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Abstract This paper analyzes the stability and convergence of the Fourier pseudospectral
method coupled with a variety of specially designed time-stepping methods of up to fourth
order, for the numerical solution of a three dimensional viscous Burgers’ equation. There
are three main features to this work. The first is a lemma which provides for an L2 and H 1

bound on a nonlinear term of polynomial type, despite the presence of aliasing error. The
second feature of this work is the development of stable time-stepping methods of up to
fourth order for use with pseudospectral approximations of the three dimensional viscous
Burgers’ equation. Finally, the main result in this work is that the pseudospectral method
coupled with the carefully designed time-discretizations is stable provided only that the
time-step and spatial grid-size are bounded by two constants over a finite time. It is notable
that this stability condition does not impose a restriction on the time-step that is dependent
on the spatial grid size, a fact that is especially useful for three dimensional simulations.

Keywords 3-D viscous Burgers’ equation · Fully discrete pseudospectral scheme ·
Aliasing error · Stability and convergence · A priori assumption · Multi-step schemes

1 Introduction

In this paper we consider the stability and convergence of the fully discrete approximation
of the three-dimensional viscous Burgers’ equation with periodic boundary conditions,

∂tu + u · ∇u = ν�u, (1)
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where u = (u, v,w)T is the velocity field in the x, y, and z directions, and ν > 0 is the vis-
cosity. On the partial differential equation (PDE) level, we know that the maximum principle
(in time) is preserved for u, and a global in time smooth solution was proven in [25]. An
alternate approach avoids the use of maximum principles; instead, the anti-symmetrization
form of the nonlinear term is used to establish the well-posedness for (1) for all time. See
the related discussions in [43] and numerical works [13, 15], etc.

In this work, we discretize the spatial terms using a Fourier collocation (pseudospectral)
method, and the time-derivative using a variety of suitably chosen semi-implicit multistep
methods. The notable result in this paper is that the stability analysis is performed on the
collocation case, which is more difficult due to the presence of aliasing errors, and for the
fully discrete case.

Spectral and pseudospectral methods were first studied in the 1970s, and are still an-
alyzed today. There is a wide and varied literature on the spectral schemes. For linear
time-dependent problems, the stability analysis typically relies on eigenvalue estimates
[14, 24, 33]. For nonlinear problems, the theoretical foundation was laid in the pioneering
works of Maday and Quarteroni [29–31] for steady-state spectral solutions. In the 1980s and
1990s there was significant growth in the field of spectral and pseudospectral methods for
time-dependent nonlinear PDEs. In particular, we note the analysis of one-dimensional con-
servation laws by Tadmor and collaborators [9, 21, 28, 32, 39–42], semi-discrete viscous
Burgers’ equation and Navier-Stokes equations by E [44, 45], and the Galerkin spectral
method for Navier-Stokes equations led by Guo [16, 17, 20, 21] and Shen [12, 18], among
others.

However, the aforementioned theoretical developments in spectral and pseudospectral
approximations to nonlinear time-dependent PDEs only considered the spatial approxima-
tion with the time variable kept continuous. Very few works have analyzed a fully discrete
(discrete both in space and time) pseudospectral method applied to nonlinear problems.
Among the existing ones, it is worth mentioning Bressan and Quarteroni’s work [5] on the
one-dimensional viscous Burgers’ equation with a Cheyshev collocation differentiation in
space. Their work relies on the 1-D structure of the solution and required a time step con-
straint of the form �t ≤ Chd/2 (with �t the time-step, h the spatial grid size, and d the
dimension) to ensure numerical stability. In that work, the authors remark that such a con-
straint is acceptable for a 1-D problem. However, it becomes a serious numerical challenge
for multi-dimensional (especially for 3-D, d = 3) problems.

A careful analysis shows that such a time step constraint comes from an application of
the inverse inequality to bound the L∞ norm of the numerical solution in terms of the L2

norm: ‖f ‖∞ ≤ Ch−d/2‖f ‖2, for the numerical error function. It is well-known that an L∞
bound of the numerical solution is crucial in the establishment of stability and convergence
for a fully discrete scheme applied to nonlinear PDEs. In fact, a time step constraint of
this type is usually required when the inverse inequality is used in the nonlinear analysis.
Some examples of this can be seen in the works [1, 11] for KDV type equations (with a
constraint �t ≤ Ch2) and [19] for a Galerkin spectral method for Navier-Stokes equations
(with �t ≤ Chd/2).

In this work we provide a novel stability and convergence analysis for the Fourier col-
location (pseudospectral) method, coupled with a number of carefully tailored time dis-
cretizations for the three dimensional viscous Burgers’ equation. We design stable time-
discretizations of up to fourth order which are specially tailored for stability when coupled
with the pseudospectral method. For this nonlinear problem, we adopt an explicit multi-step
Adams-Bashforth approach for the convection term and an implicit Adams-Moulton method
for the diffusion term. This approach has the advantage of handling the nonlinear terms in
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an inexpensive way, while providing the stability associated with implicit methods. How-
ever, a naive approach to the time-discretization of the diffusion term (particularly in the
third and fourth order cases) yields an unstable method. For this reason, we first determine
necessary conditions on the coefficients of the Adams-Moulton method for stability. Using
these conditions we then derive methods of up to fourth order which are stable when cou-
pled with the pseudospectral method. For each time-discretization, we prove that when the
equation is solved by the pseudospectral method up to some fixed final time T ∗, the method
is consistent, stable and convergent (to design order) in the H 2 norm. In addition, the max-
imum norm bound of the numerical solution is automatically obtained, because of the H 2

error estimate and the corresponding Sobolev embedding in 3-D. We thus avoid the use of
the inverse inequality in our stability analysis and, as a result, do not require any scaling law
between the time step �t and the space grid size h. Instead, the numerical stability is always
preserved provided that �t and h are bounded by two corresponding given constants over a
finite time.

This paper is organized as follows. In Sect. 2 we give a general description of Fourier
spectral and pseudospectral differentiation and provide a detailed analysis to bound the col-
location interpolation in Hk norms. The first order (in time) semi-implicit scheme is pre-
sented and analyzed in Sect. 3. The second, third and fourth order schemes are studied in
Sects. 4 and 5, respectively. Finally, some concluding remarks are made in Sect. 6.

2 A Gentle Introduction to Fourier Spectral and Pseudospectral Methods

The Fourier series of a function f (x, y, z) ∈ L2(Ω) with Ω = (0,1)3 is defined by

f (x, y, z) =
∞∑

l,m,n=−∞
f̂l,m,ne2π i(lx+my+nz),

with

f̂l,m,n =
∫

Ω

f (x, y, z)e−2π i(lx+my+nz)dxdydz.

In turn, the truncated series is the projection onto the space BN of trigonometric polynomials
in x, y, and z of degree up to N , given by

PNf (x, y, z) =
N∑

l,m,n=−N

f̂l,m,ne2π i(lx+my+nz).

If f (x, y, z) and all its derivatives up to m-th order are continuous and periodic with
|f (k)| ≤ M , then the truncated series converges

∥∥f (x, y, z) − PNf (x, y, z)
∥∥ ≤ CMN−m,

in which ‖ · ‖ denotes the L2 norm.
The L2 projection operator is one approach to a Fourier series approximation. However,

sometimes we want an approximation which matches the function at a given set of points.
For this purpose, an interpolation operator IN is introduced. Given a uniform 3-D numerical
grid with (2N + 1) points in each dimension and a discrete vector function f , where each
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point is denoted by (xi, yj , zk) and the corresponding function value is given by fi,j,k , the
interpolation of the function is

(INf )(x, y, z) =
N∑

l,m,n=−N

(
f̂ N

c

)
l,m,n

e2π i(lx+my+nz), (2)

where the (2N + 1)3 pseudospectral coefficients (f̂ N
c )l,m,n are given by the interpolation

condition fi,j,k = (INf )(xi, yj , zk). Sometimes we are also interested in the relationship
between a continuous function and its interpolation. We want to look at the continuous func-
tion that results from evaluating the coefficients by collocation. Given a function f (x, y, z),
we compute its collocation coefficients (f̂c)

N
l,m,n based on the 2N + 1 equidistant points

in each dimension. In turn, the function INf (x, y, z) is defined to be the continuous ex-
pansion based on these coefficients, given by (2). Similary, the interpolation condition
f (xi, yj , zk) = (INf )(xi, yj , zk) is satisfied for a continuous function f . See the relevant
references [4, 7, 8, 22]. These collocation coefficients can be efficiently computed using
the fast Fourier transform (FFT). Note that the pseudospectral coefficients depend on the
number of points: increasing N gives a completely different set of coefficients. Also, the
pseudospectral coefficients are not equal to the actual Fourier coefficients; the difference
between them is known as the aliasing error. In general, PNf (x, y, z) �= INf (x, y, z), and
even PNf (xi, yj , zk) �= INf (xi, yj , zk), except of course in the case that f ∈ BN .

