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Abstract In this paper, we analyze the convergence and optimality of a standard adaptive
nonconforming linear element method for the Stokes problem. After establishing a spe-
cial quasi-orthogonality property for both the velocity and the pressure in this saddle point
problem, we introduce a new prolongation operator to carry through the discrete reliability
analysis for the error estimator. We then use a specially defined interpolation operator to
prove that, up to oscillation, the error can be bounded by the approximation error within
a properly defined nonlinear approximate class. Finally, by introducing a new parameter-
dependent error estimator, we prove the convergence and optimality estimates.

Keywords Adaptive finite element method · Convergence · Optimality · The Stokes
problem

1 Introduction

The adaptive finite element method plays an important role in the numerical solution for par-
tial differential equations [1, 2, 42]. The convergence and optimality of the adaptive method
have been much studied in recent years. For the Poisson equation and its variants, the theory
is well-developed [9, 15, 19, 20, 26, 35–38, 40, 41]. However, for many other important
problems this is not the case. Among these under studied problems is the Stokes problem,
the main subject of this paper.
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The convergence analysis of the adaptive finite element method of the Poisson equation
is based on the orthogonality property [19, 26, 35, 36], such orthogonality can be weakened
to some quasi-orthogonality for the nonconforming and mixed methods [4, 6, 14, 15, 17,
20, 21, 29, 31, 34, 39]. The Stokes problem, as a saddle point problem with two variables
(velocity and pressure), lacks the usual orthogonality or quasi-orthogonality that holds for
the positive and definite problem. As a result, it is not obvious how the technique for non-
conforming and mixed methods for the Poisson equation can be carried over to the Stokes
problem. Although the mixed formulation of the Poisson equation is also a saddle point
problem, analyses of this formulation’s convergence and optimality [4, 17, 20] are not so
different from that for the primary formulation of the Poisson equation. The reason is that
only the stress variable, which can be decoupled from the primary variable, needs to be
involved in the analysis. This is not, however, the case for the Stokes problem under con-
sideration here because the two variables, velocity and pressure, are coupled and cannot
be separated in analyses of the convergence and optimality. To circumvent this difficulty,
Bänsch, Morin, and Nochetto developed a modified adaptive procedure in which the Uzawa
algorithm on the continuous level is used as the outer iteration [3, 32, 33]. See also [24] for
adaptive wavelet methods.

The optimality of the adaptive finite element method for the Poisson equation is analyzed
based on discrete reliability (see [19, 40, 41] and the references therein). Basically, we need
one restriction operator and one prolongation operator in order to analyze the discrete reli-
ability. For the conforming method, a natural candidate for the prolongation operator is the
usual inclusion operator, and for the restriction operator a Scott–Zhang-type can be used as
it has both the local projection property and the global and uniform boundedness property.
For the nonconforming method under consideration here, however, it is a challenge to come
up with a prolongation operator that has both the local projection property and the global
and uniform boundedness property. For the nonconforming linear element method for the
Poisson equation, such a difficulty can be circumvented using the discrete Helmholtz de-
composition [6, 39]. However, the Helmholtz decomposition seems not applicable for the
problem under consideration because the existence of such a decomposition is unclear for
the general case.

The first convergence and optimality analysis of a standard adaptive finite element
method for the Stokes problem was presented in a technical report [30] in 2007 by the
authors of this paper. The analysis was based on some special relation between the noncon-
forming P1 element and the lowest Raviart–Thomas element for the Stokes problem and
one prolongation operator between the discrete spaces. But we later found a gap in our dis-
crete reliability analysis caused by the prolongation operator used therein. A convergence
and optimality analysis was published in [5] in 2011; however, we also found a gap in their
analysis similar to that in our earlier report [30] (see Appendix for more details).

The present paper is an improved version of [30] with simplified and corrected proofs. Its
purpose is to provide a rigorous analysis of the convergence and optimality of the adaptive
nonconforming linear element method for the Stokes problem. The main idea is to establish
the orthogonality or quasi-orthogonality of both the velocity variable and the pressure vari-
able. The nonconformity of the discrete velocity space is the main difficulty in establishing
the desired quasi-orthogonality property and the discrete reliability estimate. To overcome
this difficulty we take two steps, (1) we establish the quasi-orthogonality for both the ve-
locity and pressure variables by using a special conservative property of the nonconforming
linear element, and (2) we introduce a new prolongation operator that has both the projec-
tion property and the uniform boundedness property for the discrete reliability analysis. To
analyze optimality within the standard nonlinear approximate class [19], we define a new
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interpolation operator to bound the consistency error and prove that the consistency error
can be bounded by the approximation error up to oscillation. This in fact implies that the
nonlinear approximate class used in [30] is equivalent to the standard nonlinear approximate
class [7, 19]. Finally, by introducing a new parameter-dependent error estimator, we prove
convergence and optimality estimates for the Stokes problem.

The rest of the paper is organized as follows. In Sect. 2 we present the Stokes problem
and its nonconforming linear finite element method, and recall a posteriori error estimate
according to [12, 13, 16, 25]. We prove the quasi-orthogonality in Sect. 3 and then show the
reduction of some total error in Sect. 4 in terms of a new parameter-dependent estimator.
We introduce a new prolongation operator to establish discrete reliability in Sect. 5. And,
we show optimality of the adaptive nonconforming linear element method in Sect. 6.

2 The Adaptive Nonconforming Linear Element

Let us first introduce some notations. We use the standard gradient and divergence operators
∇r := (∂r/∂x, ∂r/∂y) for a scalar function r , and divψ := ∂ψ1/∂x + ∂ψ2/∂y for a vector
function ψ = (ψ1,ψ2). Given a polygonal domain Ω ⊂ R

2 with the boundary ∂Ω , we use
the standard notation for Sobolev spaces, such as H 1(Ω) and L2(Ω). We define

H 1
0 (Ω) := {

v ∈ H 1(Ω), v = 0 on ∂Ω
}
, and

L2
0(Ω) :=

{
q ∈ L2(Ω),

∫

Ω

qdx = 0

}
.

In addition, we denote (·, ·)L2(Ω) as the usual L2 inner product of functions in the space
L2(Ω), and ‖ · ‖L2(Ω) the L2 norm.

Suppose that Ω is covered exactly by a sequence of shape-regular triangulations Tk

(k ≥ 0) consisting of triangles in 2D (see [11, 22]), and that this sequence is produced
by some adaptive algorithm where Tk is some nested refinement of Tk−1 by the newest ver-
tex bisection [40, 41]. Let Ek be the set of all edges in Tk ; Ek(Ω) the set of interior edges;
E (K) the set of edges of any given element K in Tk ; and hK = |K|1/2 the size of the element
K ∈ Tk where |K| is the area of element K . ωK is the union of elements K ′ ∈ Tk that share
an edge with K , and ωE is the union of elements that share a common edge E. Given any
edge E ∈ Ek(Ω) with the length hE , we assign one fixed unit normal νE := (ν1, ν2) and
tangential vector τE := (−ν2, ν1). For E on the boundary, we choose νE := ν, the unit out-
ward normal to Ω . Once νE and τE are fixed on E, in relation to νE we define the elements
K− ∈ Tk and K+ ∈ Tk , with E = K+ ∩ K−. Given E ∈ Ek(Ω) and some R

d -valued function
v defined in Ω , with d = 1,2, we denote [v] := (v|K+)|E − (v|K−)|E as the jump of v across
E, where v|K is the restriction of v on K and v|E is the restriction of v on E.

