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Abstract In this paper, we analyze the convergence and optimality of a standard adaptive
nonconforming linear element method for the Stokes problem. After establishing a spe-
cial quasi-orthogonality property for both the velocity and the pressure in this saddle point
problem, we introduce a new prolongation operator to carry through the discrete reliability
analysis for the error estimator. We then use a specially defined interpolation operator to
prove that, up to oscillation, the error can be bounded by the approximation error within
a properly defined nonlinear approximate class. Finally, by introducing a new parameter-
dependent error estimator, we prove the convergence and optimality estimates.

Keywords Adaptive finite element method - Convergence - Optimality - The Stokes
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1 Introduction

The adaptive finite element method plays an important role in the numerical solution for par-
tial differential equations [1, 2, 42]. The convergence and optimality of the adaptive method
have been much studied in recent years. For the Poisson equation and its variants, the theory
is well-developed [9, 15, 19, 20, 26, 35-38, 40, 41]. However, for many other important
problems this is not the case. Among these under studied problems is the Stokes problem,
the main subject of this paper.
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The convergence analysis of the adaptive finite element method of the Poisson equation
is based on the orthogonality property [19, 26, 35, 36], such orthogonality can be weakened
to some quasi-orthogonality for the nonconforming and mixed methods [4, 6, 14, 15, 17,
20, 21, 29, 31, 34, 39]. The Stokes problem, as a saddle point problem with two variables
(velocity and pressure), lacks the usual orthogonality or quasi-orthogonality that holds for
the positive and definite problem. As a result, it is not obvious how the technique for non-
conforming and mixed methods for the Poisson equation can be carried over to the Stokes
problem. Although the mixed formulation of the Poisson equation is also a saddle point
problem, analyses of this formulation’s convergence and optimality [4, 17, 20] are not so
different from that for the primary formulation of the Poisson equation. The reason is that
only the stress variable, which can be decoupled from the primary variable, needs to be
involved in the analysis. This is not, however, the case for the Stokes problem under con-
sideration here because the two variables, velocity and pressure, are coupled and cannot
be separated in analyses of the convergence and optimality. To circumvent this difficulty,
Bansch, Morin, and Nochetto developed a modified adaptive procedure in which the Uzawa
algorithm on the continuous level is used as the outer iteration [3, 32, 33]. See also [24] for
adaptive wavelet methods.

The optimality of the adaptive finite element method for the Poisson equation is analyzed
based on discrete reliability (see [19, 40, 41] and the references therein). Basically, we need
one restriction operator and one prolongation operator in order to analyze the discrete reli-
ability. For the conforming method, a natural candidate for the prolongation operator is the
usual inclusion operator, and for the restriction operator a Scott—Zhang-type can be used as
it has both the local projection property and the global and uniform boundedness property.
For the nonconforming method under consideration here, however, it is a challenge to come
up with a prolongation operator that has both the local projection property and the global
and uniform boundedness property. For the nonconforming linear element method for the
Poisson equation, such a difficulty can be circumvented using the discrete Helmholtz de-
composition [6, 39]. However, the Helmholtz decomposition seems not applicable for the
problem under consideration because the existence of such a decomposition is unclear for
the general case.

The first convergence and optimality analysis of a standard adaptive finite element
method for the Stokes problem was presented in a technical report [30] in 2007 by the
authors of this paper. The analysis was based on some special relation between the noncon-
forming P; element and the lowest Raviart-Thomas element for the Stokes problem and
one prolongation operator between the discrete spaces. But we later found a gap in our dis-
crete reliability analysis caused by the prolongation operator used therein. A convergence
and optimality analysis was published in [5] in 2011; however, we also found a gap in their
analysis similar to that in our earlier report [30] (see Appendix for more details).

The present paper is an improved version of [30] with simplified and corrected proofs. Its
purpose is to provide a rigorous analysis of the convergence and optimality of the adaptive
nonconforming linear element method for the Stokes problem. The main idea is to establish
the orthogonality or quasi-orthogonality of both the velocity variable and the pressure vari-
able. The nonconformity of the discrete velocity space is the main difficulty in establishing
the desired quasi-orthogonality property and the discrete reliability estimate. To overcome
this difficulty we take two steps, (1) we establish the quasi-orthogonality for both the ve-
locity and pressure variables by using a special conservative property of the nonconforming
linear element, and (2) we introduce a new prolongation operator that has both the projec-
tion property and the uniform boundedness property for the discrete reliability analysis. To
analyze optimality within the standard nonlinear approximate class [19], we define a new
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interpolation operator to bound the consistency error and prove that the consistency error
can be bounded by the approximation error up to oscillation. This in fact implies that the
nonlinear approximate class used in [30] is equivalent to the standard nonlinear approximate
class [7, 19]. Finally, by introducing a new parameter-dependent error estimator, we prove
convergence and optimality estimates for the Stokes problem.

The rest of the paper is organized as follows. In Sect. 2 we present the Stokes problem
and its nonconforming linear finite element method, and recall a posteriori error estimate
according to [12, 13, 16, 25]. We prove the quasi-orthogonality in Sect. 3 and then show the
reduction of some total error in Sect. 4 in terms of a new parameter-dependent estimator.
We introduce a new prolongation operator to establish discrete reliability in Sect. 5. And,
we show optimality of the adaptive nonconforming linear element method in Sect. 6.

2 The Adaptive Nonconforming Linear Element

Let us first introduce some notations. We use the standard gradient and divergence operators
Vr :=(dr/dx, dr/dy) for a scalar function r, and div ¢ := 9, /dx + 9y, /dy for a vector
function ¥ = (¢, V). Given a polygonal domain £2 C R? with the boundary 92, we use
the standard notation for Sobolev spaces, such as H'(£2) and L?(£2). We define

HOI(.Q)::{veHl(.Q),v:OonBQ}, and
L3(£2) ::{qeLz(.Q),/ quzo}.
fo}

In addition, we denote (-, -);2(o) as the usual L? inner product of functions in the space
L*($2),and || - || (o) the L* norm.