The Fourier series and the formulas for its projection and interpolation allow us to easily
take derivatives in the x, y, or z direction by simply multiplying the appropriate Fourier
coefficients (f̂ N

c )l,m,n by 2lπ i, 2mπ i, or 2nπ i, respectively. Furthermore, we can take sub-
sequent derivatives in the same way, so that differentiation in physical space is accomplished
via multiplication in Fourier space. As long as f and all is derivatives (up to m-th order)
are continuous and periodic on Ω , the convergence of the derivatives of the projection and
interpolation is given by

∥∥∂kf (x, y, z) − ∂k PNf (x, y, z)
∥∥ ≤ ∥∥f (m)

∥∥Nk−m, for 0 ≤ k ≤ m,

∥∥∂kf (x, y, z) − ∂k INf (x, y, z)
∥∥ ≤ ‖f ‖HmNk−m, for 0 ≤ k ≤ m, m >

d

2
.

(3)

Also see the related discussion of approximation theory [6] by Canuto and Quarteroni.
Recall that the collocation coefficients (f̂ N

c )l,m,n differ from the actual Fourier coeffi-
cients f̂l.m.n. Due to this difference, interpolation of the derivative is no longer equal to
the derivative of the interpolation.

These properties of the Fourier projection and interpolation form the basis of the Fourier
spectral and pseudospectral methods. The Fourier spectral method for (1) relies on the pro-
jection operator PN : the method is defined by the requirement that the projection of the
residual onto the space BN will be zero. This requirement produces a system of ordinary
differential equations which are then approximated numerically. This approach is known as
the Galerkin approach. An alternative to the Galerkin spectral approach is the pseudospectral
(or collocation) approach. The Fourier pseudospectral method for (1) relies on the interpo-
lation operator IN : the method is defined by the requirement that the interpolation of the
residual onto the uniform grid will be zero. Once again, this requirement produces a system
of ordinary differential equations which are then integrated numerically.

The major advantage of the collocation method is that it easier to implement, and very
efficient due to the fast Fourier transform. The ease of implementation comes from the fact
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that the collocation approach is point-wise, which avoids many difficulties when evaluating
three dimensional nonlinear terms. On the other hand, the Galerkin spectral method is much
easier to analyze, because it does not suffer from aliasing errors. Many works detailing the
stability and convergence analysis of spectral methods exist, such as [9, 12, 16, 19, 27, 34,
35, 37, 39, 41, 43, 45, 46]. In this work, we focus on the analysis of the Fourier collocation
(or pseudospectral) method applied to (1). Despite the aliasing errors that appear in the
collocation method, we are able to establish its stability and convergence properties for a
fixed final time.

2.1 Discrete Differentiation

Given a collocation approximation to the function f (x, y, z) at the points xi, yj , zk described
above,

f (xi, yj , zk) = (INf )i,j,k =
N∑

l,m,n=−N

(
f̂ N

c

)
l,m,n

e2π i(lxi+myj +nzk), (4)

we can define the discrete differentiation operators DNx , DNy , and DNz operating on the
vector of grid values f = f (xi, yj , zk). In practice, one may compute the collocation coeffi-

cients ( ˆf N
c )

l,m,n
via FFT, and then multiply them by the correct values (given by 2π il, 2π im,

2π in in the x, y and z directions, respectively) and perform the inverse FFT. Alternatively,
we can view the differentiation operators DNx , DNy , DNz as matrices, and the above process
can be seen as a matrix-vector multiplication. Once again, we note that the derivative of the
interpolation is not the interpolation of the derivative: DN INf �= IN DNf .

The same process is performed for the second derivatives ∂2
x , ∂2

y , ∂2
z , where this time the

collocation coefficients are multiplied by (−4π2l2), (−4π2m2) and (−4π2n2), respectively.
Alternatively, the differentiation matrix can be applied twice, i.e. the vector f is multiplied
by D2

Nx for the x-derivative, and so on. In turn, we define the discrete Laplacian, gradient
and divergence

�N f = (
D2

Nx + D2
Ny + D2

Nz

)
f,

∇N f =
⎛

⎝
DNxf

DNyf
DNzf

⎞

⎠ , ∇N ·
⎛

⎝
f
g
h

⎞

⎠ = DNxf + DNyg + DNzh,

in the point-wise sense.

2.2 Norms and Inner Products

Since the pseudospectral differentiation is taken at a point-wise level, we need to introduce
a discrete L2 norm and inner product to facilitate the analysis in later sections. Given any
periodic grid functions f and g (over the 3-D numerical grid), we note that these are simply
vectors and define the discrete L2 inner product and norm

‖f‖2 = √〈f, f〉, with 〈f,g〉 =
(

1

2N + 1

)3 2N∑

i,j,k=0

fi,j,kgi,j,k. (5)
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This discrete L2 inner product can be computed in Fourier space rather than in physical
space, with the help of Parseval’s equality:

〈f,g〉 =
N∑

l,m,n=−N

(
f̂ N

c

)
l,m,n

(
ĝN

c

)
l,m,n

=
N∑

l,m,n=−N

(
ĝN

c

)
l,m,n

(
f̂ N

c

)
l,m,n

,

where (f̂ N
c )l,m,n, (ĝN

c )l,m,n are the Fourier collocation coefficients of the grid functions f and
g in the expansion as in (4).

Furthermore, a detailed calculation shows that the following formulas of integration by
parts are also valid at the discrete level:

〈
f,∇N ·

⎛

⎝
g1

g2

g3

⎞

⎠
〉

= −
〈
∇N f,

⎛

⎝
g1

g2

g3

⎞

⎠
〉

, 〈f,�N g〉 = −〈∇N f,∇N g〉. (6)

2.3 A Preliminary Estimate in Fourier Collocation Space

In this section we state a lemma which will be helpful later in bounding the aliasing error for
the nonlinear term. Consider a function ϕ(x, y, z) which is in the space B2N . Its collocation
coefficients p̂N

l,m,n are computed based on the 2N + 1 equidistant points in each dimension.
In turn, INϕ(x, y, z) is given by the continuous expansion based on these coefficients:

INϕ(x, y, z) =
N∑

l,m,n=−N

p̂N
l,m,ne2π i(lx+my+nz).

Note that, because ϕ(x, y, z) ∈ B2N , the collocation coefficients p̂N
l,m,n are not typically equal

to the Fourier coefficients ϕ̂l,m,n, so INϕ(x, y, z) �= PNϕ(x, y, z).
The following lemma will enable us to obtain an Hm bound of the interpolation of the

nonlinear term.

Lemma 1 For any ϕ ∈ B2N in dimension d , we have

‖INϕ‖Hk ≤ (
√

2)d‖ϕ‖Hk . (7)

Proof For simplicity we start from the one dimensional case d = 1. We can write the Fourier
expansion of ϕ ∈ B2N

ϕ(x) =
2N∑

l=−2N

ϕ̂le
2π ilx ,

and its interpolation and the corresponding collocation coefficients are given by

INϕ(x) =
N∑

l=−N

p̂N
l e2π ilx , with p̂N

l =
⎧
⎨

⎩

ϕ̂l + ϕ̂l+2N+1, if − N ≤ l ≤ −1,

ϕ̂l, if l = 0,

ϕ̂l + ϕ̂l−2N−1, if 1 ≤ l ≤ N;
also see [38] for relevant discussions. Similarly, the Fourier expansions of the k-th order
derivative of ϕ and INϕ are

∂k
xϕ(x) =

2N∑

l=−2N

(2π il)kϕ̂le
2π ilx , ∂k

x INϕ(x) =
N∑

l=−N

(2π il)kp̂N
l e2π ilx .
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Parseval’s equality yields the L2 and Hk norms of ϕ and INϕ:

‖ϕ‖2
L2 =

2N∑

l=−2N

|ϕ̂l|2,
∥∥∂k

xϕ
∥∥2

L2 =
2N∑

k1=−2N

(2lπ)2k|ϕ̂k1 |2, (8)

‖INϕ‖2
L2 =

N∑

l=−N

∣∣p̂N
l

∣∣2
,

∥∥∂k
x INϕ

∥∥2

L2 =
N∑

l=−N

(2lπ)2k
∣∣p̂N

l

∣∣2
. (9)

We can bound the collocation coefficients by

∣∣p̂N
l

∣∣2 = |ϕ̂l + ϕ̂l+2N |2 ≤ 2
(|ϕ̂l|2 + |ϕ̂l+2N+1|2

)
, if − N ≤ l ≤ −1,

∣∣p̂N
l

∣∣2 = |ϕ̂l + ϕ̂l−2N |2 ≤ 2
(|ϕ̂l|2 + |ϕ̂l−2N−1|2

)
, if 1 ≤ l ≤ N,

so that

‖INϕ‖2
L2 ≤ 2‖ϕ‖2

L2 ,

which is exactly Estimate (7) with k = 0.
A more detailed calculation reveals that for −N ≤ l ≤ −1

(2lπ)2k
∣∣p̂N

l

∣∣2 = (2lπ)2k|ϕ̂l + ϕ̂l+2N+1|2

≤ 2(2lπ)2k
(|ϕ̂l |2 + |ϕ̂l+2N+1|2

)

≤ 2
(
(2lπ)2k|ϕ̂l |2 + (

2(l + 2N + 1)π
)2k|ϕ̂l+2N+1|2

)
,

since |l + 2N + 1| ≥ |l|, for − N ≤ l ≤ −1, (10)

and similarly, for 1 ≤ l ≤ N

(2lπ)2k
∣∣p̂N

l

∣∣2 ≤ 2
(
(2lπ)2k|ϕ̂l |2 + (

2(l − 2N)π
)2k|ϕ̂l−2N |2),

since |l − 2N | ≥ |l|, for 1 ≤ l ≤ N. (11)

Consequently, a combination of (10)–(11) and (8)–(9) results in

N∑

l=−N

(2lπ)2k
∣∣p̂N

l

∣∣2 ≤ 2
2N∑

l=−2N

(2lπ)2k|ϕ̂l|2, i.e.
∥∥∂k

x INϕ
∥∥2

L2 ≤ 2
∥∥∂k

xϕ
∥∥2

L2 .