2.1 The Stokes Problem and Its Nonconforming Linear Element

The Stokes problem is defined as follows: Given g ∈ L2(Ω)2, find (u,p) ∈ V × Q :=
(H 1

0 (Ω))2 × L2
0(Ω) such that

a(u, v) + b(v,p) + b(u, q) = (g, v)L2(Ω) for any (v, q) ∈ V × Q, (2.1)

where u and p are the velocity and pressure of the flow, respectively, and

a(u, v) := μ(∇u,∇v)L2(Ω) and b(v, q) := (divv, q)L2(Ω), (2.2)

where μ > 0 is the viscosity coefficient of the flow.
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Given ω ⊂ R
2 and some integer �, denote P�(ω) as the space of polynomials of degree

≤ � over ω. We define

Vk :=
{
vk ∈ L2(Ω)2, vk|K ∈ P1(K)2 for any K ∈ Tk,

∫

E

[vk]ds = 0 for any E ∈ Ek(Ω),

and
∫

E

vk ds = 0 for any E ∈ Ek ∩ ∂Ω

}
,

Qk := {
qk ∈ Q,qk|K ∈ P0(K) for any K ∈ Tk

}
.

Since Vk is not a subspace of H 1(Ω)2, the gradient and divergence operators are defined
element by element with respect to Tk , and denoted by ∇k and divk . Define the piecewise
smooth space

H 1(Tk) := {
v ∈ L2(Ω), v|K ∈ H 1(K) for any K ∈ Tk

}
. (2.3)

The discrete bilinear forms read

ak(u, v) := μ(∇ku,∇kv)L2(Ω) and bk(v, q) := (divk v, q)L2(Ω) (2.4)

for any u,v ∈ (H 1(Tk))
2, and q ∈ Q.

The nonconforming P1 element, proposed in [23], for the Stokes problem is as follows:
Given g ∈ L2(Ω)2, find (uk,pk) ∈ Vk × Qk such that

ak(uk, v) + bk(v,pk) + bk(uk, q) = (g, v)L2(Ω) for any (v, q) ∈ Vk × Qk. (2.5)

Let id ∈ R
2×2 be the identity matrix. Define

σk := μ∇kuk + pk id .

Then, we have

(σk,∇kvk)L2(Ω) = (g, vk)L2(Ω) for any vk ∈ Vk. (2.6)

2.2 The a Posteriori Error Estimate

To recall the a posteriori error estimator of the nonconforming P1 element, we define the
residual Rk−1(·) by

Rk−1(v) := (g, v)L2(Ω) − ak(uk−1, v) − bk(v,pk−1) for any v ∈ H 1(Tk)
2, (2.7)

with the solution (uk−1,pk−1) of (2.5) on the mesh Tk−1, which is a coarser and nested mesh
of Tk . It follows from the definition of (uk−1,pk−1) that

Rk−1(vk−1) = 0 for any vk−1 ∈ Vk−1.

Given K ∈ Tk , we define the element estimator

ηK(uk,pk) := hK‖g‖L2(K) +
( ∑

E⊂∂K

hK

∥∥[∇kukτE]∥∥2

L2(E)

)1/2

. (2.8)
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Given Sk ⊂ Tk , we define the estimator over it by

η2(uk,pk, Sk) :=
∑

K∈Sk

η2
K(uk,pk). (2.9)

Given any K ∈ Tk , denote gK as the L2 projection of g onto P0(K). We define the oscillation

osc2(g, Tk) :=
∑

K∈Tk

h2
K‖g − gK‖2

L2(K)
. (2.10)

The reliability and efficiency of the estimator η(uk,pk, Tk) can be found in [12, 13, 16,
25], as stated in the following lemma.

Lemma 2.1 Let (u,p) and (uk,pk) be the solutions of the Stokes problem (2.1) and the
discrete problem (2.5), respectively. Then,

∥∥∇k(u − uk)
∥∥2

L2(Ω)
+ ‖p − pk‖2

L2(Ω)
� η2(uk,pk, Tk), (2.11)

η2(uk,pk, Tk) �
∥∥∇k(u − uk)

∥∥2

L2(Ω)
+ ‖p − pk‖2

L2(Ω)
+ osc2(g, Tk). (2.12)

Remark 2.2 For the Stokes problem, the estimator usually involves the pressure approxima-
tion. For the nonconforming P1 element, as shown in the above lemma, we can decouple the
pressure from the velocity [25].

Here and throughout the paper, we use the notations � and �. When we write

A1 � B1, and A2 � B2,

possible constants C1, c2 and C2 exist such that

A1 ≤ C1B1, and c2B2 ≤ A2 ≤ C2B2.

2.3 The Adaptive Nonconforming Finite Element Method

The adaptive algorithm is defined as follows: Let T0 be an initial shape-regular triangulation,
a right-side g ∈ L2(Ω)2, a tolerance ε, and a parameter 0 < θ < 1.

Algorithm 2.1 [TN,uN,pN ] = ANFEM(T0, g, ε, θ)

η = ε, k = 0

WHILE η ≥ ε, DO

(1) Solve (2.5) on Tk to get the solution (uk,pk).
(2) Compute the error estimator η = η(uk,pk, Tk).
(3) Mark the minimal element set Mk such that

η2(uk,pk, Mk) ≥ θ η2(uk,pk, Tk). (2.13)

(4) Refine each triangle K ∈ Mk by the newest vertex bisection to get Tk+1 and set k =:
k + 1.

END WHILE

TN = Tk .
END ANFEM
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3 Quasi-orthogonality

The quasi-orthogonality property is the main ingredient for the convergence analysis of the
adaptive nonconforming method under consideration. In this section we establish such a
property by exploring the conservative property of the nonconforming linear element and
by confirming that the stress is piecewise constant. To this end, we define a canonical inter-
polation operator Πk for the nonconforming space Vk and a restriction operator Ik−1 from
Vk to the coarser space Vk−1. Given v ∈ V , we define the interpolation Πkv ∈ Vk by

∫

E

Πkvds :=
∫

E

vds for any E ∈ Ek. (3.1)

In this paper, the above property is referred to as the conservative property. This property is
crucial for the analysis herein. A similar conservative property was first explored in [29] to
analyze the quasi-orthogonality property of the Morley element.

The interpolation admits the following estimate:

‖v − Πkv‖L2(K) � hK‖∇v‖L2(K) for any K ∈ Tk and v ∈ V. (3.2)

Given vk ∈ Vk , we define the restriction interpolation Ik−1vk ∈ Vk−1 by

∫

E

Ik−1vkds :=
�∑

l=1

∫

El

vkds, E ∈ Ek−1 with E = E1 ∪ E2 ∪ · · · ∪ E� and Ei ∈ Ek. (3.3)

The properties of the restriction operator Ik−1 are summarized in the following lemma.

