|F = w|T ∩F − w|
T

′ ∩F
; [w]|F = w|F , if F ⊂ ∂Ω.

The following result is well known as the Strang Lemma [2, 8, 20].
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Lemma 3.1 Assume that ||| · |||h is a norm on Vh. Let u and uh be the solutions of (2.3) and
(2.5), respectively. Then

|||u − uh|||h ≤ C

(

inf
vh∈Vh

|||u − vh|||h + sup
wh∈Vh

|ah(u,wh) − f (wh)|
|||wh|||h

)

, (3.1)

where C > 0 is a constant independent of h.

The first term of (3.1) is the approximation error and the second term of (3.1) is the
consistency error.

For any F ⊂ ∂T ,∀T ∈ Th, let n = (n1, n2, n3)
T be the unit outer normal to F and τ, s be

two unit vectors orthogonal each other on F , then we have

∂j = βτj ∂τ + βsj ∂s + βnj ∂n, β2
τj + β2

sj + β2
nj = 1, 1 ≤ j ≤ 3,

where

∂j = ∂

∂xj

, ∂τ = ∂

∂τ
, ∂s = ∂

∂s
, ∂n = ∂

∂n
.

By Green formula [8],

ah(u,wh) =
∑

T ∈Th

∫

T

3∑

i,j=1

∂iju∂ijwhdx

=
∑

T ∈Th

3∑

i,j=1

{∫

∂T

(∂iju∂jwhni − ∂iijuwhnj )ds +
∫

T

∂iijjuwhdx

}

=
∑

T ∈Th

∫

∂T

{
3∑

i,j=1

∂iju(βτj ∂τwh + βsj ∂swh + βnj ∂nwh)ni − ∂nΔuwh

}

ds

+
∑

T ∈Th

∫

T

Δ2uwhdx.

Since Δ2u = f , we have

ah(u,wh) − f (wh) =
∑

T ∈Th

∫

∂T

{
3∑

i,j=1

∂iju(βτj ∂τwh

+ βsj ∂swh + βnj ∂nwh)ni − ∂nΔuwh

}

ds. (3.2)

If Vh ⊂ H 1
0 (Ω), then

∀F ⊂ ∂T , ∀T ∈ Th, [wh]|F = [∂τwh]|F = [∂swh]|F = 0.

We get

ah(u,wh) − f (wh) =
∑

T ∈Th

3∑

i,j=1

βnj

∑

F⊂∂T

∫

F

∂iju∂nwhnids, ∀wh ∈ Vh. (3.3)
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Let Ik be the C0 piecewise polynomial interpolation operator, such that Ik is affine equiv-
alent and Ikv = v, on T , ∀v ∈ Pk(T ), ∀T ∈ Th, then it is well known that [2, 8]:

|v − Ikv|l,T ≤ Chk+1−l|v|k+1,T , 0 ≤ l ≤ k ∀v ∈ Hk+1(T ). (3.4)

The finite element interpolation operator on Vh is denoted by Πh. Now we give the fol-
lowing abstract convergence lemma for C0-nonconforming elements for the fourth order
elliptic problem.

Lemma 3.2 [7] Assume that ||| · |||h is a norm of Vh. Suppose that there is an integer m ≥ 2,
such that

(H1) Vh ⊂ H 1
0 (Ω),

(H2) |||v − Πhv|||h ≤ Chm−1|v|m+1,Ω, ∀v ∈ Hm+1(Ω),

(H3)

∫

F

p[∂nwh]ds = 0, ∀p ∈ Pm−2(F ), ∀F ∈ Fh, ∀wh ∈ Vh,

then

|||u − uh|||h ≤ Chm−1|u|m+1,Ω . (3.5)

Here u and uh are the solutions of (2.2) and (2.5), respectively, C > 0 is a constant inde-
pendent of h and Πh is the finite element interpolation operator on Vh.