Putting this all together

‖INϕ‖2
Hk =

k∑

q=0

∥∥∂q
x INϕ

∥∥2

L2 =
k∑

q=0

N∑

l=−N

(2lπ)2q
∣∣p̂N

l

∣∣2

≤
k∑

q=0

2
2N∑

l=−2N

(2lπ)2q |ϕ̂l|2 = 2
k∑

q=0

∥∥∂q
x ϕ

∥∥2

L2 = 2‖ϕ‖2
Hk .

This completes the proof of (7) for d = 1, for any integer k ≥ 0. The extension to higher
dimensions is straightforward, and the technical details are skipped for brevity of presenta-
tion. �
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Remark 1 An estimate for the k = 0 case was reported in E’s work [44, 45], with the constant

given by 3d . This lemma sharpens the constant to
√

2
d
.

Remark 2 We observe that a similar approximation theory result for spectral expansions and
interpolations in Sobolev spaces was reported by Canuto and Quarteroni [6],

‖ϕ − INϕ‖Hk ≤ CNk−m‖ϕ‖Hm, ∀ϕ ∈ Hm(Ω),

with 0 ≤ k ≤ m and m > d
2 ; this result is also equivalent to the spectral approximation

estimate (3). As a direct consequence, taking k = m results in the same estimate as the
above lemma for k = m > d

2 = 3
2 (for 3-D, d = 3). However, due to the additional regularity

requirement for interpolation operator analysis, the above estimate does not cover the case
of k = 0 or k = 1, which we require for the L2 and H 1 bound of the nonlinear expansion
in our analysis. This H 1 control, corresponding to k = 1 in the above lemma, cannot be
covered by the general approximation theory presented by [6], nor, to our knowledge, was
it explored in any published work.

3 First Order (in Time) Scheme

The first scheme we consider for Eq. (1), is a first-order in time method which treats the
nonlinear convection term explicitly for the sake of numerical convenience, and the diffusion
term implicitly to avoid a severe time-step restriction:

un+1 − un

�t
+ un · ∇Nun = ν�Nun+1, (12)

where, for example, the first component of the nonlinear convection is

un · ∇Nun = unDNxu
n + vnDNyu

n + wnDNzu
n.

Note that the numerical solution u of (12) is a vector function evaluated at discrete grid
points. Before the convergence statement of the scheme, we introduce its continuous exten-
sion in space, defined by uk

�t,h = uk
N , in which uk

N ∈ BN,∀k, is the continuous version of
the discrete grid function uk , with the interpolation formula given by (4).

Our stability and convergence analysis will bound the error between this spatially con-
tinuous version of the numerical solution and the exact solution. To bound this function we
will be looking at the ‖ · ‖l∞(0,T ∗;H 2) and ‖ · ‖l2(0,T ∗;H 3) norms. For a semi-discrete function
w (continuous in space and discrete in time), we define the first of these norms by

‖w‖l∞(0,T ∗;H 2) = max
0≤k≤Nk

∥∥wk
∥∥

H 2 , Nk =
[

T ∗

�t

]
,

i.e., we create a discrete time-dependent function by taking the H 2 norm of the numerical
approximation in space for each time step tk , and then take the maximum of this function
over all time steps 0 ≤ k ≤ Nk . For the second norm, we perform a similar operation,

‖w‖l2(0,T ∗;H 3) =
√√√√�t

Nk∑

k=0

∥∥wk
∥∥2

H 3 .
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Theorem 1 For any final time T ∗ > 0, assume the exact solution ue to the 3-D viscous
Burgers’ equation (1) has a regularity of H 2(0, T ∗;Hm+3) with m ≥ 2. Denote u�t,h as
the continuous (in space) extension of the fully discrete numerical solution given by scheme
(12). As �t,h → 0, we have the following convergence result:

‖u�t,h − ue‖l∞(0,T ∗;H 2) + √
ν‖u�t,h − ue‖l2(0,T ∗;H 3) ≤ C

(
�t + hm

)
, (13)

provided that the time step �t and the space grid size h are bounded by given constants

�t ≤ L1

(
T ∗, ν

)
, h ≤ L2

(
T ∗, ν

)
.

Note that the convergence constant in (13) also depend on the exact solution, as well as T ∗

and ν.

The convergence analysis follows a combination of consistency analysis for the colloca-
tion scheme (12) and a stability analysis for the numerical error function. In the consistency
analysis presented in Sect. 3.1, instead of a direct comparison between the numerical solu-
tion and the exact solution, we construct an approximate solution by projecting the exact
solution onto BN . The consistency analysis shows that such an approximate solution satis-
fies the numerical scheme up to an O(�t) accuracy in time and a spectral accuracy in space.
In the stability and convergence analysis presented in Sect. 3.2, we first make an H 2 a-priori
assumption for the numerical error function, which overcomes the difficulty in obtaining an
L∞ bound for the numerical solution, with an application of 3-D Sobolev embedding. Based
on this a-priori assumption, a detailed error estimate can be performed in both L2 and H 2

norms, with the help of Lemma 1 to bound the aliasing errors associated with the nonlinear
terms. Afterward, the H 2 a-priori assumption is recovered at the next time step, due to the
error bound in the H 2 norm, so that induction (in time) can be applied.

This approach avoids an application of the inverse inequality. As a result, an uncondi-
tional numerical stability (time step vs. spatial grid size) is obtained, and no scaling law is
required between �t and h, as compared with the classical references [1, 5, 11, 19], among
others.

3.1 Consistency Analysis

Let

UN(x, t) = PNue(x, t). (14)

The following approximation estimate is clear from our discussion from Sect. 2:

‖UN − ue‖L∞(0,T ∗;Hr ) ≤ Chm‖ue‖L∞(0,T ∗;Hm+r ), for r ≥ 0.

As a result, an application of Sobolev embedding in 3-D gives

‖UN − ue‖L∞(Ω) ≤ C‖UN − ue‖H 2 ≤ Chm‖ue‖L∞(0,T ∗;Hm+2), at any fixed time. (15)

Looking at the time derivative of the projection operator, we observe that

∂k

∂tk
UN(x, t) = ∂k

∂tk
PNue(x, t) = PN

∂kue(x, t)

∂tk
; (16)
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in other words, ∂k
t UN is the truncation of ∂k

t ue for any k ≥ 0, since projection and differenti-
ation commute. This in turn implies a spectrally accurate approximation of the correspond-
ing temporal derivative:

∥∥∂k
t (UN − ue)

∥∥
L2 ≤ Chm

∥∥∂k
t ue

∥∥
Hm, for 0 ≤ k ≤ 2. (17)

The bounds on the projection error and its derivatives, namely (15) and (17), indicate that

∂tUN + UN · ∇UN − ν�UN = ∂tue + ue · ∇ue − ν�ue + τ 1 = τ 1,

with ‖τ 1‖L2 ≤ Chm, (18)

in which Hölder’s inequality was utilized to estimate the nonlinear term and the last step is
based on the fact that ue is the exact solution. This shows that if the solution ue satisfies the
original viscous Burgers’ equation exactly, then its projection UN will satisfy the PDE up
to spectral accuracy.

Now consider the time discrete version of the equation. The temporal grid is discretized
using equidistant points tn = n�t . We denote Un

N(x) = PNue(x, tn). Recall the Un
N ∈ BN ,

so that it is equal to its interpolation, and its derivatives can be computed exactly by the
collocation differentiation operators ∇N and �N .

Moreover, for the approximate solution Un
N , we define its vector grid function Un as its

interpolation: Un
i,j,k = Un

N(xi, yj , zk). A detailed error estimate indicates that

Un · ∇NUn = Un
N · ∇Un

N , �NUn+1 = �Un+1
N , at (i, j, k), since Un

N = INUn,

(19)

�Un+1
N = �Un

N + τ n
2, with ‖τ 2‖l2(0,T ∗;L2) ≤ C�t‖UN‖H 1(0,T ∗;H 2) ≤ C�t, (20)

where L2
h denotes the discrete L2 norm given by (5). For the temporal discretization term,

we start from the following estimate

Un+1
N − Un

N

�t
= ∂tUN

(·, tn) + τ n
3(·), with

∥∥τ 3(·)
∥∥

l2(0,T ∗)
≤ C�t

∥∥UN(·)∥∥
H 2(0,T ∗)

, (21)

at a point-wise level (in space), in which the derivation is based on an integral form of
Taylor’s formula. Furthermore, by the observation (16), we arrive at

‖τ 3‖l2(0,T ∗;L2(Ω)) ≤ C�t
∥∥∂2

t UN

∥∥
L2(0,T ∗;L2(Ω))

≤ C�t
∥∥∂2

t ue

∥∥
L2(0,T ∗;L2(Ω))

≤ C�t. (22)

Consequently, a combination of (18) and (19), (20), (21), (22) implies the consistency of
the approximate solution U :

Un+1 − Un

�t
+ Un · ∇NUn − ν�NUn+1 = τ n,

with τ = IN(τ 1 + τ 2 + τ 3), ‖τ‖l2(0,T ∗;L2
h
) ≤ C

(
�t + hm

)
, (23)

with IN the standard operator to project a continuous function onto the discrete grid point.
In other words, the projection of the exact solution satisfies the numerical scheme (12) up to
an O(�t + hm) truncation error.
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In addition, we also observe that the H 1 norm of τ is also bounded at the consistency
order, namely

‖τ‖l2(0,T ∗;H 1
h
) :=

√√√√�t

Nk∑

k=0

∥∥τ k
N

∥∥2

H 1 ≤ C
(
�t + hm

)
, (24)

where τ k
N ∈ BN is the continuous version of τ k . Such an estimate is derived based on higher

order asymptotic expansions. In fact, this discrete H 1 truncation error bound is needed in the
l∞(0, T ∗;H 2) error estimate as presented in later sections; such a bound is derived based
on H 1 analysis of τ 1, τ 2 and τ 3. The details are skipped for simplicity of presentation.