Lemma 3.1 Let the restriction operator Ik−1 be defined in (3.3). Then,

Ik−1vk = vk for any K ∈ Tk ∩ Tk−1, vk ∈ Vk, (3.4)

‖Ik−1vk − vk‖L2(K) � hK‖∇kvk‖L2(K) for any K ∈ Tk−1\Tk, vk ∈ Vk. (3.5)

Proof The property (3.4) directly follows from the definition of the restriction interpolation.
Only the estimate (3.5) needs to be proved. In fact, both sides of (3.5) are semi-norms of
the restriction (Vk)K of Vk on K . If the right-hand side vanishes for some v ∈ (Vk)K , then
vk is a piecewise constant vector over K with respect to Tk . Given the average continuity of
vk across the internal edges of Tk , it follows that vk is a constant vector on K . Therefore,
the left-hand side also vanishes for the same vk . The desired result then follows a scaling
argument. �

Remark 3.2 An alternative proof for the inequality (3.5) follows the discrete Poincare in-
equality established in [10] for the scalar function, which is further investigated in [39].
Notice that the positive constant of (3.5) is independent of the ratio

γ := max
K∈Tk−1\Tk

max
Tk�T ⊂K

hK

hT

, (3.6)

see [39, Lemma 4.1] for more details.
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Lemma 3.3 Let (uk−1,pk−1) be the solution of the discrete problem (2.5) on the mesh Tk−1.
It, therefore, holds that

∣∣Rk−1(vk

)| �
( ∑

K∈Tk−1\Tk

h2
K‖g‖2

L2(K)

)1/2

‖∇kvk‖L2(Ω) for any vk ∈ Vk. (3.7)

Proof For the reader’s convenience, we recall the definition of the residual as follows:

Rk−1(vk) = (g, vk)L2(Ω) − (σk−1,∇kvk)L2(Ω). (3.8)

To analyze the right-hand side of the above equation, we set vk−1 = Ik−1vk . As σk−1 is a
piecewise constant tensor with respect to the mesh Tk−1, the definition of the interpolation
operator Ik−1 in (3.3) leads to

∫

E

(vk − vk−1) · σk−1νEds = 0 for any E ∈ Ek−1. (3.9)

For any E ∈ Ek that lies in the interior of some K ∈ Tk−1, the integral average of vk over E

is continuous and σk−1 is a constant on K . Then,
∫

E

[vk − vk−1] · σk−1νEds = 0. (3.10)

By integrating parts on the fine mesh Tk and using (3.9) and (3.10), we get

(∇k(vk − vk−1), σk−1

)
L2(Ω)

= 0. (3.11)

Inserting this identity into (3.8) and adopting the discrete problem (2.5), we employ proper-
ties (3.4) and (3.5) of the interpolation operator Ik−1 to derive

∣∣Rk−1(vk)
∣∣ = ∣∣(g, vk − vk−1)L2(Ω)

∣∣ ≤
∑

K∈Tk−1\Tk

‖g‖L2(K)‖vk − vk−1‖L2(K)

�
∑

K∈Tk−1\Tk

hK‖g‖L2(K)‖∇kvk‖L2(K),

(3.12)

which completes the proof. �

Lemma 3.4 (Quasi-orthogonality of the velocity) Let (uk,pk) and (uk−1,pk−1) be the dis-
crete solutions of (2.5) on Tk and Tk−1, respectively. Then,

∣∣ak(u − uk,uk − uk−1)
∣∣ � ‖∇k(u − uk)

∥∥
L2(Ω)

( ∑

K∈Tk−1\Tk

h2
K‖g∥∥2

L2(K)

)1/2

.

Proof The Stokes problem (2.1) and the discrete problem (2.5) give

ak(u − uk,uk − uk−1) = (∇k(u − uk), σk − σk−1

)
L2(Ω)

. (3.13)

Given that (divk(u − uk),pk − pk−1)L2(Ω) = 0, let vk = Πk(u − uk). And, σk − σk−1 is a
piecewise constant tensor with respect to the fine mesh Tk ; therefore, by the definition of the
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interpolation operator Πk in (3.1), we integrate by parts on Tk to obtain

(∇k

(
(u − uk) − vk

)
, σk − σk−1

)
L2(Ω)

= 0. (3.14)

From the discrete problem (2.5), we have

ak(u − uk,uk − uk−1) = (g, vk)L2(Ω) − (∇kvk, σk−1)L2(Ω) = Rk−1(vk). (3.15)

The term on the right-hand side of (3.15) can be estimated by the inequality (3.7) as follows:

∣∣Rk−1(vk)
∣∣ �

∑

K∈Tk−1\Tk

hK‖g‖L2(K)‖∇kvk‖L2(K)

�
∑

K∈Tk−1\Tk

hK‖g‖L2(K)

∥∥∇k(u − uk)
∥∥

L2(K)
,

which completes the proof. �

Lemma 3.5 (Quasi-orthogonality of the pressure) Let (uk,pk) and (uk−1,pk−1) be the dis-
crete solutions of (2.5) on Tk and Tk−1, respectively. Then,

∣∣(p − pk,pk − pk−1)L2(Ω)

∣∣

�
(( ∑

K∈Tk−1\Tk

h2
K‖g‖2

L2(K)

)1/2

+ ∥∥∇k(uk − uk−1)
∥∥

L2(Ω)

)
‖p − pk‖L2(Ω). (3.16)

Remark 3.6 The quasi-orthogonality of the pressure herein is different from those for the
nonstandard method of the Poisson equation [14, 15, 20] by the fact that both ‖∇k(uk −
uk−1)‖L2(Ω) and ‖p − pk‖L2(Ω) appear on the right-hand side of (3.16).

Proof Let Π0,k be the L2 projection operator from L2
0(Ω) onto Qk . It follows from the

discrete inf-sup condition that there exists vk ∈ Vk with

divk vk = Π0,kp − pk, and ‖∇kvk‖L2(Ω) � ‖Π0,kp − pk‖L2(Ω). (3.17)

Since pk − pk−1 ∈ Qk , it follows from the continuous problem (2.1), the discrete problem
(2.5), and the definition of the residual (2.7) that

(p − pk,pk − pk−1)L2(Ω) = (divk vk,pk − pk−1)L2(Ω) = Rk−1(vk) + ak(uk−1 − uk, vk).

We use the estimates in (3.7) and (3.17) to get

∣∣(p − pk,pk − pk−1)L2(Ω)

∣∣

�
(( ∑

K∈Tk−1\Tk

h2
K‖g‖2

L2(K)

)1/2

+ ∥∥∇k(uk − uk−1)
∥∥

L2(Ω)

)
‖p − pk‖L2(Ω),

which completes the proof. �
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4 The Convergence of the ANFEM

To prove the convergence of the adaptive algorithm, we first prove the reduction of the er-
ror between the two nested meshes, Tk and Tk−1, where Tk is the refinement of the coarser
mesh Tk−1 with (2.13) by the newest vertex bisection. In order to control the volume part∑

K∈Tk−1\Tk
h2

K‖g‖2
L2(K)

appearing in Lemmas 3.4 and 3.5, we introduce the following mod-
ified estimator:

η̃2(uk−1,pk−1, Tk−1) :=
∑

K∈Tk−1

(
β1h

2
K‖g‖2

L2(K)
+ η2

K(uk−1,pk−1)
)

(4.1)

with the positive constant β1 > 0 to be determined later. Note that this modified estimator
is introduced only for the convergence analysis and that the final convergence and optimal
complexity will be proved for Algorithm 2.1.

Note that the volume residual
∑

K∈Tk−1
h2

K‖g‖2
L2(K)

does not contain the unknowns.
Hence, we add it to settle down the lacking of the Galerkin-orthogonality or quasi-
orthogonality. We stress that the Galerkin-orthogonality or quasi-orthogonality is an essen-
tial ingredient for the convergence analysis of the adaptive conforming, nonconforming, and
mixed methods for the Poisson-like problems [14, 15, 19, 20, 26, 35, 36]. This is another
reason that we need a modified estimator as in (4.1).