Suppose that £2 is covered exactly by a sequence of shape-regular triangulations 7;
(k = 0) consisting of triangles in 2D (see [11, 22]), and that this sequence is produced
by some adaptive algorithm where 7; is some nested refinement of 7;_; by the newest ver-
tex bisection [40, 41]. Let & be the set of all edges in 7; £(£2) the set of interior edges;
£(K) the set of edges of any given element K in 7;; and hx = | K|'/? the size of the element
K € T; where |K| is the area of element K. wg is the union of elements K’ € 7; that share
an edge with K, and wg is the union of elements that share a common edge E. Given any
edge E € &(£2) with the length Ay, we assign one fixed unit normal vg := (v;, v;) and
tangential vector tg := (—V;, v;). For E on the boundary, we choose vg := v, the unit out-
ward normal to £2. Once vg and tf are fixed on E, in relation to vg we define the elements
K_eT.and K, € T, with E = K. N K_. Given E € &£.(£2) and some R¢-valued function
v defined in £2, with d = 1, 2, we denote [v] := (v|x,)|g — (v|x_)|£ as the jump of v across
E, where v|g is the restriction of v on K and v|g is the restriction of v on E.

2.1 The Stokes Problem and Its Nonconforming Linear Element

The Stokes problem is defined as follows: Given g € L2(£2)?, find (u,p) € V x Q =
(H{ (£2))* x L3(£2) such that

a(u,v) +bw, p) +b(u,q) =(g,v)2o forany (v,q)eV x Q, 2.1)
where u and p are the velocity and pressure of the flow, respectively, and
a(,v):=uVu,Vv) 2o, and b(v,q):=(divv, g);2g), 2.2)

where p > 0 is the viscosity coefficient of the flow.
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Given o C R? and some integer £, denote P;(w) as the space of polynomials of degree
< ¢ over w. We define

Vi = {Uk € L*(£2)%, w|x € P1(K)? for any K € Ty, / [ve]lds =0 for any E € &(£2),
E

and / vkds:OforanyEefkﬂa.Q},
E

O = {a € 0. qilx € Py(K) forany K € T, }.
Since Vj is not a subspace of H!(£2)?2, the gradient and divergence operators are defined
element by element with respect to 7;, and denoted by V; and div,. Define the piecewise
smooth space
H' () :={ve L*(2),v|x € H'(K) for any K € T} (2.3)
The discrete bilinear forms read
ar(u, v) := u(Viu, Viv) 2oy and b (v, q) 1= (divg v, 9) 12(g2) 249
for any u, v e (H'(7;))?, and g € Q.
The nonconforming P; element, proposed in [23], for the Stokes problem is as follows:
Given g € L%(£2), find (uy, px) € Vi x Qy such that
g, v) + be(v, po) + b, @) = (8.v) 120y forany (v.q) € Vi x Qr. (2.5)
Let id € R?*? be the identity matrix. Define
ok = Vi + prid.
Then, we have
(01, Vivr) 12(2) = (8- W) 12(y  for any v € V. (2.6)

2.2 The a Posteriori Error Estimate

To recall the a posteriori error estimator of the nonconforming P; element, we define the
residual Ry_;(-) by

Re—1(v) := (8, V) 2() — @k (ug—1,v) — br(v, px—y) forany ve H' (%)%, 2.7)

with the solution (u#y_1, px—1) of (2.5) on the mesh 7;_;, which is a coarser and nested mesh
of 7. It follows from the definition of (u;_;, py—1) that

Ri—1(ve—1) =0 forany vy_; € Vi_;.

Given K € 7, we define the element estimator

12
Nk (i, pi) == hgllgll2i + < Z hx ” [Vk’/lkTE]”iz(E)) . (2.8)

ECdK

@ Springer



J Sci Comput (2013) 55:125-148 129

Given S; C 7, we define the estimator over it by

0 (i i SO =) M (i, po)- 2.9

KeSi

Given any K € T;, denote gx as the L? projection of g onto Py(K ). We define the oscillation

0sc(g, ) == Y hillg — gk 72z (2.10)
KeTy

The reliability and efficiency of the estimator n(uy, pr, 7;) can be found in [12, 13, 16,
25], as stated in the following lemma.

Lemma 2.1 Let (u, p) and (uy, pr) be the solutions of the Stokes problem (2.1) and the
discrete problem (2.5), respectively. Then,

2
”Vk(u - uk)”LZ(Q) + ”p - Pk”iZ(Q) rg nz(uka Pk 77()5 (2'11)
2
(ks P T S | Vi = u) [ 2y + 12 = Pellfagg) + 0567 (8, T0). (2.12)

Remark 2.2 For the Stokes problem, the estimator usually involves the pressure approxima-
tion. For the nonconforming P; element, as shown in the above lemma, we can decouple the
pressure from the velocity [25].

Here and throughout the paper, we use the notations < and . When we write
Ay <B;, and A, =B,
possible constants C, ¢; and C; exist such that
A <C/By, and ;B <A, <(C,B;.
2.3 The Adaptive Nonconforming Finite Element Method

The adaptive algorithm is defined as follows: Let 7 be an initial shape-regular triangulation,
aright-side g € L2(£2)?, a tolerance ¢, and a parameter 0 < 6 < 1.

Algorithm 2.1 [7y,uy, py] = ANFEM(7y, g, ¢€,6)
n=¢€,k=0
WHILE 5 > ¢, DO

(1) Solve (2.5) on 7; to get the solution (uy, py).
(2) Compute the error estimator 1 = n(uy, pk, 7x).
(3) Mark the minimal element set M, such that

n*(ug, pr, My) > 00 (ug, pe, o). (2.13)

(4) Refine each triangle K € M, by the newest vertex bisection to get 7;4; and set k =:
k+1.