3.2 Stability and Convergence Analysis

The point-wise numerical error grid function is given by

en
i,j,k = Un

i,j,k − un
i,j,k. (25)

The difference between scheme (12) and the consistency (23) gives

en+1 − en

�t
+ en · ∇NUn + un · ∇Nen = ν�Nen+1 + τ n. (26)

To facilitate the presentation below, we denote un
N ∈ BN and en

N ∈ BN , as the continuous
version of the numerical solution un and en, respectively, with the interpolation formula
given by (4).

The constructed approximate solution has a W 2,∞ bound

‖UN‖L∞(0,T ∗;W2,∞) ≤ C∗, i.e.
∥∥Un

N

∥∥
L∞ ≤ C∗,

∥∥∇Un
N

∥∥
L∞ ≤ C∗,

∥∥∇(∇Un
N

)∥∥
L∞ ≤ C∗,

(27)
for any n ≥ 0, which comes from the regularity of the constructed solution.

3.2.1 An A-priori H 2 Assumption

We assume a-priori that the numerical error function has an H 2 bound at time step tn:
∥∥en

N

∥∥
H 2 ≤ 1, with en

N = INen, (28)

so that the L∞ bound for the numerical solution at tn can be obtained as
∥∥un

N

∥∥
H 2 = ∥∥Un

N − en
N

∥∥
H 2 ≤ ∥∥Un

N

∥∥
H 2 + ∥∥en

N

∥∥
H 2 ≤ C∗ + 1 := C̃0,

∥∥un
∥∥∞ ≤ ∥∥un

N

∥∥
L∞ ≤ C

∥∥un
N

∥∥
H 2 ≤ CC̃0 := C̃1.

(29)

3.2.2 Leading Order Error Estimate: In l∞(0, T ∗;L2) ∩ l2(0, T ∗;H 1) Norm

Lemma 2 Under the a-priori assumption (28), the numerical error function for the first
order scheme (12) satisfies

∥∥en+1
∥∥

2
+

√√√√ν�t

n+1∑

k=1

∥∥∇Nek
∥∥2

2
≤ M1

(
�t + hm

)
. (30)
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Proof Taking a discrete L2 inner product of (26) with 2en+1 yields

〈
en+1 − en,2en+1

〉 − 2ν�t
〈
�Nen+1, en+1

〉

= −2�t
〈
en · ∇NUn, en+1

〉 − 2�t
〈
un · ∇Nen, en+1

〉 + 2�t
〈
τ n, en+1

〉
. (31)

The time marching term and the truncation error term can be handled in a straightforward
way:

〈
en+1 − en,2en+1

〉 = ∥∥en+1
∥∥2

2
− ∥∥en

∥∥2

2
+ ∥∥en+1 − en

∥∥2

2
, (32)

2
〈
τ n, en+1

〉 ≤ ∥∥τ n
∥∥2

2
+ ∥∥en+1

∥∥2

2
, (33)

in which a discrete Cauchy inequality was utilized. A discrete version of the integration by
parts formula (6) can be applied to analyze the diffusion term:

−2
〈
�Nen+1, en+1

〉 = 2
〈∇Nen+1,∇Nen+1

〉 = 2
∥∥∇Nen+1

∥∥2

2
. (34)

For the numerical error of the nonlinear convection, we see that the first term can be
handled by the Cauchy inequality, with the W 1,∞ bound of the approximate solution given
by (27):

−2
〈
en · ∇NUn, en+1

〉 ≤ 2
∥∥∇NUn

∥∥∞ · ∥∥en
∥∥

2
· ∥∥en+1

∥∥
2

≤ 2C∗∥∥en
∥∥

2
· ∥∥en+1

∥∥
2
≤ C∗∥∥en

∥∥2

2
+ C∗∥∥en+1

∥∥2

2
. (35)

Similar analysis can be applied to the second nonlinear error term:

−2
〈
un · ∇Nen, en+1

〉 ≤ 2
∥∥un

∥∥∞ · ∥∥∇Nen
∥∥

2
· ∥∥en+1

∥∥
2

≤ 2C̃1

∥∥∇Nen
∥∥

2
· ∥∥en+1

∥∥
2
≤ ν

∥∥∇Nen
∥∥2

2
+ C̃2

1

ν

∥∥en+1
∥∥2

2
, (36)

in which the L∞ a-priori bound (29) was used in the second step.
As a result, a substitution of (32), (33), (34), (35) and (36) into (31) gives

∥∥en+1
∥∥2

2
− ∥∥en

∥∥2

2
+ ∥∥en+1 − en

∥∥2

2
+ 2ν�t

∥∥∇Nen+1
∥∥2

2

≤ ν�t
∥∥∇Nen

∥∥2

2
+

(
C̃2

1

ν
+ C∗ + 1

)
�t

∥∥en+1
∥∥2

2
+ C∗�t

∥∥en
∥∥2

2
+ �t

∥∥τ n
∥∥2

2
.

Summing in time gives

∥∥en+1
∥∥2

2
+

n∑

k=0

∥∥ek+1 − ek
∥∥2

2
+ ν�t

n+1∑

k=1

∥∥∇Nek
∥∥2

2

≤ C̃2�t

n+1∑

k=0

∥∥ek
∥∥2

2
+ �t

n∑

k=0

∥∥τ n
∥∥2

2
+ ν�t

∥∥∇Ne0
∥∥2

2
+ Ch2m

≤ C̃2�t

n+1∑

k=0

∥∥ek
∥∥2

2
+ �t

n∑

k=0

∥∥τ n
∥∥2

2
+ Ch2m,
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with C̃2 = C̃2
1
ν

+ 2C∗ + 1. Note that we used the fact ‖e0‖H 1
h

≤ Chm, due to the collocation
spectral approximation of the initial data. An application of the discrete Gronwall inequality
leads to (30), with M1 = Ce

1
2 C̃2T ∗

. Also note that the truncation error estimate (23) was
used. This in turn gives the l∞(0, T ∗;L2) ∩ l2(0, T ∗;H 1) error estimate for the numerical
scheme, under the a-priori H

3
2 +δ assumption (28). �

It is observed that the L2 convergence (30) is based on the a-priori H 2 assumption (28)
for the numerical solution. We need an H 2 error estimate to recover this assumption.

3.2.3 Higher Order Error Estimate: In l∞(0, T ∗;H 2) ∩ l2(0, T ∗;H 3) Norm

Taking a discrete L2 inner product of (26) with 2�2
Nen+1 yields

2
〈
en+1 − en,�2

Nen+1
〉 − 2ν�t

〈
�Nen+1,�2

Nen+1
〉

= 2�t
(−〈

en · ∇NUn,�2
Nen+1

〉 − 〈
un · ∇Nen,�2

Nen+1
〉 + 〈

τ n,�2
Nen+1

〉)
. (37)

The time marching term, truncation error term and the diffusion term can be analyzed as

2
〈
en+1 − en,�2

Nen+1
〉 = ∥∥�Nen+1

∥∥2

2
− ∥∥�Nen

∥∥2

2
+ ∥∥�N

(
en+1 − en

)∥∥2

2
, (38)

2
〈
τ n,�2

Nen+1
〉 = −2

〈∇Nτ n,∇N�Nen+1
〉 ≤ 4

ν

∥∥∇Nτ n
∥∥2

2
+ 1

4
ν
∥∥∇N�Nen+1

∥∥2

2
, (39)

− 2
〈
�Nen+1,�2

Nen+1
〉 = 2

〈∇N�Nen+1,∇N�Nen+1
〉 = 2

∥∥∇N�Nen+1
∥∥2

2
. (40)

Lemma 3 Under the a-priori assumption (28), we have the following estimates for the
nonlinear error terms

−2
〈
en · ∇NUn,�2

Nen+1
〉 ≤ 1

2
ν
∥∥∇N�Nen+1

∥∥2

2
+ 96(C∗)2

ν

(∥∥∇Nen
∥∥2

2
+ ∥∥en

∥∥2

2

)
, (41)