We list three standard components for the convergence analysis of the adaptive method,
which can be proved by following the arguments, for instance, in [15, 19, 26].

Lemma 4.1 Let Tk be some refinement of Tk−1 from Algorithm 2.1, then ρ > 0 and a positive
constant β ∈ (1 − ρθ,1) exist, such that

η2(uk−1,pk−1, Tk) ≤ βη2(uk−1,pk−1, Tk−1) + (1 − ρθ − β)η2(uk−1,pk−1, Tk−1). (4.2)

Proof The result can be proved by following the idea in [15, 19, 26]. The details are only
given for the readers’ convenience. In fact, we have

η2(uk−1,pk−1, Tk) = η2(uk−1,pk−1, Tk−1 ∩ Tk) + η2(uk−1,pk−1, Tk\Tk−1). (4.3)

For any K ∈ Tk−1\Tk , we only need to consider the case where K is subdivided into
K1,K2 ∈ Tk with |K1| = |K2| = 1

2 |K|. As [∇k−1uk−1τE] = 0 over the interior edge E =
K1 ∩ K2 ∈ Ek , we have

2∑

i=1

η2
Ki

(uk−1,pk−1)

:=
2∑

i=1

(
hKi

‖g‖L2(Ki )
+

( ∑

Ek�E⊂∂Ki

hKi

∥∥[∇k−1uk−1τE]∥∥2

L2(E)

)1/2)2

≤ 1

21/2
η2

K(uk−1,pk−1)

:= 1

21/2

(
hK‖g‖L2(K) +

( ∑

Ek−1�E⊂∂K

hK

∥∥[∇k−1uk−1τE]∥∥2

L2(E)

)1/2)2

. (4.4)
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Consequently,

∑

K∈Tk−1\Tk

2∑

i=1

η2
Ki

(uk−1,pk−1) ≤ 1

21/2
η2(uk−1,pk−1, Tk−1\Tk). (4.5)

Let ρ = 1 − 1
21/2 , therefore, we obtain

η2(uk−1,pk−1, Tk) ≤ η2(uk−1,pk−1, Tk−1) − ρη2(uk−1,pk−1, Tk−1\Tk). (4.6)

Choosing the positive parameter β with 1 − ρθ < β < 1, we combine the above inequality
and the bulk criterion (2.13) to achieve the desired result. �

Lemma 4.2 Let Tk be some refinement of Tk−1 produced in Algorithm 2.1, then there exists
ρ > 0 such that

∑

K∈Tk

h2
K‖g‖2

L2(K)
≤

∑

K∈Tk−1

h2
K‖g‖2

L2(K)
− ρ

∑

K∈Tk−1\Tk

h2
K‖g‖2

L2(K)
. (4.7)

Proof This can be proved by a similar argument proposed in the previous lemma. �

Lemma 4.3 (Continuity of the estimator) Let uk and uk−1 be the solutions to the discrete
problem (2.5) on the meshes Tk and Tk−1 obtained from Algorithm 2.1. Given any positive
constant ε, there exists a positive constant β2(ε) dependent on ε such that

η2(uk,pk, Tk) ≤ (1 + ε)η2(uk−1,pk−1, Tk) + 1

β2(ε)

∥∥∇k(uk − uk−1)
∥∥2

L2(Ω)
. (4.8)

Proof Given any K ∈ Tk , it follows from the definitions of ηK(uk,pk) and ηK(uk−1,pk−1)

in (4.4) that
∣∣ηK(uk,pk) − ηK(uk−1,pk−1)

∣∣

=
∣∣∣∣

( ∑

Ek�E⊂∂K

hK

∥∥[∇kukτE]∥∥2

L2(E)

)1/2

−
( ∑

Ek�E⊂∂K

hK

∥∥[∇k−1uk−1τE]∥∥2

L2(E)

)1/2∣∣∣∣

≤
( ∑

Ek�E⊂∂K

hK

∥∥[∇k(uk − uk−1)τE

]∥∥2

L2(E)

)1/2

.

Given E ∈ Ek , let K1,K2 ∈ Tk be the two elements that take E as one edge. Then, we use
the trace theorem and the fact that ∇k(uk − uk−1) is a piecewise constant tensor to get

∥∥[∇k(uk − uk−1)τE

]∥∥
L2(E)

≤ ∥∥∇k(uk − uk−1)τE |K1

∥∥
L2(E)

+ ∥∥∇k(uk − uk−1)τE|K2

∥∥
L2(E)

� h
−1/2
K

∥∥∇k(uk − uk−1)
∥∥

L2(ωE)
, (4.9)

which gives

ηK(uk,pk) ≤ ηK(uk−1,pk−1) + CCon

∥∥∇k(uk − uk−1)
∥∥

L2(ωK )
, (4.10)
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for some positive constant CCon. Given any positive constant ε, we apply the Young inequal-
ity to get

η2
K(uk,pk) ≤ (1 + ε)η2

K(uk−1,pk−1) + C2
Con(1 + ε)

ε

∥∥∇k(uk − uk−1)
∥∥2

L2(ωK)
. (4.11)

A summation over all elements in Tk completes the proof with β2(ε) = Mε

C2
Con

(1+ε)
, where the

positive constant M depends on the finite overlapping of the patches ωK . �

In the following theorem, we prove the convergence of the adaptive nonconforming finite
element method for the Stokes problem. The main ingredients are the quasi-orthogonality of
both the velocity and the pressure in Lemmas 3.4 and 3.5, and the relations of the estimators
between two the meshes Tk and Tk−1 presented in Lemmas 4.1–4.3.

Theorem 4.4 Let (u,p) and (uk,pk) be the solutions of (2.1) and (2.5). Then γ1, γ2, β1 > 0
and 0 < α < 1 exist, such that

∥∥∇k(u − uk)
∥∥2

L2(Ω)
+ γ1‖p − pk‖2

L2(Ω)
+ γ2η̃

2(uk,pk, Tk)

≤ α
(∥∥∇k−1(u − uk−1)

∥∥2

L2(Ω)
+ γ1

∥∥p − pk−1

∥∥2

L2(Ω)

+ γ2η̃
2(uk−1,pk−1, Tk−1)

)
. (4.12)

Proof First, we adopt the quasi-orthogonality of both the velocity and the pressure. Denote
the multiplication constant in Lemma 3.4 by CQOV . As

∥∥∇k(u − uk)
∥∥2

L2(Ω)
= ∥∥∇k(u − uk−1)

∥∥2

L2(Ω)
− ∥∥∇k(uk − uk−1)

∥∥2

L2(Ω)

− 2
(∇k(u − uk),∇k(uk − uk−1)

)
L2(Ω)

, (4.13)

it follows from the quasi-orthogonality of the velocity in Lemma 3.4 and the Young inequal-
ity that

(1 − δ1)
∥∥∇k(u − uk)

∥∥2

L2(Ω)

≤ ∥∥∇k−1(u − uk−1)
∥∥2

L2(Ω)
− ∥∥∇k(uk − uk−1)

∥∥2

L2(Ω)

+ C1(δ1)
∑

K∈Tk−1\Tk

h2
K‖g‖2

L2(K)
, (4.14)

where C1(δ1) = C2
QOV

δ1
for any positive constant 0 < δ1 < 1. Denote the multiplication con-

stant in Lemma 3.5 by CQOP . From the quasi-orthogonality of the pressure proved in
Lemma 3.5 and the Young inequality, we have