4 C0-Nonconforming Triangular Prism Elements

Let T̂ be the triangular prism element with nodes âi ,1 ≤ i ≤ 6, the face of T̂ opposite
âi âi+3 is denoted by F̂i ,1 ≤ i ≤ 3. Triangle â1â2â3 is denoted by F̂4 and triangle â4â5â6 is
denoted by F̂5. The barycentric coordinates of this two triangles, named λ̂i ,1 ≤ i ≤ 3, have
the following properties [8]:

λ̂i ∈ P1(F̂4), λ̂i(âj ) = δij ,

3∑

i=1

λ̂i = 1, λ̂i |F̂i
= 0, 1 ≤ i, j ≤ 3, (4.1)

where Pk(F̂ ) is the polynomial space of degree not greater than k on F̂ . Set λ̂4 = x̂3, λ̂5 =
1 − x̂3. l̂1 = â2â3, l̂2 = â1â3, l̂3 = â1â2, l̂4 = â5â6, l̂5 = â4â6, l̂6 = â4â5, l̂7 = â1â4, l̂8 = â2â5,
l̂9 = â3â6, and b̂i be midpoint of l̂i , 1 ≤ i ≤ 9.

4.1 C0T P 1 Element

The shape function space of C0T P 1 element is taken as:

P̂T P 1 = P̂ ∗
2 ⊕ bT̂ Q1, (4.2)

where P̂ ∗
2 = P2(T̂ ) ∪ {x̂2

1 x̂3, x̂1x̂
2
3 , x̂

2
2 x̂3, x̂2x̂

2
3 , x̂1x̂2x̂3}, bT̂ = λ̂1λ̂2λ̂3λ̂4λ̂5 is the bubble func-

tion with bT̂ |F̂i
= 0, 1 ≤ i ≤ 5, Q1 = {λ̂1, λ̂2, λ̂3, λ̂4, λ̂4λ̂5}. Here bT̂ Q1 is the basis function
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Fig. 1 Degrees of freedom of
C0T P 1 element

set of the product of bT̂ and the set Q1. It is easy to see that the dimension of P̂T P 1 is 20.
The degrees of freedom of C0T P 1 element are:

v̂(âi ), 1 ≤ i ≤ 6; v̂(b̂i ), 1 ≤ i ≤ 9;
∫

F̂i

∂v̂

∂n̂
dŝ, 1 ≤ i ≤ 5. (4.3)

See Fig. 1.
The corresponding interpolation operator Π̂1 : H 3(T̂ ) → P̂T P 1 is defined by

⎧
⎪⎨

⎪⎩

(v̂ − Π̂1v̂)(âi) = 0, 1 ≤ i ≤ 6, (v̂ − Π̂1v̂)(b̂i) = 0, 1 ≤ i ≤ 9,

∫

F̂i

∂(v̂ − Π̂1v̂)

∂n̂
dŝ = 0, 1 ≤ i ≤ 5.

(4.4)

Lemma 4.1 The interpolation operator Π̂1 is well posed, namely, the degrees of freedom
(4.3) are P̂T P 1-unisolvent.

Proof Because both the dimension of P̂T P 1 and the number of degrees of freedom are 20, it
is sufficient to show that if v̂ ∈ P̂T P 1 and

v̂(âi ) = 0, 1 ≤ i ≤ 6; v̂(b̂i ) = 0, 1 ≤ i ≤ 9;
∫

F̂i

∂v̂

∂n̂
dŝ = 0, 1 ≤ i ≤ 5,

then v ≡ 0.
v̂|F̂i

∈ P2(F̂i), i = 4,5, and v̂ = 0, at the 3 vertices of F̂i and the middle points of 3 sides

of F̂i , hence

v̂|F̂i
= 0, i = 4,5. (4.5)

v̂|F̂i
∈ P2(F̂i) ⊕ {x̂2

1 x̂3, x̂1x̂
2
3 } (or {x̂2

2 x̂3, x̂2x̂
2
3 }), i = 1,2,3, which is the serendipity element

space; and v̂ = 0, at the 4 vertices of F̂i and the middle points of 4 sides of F̂i , hence

v̂|F̂i
= 0, i = 1,2,3. (4.6)
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By (4.2) v̂ has the following expression

v̂ = bT̂ p̂, p̂ =
4∑

i=1

αiλ̂i + α5λ̂4λ̂5.

Since bT̂ |F̂i
= 0, λ̂i |F̂i

= 0, we have

∫

F̂i

∂v̂

∂n̂
dŝ =

∫

F̂i

∂bT̂

∂n̂
p̂dŝ =

∫

F̂i

∂λ̂i

∂n̂

(
5∏

j=1j 	=i

λ̂j

)

p̂ds.

Set Λi = ∏5
j=1j 	=i λ̂j ,1 ≤ i ≤ 5, It is easy to see that ∂λ̂i

∂n̂
	= 0,1 ≤ i ≤ 5. Then we can have

∫

F̂i

Λip̂dŝ = 0, i = 1,2,3,4,5.