−2
〈
un · ∇Nen,�2

Nen+1
〉 ≤ 1

2
ν
∥∥∇N�Nen+1

∥∥2

2
+ CC̃2

1

ν

∥∥�Nen
∥∥2

2
. (42)

Proof We start with an application of summation by parts to the first term:

−2
〈
en · ∇NUn,�2

Nen+1
〉 = 2

〈∇N

(
en · ∇NUn

)
,∇N�Nen+1

〉
. (43)

The remaining work is focused on the nonlinear expansion of ∇N(en ·∇NUn). For simplicity
of presentation, we only look at the first row ∇N(en · ∇NUn); the two other rows, ∇N(en ·
∇NV n) and ∇N(en · ∇NWn), can be handled in the same way. Recall that en

N ∈ BN is the
continuous version of the discrete grid error function en, as in (4). It is obvious that

∥∥∇N

(
en · ∇NUn

)∥∥
2
= ∥∥∇(

IN

(
en

N · ∇Un
N

))∥∥
L2 ≤ 2

√
2
∥∥∇(

en
N · ∇Un

N

)∥∥
L2 . (44)

The first step is based on the fact that en, ∇NUn and en
N , ∇Un

N have the same interpolation
values. Lemma 1 was applied in the second step, due to the fact that en

N · ∇Un
N ∈ B2N . The

advantage of this inequality is that the right hand side norm is measured in continuous space.
Subsequently, a detailed Sobolev space expansion and applications of Hölder’s inequality
show that

∥∥∇(
en

N · ∇Un
N

)∥∥
L2 = ∥∥∇Un

N · ∇en
N + en

N · ∇(∇Un
N

)∥∥
L2
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≤ ∥∥∇Un
N · ∇en

N

∥∥
L2 + ∥∥en

N · ∇(∇Un
N

)∥∥
L2

≤ ∥∥∇Un
N

∥∥
L∞ · ∥∥∇en

N

∥∥
L2 + ∥∥en

N

∥∥
L2 · ∥∥∇(∇Un

N

)∥∥
L∞

≤ C∗(∥∥∇en
N

∥∥
L2 + ∥∥en

N

∥∥
L2

) = C∗(∥∥∇Nen
∥∥

2
+ ∥∥en

∥∥
2

)
,

with the regularity fact (27) applied in the last step. Its combination with (44) yields

∥∥∇N

(
en · ∇NUn

)∥∥
2
≤ 2

√
2C∗(∥∥∇Nen

∥∥
2
+ ∥∥en

∥∥
2

)
,

which in turn also gives

∥∥∇N

(
en · ∇NUn

)∥∥
2
≤ 2

√
6C∗(∥∥∇Nen

∥∥
2
+ ∥∥en

∥∥
2

)
.

Going back to (43), we get (41), the estimate for the first nonlinear convection error term:

−2
〈
en · ∇NUn,�2

Nen+1
〉 ≤ 4

√
6C∗(∥∥∇Nen

∥∥
2
+ ∥∥en

∥∥
2

) · ∥∥∇N�Nen+1
∥∥

2

≤ 1

2
ν
∥∥∇N�Nen+1

∥∥2

2
+ 48(C∗)2

ν

(∥∥∇Nen
∥∥2

2
+ ∥∥en

∥∥2

2

)
.

The analysis of the other nonlinear convection error term also starts from the summation
by parts:

−2
〈
un · ∇Nen,�2

Nen+1
〉 = 2

〈∇N

(
un · ∇Nen

)
,∇N�Nen+1

〉
. (45)

Similarly, Lemma 1 has to be utilized to deal with the nonlinear expansion of ∇N(un ·∇Nen)

in collocation Fourier space. The detailed estimates are given below.

∥∥∇N

(
un · ∇Nen

)∥∥
2
= ∥∥∇(

IN

(
un

N · ∇en
N

))∥∥
L2 ≤ 2

√
2
∥∥∇(

un
N · ∇en

N

)∥∥
L2 ,

∥∥∇(
un

N · ∇en
N

)∥∥
L2 = ∥∥∇en

N ⊗ ∇un
N + un

N · ∇(∇en
N

)∥∥
L2

≤ ∥∥∇en
N ⊗ ∇un

N

∥∥
L2 + ∥∥un

N · ∇(∇en
N

)∥∥
L2

≤ ∥∥∇un
N

∥∥
L3 · ∥∥∇en

N

∥∥
L6 + ∥∥un

N

∥∥
L∞ · ∥∥∇(∇en

N

)∥∥
L2

≤ CC̃1

∥∥�en
N

∥∥
L2 = CC̃1

∥∥�Nen
∥∥

2
.

Note that the a-priori assumption (28)–(29), combined with the following 3-D Sobolev em-
bedding and elliptic regularity were used in the last step:

∥∥∇un
N

∥∥
L3 ≤ C

∥∥un
N

∥∥
H

3
2

≤ CC̃1,
∥∥∇en

N

∥∥
L6 ≤ C

∥∥�en
N

∥∥
L2 ,

∥∥un
N

∥∥
L∞ ≤ C̃1,

∥∥∇(∇en
N

)∥∥
L2 ≤ C

∥∥�en
N

∥∥
L2 .

This in turn shows that

∥∥∇N

(
un · ∇Nen

)∥∥
2
≤ 2

√
2
∥∥∇(

un
N · ∇en

N

)∥∥
L2 ≤ CC̃1

∥∥�Nen
∥∥

2
.

Going back to (45), we arrive at (42), the second part of Lemma 3:
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−2
〈
un · ∇Nen,�2

Nen+1
〉 ≤ CC̃1

∥∥�Nen
∥∥

2
· ∥∥∇N�Nen+1

∥∥
2

≤ 1

2
ν
∥∥∇N�Nen+1

∥∥2

2
+ CC̃2

1

ν

∥∥�Nen
∥∥2

2
. �

A substitution of (38)–(40) and Lemma 3 into (37) indicates that

∥∥�Nen+1
∥∥2

2
− ∥∥�Nen

∥∥2

2
+ ∥∥�N

(
en+1 − en

)∥∥2

2
+ 3

4
ν�t

∥∥∇N�Nen+1
∥∥2

2

≤ CC̃2
1�t

ν

∥∥�Nen
∥∥2

2
+ 48(C∗)2�t

ν

(∥∥∇Nen
∥∥2

2
+ ∥∥en

∥∥2

2

) + 4�t

ν

∥∥∇Nτ n
∥∥2

2
,

≤ C(C̃2
1 + (C∗)2)�t

ν

∥∥�Nen
∥∥2

2
+ (48(C∗)2C̃3 + CM1)�t

ν

(
�t + hm

)2 + 4�t

ν

∥∥∇Nτ n
∥∥2

2
,

in which the leading L2 convergence (30) for the numerical scheme, combined with the
elliptic regularity: ‖∇Nen‖2 ≤ C3‖�Nen‖2, was used in the derivation. In turn, applying the
discrete Gronwall inequality and using the H 1 consistency (24) lead to

∥∥�Nen+1
∥∥2

2
+

n∑

k=0

∥∥�N

(
ek+1 − ek

)∥∥2

2
+ 3

4
ν�t

n+1∑

k=1

∥∥∇N�Nek
∥∥2

2

≤ C(48(C∗)2C̃3 + CM1)

ν
eC̃5T ∗(

�t + hm
)2 ≤ M2

2

(
�t + hm

)2
,

with C̃5 = C(C̃2
1 +(C∗)2)

ν
, M2

2 = C(48(C∗)2C̃3+CM1)

ν
eC̃5T ∗

. Therefore, the H 2 error estimate for the
numerical scheme is obtained from the following elliptic regularity:

∥∥en+1
N

∥∥
H 2 ≤ C

(∥∥en+1
N

∥∥
L2 + ∥∥�en+1

N

∥∥
L2

)

≤ C̃6

(
�t + hm

)
, C̃6 = C(M1 + M2). (46)

As a direct consequence, the point-wise convergence of the numerical scheme is established
by an application of 3-D Sobolev embedding:

∥∥en+1
∥∥∞ ≤ ∥∥en+1

N

∥∥
L∞ ≤ C

∥∥en+1
N

∥∥
H 2 ≤ C(M1 + M2)

(
�t + hm

)
.

3.2.4 Recovery of the H 2 A-priori Bound (28)

With the help of the H 2 error estimate (46), we see that the a-priori H 2 bound (28) is also
valid for the numerical error vector en+1 at time step tn+1 provided that

�t ≤ (C̃6)
−1, h ≤ (C̃6)

− 1
m , with C̃6 dependent on ν and exp

(
T ∗).

This completes the L∞(0, T ∗;H 2) convergence analysis, and the proof of Theorem 1.

Remark 3 In addition to the standard L2 convergence analysis based on the L∞ a-priori
assumption for the numerical solution, an H 2 error estimate is performed in this work.
Such an approach avoids an application of the inverse inequality for a discrete function
f : ‖f ‖∞ ≤ ch−d/2‖f ‖2 (d is the dimension), which usually leads to a time step constraint
�t ≤ Chd/2.
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It is also noticed that, with an application of the inverse inequality, such a constraint
could be relaxed with either a higher order numerical accuracy in time or a higher order
asymptotic consistency analysis. This approach usually results in a more relaxed constraint:
�tk ≤ Chd/2, in which k is the order of accuracy in time. See the related discussions in [5,
19], etc. However, a constraint between �t and h would not vanish, unless an error estimate
in a Sobolev norm stronger than H

d
2 is obtained, as presented in this work.