(1 − δ2 − δ3)‖p − pk‖2
L2(Ω)

≤ ‖p − pk−1‖2
L2(Ω)

− ‖pk − pk−1‖2
L2(Ω)

+ 1

β3(δ3)

∥∥∇k(uk − uk−1)
∥∥2

L2(Ω)

+ C2(δ2)
∑

K∈Tk−1\Tk

h2
K‖g‖2

L2(K)
; (4.15)
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here β3(δ3) = δ3
C2

QOP

and C2(δ2) = C2
QOP

δ2
for any constants 0 < δ2, δ3 < 1. Then we multiply

the inequality (4.14) by γ1 > 0 and the inequality (4.15) by γ2 > 0 to obtain

γ1(1 − δ1)
∥
∥∇k−1(u − uk)

∥
∥2

L2(Ω)
+γ2(1 − δ2 − δ2)‖p − pk‖2

L2(Ω)

≤ γ1

∥
∥∇k−1(u − uk−1)

∥
∥2

L2(Ω)
+ γ2‖p − pk−1‖2

L2(Ω)

−
(

γ1 − γ2

β3(δ3)

)∥∥∇k(uk − uk−1)
∥∥2

L2(Ω)

− γ2‖pk − pk−1‖2
L2(Ω)

+ (
γ1C1(δ1) + γ2C2(δ2)

)

×
∑

K∈Tk−1\Tk

h2
K‖g‖2

L2(K)
. (4.16)

For the presentation, we introduce some short-hand notations for any positive constants
γ3, γ4 > 0:

Gk(uk,pk) := γ1(1 − δ1)
∥∥∇k−1(u − uk)

∥∥2

L2(Ω)
+ γ2(1 − δ2 − δ3)‖p − pk‖2

L2(Ω)

+ γ3η
2(uk,pk, Tk) + γ4

∑

K∈Tk

h2
K‖g‖2

L2(K)
,

Gk−1(uk−1,pk−1) := γ1

∥∥∇k−1(u − uk−1)
∥∥2

L2(Ω)
+ γ2‖p − pk−1‖2

L2(Ω)

+ γ3βη2(uk−1,pk−1, Tk−1) + γ4

∑

K∈Tk−1

h2
K‖g‖2

L2(K)
. (4.17)

Second, we use the continuity of the estimators from Lemmas 4.1–4.3 to cancel both the
term ‖∇k(uk − uk−1)‖L2(Ω) and the volume estimator. In fact, from (4.2) and (4.8), we have

η2(uk,pk, Tk) ≤ βη2(uk−1,pk−1, Tk−1) + 1

β2(ε)

∥∥∇k(uk − uk−1)
∥∥2

L2(Ω)

+ (
(1 − ρθ − β)(1 + ε) + εβ

)
η2(uk−1,pk−1, Tk−1). (4.18)

Then we combine the above inequality with the inequalities (4.16) and (4.7) to obtain

Gk(uk,pk) ≤ Gk−1(uk−1,pk−1) −
(

γ1 − γ2

β3(δ3)
− γ3

β2(ε)

)∥∥∇k(uk − uk−1)
∥∥2

L2(Ω)

− γ2‖pk − pk−1‖2
L2(Ω)

+ γ3

(
(1 − ρθ − β)(1 + ε) + εβ

)
η2(uk−1,pk−1, Tk−1)

+ (
γ1C1(δ1) + γ2C2(δ2) − γ4ρ

) ∑

K∈Tk−1\Tk

h2
K‖g‖2

L2(K)
.

It remains to prove that the positive constants δi, i = 1,2,3, γi, i = 1,2,3,4, ε, β , and
β1 exist such that the contraction (4.12) holds for some constant 0 < α < 1. Further it is
possible that the constant dependent on the choices of the aforementioned parameters but
independent of the meshsize h and the level k. This will be achieved in the following three
steps.
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Step 1 For the second, fourth, and fifth terms on the right-hand side of the above inequality
to vanish, we set

γ2 =
(

γ1 − γ3

β2(ε)

)
β3(δ3) with γ1 >

γ3

β2(ε)
,

γ4 = (
γ1C1(δ1) + γ2C2(δ2)

)
/ρ, (4.19)

β = (1 − ρθ)(1 + ε).

Note that γ2, γ4, and β will be determined after δi, i = 1,2,3, γ1, γ3, and ε have been
specified. In the following, we assume that ε is fixed in such a way that 0 < β < 1. Also, we
let γ1 and γ3 be fixed such that γ1 >

γ3
β2(ε)

and γ2 > 0. Hence, we have

Gk(uk,pk) ≤ Gk−1(uk−1,pk−1).

Let the positive constant α with β < α < 1 be determined later. We define

Rk−1(uk−1,pk−1)

:= (
1 − α(1 − δ1)

)
γ1

∥∥∇k−1(u − uk−1)
∥∥2

L2(Ω)
+ γ2

(
1 − α(1 − δ2 − δ3)

)‖p − pk−1‖2
L2(Ω)

+ γ3(β − α)η2(uk−1,pk−1, Tk−1) + γ4(1 − α)
∑

K∈Tk−1

h2
K‖g‖2

L2(K)
.

Then we perform the decomposition Gk−1(uk−1,pk−1) = αGk−1(uk−1,pk−1) +
Rk−1(uk−1,pk−1) to get

Gk(uk,pk) ≤ αGk−1(uk−1,pk−1) + Rk−1(uk−1,pk−1).

Step 2 Now we only need to show that it is possible to choose α < 1 such that
Rk−1(uk−1,pk−1) ≤ 0. This can be achieved by selecting parameters δi, i = 1,2,3. To this
end, we recall the reliability of η(uk−1,pk−1, Tk−1) in Lemma 2.1 with the multiplication
coefficient CRel :

∥∥∇k−1(u − uk−1)
∥∥2

L2(Ω)
+ ‖p − pk−1‖2

L2(Ω)
≤ CRelη

2(uk−1,pk−1, Tk−1). (4.20)

Further, we take δ1 = δ2 + δ3 with 0 < δ1 < min(
γ3(1−β)

CRel (γ1+γ2)
,1). Then, we take

α := (γ1 + γ2)CRel + γ3β + γ4

(1 − δ1)(γ1 + γ2)CRel + γ3 + γ4
.

It is straightforward to see that β < α < 1. As

∑

K∈Tk−1

h2
K‖g‖2

L2(K)
≤ η2(uk−1,pk−1, Tk−1), (4.21)

we obtain

Rk−1(uk−1,pk−1)

≤ ((
1 − α(1 − δ1)

)
(γ1 + γ2)CRel + γ3(β − α) + γ4(1 − α)

)
η2(uk−1,pk−1, Tk−1) = 0.
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This proves that

Gk(uk,pk) ≤ αGk−1(uk−1,pk−1).