END WHILE

Iy =T.
END ANFEM
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3 Quasi-orthogonality

The quasi-orthogonality property is the main ingredient for the convergence analysis of the
adaptive nonconforming method under consideration. In this section we establish such a
property by exploring the conservative property of the nonconforming linear element and
by confirming that the stress is piecewise constant. To this end, we define a canonical inter-
polation operator I1; for the nonconforming space V; and a restriction operator /;_; from
V. to the coarser space V;_;. Given v € V, we define the interpolation IT;v € V; by

/Hkvds :=/ vds forany E € &. 3.1
E E

In this paper, the above property is referred to as the conservative property. This property is
crucial for the analysis herein. A similar conservative property was first explored in [29] to
analyze the quasi-orthogonality property of the Morley element.

The interpolation admits the following estimate:

lv =TIl 2k ShellVull2g, forany K € randve V. (3.2)

Given vy € Vi, we define the restriction interpolation I;_jv; € Vi_; by
¢
/ Li_iveds := Z/ vwds, Ee€&_iwithE=E UE,U---UE;and E; € &. (3.3)
E =1 E;

The properties of the restriction operator /;_; are summarized in the following lemma.

Lemma 3.1 Let the restriction operator I,y be defined in (3.3). Then,

Ly =v; forany K € T, NT4_y, v € Vy, 34

IMe—1vk — vell2y S bl Vivllzy  for any K € T\, vy € Vi. (3.5)

Proof The property (3.4) directly follows from the definition of the restriction interpolation.
Only the estimate (3.5) needs to be proved. In fact, both sides of (3.5) are semi-norms of
the restriction (V) of Vi on K. If the right-hand side vanishes for some v € (V})g, then
vy 1s a piecewise constant vector over K with respect to 7. Given the average continuity of
vy across the internal edges of 7, it follows that vy is a constant vector on K. Therefore,
the left-hand side also vanishes for the same v;. The desired result then follows a scaling
argument. ]

Remark 3.2 An alternative proof for the inequality (3.5) follows the discrete Poincare in-
equality established in [10] for the scalar function, which is further investigated in [39].
Notice that the positive constant of (3.5) is independent of the ratio

h
y = max max —K, 3.6)
KeTj_|\Ty T,3TCK hy

see [39, Lemma 4.1] for more details.
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Lemma 3.3 Let (u;_1, pr_1) be the solution of the discrete problem (2.5) on the mesh T .
It, therefore, holds that

1/2
|Rk_1<vk)|s( > hi||g||iz(K)> IVevell2i@) foranyveeVie  (3.7)

KeT_\ Ty
Proof For the reader’s convenience, we recall the definition of the residual as follows:

Ri—1(vx) = (8, vi) 22y — (Ok—1, ViU 12(02)- (3.8)

To analyze the right-hand side of the above equation, we set vy_; = Iy_jv;. As op_; iS a
piecewise constant tensor with respect to the mesh 7;_,, the definition of the interpolation
operator I;_; in (3.3) leads to

/(vk — V1) - 0k—1Vgds =0 forany E € &_;. 3.9)
E

For any E € & that lies in the interior of some K € 7;_, the integral average of v; over E
is continuous and oy_ is a constant on K. Then,

/ [Uk - vk—l] . O'k_ll)EdS =0. (310)
E
By integrating parts on the fine mesh 7; and using (3.9) and (3.10), we get

(Vi (v _vk—l)vo'k—l)Lz(_Q) =0. (3.11)

Inserting this identity into (3.8) and adopting the discrete problem (2.5), we employ proper-
ties (3.4) and (3.5) of the interpolation operator /;_; to derive

IRe-1 ()| = (8, ve — vim) 2| < Z gl L2 llve — vt Il L2k

KeT—1\Tk
(3.12)
s Z hillglzao I Vvl L2y
KeTp—1\Tk
which completes the proof. |

Lemma 3.4 (Quasi-orthogonality of the velocity) Let (uy, px) and (uy—_1, px—1) be the dis-
crete solutions of (2.5) on Ty and T;._1, respectively. Then,

12
\ak(u—uk,uk—ukqﬂ,SIIVk(u—uk)HLz(m( > hillgHiz(K)) :
KeTr 1\ Tx

Proof The Stokes problem (2.1) and the discrete problem (2.5) give
a(u — g, ug — ug—1) = (Vi — wy), op — kal)Lz(_Q)- (3.13)

Given that (divi(u — up), px — pi-1)r2(2) =0, let vy = I (u — uy). And, 0y — 031 is a
piecewise constant tensor with respect to the fine mesh 7 ; therefore, by the definition of the
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interpolation operator 7 in (3.1), we integrate by parts on 7; to obtain
(Vi (@ — up) — v), o0 — ak_l)Lz(Q) =0. (3.14)
From the discrete problem (2.5), we have
ar(u — wpe, g — ug—1) = (8, Vi) 122y — (ViVks k1) 12(2) = Re—1(ve).- (3.15)

The term on the right-hand side of (3.15) can be estimated by the inequality (3.7) as follows:

Reci@o| S D hxllglzao I Vevel 2k,

KeTio\ Tk

S kgl Vi —ud | 2
KeT—1\Tk

which completes the proof. ]

Lemma 3.5 (Quasi-orthogonality of the pressure) Let (uy, px) and (ug—1, px—1) be the dis-
crete solutions of (2.5) on T, and Tj._1, respectively. Then,

|(p = Prs Px — Pr—1 1202 |

1/2
< <( >k IIgllizao) + || Vi — ue—n) | wm)llp — pill 2oy (3.16)

KeTp—1\Tk
Remark 3.6 The quasi-orthogonality of the pressure herein is different from those for the

nonstandard method of the Poisson equation [14, 15, 20] by the fact that both ||V (u; —
ur— 22y and || p — pill 2y appear on the right-hand side of (3.16).