Remark 4 In fact, the H 2 a-priori assumption (28) for the numerical error can be replaced
by an H

3
2 +δ assumption for any δ > 0, due to the Sobolev embedding in 3-D.

4 Second Order (in Time) Scheme

To derive a second order scheme, we use a similar semi-implicit approach. As before, the
nonlinear term is updated explicitly. For the convection term we use a standard second or-
der Adams-Bashforth extrapolation formula, which involves the numerical solutions at time
node points tn, tn−1, with well-known coefficients 3/2 and −1/2, respectively. The diffu-
sion term is treated implicitly, using a second order Adams-Moulton interpolation. However,
we do not use the standard second order formula, as this leads to difficulties in the stability
analysis. Instead, we look for an Adams-Moulton interpolation such that the diffusion term
is more focused on the time step tn+1, i.e., the coefficient at time step tn+1 dominates the
sum of all other diffusion coefficients. We discovered that the Adams-Moulton interpolation
which involves the time node points tn+1 and tn−1 gives the corresponding coefficients as
3/4, 1/4, respectively, which satisfies the unconditional stability condition. Therefore, we
formulate the fully discrete scheme:

un+1 − un

�t
+ 3

2
un · ∇Nun − 1

2
un−1 · ∇Nun−1 = ν�N

(
3

4
un+1 + 1

4
un−1

)
. (47)

Our main result, proven in the subsequent subsections, is as follows.

Theorem 2 For any final time T ∗ > 0, assume the exact solution ue to the 3-D viscous
Burgers’ equation (1) has a regularity of H 3(0, T ∗;Hm+3) with m ≥ 2. Denote u�t,h as the
continuous (in space) extension of the fully discrete numerical solution given by scheme (47).
As �t,h → 0, we have the following convergence result:

‖u�t,h − ue‖l∞(0,T ∗;H 2) + √
ν‖u�t,h − ue‖l2(0,T ∗;H 3) ≤ C

(
�t2 + hm

)
, (48)

provided that the time step �t and grid size h are bounded by given constants

�t ≤ L3

(
T ∗, ν

)
, h ≤ L4

(
T ∗, ν

)
.

Note that the convergence constants in (48) also depend on the exact solution, as well as T ∗
and ν.

4.1 Consistency Analysis

Again, denote the approximate solution UN(x, t) as the projection of the exact solution onto
BN , given by (14), and set Un

i,j,k = Un
N(xi, yj , zk) at a point-wise level. Note that (18) is also
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valid. In addition, we have the following truncation error estimates:

Un+1
N − Un

N

�t
= ∂tUN

(·, tn+1/2
) + τ n

2(·),

with
∥∥τ 2(·)

∥∥
l2(0,T ∗)

≤ C�t2‖UN(·)‖H 3(0,T ∗) ≤ C�t2,

3

2
Un

N · ∇Un
N − 1

2
Un−1

N · ∇Un−1
N = UN · ∇UN

(·, tn+1/2
) + τ n

3,

with ‖τ 3‖l2(0,T ∗;L2) ≤ C�t2‖UN‖2
H 2(0,T ∗;H 2)

≤ C�t2,

�

(
3

4
Un+1

N + 1

4
Un−1

N

)
= �UN

(·, tn+1/2
) + τ n

4,

with ‖τ 4‖l2(0,T ∗;L2) ≤ C�t2‖UN‖H 2(0,T ∗;H 2) ≤ C�t2.

Therefore, the second order consistency of the approximate solution U is established:

Un+1 − Un

�t
+ 3

2
Un · ∇NUn − 1

2
Un−1 · ∇NUn−1 − ν�N

(
3

4
Un+1 + 1

4
Un−1

)
= τ n,

with τ = IN(τ 1 + τ 2 + τ 3 + τ 4), ‖τ‖l2(0,T ∗;L2
h
) ≤ C

(
�t2 + hm

)
. (49)

In other words, the approximate solution satisfies the numerical scheme (47) up to an
O(�t2 + hm) truncation error. In addition, the H 1 norm of τ is also bounded at the consis-
tency order, namely

‖τ‖l2(0,T ∗;H 1
h
) ≤ C

(
�t2 + hm

)
. (50)

4.2 Stability and Convergence Analysis

Similar to the first order scheme, the numerical error function is defined by (25) in a point-
wise way; un

N and en
N represent the continuous version of the numerical solution un and en,

respectively. The difference between scheme (47) and the consistency (49) shows that

en+1 − en

�t
+ 3

2

(
en · ∇NUn + un · ∇Nen

) − 1

2

(
en−1 · ∇NUn−1 + un−1 · ∇Nen−1

)

= ν�N

(
3

4
en+1 + 1

4
en−1

)
+ τ n. (51)

4.2.1 Leading L2 Error Estimate

Similarly, the constructed solution U satisfies the W 2,∞ regularity condition (27). To deal
with a multi-step method, the H 2 a-priori bound is assumed for the numerical error function
at all previous time steps:

∥∥ek
N

∥∥
H 2 ≤ 1, so that

∥∥uk
N

∥∥
H 2 ≤ C̃0,

∥∥uk
∥∥

∞ ≤ ∥∥uk
N

∥∥
L∞ ≤ C̃1, ∀1 ≤ k ≤ n, (52)

with C̃0, C̃1 given by (28)–(29).
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Lemma 4 Under the a-priori assumption (52), the numerical error function for the 2nd
order scheme (47) satisfies

∥∥en+1
∥∥

2
+

√√√√1

2
ν�t

n+1∑

k=1

∥∥∇Nek
∥∥2

2
≤ M2

3

(
�t2 + hm

)
. (53)

Proof Taking a discrete L2 inner product of (51) with 2en+1 yields

∥∥en+1
∥∥2

2
− ∥∥en

∥∥2

2
+ ∥∥en+1 − en

∥∥2

2
+ ν�t

〈
∇N

(
3

2
en+1 + 1

2
en−1

)
,∇Nen+1

〉

= �t
〈
en−1 · ∇NUn−1, en+1

〉
�t

〈
un−1 · ∇Nen−1, en+1

〉

− 3�t
〈
en · ∇NUn, en+1

〉 − 3�t
〈
un · ∇Nen, en+1

〉 + 2�t
〈
τ n, en+1

〉
. (54)

The bound (33) for the truncation error term is also valid. The diffusion term can be analyzed
as follows.

〈
∇N

(
3

2
en+1 + 1

2
en−1

)
,∇Nen+1

〉
= 3

2

∥∥∇Nen+1
∥∥2

2
+ 1

2

〈∇Nen−1,∇Nen+1
〉

≥ 3

2

∥∥∇Nen+1
∥∥2

2
− 1

4

∥∥∇Nen+1
∥∥2

2
− 1

4

∥∥∇Nen−1
∥∥2

2

≥ 5

4

∥∥∇Nen+1
∥∥2

2
− 1

4

∥∥∇Nen−1
∥∥2

2
. (55)

Again, we remark that the key point of the stability analysis for the diffusion term is that the
coefficient at time step tn+1 dominates the sum of all other diffusion coefficients. The four
nonlinear convection terms can be analyzed in a similar way as (35)–(36). The details are
skipped.

−3
〈
en · ∇NUn, en+1

〉 ≤ 3

2
C∗(∥∥en

∥∥2

2
+ ∥∥en+1

∥∥2

2

)
, (56)

〈
en−1 · ∇NUn−1, en+1

〉 ≤ 1

2
C∗(∥∥en−1

∥∥2

2
+ ∥∥en+1

∥∥2

2

)
, (57)

−3
〈
un · ∇Nen, en+1

〉 ≤ 1

4
ν
∥∥∇Nen

∥∥2

2
+ 9C̃2

1

ν

∥∥en+1
∥∥2

2
, (58)

〈
un−1 · ∇Nen−1, en+1

〉 ≤ 1

4
ν
∥∥∇Nen−1

∥∥2

2
+ C̃2

1

ν

∥∥en+1
∥∥2

2
. (59)

Consequently, a substitution of (55), (56), (57), (58), (59) (combined with (33)) into (54)
gives

∥∥en+1
∥∥2

2
− ∥∥en

∥∥2

2
+ 5

4
ν�t

∥∥∇Nen+1
∥∥2

2
− 1

4
ν�t

∥∥∇Nen
∥∥2

2
− 1

2
ν�t

∥∥∇Nen−1
∥∥2

2

≤
( ˜10C

2
1

ν
+ 2C∗ + 1

)
�t

∥∥en+1
∥∥2

2
+ 3

2
C∗�t

∥∥en
∥∥2

2
+ 1

2
C∗�t

∥∥en−1
∥∥2

2
+ �t

∥∥τ n
∥∥2

2
.
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Summing in time gives

∥∥en+1
∥∥2

2
+ 1

2
ν�t

n+1∑

k=1

∥∥∇Nek
∥∥2

2
≤ C̃7�t

n+1∑

k=0

∥∥ek
∥∥2

2
+ �t

n∑

k=0

∥∥τ n
∥∥2

2
+ Ch2m,

with C̃7 = 10C̃2
1

ν
+ 4C∗ + 1. An application of the discrete Gronwall inequality leads to (53),

by taking M3 = Ce
1
2 C̃7T ∗

, with the truncation error estimate (49) used. This in turn gives
the l∞(0, T ∗;L2) ∩ l2(0, T ∗;H 1) error estimate for the second order (in time) numerical
scheme, under the a-priori H 2 assumption (52). �

Similar to the first order scheme, the l∞(0, T ∗;L2) ∩ l2(0, T ∗;H 1) error estimate is not
sufficient to recover the a-priori H 2 assumption (52). In the next subsection we will perform
an l∞(0, T ∗;H 2) ∩ l2(0, T ∗;H 3) error estimate to accomplish it.