Step 3 Finally, we take β1 := γ4/γ3 and rearrange γ2 := γ2(1 − δ2 − δ3)/(1 − δ1)γ1, γ3 :=
γ3/(1 − δ1)γ1, which completes the proof. �

5 The Discrete Reliability

In this section, we prove the discrete reliability. The analysis needs some prolongation op-
erator from Vk to Vk+� with some integer � ≥ 1. Some further notations are needed. Given
E ∈ Ek+�, the edge patch ωE,k of E with respect to the mesh Tk is defined as

ωE,k := {K ∈ Tk,E ⊂ ∂K or E lies in the interior of K}. (5.1)

Let ξE = card(ωE,k). We define the prolongation interpolation I ′
k+�vk ∈ Vk+� for any vk ∈ Vk ,

as
∫

E

I ′
k+�vkds := 1

ξE

∑

K∈ωE,k

∫

E

(vk|K)ds for any E ∈ Ek+�. (5.2)

For the interpolation operator I ′
k+�, we have

I ′
k+�vk = vk for any K ∈ Tk ∩ Tk+� and vk ∈ Vk+�. (5.3)

As we will see in Remark 5.3 below, we cannot directly use the prolongation operator I ′
k+�

in the analysis of the discrete reliability. An averaging operator is needed. Denote Nk as the
set of internal vertexes of the mesh Tk , and denote Sk ⊂ H 1

0 (Ω) as the conforming linear
element space over Tk . Given Z ∈ Nk , the nodal patch ωZ,k is defined by

ωZ,k := {K ∈ Tk,Z ∈ K}. (5.4)

Denote φZ ∈ Sk as the canonical basis function associated to Z, which satisfies φ(Z) = 1
and φ(Z′) = 0 for vertex Z′ of Tk other than Z. We define

EZ := {E ∈ Ek,Z ∈ Nk is one end point of E}. (5.5)

The idea of [10] leads to the definition of the following averaging operator Π : Vk → (Sk)
2:

Πvk :=
∑

Z∈Nk

vZφZ for any vk ∈ Vk, (5.6)

where

vZ = 1

ξZ

∑

K∈ωZ,k

(vk|K)(Z) with ξZ = card(ωZ,k). (5.7)

Given any K ∈ Tk , we have

‖Πvk − vk‖L2(K) + hK

∥∥∇(Πvk − vk)
∥∥

L2(K)
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� h
3/2
K

( ∑

T ∈Tk&T ∩K =∅

∑

E⊂∂T

∥∥[∇kvkτE]∥∥2

L2(E)

)1/2

, (5.8)

for any vk ∈ Vk , see [10] for the proof. Define

ΩR := interior
(⋃{

K : K ∈ Tk\Tk+�, ∂K ∩ ∂(Tk ∩ Tk+�) = ∅})
.

The main idea herein is to take the mixture of the prolongation operators I ′
k+� and Π . More

precisely, we use Π in the region ΩR where the elements of Tk are refined and take I ′
k+� in

the region Tk+� ∩ Tk , and we define some mixture in the layers between them. This leads to
the prolongation operator Jk+� : Vk → Vk+� as follows:

Jk+�vk :=

⎧
⎪⎨

⎪⎩

Πk+�Πvk on ΩR,

I ′
k+�vk on Tk ∩ Tk+�,

vk+�,tr on Ω\(ΩR ∪ (Tk ∩ Tk+�)),

where vk+�,tr is defined as

∫

E

vk+�,trds :=
{∫

E
Πvkds if E ⊂ ∂ΩR∫

E
I ′
k+�vkds otherwise

for any E ∈ Ek+�.

Lemma 5.1 For any vk ∈ Vk , it holds that

∥∥∇k+�(Jk+�vk − vk)
∥∥2

L2(Ω)
�

∑

K∈Tk\Tk+�

∑

E⊂∂K&E�∂(Tk∩Tk+�)

hK

∥∥[∇kvkτE]∥∥2

L2(E)
. (5.9)

Proof As Jk+�vk = Πvk on ΩR and Jk+�vk = vk on Tk−1 ∩ Tk+�, from (5.3) and (5.8),
we only need to estimate ‖∇(Jk+�vk − vk)‖L2(K) = ‖∇(vk+�,tr − vk)‖L2(K) for Tk+� � K ⊂
Ω\(ΩR ∪ (Tk ∩ Tk+�)). Given E ∈ Ek+�, let ϕE be the canonical basis function of the non-
conforming P1 element on Tk+�, which satisfies

∫
E

ϕEds = |E| and
∫

E′ ϕEds = 0 for any
E′ ∈ Ek+� other than E. A direct calculation yields

‖ϕE‖L2(Ω) + hE‖∇k+�ϕE‖L2(Ω) � hE.

Let v′
E := ∫

E
vk+�,tr |Kds and vE := ∫

E
vk|Kds; thus we have

∥∥∇(vk+�,tr − vk)
∥∥

L2(K)
�

∑

E⊂∂K

∣∣v′
E − vE

∣∣/hE. (5.10)

Next we bound the terms |v′
E − vE| for E ∈ Ek+�.

Case 1 E ⊂ ∂ΩR . Let F ∈ Ek be the mother of edge E in the sense of E ⊂ F . Let T ∈ Tk

be the mother of K in the sense of K ⊂ T . Denote the vertexes of T as Zi, i = 1,2,3.
Without losing generality, we assume that Z1 and Z2 are two endpoints of F . Then, the
trace of vk|T on F can be expressed as

vk|F = (vk|T )(Z1)φZ1 + (vk|T )(Z2)φZ2 . (5.11)
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Note that

Πvk|F = vZ1φZ1 + vZ2φZ2 . (5.12)

We recall that vZi
are defined in (5.7) and that φZi

are the canonical basis functions associ-
ated with vertexes Zi for the conforming linear element. Therefore

∣
∣v′

E − vE

∣
∣ =

∣∣
∣∣

∫

E

(Πvk|F − vk|F )ds

∣∣
∣∣

=
∣∣∣∣

∫

E

((
vZ1 − (vk|T )(Z1)

)
φZ1 + (

vZ2 − (vk|T )(Z2)
)
φZ2

)
ds

∣∣∣∣

� hE

(
2∑

i=1

∑

E′∈EZi

h′
E

∥∥[∇kvkτE′ ]∥∥2

L2(E′)

)1/2

. (5.13)

Case 2 E � ∂ΩR . Again, let F ∈ Ek be the mother of E in the sense of E ⊂ F . Then, we
simply have

∣∣v′
E − vE

∣∣ � h
3/2
F

∥∥[∇kvkτF ]∥∥
L2(F )

. (5.14)

By inserting the estimates of |v′
E − vE | from (5.13) and (5.14) into (5.10), we complete the

proof. �
We define the ratio γ as follows:

γ := max
K∈Tk\Tk+�

max
Tk+��T ⊂K

hK

hT

. (5.15)

One observation herein is that γ is bounded for the element K ∈ Tk , which lies in the layer
Ω\(ΩR ∪ (Tk ∩ Tk+�)).

Lemma 5.2 The following discrete reliability holds:
∥∥∇k+�(uk+� − uk)

∥∥
L2(Ω)

+ ‖pk+� − pk‖L2(Ω) � η(uk,pk, Tk\Tk+�). (5.16)

Remark 5.3 If we directly take the prolongation operator I ′
k+� to analyze this discrete reli-

ability, the constant for the established discrete reliability will depend on the ratio γ (see
Appendix for an example).