Proof Let Iy be the L? projection operator from L%(.Q) onto Qy. It follows from the
discrete inf-sup condition that there exists v, € V} with

divivg =Hoxp — pr, and  [|Vivell 200y S 1ok p — pell 2o 3.17

Since py — pr—1 € Ok, it follows from the continuous problem (2.1), the discrete problem
(2.5), and the definition of the residual (2.7) that

(P = Pr> Pk — Pr—1)12¢2y = (divi Uk, pr — Pr—1)12(2) = Re1(0i) + ax (i1 — ug, vi).
We use the estimates in (3.7) and (3.17) to get

|(p = Prs P — Pe—D 20|

1/2
s(( > hingnizm) +||vk<uk—uk_oHLz(m)np—pkan(m,

KeTp1\Tk

which completes the proof. a
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4 The Convergence of the ANFEM

To prove the convergence of the adaptive algorithm, we first prove the reduction of the er-
ror between the two nested meshes, 7, and 7;_;, where 7 is the refinement of the coarser
mesh 7;_; with (2.13) by the newest vertex bisection. In order to control the volume part

2 2 . . . .
.ZKGTH T hyllgll 12k, Appearing in Lemmas 3.4 and 3.5, we introduce the following mod-
ified estimator:

P, pens T = ) (Bihicllglyag, + Mk (a1, peor)) (4.1)
KeTy—

with the positive constant 8, > 0 to be determined later. Note that this modified estimator
is introduced only for the convergence analysis and that the final convergence and optimal
complexity will be proved for Algorithm 2.1.

Note that the volume residual ) KeTi h%(II glli2 (&) does not contain the unknowns.
Hence, we add it to settle down the lacking of the Galerkin-orthogonality or quasi-
orthogonality. We stress that the Galerkin-orthogonality or quasi-orthogonality is an essen-
tial ingredient for the convergence analysis of the adaptive conforming, nonconforming, and
mixed methods for the Poisson-like problems [14, 15, 19, 20, 26, 35, 36]. This is another
reason that we need a modified estimator as in (4.1).

We list three standard components for the convergence analysis of the adaptive method,
which can be proved by following the arguments, for instance, in [15, 19, 26].

Lemma 4.1 Let T} be some refinement of T;._ from Algorithm 2.1, then p > 0 and a positive
constant € (1 — pb, 1) exist, such that

0 i1, pr—1, T) < B> a1, pr—1, Teet) + (1 — p8 — B w1, pr—1, Tio1). (4.2)

Proof The result can be proved by following the idea in [15, 19, 26]. The details are only
given for the readers’ convenience. In fact, we have

N U1, Pre—ts o) = 0> Wi—1, pr—1s Temt VT + 0 i1, pr—1s Te\Tio1).- 4.3)

For any K € 7;_1\7;, we only need to consider the case where K is subdivided into
K\, K; € T; with |K| = |K;| = %|K|. As [Vi_jug—1tg] = 0 over the interior edge E =
K, N K, € &, we have

2
Z’?%g (ug—1, px—1)

i=1

2 , 124 2
= Z(hk,- gl + < Z hi, | [Vk—luk—l'CE]”Lz(E)> )
i=l

ESECOK;

—

< W'ﬁ((”k—lv Di—1)

! 124 2
:=m<hK||g”L2(K)+< Z hK”[Vk—luk—ITE]”iz(E)> ) . 4.4

Er—12ECIK
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Consequently,
2 1
Z Zfﬁq (Ug—1, pr—1) < ﬁ’?z(ukq’ Di—1> Te—1\T). 4.5)
KeTp1\Tx i=1
Letp=1- 55 /2 , therefore, we obtain
0% (-1, 1, To) < 0% (-1, pe—1, Tem1) — o0 (a1, pr—ts Te—1\ ). (4.6)

Choosing the positive parameter 8 with 1 — p6 < B < 1, we combine the above inequality
and the bulk criterion (2.13) to achieve the desired result. O

Lemma 4.2 Let 7 be some refinement of T;._; produced in Algorithm 2.1, then there exists
p > 0 such that

D ohklelag < Y kgl = DL Bkl 4.7)

KeTy KeTiy KeTp_\Tx
Proof This can be proved by a similar argument proposed in the previous lemma. ]

Lemma 4.3 (Continuity of the estimator) Let uy and uy_; be the solutions to the discrete
problem (2.5) on the meshes T, and T;._, obtained from Algorithm 2.1. Given any positive
constant €, there exists a positive constant 3,(€) dependent on € such that

0 (i, pe. T) < (14 n*(wier et To) + ﬂ()uvm o 48

Proof Given any K € 7, it follows from the definitions of ng (ux, px) and ng (Ux—1, pr—1)
in (4.4) that

|k (e, ) — nk (i1, pe—1)|

s 12 ) 1/2
(2 melvanalen) —( X el il

E3ECIK E3ECIK

12
E( Z hK”[vk(”k_Mk—l)TE]“;(E)) .

Ex3ECIK

Given E € &, let K, K, € 7; be the two elements that take E as one edge. Then, we use
the trace theorem and the fact that V (u; — u;_;) is a piecewise constant tensor to get

H [Vk(uk - “kfl)tE] ||L2(E)
< || Vi — ux—1)telk, ”Lz(E) + | Vi — ur—1) ek, ”Lz(E)

Sh'”? Vi — wi—n)| (4.9)

(wg)’

which gives

Nk (i, pi) < Nk Wit pr=1) + Ceon | Vil — ur—1) |2 (4.10)

(wg)’
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for some positive constant Cc,,. Given any positive constant €, we apply the Young inequal-
ity to get

Céan(l + 6) |
€

2
g (i, pi) < (1 + ng (1, pe—1) + | Vi (e — qu)”,‘z(wy 4.11)

A summation over all elements in 7; completes the proof with 8,(¢) = where the

Me
c2,,(+e)’
positive constant M depends on the finite overlapping of the patches wg . O

In the following theorem, we prove the convergence of the adaptive nonconforming finite
element method for the Stokes problem. The main ingredients are the quasi-orthogonality of
both the velocity and the pressure in Lemmas 3.4 and 3.5, and the relations of the estimators
between two the meshes 7; and 7;_; presented in Lemmas 4.1-4.3.