That is,

∫

F̂1

Λ1p̂dŝ =
∫

l̂1

dl̂

∫ 1

0
λ̂2λ̂3x̂3(1 − x̂3)

{
α2λ̂2 + α3λ̂3 + α4x̂3 + α5x̂3(1 − x̂3)

}

= |l̂1|
360

{5α2 + 5α3 + 5α4 + 2α5} = 0;
∫

F̂2

Λ2p̂dŝ =
∫

l̂2

dl̂

∫ 1

0
λ̂1λ̂3x̂3(1 − x̂3)

{
α1λ̂1 + α3λ̂3 + α4x̂3 + α5x̂3(1 − x̂3)

}

= |l̂2|
360

{5α1 + 5α3 + 5α4 + 2α5} = 0;
∫

F̂3

Λ3p̂dŝ =
∫

l̂3

dl̂

∫ 1

0
λ̂1λ̂2x̂3(1 − x̂3)

{
α1λ̂1 + α3λ̂3 + α4x̂3 + α5x̂3(1 − x̂3)

}

= |l̂3|
360

{5α1 + 5α2 + 5α4 + 2α5} = 0;
∫

F̂4

Λ4p̂dŝ =
∫

F̂4

λ̂1λ̂2λ̂3{α1λ̂1 + α2λ̂2 + α3λ̂3}dŝ = |F̂4|
180

{α1 + α2 + α3} = 0;
∫

F̂5

Λ5p̂dŝ =
∫

F̂5

λ̂1λ̂2λ̂3{α1λ̂1 + α2λ̂2 + α3λ̂3 + α4}dŝ

= |F̂4|
180

{α1 + α2 + α3 + 3α4} = 0.

The above linear systems can be expressed by

AX = 0,
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where X = (α1, α2, α3, α4, α5)
T ,

A =

⎛

⎜
⎜
⎜
⎜
⎝

0 5 5 5 2
5 0 5 5 2
5 5 0 5 2
1 1 1 0 0
1 1 1 3 0

⎞

⎟
⎟
⎟
⎟
⎠

.

By simple calculations, we get

detA = 450 	= 0.

Hence X = 0, namely, αi = 0,1 ≤ i ≤ 5. Then v̂ = 0. �

4.2 C0T P 2 Element

The shape function space of C0T P 2 element is taken as:

P̂T P 2 = P̂ ∗
3 ⊕ bT̂ Q2, (4.7)

where

P̂ ∗
3 = P3(T̂ ) ⊕ {

x̂3
1 x̂3, x̂1x̂

3
3 , x̂

3
2 x̂3, x̂2x̂

3
3 , x̂

3
1 x̂2x̂3, x̂1x̂

3
2 x̂3

}
,

Q2 = {λ̂1, λ̂2, λ̂3, λ̂1λ̂2, λ̂2λ̂3, λ̂3λ̂1, λ̂1x̂3, λ̂2x̂3, λ̂3x̂3,

λ̂1λ̂2x̂3, λ̂2λ̂3x̂3, λ̂3λ̂1x̂3, λ̂
2
1λ̂2, λ̂

2
2λ̂3, λ̂

2
3λ̂1

}
.

It is easy to see the dimension of P̂T P 2 is 41. The degrees of freedom are:

v̂(âi ), v̂x̂j
(âi ), 1 ≤ i ≤ 6, 1 ≤ j ≤ 3, v̂(ĉj ), j = 1,2,

∫

F̂i

∂v̂

∂n̂
q̂dŝ, q̂ ∈ P1(F̂i), 1 ≤ i ≤ 5,

(4.8)

where ĉ1, ĉ2 are the central points of F̂4 and F̂5, respectively. See Fig. 2.

Fig. 2 Degrees of freedom of
C0T P 2 element
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The corresponding interpolation operator Π̂2 : H 4(T̂ ) → P̂T P 2 is defined by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(v̂ − Π̂2v̂)(âi) = 0,
∂(v̂ − Π̂2v̂)

∂x̂j

(âi) = 0, 1 ≤ i ≤ 6,1 ≤ j ≤ 3;

(v̂ − Π̂2v̂)(ĉj ) = 0, j = 1,2;
∫

F̂i

∂(v̂ − Π̂2v̂)

∂n̂
p̂dŝ = 0, p̂ ∈ P1(F̂i), 1 ≤ i ≤ 5.