Proof For any vk+� ∈ Vk+�, we have the following decomposition:

μ
∥∥∇k+�(uk+� − uk)

∥∥2

L2(Ω)

= ak+�(uk+� − uk,uk+� − vk+�) + ak+�(uk+� − uk, vk+� − uk). (5.17)

We will first estimate the first term on the right-hand side of the above equation. It follows
the discrete problem (2.5) that

ak+�(uk+� − uk,uk+� − vk+�) = Rk(uk+� − vk+�) − bk+�(uk+� − vk+�,pk+� − pk). (5.18)

The first term on the right-hand side of (5.18) can be bounded as in (3.7):

∣∣Rk(uk+� − vk+�)
∣∣ �

( ∑

K∈Tk\Tk+�

h2
K‖g‖2

L2(K)

)1/2∥∥∇k+�(uk+� − vk+�)
∥∥

L2(Ω)
. (5.19)
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Now we turn to the second term on the right hand side of (5.18). Thanks to the discrete
inf-sup condition, we use the discrete problem (2.5) to get

‖pk+� − pk‖L2(Ω) � sup
0=vk+�∈Vk+�

bk+�(vk+�,pk+� − pk)

‖∇k+�vk+�‖L2(Ω)

� sup
0=vk+�∈Vk+�

Rk(vk+�)

‖∇k+�vk+�‖L2(Ω)

+ ∥
∥∇k+�(uk+� − uk)

∥
∥

L2(Ω)
. (5.20)

An application of the Cauchy–Schwarz inequality leads to

∣∣bk+�(uk+� − vk+�,pk+� − pk)
∣∣ ≤ ‖pk+� − pk‖L2(Ω)

∥∥∇k+�(uk+� − vk+�)
∥∥

L2(Ω)
. (5.21)

After inserting (5.18), (5.19), (5.20), and (5.21) into (5.17), we use the triangle and Young
inequalities to derive

∥∥∇k+�(uk+� − uk)
∥∥2

L2(Ω)
+ ‖pk+� − pk‖2

L2(Ω)

�
∑

K∈Tk\Tk+�

h2
K‖g‖2

L2(K)
+ inf

vk+�∈Vk+�

∥∥∇k+�(uk − vk+�)
∥∥2

L2(Ω)
. (5.22)

An application of (5.9) bounds the second term on the right-hand side of (5.22). This com-
pletes the proof. �

With γ1 from Theorem 4.4, we define the following energy norm:

|||v, q|||2 := ‖∇v‖2
L2(Ω)

+ γ1‖q‖2
L2(Ω)

, for any (v, q) ∈ V × Q. (5.23)

We denote its piecewise version by ||| · |||k+�.
The following lemma gives links between the error reduction to the bulk criterion.

Lemma 5.4 Let Tk+� be the refinement of Tk with the following reduction:

|||u − uk+�,p − pk+�|||2k+� + γ2 osc2(g, Tk+�)

≤ α′(|||u − uk,p − pk|||2k + γ2 osc2(g, Tk)
)
, (5.24)

with 0 < α′ < 1 and the positive constant γ2 from Theorem 4.4. There exists 0 < θ∗ < 1 with

θ∗η2(uk,pk, Tk) ≤ η2(uk,pk, Tk\Tk+�). (5.25)

Proof It follows (5.24) and the definitions of the norms ||| · |||k and ||| · |||k+� that

(
1 − α′)(|||u − uk,p − pk|||2k + γ2 osc2(g, Tk)

)

≤ |||u − uk,p − pk|||2k + γ2 osc2(g, Tk) − |||u − uk+�,p − pk+�|||2k+� − γ2 osc2(g, Tk+�)

= ∥∥∇k+�(uk − uk+�)
∥∥2

L2(Ω)
+ γ1‖pk − pk+�‖2

L2(Ω)
+ 2

μ
ak+�(u − uk+�, uk+� − uk)

+ 2γ1(p − pk+�,pk+� − pk)L2(Ω) + γ2 osc2(g, Tk) − γ2 osc2(g, Tk+�)

= I1 + I2 + I3 + I4 + I5.
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The first two terms, I1 and I2, are estimated by the discrete reliability in Lemma 5.2,

|||uk+� − uk|||2k+� + γ1‖pk − pk+�‖2
L2(Ω)

≤ CDrelη
2(uk,pk, Tk\Tk+�), (5.26)

where the coefficient CDrel is from Lemma 5.2. The third term I3 can be estimated by the
quasi-orthogonality of the velocity in Lemma 3.4. In fact, let the multiplication constant
therein be the coefficient CQOV , so that we have

∣∣∣∣
2

μ
ak+�(u − uk+�, uk+� − uk)

∣∣∣∣

≤ 2CQOV

∥∥∇k+�(u − uk+�)
∥∥

L2(Ω)

( ∑

K∈Tk\Tk+�

h2
K‖g‖2

L2(K)

)1/2

≤ 1 − α′

2

∥∥∇k+�(u − uk+�)
∥∥2

L2(Ω)
+ 2(CQOV )2

1 − α′
∑

K∈Tk\Tk+�

h2
K‖g‖2

L2(K)
. (5.27)

Next, we use the quasi-orthogonality of the pressure in Lemma 3.5 to analyze the fourth
term, I4. Denote the constant of Lemma 3.5 by CQOP , and we obtain

∣∣2γ1(p − pk+�,pk+� − pk)L2(Ω)

∣∣

≤ 2γ1CQOP

(( ∑

K∈Tk\Tk+�

h2
K‖g‖2

L2(K)

)1/2

+ ∥∥∇k+�(uk+� − uk)
∥∥

L2(Ω)

)
‖p − pk+�‖L2(Ω)

≤ 2γ1(CQOP )2

1 − α′

(( ∑

K∈Tk\Tk+�

h2
K‖g‖2

L2(K)

)1/2

+ ∥∥∇k+�(uk+� − uk)
∥∥

L2(Ω)

)2

+ 1 − α′

2
γ1‖p − pk+�‖2

L2(Ω)
.

Hence it follows from (5.26) that
∣∣2γ1(p − pk+�,pk+� − pk)L2(Ω)

∣∣

≤ 1 − α′

2
γ1‖p − pk+�‖2

L2(Ω)

+ 2γ1(CQOP )2(1 + C
1/2
Drel)

2

1 − α′ η2(uk,pk, Tk\Tk+�). (5.28)

A direct calculation leads to

γ2

∣∣osc2(f, Tk) − osc2(f, Tk+�)
∣∣ ≤ γ2η

2(uk,pk, Tk\Tk+�), (5.29)

we combine (5.26)–(5.29), and (5.24) with the efficiency of the estimator, which proves the
desired result by the parameter

θ∗ = (1 − α′)2CEff

2(2(CQOV )2 + 2γ1(CQOP )2(1 + C
1/2
Drel)

2 + (1 − α′)(CDrel + γ2))
,

with the efficiency constant CEff of the estimator η(uk,pk, Tk) from Lemma 2.1. �
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6 The Optimality of the ANFEM

In this section, we address the optimality of the adaptive nonconforming linear element
method under consideration. We need to control the consistency error κ(σ, T ) defined by

κ(σ, T ) = sup
vT ∈VT

(g, vT )L2(Ω) − (σ,∇T vT )L2(Ω)

‖∇T vT ‖L2(Ω)

with σ = μ∇u + p id, (6.1)

where T is some refinement of the initial mesh T0 by the newest vertex bisection. The
following conforming finite element space is needed:

P3(T ) := {
v ∈ (

H 1
0 (Ω)

)2
, v|K ∈ (

P3(K)
)2

, for any K ∈ T
}
. (6.2)

Then, there exists an interpolation operator ΠT : VT → P3(T ) with the following properties
[28, Lemma A.3]:

∫

E

(vT − ΠT vT ) · cEds = 0 for any cE ∈ (
P1(E)