Theorem 4.4 Let (u, p) and (uy, pr) be the solutions of (2.1) and (2.5). Then yy, y», 1 >0
and 0 < o < 1 exist, such that

[Vt = w2, + 111l = PillZag) + V2 ar pic T0)
< o] Viei (u — ug—y) ”iz(m +wlp— P ”izm)
+ V217 i1, Pr—ts Tr-1))- (4.12)

Proof First, we adopt the quasi-orthogonality of both the velocity and the pressure. Denote
the multiplication constant in Lemma 3.4 by Cpov. As

” Vi (u — uk)”iZ(Q) = ||Vk(u - ’/lk—l)”iz(Q) - ||Vk(14k - uk—l)”iz(g)
— 2(Vi(u = ug), Vil — ug—1)) 12 (4.13)

it follows from the quasi-orthogonality of the velocity in Lemma 3.4 and the Young inequal-
ity that

(1= 80| Ve — ) [},

< ||Vioi(u — Mk—1)||iz(9) — || Vi (i — uk—l)”iz(g)
+C6D Y gl (4.14)
KeTy 1\ Tx

c? . e
where C,(8;) = Q[Sf’v for any positive constant 0 < §; < 1. Denote the multiplication con-

stant in Lemma 3.5 by Cgyop. From the quasi-orthogonality of the pressure proved in
Lemma 3.5 and the Young inequality, we have

(1= 8= 8)lp = pill2aigy < 10 = Pty — 1Pk — Pici 12,
1

2
+ FXES) | Vi (i — Mkfl)”Lz(Q)
+OB) Y il (4.15)
KeTy 1\ Tx

@ Springer



136 J Sci Comput (2013) 55:125-148

2
and C(8,) = —22% for any constants 0 < &,, 83 < 1. Then we multiply

here B5(33) =
the inequality (4 14) by y1 > 0 and the inequality (4.15) by y» > 0 to obtain

2
(=8| Vie1 (u — up) HLz(Q)-H/z(l =& —=&)lp- Pk||iz(9)

< 1| Ve (u — wi—y) HiZ(Q) +»2llp — pr—1 ||2Lz(9>

<y1 — m)”Vk(uk Uj— l)”LZ(Q)

= 72llPx — Pr—1 ||Lz(9) + (nCi61) +12C2(82))

x ) hklgliag (4.16)

KeTio\Ti

For the presentation, we introduce some short-hand notations for any positive constants
V3, va > 0:

2
& (up, pr) = 1 (1 =8| Vi1 (u — Mk)HLz(m + (1 =8 —38&)lp— Pk”iz(g)

+van e pio T +va Y hllgll o
KeTy

— 2
&1 (e—1, pr—1) == 11| Vi1 (u — Mkfl)”Lz(_Q) +120lp — Pr-1 ||iz(m

+ 3B e, P T +va Y hlgla g 4.17)
KeTy_y

Second, we use the continuity of the estimators from Lemmas 4.1-4.3 to cancel both the
term || Vi (ux — ux—1)|l12¢o) and the volume estimator. In fact, from (4.2) and (4.8), we have

2
0 (i, prs To) < B0 (et prers Te—1) + k(uk_uk—l)HLz(Q)

Ba(e >”
+ (1= p0 — BY(L+€) +eB)n* (w1, pr—1, Ter). (4.18)

Then we combine the above inequality with the inequalities (4.16) and (4.7) to obtain

& (i, pr) < Gy Uiy, pi—1) — <V1 - 133)233) - 52)/(36)) (| Vi (utge — uk—l)”iz(())

— 12l Pk = Pt B )+ 13((1 = p8 = BY(L + €) + €B)n* (s picr. Ticr)

+ (11 C1(81) + 12C2(82) — vap) Z h ||g||iz(K)~

KeTjo\Ti

It remains to prove that the positive constants 6;,i = 1,2,3, y;,i =1,2,3,4, €, 8, and
B exist such that the contraction (4.12) holds for some constant 0 < o < 1. Further it is
possible that the constant dependent on the choices of the aforementioned parameters but
independent of the meshsize 4 and the level k. This will be achieved in the following three
steps.
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Step 1  For the second, fourth, and fifth terms on the right-hand side of the above inequality
to vanish, we set

’

— V3
V2= (7/1 Bate )>ﬂ3(33) with y; > 5
va = (11Ci1(81) +12C2(82)) /P, (4.19)
B=0—-pH(d+e).

Note that y», y4, and B will be determined after §;,i = 1,2, 3, y;, y3, and € have been
specified. In the following, we assume that € is fixed in such a way that 0 < 8 < 1. Also, we

let y; and y; be fixed such that y; > 5© (6) and y, > 0. Hence, we have

&y (. pr) < 1 (Ur—1, pr—1)-
Let the positive constant « with 8 < o < 1 be determined later. We define
Ri—1(Uk-1, px—1)
2 2
=(1—a(l=8))n | Vi1 (u— uk—l)”Lz(Q) + (1 —a(l =8 —83))llp — pr—1 720

+ 3B — e’ (et Pt Tee) + va(l— @) Y hxlIgllag-

KeTy—y

Then we perform the decomposition @k,l(uk,l,pk,l) = a1 (Ug_1, pr—1) +
Ri—1(Ug—1, pr—1) to get

O (ur, pr) < a®p_i(Ug—1, pr—1) +Ri—1Wr—1, pr—1).

Step 2 Now we only need to show that it is possible to choose o < 1 such that
Ri—1(Uk—1, px—1) < 0. This can be achieved by selecting parameters §;,i = 1,2, 3. To this
end, we recall the reliability of n(ui_1, pr—1, Zx—1) in Lemma 2.1 with the multiplication
coefficient Cg,;:

2
[ Vi1 = w2y + 12 = Pr-ilfa gy < Cran® -1y pits Tie)- (4.20)

Further, we take §; = 8, + 83 with 0 < §; < min(%, 1). Then, we take

i+ v)I)Crat Bt vs
(I =80 +v)Cra+v3+va

It is straightforward to see that 8 <« < 1. As

Y hilg g, < 0P, peors i), @21
KeTy

we obtain

Ri—1(Ug—1, pr—1)
<((1—a=8)) +¥2)Cra + v3(B — @) + ya(1 — )0 (ur—1, px—1. Tx—1) =0.
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This proves that