4.2.2 Error Estimate in l∞(0, T ∗;H 2) ∩ l2(0, T ∗;H 3) Norm

Taking a discrete L2 inner product of (51) with 2�2
Nen+1 yields

∥∥�Nen+1
∥∥2

2
− ∥∥�Nen

∥∥2

2
+ ∥∥�N

(
en+1 − en

)∥∥2

2

+ ν�t

〈
∇N�N

(
3

2
en+1 + 1

2
en−1

)
,∇N�Nen+1

〉

= �t
(〈
en−1 · ∇NUn−1,�2

Nen+1
〉 + 〈

un−1 · ∇Nen−1,�2
Nen+1

〉)

− 3�t
(〈
en · ∇NUn,�2

Nen+1
〉 + 〈

un · ∇Nen,�2
Nen+1

〉) + 2�t
〈
τ n,�2

Nen+1
〉
. (60)

The bound for the truncation error term is the same as (39). The diffusion term can be
analyzed similarly to (55):

〈
∇N�N

(
3

2
en+1 + 1

2
en−1

)
,∇N�Nen+1

〉

= 3

2

∥∥∇N�Nen+1
∥∥2

2
+ 1

2

〈∇N�Nen−1,∇N�Nen+1
〉

≥ 5

4

∥∥∇N�Nen+1
∥∥2

2
− 1

4

∥∥∇N�Nen−1
∥∥2

2
.

The four nonlinear convection terms can be handled in the same fashion as in the first or-
der scheme, with a help of nonlinear expansion in collocation spectral space. We have the
following estimates, analogous to (41), (42):

−3
〈
en · ∇NUn,�2

Nen+1
〉 ≤ 1

8
ν
∥∥∇N�Nen+1

∥∥2

2
+ 864(C∗)2

ν

(∥∥∇Nen
∥∥2

2
+ ∥∥en

∥∥2

2

)
,

〈
en−1 · ∇NUn−1,�2

Nen+1
〉 ≤ 1

8
ν
∥∥∇N�Nen+1

∥∥2

2
+ 96(C∗)2

ν

(∥∥∇Nen−1
∥∥2

2
+ ∥∥en−1

∥∥2

2

)
,

−3
〈
un · ∇Nen,�2

Nen+1
〉 ≤ 1

8
ν
∥∥∇N�Nen+1

∥∥2

2
+ CC̃2

1

ν

∥∥�Nen
∥∥2

2
,

〈
un−1 · ∇Nen−1,�2

Nen+1
〉 ≤ 1

8
ν
∥∥∇N�Nen+1

∥∥2

2
+ CC̃2

1

ν

∥∥�Nen−1
∥∥2

2
.
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Going back to (60) results in

∥∥�Nen+1
∥∥2

2
− ∥∥�Nen

∥∥2

2
+ 1

2
ν�t

∥∥∇N�Nen+1
∥∥2

2
− 1

4
ν�t

∥∥∇N�Nen−1
∥∥2

2

≤ C(C∗)2�t

ν

(∥∥∇Nen
∥∥2

2
+ ∥∥∇Nen−1

∥∥2

2
+ ∥∥en

∥∥2

2
+ ∥∥en−1

∥∥2

2

)

+ CC̃2
1�t

ν

(∥∥�Nen
∥∥2

2
+ ∥∥�Nen−1

∥∥2

2

) + 2�t

ν

∥∥∇Nτ n
∥∥2

2
,

≤ C(C̃2
1 + (C∗)2)�t

ν

∥∥�Nen
∥∥2

2
+ (C(C∗)2M2

2 + C)�t

ν

(
�t2 + hm

)2
,

with the help of the H 1 consistency (50), the leading L2 convergence (53) and the elliptic
regularity. Applying the discrete Gronwall inequality shows that

∥∥�Nen+1
∥∥2

2
+

n∑

k=0

∥∥�N

(
ek+1 − ek

)∥∥2

2
+ 1

4
ν�t

n+1∑

k=1

∥∥∇N�Nek
∥∥2

2

≤ C((C∗)2M2
2 + C)

ν
eC̃5T ∗(

�t2 + hm
)2 ≤ C̃8

(
�t2 + hm

)2
,

with C̃8 = C((C∗)2M2
2 +C)

ν
eC̃5T ∗

. Therefore, the H 2 error estimate for the second order scheme
(47) is proven with an application of elliptic regularity:

∥∥en+1
N

∥∥
H 2 ≤ C

(∥∥en+1
N

∥∥
L2 + ∥∥�en+1

N

∥∥
L2

) ≤ C̃9

(
�t2 + hm

)
, C̃9 = C(M2 + C̃8).

Finally, the a-priori H 2 bound (52) for en+1 at time step tn+1 can be assured, provided
that

�t ≤ (C̃9)
− 1

2 , h ≤ (C̃9)
− 1

m .

This finishes the proof of Theorem 2.

5 Third and Fourth Order Multi-Step Schemes

Similar ideas can be applied to derive third and fourth order in time schemes for (1). The
nonlinear convection term is updated by an explicit Adams-Bashforth extrapolation formula,
with the time node points tn, tn−1, . . . , tn−k+1 involved and an order of accuracy k. The diffu-
sion term is computed by an implicit Adams-Moulton interpolation with the given accuracy
order in time. To ensure unconditional numerical stability for a fixed time, we have to derive
an Adams-Moulton formula such that the coefficient at time step tn+1 dominates the sum of
the other diffusion coefficients. In more detail, a k-th order (in time) scheme takes the form
of

un+1 − un

�t
+

k−1∑

i=0

Biu
n−i · ∇Nun−i = ν�N

(
D0u

n+1 +
k−1∑

i=0

Dj(i)u
n−j (i)

)
. (61)

in which Bi |k−1
i=0 are the standard Adams-Bashforth coefficients with extrapolation points

tn, tn−1, . . . , tn−k+1, j (i)|k−1
i=0 are a set of (distinct) indices with j (i) ≥ 0, and D0, Dj(i)|k−1

i=0
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correspond to the Adams-Moulton coefficients to achieve the k-th order accuracy. Moreover,
a necessary condition for unconditional numerical stability is given by

D0 >

k−1∑

i=0

∣∣Dj(i)

∣∣. (62)

To derive an Adams-Moulton formula for the diffusion term, whose coefficients satisfy
the condition (62), we require a stretched stencil. In particular, for the third order scheme,
it can be shown that a stencil comprised of the node points tn+1, tn−1 and tn−3 is adequate.
The fully discrete scheme can be formulated as:

un+1 − un

�t
+ 23

12
un · ∇Nun − 4

3
un−1 · ∇Nun−1 + 5

12
un−2 · ∇Nun−2

= ν�N

(
2

3
un+1 + 5

12
un−1 − 1

12
un−3

)
. (63)

For the fourth order scheme, we use an Adams-Moulton interpolation at node points tn+1,
tn−1, tn−5 and tn−7 for the diffusion term. Combined with the Adams-Bashforth extrapola-
tion for the nonlinear convection term, the scheme is given by

un+1 − un

�t
+ 55

24
un · ∇Nun − 59

24
un−1 · ∇Nun−1 + 37

24
un−2 · ∇Nun−2 − 3

8
un−3 · ∇Nun−3

= ν�N

(
757

1152
un+1 + 470

1152
un−1 − 118

1152
un−5 + 43

1152
un−7

)
. (64)

Theorem 3 For any final time T ∗ > 0, assume the exact solution ue to the 3-D viscous
Burgers’ equation (1) has a regularity of H 3(0, T ∗;Hm+3) with m ≥ 2. Denote u�t,h as the
continuous (in space) extension of the fully discrete numerical solution given by the third
order scheme (63). As �t,h → 0, we have the following convergence result:

‖u�t,h − ue‖l∞(0,T ∗;H 2) + √
ν‖u�t,h − ue‖l2(0,T ∗;H 3) ≤ C

(
�t3 + hm

)
,

provided that the time step �t and the space grid size h are independently bounded by given
constants which depend only on T ∗ and ν.