(4.9)

Lemma 4.2 The interpolation operator Π̂2 is well posed, namely, the degrees of freedom
(4.8) are P̂T P 2-unisolvent.

Proof It is easy to see that the number of degrees of freedom (4.8) is also 41, so it is sufficient
to show that if v̂ ∈ P̂T P 2 such that all the degrees of freedom of v̂ are zero, then v̂ ≡ 0.

Since v̂|F̂i
∈ P3(F̂i), i = 4,5, and v̂ = 0, at the 3 vertices and the barycenter of F̂i and

two one-order derivatives on 3 vertices of F̂i are zero, hence

v̂|F̂i
= 0, i = 4,5. (4.10)

v̂|F̂i
∈ P3(F̂i) ⊕ {x̂3

1 x̂3, x̂1x̂
3
3 } (or {x̂3

2 x̂3, x̂2x̂
3
3 }), i = 1,2,3, which is the Adini or ACM el-

ement space; and the function values as well as two first order derivatives are zero on 4
vertices of F̂i , hence

v̂|F̂i
= 0, i = 1,2,3. (4.11)

By (4.7), v̂ has the following expression

v̂ = bT̂ p̂,

where

p̂ = α1λ̂1 + α2λ̂2 + α3λ̂3 + α4λ̂1λ̂2 + α5λ̂2λ̂3 + α6λ̂3λ̂1 + α7λ̂1x̂3 + α8λ̂2x̂3

+ α9λ̂3x̂3 + α10λ̂1λ̂2x̂3 + α11λ̂2λ̂3x̂3 + α12λ̂3λ̂1x̂3 + α13λ̂
2
1λ̂2 + α14λ̂

2
2λ̂3

+ α15λ̂
2
3λ̂1.

By a similar argument used in Lemma 4.1, since bT̂ |F̂i
= 0, λ̂i |F̂i

= 0, we have

∫

F̂i

∂v̂

∂n̂
q̂dŝ = 0 ⇐⇒

∫

F̂i

Λip̂q̂dŝ = 0, 1 ≤ i ≤ 5.

The above linear systems can be expressed by

AX = 0,
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where X = (α1, α2, α3, . . . , α15)
T ,

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 3 2 0 1 0 0 3
2 1 0 1

2 0 0 4
7 0

0 2 3 0 1 0 0 1 3
2 0 1

2 0 0 3
7 0

0 5
2

5
2 0 1 0 0 3

2
3
2 0 3

5 0 0 1
2 0

3 0 2 0 0 1 3
2 0 1 0 0 1

2 0 0 3
7

2 0 3 0 0 1 1 0 3
2 0 0 1

2 0 0 4
7

5
2 0 5

2 0 0 1 3
2 0 3

2 0 0 3
5 0 0 1

2

3 2 0 1 0 0 3
2 1 0 1

2 0 0 4
7 0 0

2 3 0 1 0 0 1 3
2 0 1

2 0 0 3
7 0 0

5
2

5
2 0 1 0 0 3

2
3
2 0 3

5 0 0 1
2 0 0

2 4
3

4
3

1
2

1
3

1
2 0 0 0 0 0 0 2

9
1
9

1
6

4
3 2 4

3
1
2

1
2

1
3 0 0 0 0 0 0 1

6
2
9

1
9

4
3

4
3 2 1

3
1
2

1
2 0 0 0 0 0 0 1

9
1
6

2
9

2 4
3

4
3

1
2

1
3

1
2 2 4

3
4
3

1
2

1
3

1
2

2
9

1
9

1
6

4
3 2 4

3
1
2

1
2

1
3

4
3 2 4

3
1
2

1
2

1
3

1
6

2
9

1
9

4
3

4
3 2 1

3
1
2

1
2

4
3

4
3 2 1

3
1
2

1
2

1
9

1
6

2
9

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

By simple computations, we get

detA = −1

25 × 32 × 53 × 73
	= 0.

Hence X = 0, namely, αi = 0, 1 ≤ i ≤ 12. Then v ≡ 0. �

5 Convergence Analysis

In this section, we will give the convergence analysis of the elements given in Sect. 4.1 for
the fourth order elliptic problem (2.1).