Oy (ur, pr) < aB_1(Ur—1, pr—1)-

Step 3 Finally, we take B := y4/y3 and rearrange y, := y2(1 — 8, — 83) /(1 = 8 y1, y3 1=
y3/(1 — &1)y1, which completes the proof. o

5 The Discrete Reliability

In this section, we prove the discrete reliability. The analysis needs some prolongation op-
erator from V; to Vi, with some integer £ > 1. Some further notations are needed. Given
E € &4y, the edge patch wg ; of E with respect to the mesh 7y is defined as

wp i :={K €7, E C 0K or E lies in the interior of K}. 5.1

Let £z = card(wg x). We define the prolongation interpolation I, ,vi € Vi1 for any v € Vi,
as

1

I vds .= — /(v| )ds forany E € & . (5.2)
./EkJrgk Er Z . kK y k+¢

Kewg i
For the interpolation operator I;_ ,, we have

Iiove =v; forany K € Ty N Ty and vy € Viye. (5.3)

As we will see in Remark 5.3 below, we cannot directly use the prolongation operator I; ,
in the analysis of the discrete reliability. An averaging operator is needed. Denote A, as the
set of internal vertexes of the mesh 7;, and denote S, C HO1 (£2) as the conforming linear
element space over 7;. Given Z € N, the nodal patch wyz ; is defined by

wz={K eTi,.Z K} (5.4)

Denote ¢; € S; as the canonical basis function associated to Z, which satisfies ¢(Z) =1
and ¢(Z") = 0 for vertex Z' of 7; other than Z. We define

Ey:={E €&, Z € Ny is one end point of E}. (5.5)

The idea of [10] leads to the definition of the following averaging operator I7 : Vi, — (S;)%:

Iy := Z vz¢z forany v € Vj, (5.6)
ZeNy
where
1 .
vy = 5_ Z (vlx)(Z)  with &z = card(wz ). 5.7
z Kewz i

Given any K € 7}, we have

Tk — vill 2 + b | VT — vk)“Lz(K)
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1/2
5@/2( > Z}I[VkvkrE]IIiz(E)> : (5.8)

TeT &TNK#AW ECOT

for any vy € Vj, see [10] for the proof. Define
Q= interior(U{K K € T\Tese, K NO(Te N Tose) = @}).

The main idea herein is to take the mixture of the prolongation operators I, , and IT. More
precisely, we use I7 in the region £z where the elements of 7; are refined and take /,_, in
the region 7+, N 7;, and we define some mixture in the layers between them. This leads to
the prolongation operator Jyy, : Vy — Vi as follows:

H;H_gnvk on .QR,
Jepevi = Lo on Ty N Trye,
Vkt.or on 2\(2r U (Tx N Trye)),

where vy, is defined as

TTvds if E $2
/ Ve rds == IE , vids HEC 8 R for any E € Eyy.
E [z I ouds  otherwise

Lemma 5.1 For any v, € Vy, it holds that

” Vire(Jeyevk — Uk)“ iz(m S Z Z hk ” [Vivete] ||i2(E)' (5.9)
KeTi\Tk+¢ ECOK&EZd(TxNTjiqr)

Proof As Jyievp = v, on 2% and Jyievp = v on Ty N Tiqg, from (5.3) and (5.8),
we only need to estimate ||V (JiqeUr — vi)ll 26y = IV @Wkge.tr — Vi)l L2(k) fOr Tiyy > K C
2\ (2 U (Tx N Tr4¢)). Given E € &y, let ¢ be the canonical basis function of the non-
conforming P; element on 7;,,, which satisfies fE @pds = |E| and fE @pds = 0 for any
E’ € &4 other than E. A direct calculation yields

leell2y +helVivewell 2o S he-

Let v} := [}, Uk, |k ds and vg := [, vi|xds; thus we have

|V @irer =0 ey S D [V = vel /b (5.10)

ECOK

Next we bound the terms |vj, — vg| for E € &y

Casel E C082r.LetF €&, be the mother of edge E in the sense of E C F. Let T € 7;
be the mother of K in the sense of K C T. Denote the vertexes of T as Z;,i = 1,2,3.
Without losing generality, we assume that Z; and Z, are two endpoints of F. Then, the
trace of vi|r on F can be expressed as

vkl r = Ukl 7)) (Z21) 9z, + (el 7)(Z2) 9z, - (5.11)
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Note that
Mg |p =vz,¢z, +v2,02,. (5.12)

We recall that vz, are defined in (5.7) and that ¢, are the canonical basis functions associ-
ated with vertexes Z; for the conforming linear element. Therefore

v —ve| = ‘f (ITvelp — vkl F)ds
E

/((Uz] — (lT)(Z) ¢z, + (vz, — (Wl7)(Z2)) 7, )ds
E

1/2
2
|L2(E,)> ) (5.13)

2
5%5(2 Z We||[Vivete]

i=1 E'egy,
Case?2 E SZ 082. Again, let F € & be the mother of E in the sense of E C F. Then, we
simply have

vy = ve| SB[ [Vievetr ] o (5.14)

By inserting the estimates of |vy; — vg| from (5.13) and (5.14) into (5.10), we complete the
proof. |
We define the ratio y as follows:

hk
‘= max max —. (5.15)
KeTi\Tire Thae3TCK hyp

One observation herein is that y is bounded for the element K € 7;, which lies in the layer
2\(£2r U (T N Tr1e))-

Lemma 5.2 The following discrete reliability holds:
| Ve e — Mk)”Lz(_Q) + 1 Prre — Pell 2@y S 0y prs Ti\Tive)- (5.16)

Remark 5.3 If we directly take the prolongation operator I, , to analyze this discrete reli-
ability, the constant for the established discrete reliability will depend on the ratio y (see
Appendix for an example).