Proof We look at the approximate solution UN(x, t), given by (14), and denote Un
i,j,k as the

numerical value of UN at grid point (xi, yj , zk, t
n). Again, (18) is satisfied. The following

truncation error estimates can be derived using a high order Taylor expansion in time:

Un+1
N − Un

N =
∫ tn+1

tn
∂tUN(·, t)dt,

23

12
Un

N · ∇Un
N − 4

3
Un−1

N · ∇Un−1
N + 5

12
Un−2

N · ∇Un−2
N = 1

�t

∫ tn+1

tn
UN · ∇UN(·, t)dt + τ n

2,

with ‖τ 2‖l2(0,T ∗;L2) ≤ C�t3‖UN‖2
H 3(0,T ∗;H 3)

≤ C�t3,

�

(
2

3
Un+1

N + 5

12
Un−1

N − 1

12
Un−3

N

)
= 1

�t

∫ tn+1

tn
�UN(·, t)dt + τ n

3,
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with ‖τ 3‖l2(0,T ∗;L2) ≤ C�t3‖UN‖H 3(0,T ∗;H 2) ≤ C�t3.

That in turn leads to the third order consistency of the approximate solution U :

Un+1 − Un

�t
+ 23

12
Un · ∇NUn − 4

3
Un−1 · ∇NUn−1 + 5

12
Un−2 · ∇NUn−2

− ν�N

(
2

3
Un+1 + 5

12
Un−1 − 1

12
Un−3

)
= τ n, (65)

with ‖τ‖l2(0,T ∗;L2
h
) ≤ C(�t3 + hm). The H 1 bound of τ can also be derived:

‖τ‖l2(0,T ∗;H 1
h
) ≤ C

(
�t3 + hm

)
.

Subsequently, with the numerical error function denoted by (25) (while en
N represents the

continuous version of en), the difference between (63) and (65) gives

en+1 − en

�t
+ 23

12

(
en · ∇NUn + un · ∇Nen

) − 4

3

(
en−1 · ∇NUn−1 + un−1 · ∇Nen−1

)
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)

= ν�N

(
2

3
en+1 + 5

12
en−1 − 1

12
en−3

)
+ τ n. (66)

Similar to the analysis of the second order scheme, we make the H 2 a-priori assumption
(52) for the numerical error function at all previous time steps. Taking a discrete L2 inner
product of (66) with 2en+1 yields
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∥∥2
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− ∥∥en
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2
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6
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〉 + 2�t
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〉
. (67)

Since the diffusion coefficient at tn+1 dominates the other ones, the viscosity term can be
analyzed in the same way as (55):
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The estimates for the nonlinear convection terms are given below. The details are skipped.
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Going back to (67) results in
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2
+ ∥∥∇Nen−3

∥∥2

2

)

≤
(

CC̃2
1

ν
+ CC∗ + C

)
�t

∥∥en+1
∥∥2

2
+ CC∗�t

(∥∥en
∥∥2

2
+ ∥∥en−1

∥∥2

2
+ ∥∥en−2

∥∥2

2
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∥∥τ n

∥∥2

2
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Consequently, summing in time, applying the discrete Gronwall inequality and using a sim-
ple fact that 5

6 − 3
12 − 1

2 = 1
12 > 0, we get a fixed time O(�t3 + hm) convergence for the

third order scheme (63) in L∞(0, T ∗;L2) norm:

∥∥en+1
∥∥2

2
+ 1

12
ν�t

n+1∑

k=1

∥∥∇Nek
∥∥2

2
≤ C̃10

(
�t3 + hm

)2
,

under the a-priori H
3
2 +δ assumption (52).

Similar convergence analysis in L∞(0, T ∗;H 2) ∩ L2(0, T ∗;H 3) can be performed by
taking a discrete L2 inner product of (66) with 2�2

Nen+1. The details are skipped.

∥∥�Nen+1
∥∥2

2
+

n∑

k=0

∥∥�N

(
ek+1 − ek

)∥∥2

2
+ 1

24
ν�t

n+1∑

k=1

∥∥∇N�Nek
∥∥2

2
≤ C̃11

(
�t3 + hm

)2;

hence,

∥∥en+1
N

∥∥
H 2 ≤ C

(∥∥en+1
N

∥∥
L2 + ∥∥�en+1

N

∥∥
L2

) ≤ C̃12
(
�t3 + hm

)
, C̃12 = C

√
C̃10 + C̃11.

Finally, the a-priori H 2 bound (52) for en+1 at time step tn+1 is assured, provided that

�t ≤ (C̃12)
− 1

3 , h ≤ (C̃12)
− 1

m . �

Remark 5 For the second order in time method, treating the diffusion term with a standard
second order Adams-Moulton formula leads to a Crank-Nicolson scheme. In the third order
case, we observe that a direct application of the Adams-Moulton formula at the nodes tn+1,
tn and tn−1 (corresponding to j (i) = i in the general form (61)) does not give a formula
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with the stated stability property. For example, a “naive” combination of 3rd order Adams-
Bashforth for the nonlinear convection and Adams-Moulton for the diffusion term results in
the following scheme

un+1 − un

�t
+ 23

12
un · ∇Nun − 4

3
un−1 · ∇Nun−1 + 5

12
un−2 · ∇Nun−2

= ν�N

(
5

12
un+1 + 2

3
un − 1

12
un−1

)
,

which violates the stability condition (62). Numerical experiments also showed that this
method is unstable in time. This case highlights the need to choose an appropriate time-
discretization to couple with the pseudospectral method.

Remark 6 There have been extensive numerical simulation works of high-order multi-step,
semi-implicit schemes applied to nonlinear time-dependent PDEs. Among them, it is worth
mentioning the AB/BDI (Adams-Bashforth/Implicit Backward Differentiation) schemes,
introduced by Crouzeix [10], which update the nonlinear convection term using the standard
Adams-Bashforth extrapolation and the time marching term with implicit backward differ-
entiation for the diffusion term. In particular, the third order scheme of this family has been
applied to the incompressible Navier-Stokes equations with various spatial approximations;
see the relevant works [2, 3, 23, 26]. However, only the linear stability analysis is covered
in these existing works; see the relevant discussions in [36]. To the authors’ knowledge, this
article is the first to provide the stability and convergence analysis for a third order scheme
applied to nonlinear PDE.

The stability and convergence for the fourth order scheme (64) with a fixed final time is
given in the following theorem.

Theorem 4 For any final time T ∗ > 0, assume the exact solution ue to the 3-D viscous
Burgers’ equation (1) has a regularity of H 4(0, T ∗;Hm+3) with m ≥ 2. Denote u�t,h as the
continuous (in space) extension of the fully discrete numerical solution given by the fourth
order scheme (64). As �t,h → 0, we have the following convergence result:

‖u�t,h − ue‖l∞(0,T ∗;H 2) + √
ν‖u�t,h − ue‖l2(0,T ∗;H 3) ≤ C

(
�t4 + hm

)
,

provided that the time step �t and the space grid size h are independently bounded by given
constants which only depend on T ∗ and ν.

We omit the full proof of this theorem because of its similarity with the previous proofs.
However, we detail the estimate of the diffusion term for the fourth order scheme (64):

〈
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(
757

1152
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〉
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2
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.
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Again, the fact that the diffusion coefficient at tn+1 dominates the other ones, i.e., 883
2304 −

470
2304 − 118

2304 − 43
2304 = 252

2304 > 0, ensures the numerical stability of (64).

6 Conclusions

In this paper we develop stable time-stepping methods of order up to four for the numerical
solution of the three dimensional viscous Burgers’ equation by a Fourier collocation method,
and present a novel stability and convergence analysis for the fully discrete methods.

In the first order (in time) scheme, we apply a semi-implicit approach, which updates
the nonlinear convection term explicitly and treats the diffusion term implicitly. Since the
pseudospectral method is evaluated at the interpolation grid points, a discrete L2 and Hm

inner product is used to carry out the analysis. The stability analysis requires an estimate of
the nonlinear convection term in the L2 and H 1 norms. This estimate cannot be obtained
directly, due to the aliasing error complicated by the nonlinearity. A key observation of this
article is that, if the nonlinearity is of polynomial type (for example, quadratic for Burgers’
equation or the Navier-Stokes equations), the corresponding interpolation operator applied
to the nonlinear expansion results in an L2 or any Hk norm bounded by a given constant
multiple of the corresponding norms of the original exact nonlinear term; see Lemma 1. As
a result, all the energy estimates in the Sobolev norms can be performed almost in the same
way as in the Galerkin approach, so that stability and convergence over a fixed finite time is
demonstrated.

The L∞ bound of the numerical solution is the key point in the stability and convergence
analysis of a fully discrete scheme for nonlinear PDEs. The classical way to obtain such a
bound is the application of the inverse inequality which provides an L∞ bound of the nu-
merical solution after the L2 numerical convergence is established. However, this approach
leads to a restriction on the time-step in terms of the spatial grid size, which can be pro-
hibitive in two or three dimensions. In this work, we avoid the inverse inequality approach.
Instead, we provide an H 2 error estimate so that the L∞ norm of the numerical solution is
automatically bounded, using a 3-D Sobolev embedding. This approach avoids a time-step
restriction in terms of the spatial grid size.

We apply similar ideas to develop stable higher order in time schemes using a multi-
step approach. For the sake of numerical efficiency, the semi-implicit pattern is kept, with
a standard Adams-Bashforth extrapolation formula (with the given accuracy) applied to the
nonlinear term, while the diffusion term is treated using an implicit Adams-Moulton inter-
polation formula on certain time node points. However, deriving a stable scheme requires
specialized stretched stencil in the Adams-Moulton approximation. We present these multi-
step schemes with accuracy up to fourth order and show that, coupled with the Fourier
collocation method, these methods are stable and convergent.
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