Define PT P 1 = {v = v̂ ◦ G−1
T ; ∀v̂ ∈ P̂T P 1}, PT P 2 = {v = v̂ ◦ G−1

T ; ∀v̂ ∈ P̂T P 2}. Then
Π1 : H 3(T ) → PT P 1 and Π2 : H 4(T ) → PT P 2 are the interpolation operators of C0T P 1
and C0T P 2 elements, respectively. The corresponding finite element spaces of C0T P 1 and
C0T P 2 elements are defined by

Vh1 = {vh|T ∈ PT P 1, ∀T ∈ Th, the degrees of freedom (4.3)

are continuous across the elements and are zeros on ∂Ω}, (5.1)

Vh2 = {vh|T ∈ PT P 2, ∀T ∈ Th, the degrees of freedom (4.8)

are continuous across the elements and are zeros on ∂Ω}. (5.2)

The finite element interpolation operators Πh1: H 3(Ω) → Vh1 and Πh2 : H 4(Ω) → Vh2

are defined by

Πh1|T = Π1, Πh2|T = Π2, ∀T ∈ Th.



656 J Sci Comput (2013) 55:645–658

Under x = GT (x̂), let âi ↔ ai,1 ≤ i ≤ 6; F̂i ↔ Fi, 1 ≤ i ≤ 5; l̂i ↔ li , b̂i ↔ bi, 1 ≤ i ≤
9; P̂T P 1 ↔ PT P 1, P̂T P 2 ↔ PT P 2; v̂(x̂) = v(x).

The discrete variational problems to solve (2.3) are: Find uh1 ∈ Vh1 such that

ah(uh1, vh) = f (vh), ∀vh ∈ Vh1. (5.3)

Find uh2 ∈ Vh2 such that

ah(uh2, vh) = f (vh), ∀vh ∈ Vh2. (5.4)

It is easy to check that ||| · |||h is a norm of Vh1 and Vh2, respectively, so (5.3) and (5.4) are
unisolvent by Lax-Milgram Theorem [8].

For getting the error estimates for C0T P 1 and C0T P 2 elements, it is only needed to
check (H1) (H2) (H3) of Lemma 3.2. By (4.5), (4.6), (4.10) and (4.11), it is easy to prove
that

Vh1 ⊂ H 1
0 (Ω), Vh2 ⊂ H 1

0 (Ω). (5.5)

Because P2(T ) ⊂ PT P 1, P3(T ) ⊂ PT P 2, by the well-known interpolation theorem [2, 8], we
have

{ |||u − Πh1u|||h ≤ Ch|u|3,Ω,

|||u − Πh2u|||h ≤ Ch2|u|4,Ω .
(5.6)

Here u ∈ H 2
0 (Ω) is the solution of (2.3) with the additional regularity u ∈ Hr(Ω), where

r = 3 for the C0T P 1 element and r = 4 for the C0T P 2 element. By the last sets of the
degrees of freedom (4.3) and (4.8), we obtain that

⎧
⎪⎪⎨

⎪⎪⎩

∫

F

[
∂wh

∂n

]

ds = 0, ∀F ∈ Fh, ∀wh ∈ Vh1,

∫

F

p

[
∂wh

∂n

]

ds = 0, ∀F ∈ Fh, ∀p ∈ P1(F ), ∀wh ∈ Vh2.

(5.7)

By (5.5), (5.6), (5.7), we know that (H1) (H2) and (H3) are satisfied for C0T P 1 with m =
2 and for C0T P 2 with m = 3. Then by Lemma 3.2, we obtain the following convergence
theorem for C0T P 1 and C0T P 2 elements.

Theorem 5.1 Suppose that the mesh Th, into triangular prisms for C0T P 1 and C0T P 2 el-
ements is regular in the sense of (2.4), u is the solution of (2.3) with the additional regularity
u ∈ Hr(Ω), and uh1 and uh2 are the solutions of (5.3) and (5.4), respectively, then

{ |||u − uh1|||h ≤ Ch|u|3,Ω,

|||u − uh2|||h ≤ Ch2|u|4,Ω ,
(5.8)

where r = 3 for the C0T P 1 element and r = 4 for the C0T P 2 element.

6 Conclusion

In this paper, we present a method to construct the C0-nonconforming elements for the
fourth order elliptic problem by using the bubble functions. It makes the element interpola-
tion matrices being block lower triangular and it is easy to choose the matched shape func-
tion spaces and degrees of freedom. By this method, we construct two C0-nonconforming
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triangular prism elements to solve the fourth-order three-dimensional elliptic problem. One
element is of first order convergence and the other one is of second order convergence. In the
future work, we will carry out some numerical experiments to verify our theoretical results.
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