Proof For any viy¢ € Viye, we have the following decomposition:
1 Vese e = )|
+e\Uk+e k L2(£2)
= Qg Ukt — Uiy Ut — Viepe) + Qe Upre — Uk, Vip — Ug). (5.17)

We will first estimate the first term on the right-hand side of the above equation. It follows
the discrete problem (2.5) that

ppe(Uppe — U, Ukge — Vo) = R (e — Vo) — brgo (Ukgo — Vigees Prse — Pi). (5.18)

The first term on the right-hand side of (5.18) can be bounded as in (3.7):

1/2
yRk(uW—ka)!s( > hingniz(,() | Vere@uire = v | gy (519
KeT\Tite
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Now we turn to the second term on the right hand side of (5.18). Thanks to the discrete
inf-sup condition, we use the discrete problem (2.5) to get

biye(Uiye, Prae — Pi)

| Prve — Prll 22y N sup
0zvereeVive N VireUrrel 2o

R (Vitr)
S osup o [ Vi ke — )| 2 ) (5:20)
0viseeVire | VireVraellL2(2)

An application of the Cauchy—Schwarz inequality leads to
|bk+l(uk+( = Vk+es Pk+e — Pk)} < 1Pet+e — Pell 22y ||Vk+k(”k+l - ka)H L2(02)" (5.21)

After inserting (5.18), (5.19), (5.20), and (5.21) into (5.17), we use the triangle and Young
inequalities to derive

| Vite e — uk)”iz(Q) + | prte — Pkllsz(Q)

. 2
S 2 Mkl + i Ve v g, $522)

KeTi\Ti+e

An application of (5.9) bounds the second term on the right-hand side of (5.22). This com-
pletes the proof. O

With y; from Theorem 4.4, we define the following energy norm:

v, gll? = 1V0l22 o) + 11llg132 o). forany .)€V x Q. (523)

We denote its piecewise version by ||| - |||xve-
The following lemma gives links between the error reduction to the bulk criterion.

Lemma 5.4 Let Ti. be the refinement of T, with the following reduction:

= tire, P — Prsellltse + 120567 (g, Tare)

<o/(Illu — ug, p— pelllz + v208¢*(g, To)), (5.24)
with 0 < o' < 1 and the positive constant y, from Theorem 4.4. There exists 0 < 0, < 1 with

0.0 (i, pies To) < 0° (s pro» T\ Tese)- (5.25)
Proof 1t follows (5.24) and the definitions of the norms ||| - ||| and ||| - |||x+¢ that

(1—a)(llle = wic, p = pellli + y2 05¢* (. To))

<Illu —ux, p — pellls + v205¢*(g, To) — It — tises p — Prwelliige — v205¢* (g, Tere)
2 ) 2
= ”Vk-l-e (I/lk - Mk+[) ”LZ(Q) + Vl ||pk - pk+ll|L2(9) + ;ak-Fl(u — Uk, Ukte — Mk)

+2%1(p — Picres Prre — PO 12@) + v205¢7 (8. Tx) — y2 08¢ (g, Tise)
=L+L+L+14+1Is.
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The first two terms, /; and I, are estimated by the discrete reliability in Lemma 5.2,
Mtse = wellse + 11l px — Pk+l||iz(9) < Cpran*(ur, pis T\ Tire)s (5.26)
where the coefficient Cp,.; is from Lemma 5.2. The third term /5 can be estimated by the

quasi-orthogonality of the velocity in Lemma 3.4. In fact, let the multiplication constant
therein be the coefficient Coy, so that we have

;ak+l(” — Ukyg> Upre — Up)

1/2
2 2
szcgovuvkw—uHe)HLz(m( > hKngan(K))
KeTi\Tipe

1—o 2 2(Coov)?
<— ||vk+z<u—uk+e)\|wm+lfiw Yo hxlglag,. (527
KeT\Tite

Next, we use the quasi-orthogonality of the pressure in Lemma 3.5 to analyze the fourth
term, I;. Denote the constant of Lemma 3.5 by Cpop, and we obtain

1201(p = prses Prve — P 12|

12
<2y1Coor << Z h ”g”im()) + || Viewe i — up) || L2(9)) lp — Prtell L2
KeT\Tite

2y1(Coop)? "
<L Blglag )+ Vit =10 2

1—o
KeTi\Tise

2

_a/

2
Hence it follows from (5.26) that

1
+

2
Villp = Prrellyz g)-

12%1(p = Pites Prre — PO 12|

’

—a s
=—n 1P = Prvelli2g)
L (CQ"’;)i(if Cora” 20, e, T\ Tev0) (5.28)
A direct calculation leads to
Yaos®(f, T) — 05> (f, Tere)| < yam® (i pes T\ Taso), (5.29)

we combine (5.26)—(5.29), and (5.24) with the efficiency of the estimator, which proves the
desired result by the parameter

(1 —a)’Ceyy

0, = s
22(Coov)? + 271 (Coop)* (1 + CL2D2 + (1 — &) (Cprer + 12))

with the efficiency constant Cgy of the estimator 1 (uy, pr, 7¢) from Lemma 2.1. O
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6 The Optimality of the ANFEM

In this section, we address the optimality of the adaptive nonconforming linear element
method under consideration. We need to control the consistency error « (o, 7) defined by

(g, v7)p2 — (0, Vrur)p2
k(o,7T)= sup 8 L@ L@
vreVr ||VTUT||L2(9)

with o = uVu + pid, 6.1

where 7 is some refinement of the initial mesh 7, by the newest vertex bisection. The
following conforming finite element space is needed:

Py(T) :={v e (H (2))’, vIx € (P3(K)), forany K € T (6.2)

Then, there exists an interpolation operator I17 : Vo — P3(7) with the following properties
[28, Lemma A.3]:

/(vT —Hzvr)-cpds =0 foranycg € (P (E))z,
E

(6.3)
/ (vr — I7vr)dx =0,
K
for any edge E and element K of 7. In addition, we have
lvr — Orvrl2g) + A IVITvr |2y Sk IVTOT 2008 )- (6.4)

For any st € V7 and g7 € Q7, we define o = ust + g7. The idea of [27, Lemma 2.1]
leads to the following decomposition:

(&, v1)2(02) — (0, VTur) 120
=(g,vr — [Irv7)2(0) — (0 — 07, Vo (V7 — HTUT))L2<Q)
+ (o7, Vr(vr — HTUT))Lz(Q) (6.5)
for any vy € V7. By the properties (6.3) and (6.4), we obtain

k(o,T) S inf llu — vz, p— qrlll- 4+ o0sc(g, T). (6.6)