)2
,

∫

K

(vT − ΠT vT )dx = 0,

(6.3)

for any edge E and element K of T . In addition, we have

‖vT − ΠT vT ‖L2(K) + hK‖∇ΠT vT ‖L2(K) � hK‖∇T vT ‖L2(ωK ). (6.4)

For any sT ∈ VT and qT ∈ QT , we define σT = μsT + qT . The idea of [27, Lemma 2.1]
leads to the following decomposition:

(g, vT )L2(Ω) − (σ,∇T vT )L2(Ω)

= (g, vT − ΠT vT )L2(Ω) − (
σ − σT ,∇T (vT − ΠT vT )

)
L2(Ω)

+ (
σT ,∇T (vT − ΠT vT )

)
L2(Ω)

(6.5)

for any vT ∈ VT . By the properties (6.3) and (6.4), we obtain

κ(σ, T ) � inf
(vT ,qT )∈VT ×QT

|||u − vT ,p − qT |||T + osc(g, T ). (6.6)

This implies that the nonlinear approximate class used in [30] is equivalent to the standard
nonlinear approximate class [7, 19]. Hence, we can introduce the following semi-norm:

E
2(N;u,p,g) := inf

T ∈TN

(
inf

(vT ,qT )∈VT ×QT
|||u − vT ,p − qT |||2T + γ2 osc2(g, T )

)
. (6.7)

Then the nonlinear approximate class As can be defined by

As :=
{
(u,p,g), |u,p,g|s := sup

N>N0

Ns
E(N;u,p,g) < +∞

}
. (6.8)

We must stress that this is the first time the standard nonlinear approximate class [19]
has been used to analyze the adaptive nonconforming finite element method. In the relevant
literature, the discrete solution of the discrete problem has been used to define the nonlinear
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approximate class [5, 6, 34, 39]. Let (uT ,pT ) be the approximation solution of (2.5) on the
mesh T . It follows from the Strang Lemma [22]

|||u − uT ,p − pT |||T � inf
(vT ,qT )∈VT ×QT

|||u − vT ,p − qT |||T + κ(σ, T ),

and the following fact

inf
(vT ,qT )∈VT ×QT

|||u − vT ,p − qT |||T + κ(σ, T ) � |||u − uT ,p − pT |||T ,

that the nonlinear approximate class of [5] is equivalent to As of (6.8). A similar method
herein proves that the nonlinear approximate class of [6, 34, 39] is equivalent to the standard
nonlinear approximate class [19].

Remark 6.1 After we submitted the revised version to the journal, we learnt about that
a different argument of [18] shows that the nonlinear approximate class of [6, 34, 39] is
equivalent to the standard nonlinear approximate class [19].

Thanks to (6.6), we have

|||u − uk−1,p − pk−1|||2k−1

� inf
(vk−1,qk−1)∈Vk−1×Qk−1

|||u − vk−1,p − qk−1|||2k−1 + osc2(g, Tk−1). (6.9)

A straightforward investigation shows that if Tk is any refinement of Tk−1, then it holds that

inf
(vk,qk)∈Vk×Qk

|||u − vk,p − qk|||2k + γ2 osc2(g, Tk)

≤ C3

(
inf

(vk−1,qk−1)∈Vk−1×Qk−1
|||u − vk−1,p − qk−1|||2k−1 + γ2 osc2(g, Tk−1)

)
. (6.10)

With these preparations, following [29], we have the following optimality:

Theorem 6.2 Let (u,p) be the solution of Problem (2.1), and let (Tk,Vk × Qk, (uk,pk))

be the sequence of meshes, finite element spaces, and discrete solutions produced by the
adaptive finite element methods. If (u,p,g) ∈ As with

θ ≤ CEff

2(2(CQOV )2 + 2γ1(CQOP )2(1 + C
1/2
Drel)

2 + CDrel + γ2)
.

Then, it holds that

|||u − uN,p − pN |||2N + γ2 osc2(g, TN) � |u,p,g|2s (#TN − #T0)
−2s . (6.11)
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Appendix: A Counter Example

We present an example in this appendix to show that if the prolongation operator I ′
h defined

by (5.2) is directly used to analyze the discrete reliability of the estimator, the constant for
the established discrete reliability could depend on some key mesh refinement ratio

γ := max
K∈TH \Th

max
Th�T ⊂K

hK

hT

,

where TH is some regular triangulation of Ω into triangles and Th is some refinement of
TH . To this end, we first give an example to demonstrate that there are generally no positive
constants C independent of γ such that the following estimate holds true:

∑

E∈Eh\EH

∫

E

[uH ]
{

∂vh

∂νE

}
ds ≤ C

( ∑

E∈EH \Eh

h−1
E

∥∥[uH ]∥∥2

L2(E)

)1/2

‖∇hvh‖L2(Ω), (A.1)

where uH ∈ VH is the finite element solution of the velocity on the mesh TH and vh is some
element of Vh over the nested fine mesh Th. As usual, EH (resp. Eh) is the set of the edges of
TH (resp. Th). Denote VH (resp. Vh) as the nonconforming linear element space with respect
to TH (resp. Th). Denote [·] as the jump of some function across the edge E and {·} as the
average of some function across the edge E. In addition, denote νE as the unit normal vector
to E with the length hE .

In the following, an example is given to show that uH ∈ VH and vh ∈ Vh exist such
that the above constant C depends on the ratio γ . For simplicity, let TH consist of two
triangles �ABC and �ACD as in Fig. 1. Let Th be a uniform triangulation of Ω into
2 × N2 triangles, cf. Fig. 1 for the case N = 5. We stress that the idea and result can be
easily extended to the mesh with the newest vertex bisection. For the sake of simplicity, let
N = 2k + 1 with some nonnegative integer k. Let Zi , i = −k, . . . , k, be the nodes of Th

whose coordinates are ( 1
N

, 2i
N

). Let φZi
be the nodal basis function of the conforming linear

element space defined over Th such that φZi
(Zi) = 1 and φZi

(Z) = 0 for any node Z other

Fig. 1 The meshes TH and Th
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than Zi . We choose uH ∈ VH such that the jump is [uH ] = y over the edge AC. We choose
vh as follows:

vh :=
k∑

i=−k

sign(i)φZi
with sign(i) :=

⎧
⎪⎨

⎪⎩

1 if i > 0,

0 if i = 0,

−1 if i < 0.

(A.2)

Note that { ∂φZi

∂νE
} = N/2 over the edge AC for i = −k, . . . , k. A direct calculation gives

∫

AC

[uH ]
{

∂vh

∂νE

}
ds = N/2 − 1

2N
. (A.3)

On the other hand, a direct calculation leads to

‖∇hvh‖2
L2(Ω)

≤ 4N. (A.4)

This indicates that the constant C in (A.1) should be O(
√

N), which depends on the ratio
γ = O(N) for this example.

For the analysis of the discrete reliability, a direct application of the prolongation operator
I ′
h as defined in (5.2) will lead to a similar estimate like (A.1), and, as a result, the constant

for the established discrete reliability based on such an estimate will depend on the ratio
γ . Note that in the analysis of optimality of the adaptive method it is possible to know that
Th is some refinement of TH only by the newest vertex bisection [8, 19, 40]. Note, too, that
there is no guarantee that γ is bounded. Therefore, the proof of the discrete reliability based
on the prolongation operator I ′

h as presented in [5, 30] may not lead to a uniform estimate
as claimed.
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