(wr.q7)eVT x0T

This implies that the nonlinear approximate class used in [30] is equivalent to the standard
nonlinear approximate class [7, 19]. Hence, we can introduce the following semi-norm:

EWiup,g)i=inf (inf flu—vr, p—qrll}y + 0@ D). (67)

TeTy \(r.97)eVT x0T

Then the nonlinear approximate class A, can be defined by

A=, p,g),lu,p,gly = sup N°EN;u,p,g) <+0<>}. (6.8)
N>Ny

We must stress that this is the first time the standard nonlinear approximate class [19]
has been used to analyze the adaptive nonconforming finite element method. In the relevant
literature, the discrete solution of the discrete problem has been used to define the nonlinear
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approximate class [5, 6, 34, 39]. Let (u7, p7) be the approximation solution of (2.5) on the
mesh 7. It follows from the Strang Lemma [22]

llu—ur,p—prilr < inf llu —vr, p—qrllr +«(0,7),
wr.97)EVT X071

and the following fact

inf Nlu —vr, p—qrilr +x(0,T) Sllu—uz, p— prllr,
wr.qT)EVT x0T

that the nonlinear approximate class of [5] is equivalent to A, of (6.8). A similar method
herein proves that the nonlinear approximate class of [6, 34, 39] is equivalent to the standard
nonlinear approximate class [19].

Remark 6.1 After we submitted the revised version to the journal, we learnt about that
a different argument of [18] shows that the nonlinear approximate class of [6, 34, 39] is
equivalent to the standard nonlinear approximate class [19].

Thanks to (6.6), we have

2
e — ur—1, p — pr—1lllz_,

< inf llu — vi_1, p — qelllz_y + 0sc?(g, Te—1). (6.9)

™ (Wg—1.qk—1)€Vkm1 X Qg1

A straightforward investigation shows that if 7 is any refinement of 7;_;, then it holds that

s 2 2
inf  llu — v, p—qillly + v208¢7(8, Ze)
(i, qk)€VE X Ok

=G inf e = ve1. p = g lIE, + 1205638, Tin)). (6.10)

(Vk—1:Gk—1)€Vi—1 X Qk—1

With these preparations, following [29], we have the following optimality:

Theorem 6.2 Let (u, p) be the solution of Problem (2.1), and let (T}, Vi X Ok, (ux, pi))
be the sequence of meshes, finite element spaces, and discrete solutions produced by the
adaptive finite element methods. If (u, p, g) € A; with

§ < Cryy .
T 2(2(Cpov)? +211(Coor) (1 + C12)? + Corer + 12)

Then, it holds that
llu —un, p— pally +y205¢*(g, Tn) S lu, p. gls HTy — #T5) . (6.11)
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Appendix: A Counter Example

We present an example in this appendix to show that if the prolongation operator /; defined
by (5.2) is directly used to analyze the discrete reliability of the estimator, the constant for
the established discrete reliability could depend on some key mesh refinement ratio

hk
y:= max max —,
KeTy\Tj, T;,3TCK hr

where 7y is some regular triangulation of £2 into triangles and 7;, is some refinement of
Ty . To this end, we first give an example to demonstrate that there are generally no positive
constants C independent of y such that the following estimate holds true:

. ) 12
Z ];[MH][ﬁ]dSSC< Z hElH[MH]”iz(E)> 1Vavnll 22, (A.1)

E€E\Ey E€Ep\En

where uy € Vy is the finite element solution of the velocity on the mesh 7y and vy, is some
element of V), over the nested fine mesh 7;,. As usual, &y (resp. &) is the set of the edges of
Ty (resp. 7;). Denote Vi (resp. Vj,) as the nonconforming linear element space with respect
to Ty (resp. 7). Denote [-] as the jump of some function across the edge E and {-} as the
average of some function across the edge E. In addition, denote vg as the unit normal vector
to E with the length hg.

In the following, an example is given to show that uy € Vg and v, € V) exist such
that the above constant C depends on the ratio y. For simplicity, let 7 consist of two
triangles AABC and AACD as in Fig. 1. Let 7, be a uniform triangulation of £2 into
2 x N? triangles, cf. Fig. 1 for the case N = 5. We stress that the idea and result can be
easily extended to the mesh with the newest vertex bisection. For the sake of simplicity, let
N =2k + 1 with some nonnegative integer k. Let Z;, i = —k, ..., k, be the nodes of 7,
whose coordinates are (%, %). Let ¢, be the nodal basis function of the conforming linear
element space defined over 7, such that ¢z, (Z;) =1 and ¢, (Z) = 0 for any node Z other

Fig. 1 The meshes 7y and 7, C(0,1)

D(-1,0) B(1,0)

A(0-1)
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than Z;. We choose uy € Vg such that the jump is [uy] = y over the edge AC. We choose
vy, as follows:

k 1 ifi >0,
vy =Y sign(i)gz, with sign(i):={0 ifi=0, (A2)
i=—k —1 ifi <O.

Note that {?TZEf} = N/2 over the edge AC fori = —k, ..., k. A direct calculation gives

/ ot 20 g = o - (A.3)
u — tds = - —. .
AC " BUE 2N
On the other hand, a direct calculation leads to
1Vavpll?s, o, <4N. (A4)

LZ(Q) =

This indicates that the constant C in (A.1) should be O(+/N), which depends on the ratio
y = O(N) for this example.

For the analysis of the discrete reliability, a direct application of the prolongation operator
I}, as defined in (5.2) will lead to a similar estimate like (A.1), and, as a result, the constant
for the established discrete reliability based on such an estimate will depend on the ratio
y. Note that in the analysis of optimality of the adaptive method it is possible to know that
7T, is some refinement of 7 only by the newest vertex bisection [8, 19, 40]. Note, too, that
there is no guarantee that y is bounded. Therefore, the proof of the discrete reliability based
on the prolongation operator ; as presented in [5, 30] may not lead to a uniform estimate
as claimed.
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