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Abstract In this paper we use P1-nonconforming quadrilateral finite volume methods with
interpolated coefficients to solve the semilinear elliptic problems. Two types of control vol-
umes are applied. Optimal error estimates in H 1-norm on the quadrilateral mesh and super-
convergence of derivative on the rectangular mesh are derived by using the continuity argu-
ment, respectively. In addition, numerical experiments are presented adequately to confirm
the theoretical analysis and optimal error estimates in L2-norm is also observed obviously.
Compared with the standard Q1-conforming quadrilateral element, numerical results of the
proposed finite volume methods show its better performance than others.

Keywords Semilinear elliptic equations · Finite volume methods · P1-nonconforming
quadrilateral element · Q1-conforming quadrilateral element · Superconvergence

1 Introduction

Finite volume methods (FVM) is an important and commonly used method for solving
many practical problems in scientific and engineering computations. It is also known as the
Marker-and-Cell methods [9, 15], the generalized difference methods [23, 45], finite vol-
ume element methods (FVEM) [4–6, 26, 43], covolume methods [10–12] or box methods
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[2, 14, 35]. Its main virtues are the local conservation and the capability of discretizing do-
mains with complex geometry. In general, it represents the conservation of a quantity of
interest, such as mass, momentum or energy in fluid mechanics. The integral formulation
of a finite volume scheme for a problem is obtained by integrating the problem over a con-
trol volume or a dual element. In fact, FVM might be regarded as a special class of Petrov-
Galerkin methods where the trial function spaces are connected with the test function spaces
associated with the dual partitions induced by the control volumes [21, 42]. Usually, we use
different polynomial functions as trial and test spaces over the original partition and its dual
partition, respectively. It is different from the standard finite element methods (FEM) which
only use simple polynomial function spaces over the original partition. Although FEM is
flexible to deal with the complex domains and various boundary conditions, and the theory
on the convergence and stability of FEM is well established, the main drawback of FEM
might be the loss of the local conservation property which can be fundamental for the simu-
lation of many physical models, e.g., in computational fluid dynamics, hyperbolic equations,
heat transfer and modeling of fuel cells [9, 15, 19, 23, 44]. Of course, one of the main lim-
itation of FVM is the low order approximation. For most existing FVM, the test space is
either a piecewise constant or a linear finite element spaces.

In this paper we shall devote ourself to study the semilinear elliptic problems by using
FVM and FEM, respectively. Now a lot of numerical methods have been proposed and devel-
oped to solve the semilinear problems. Among them, FEM with interpolated coefficients is
an effective and excellent method. In 1980, this method was introduced and analyzed firstly
for the semilinear parabolic problems by Zlamal [46]. Later, Larson, Thomee and Zhang [22]
studied the semidiscrete linear triangular FEM with interpolated coefficients, and Chen, Lar-
son and Zhang [8] derived almost optimal order convergence on a uniform triangular mesh
by using the piecewise linear finite element space and superconvergence techniques. Xiong
and Chen [37–39] studied the superconvergence of triangular quadratic FEM for the nonlin-
ear ordinary differential equation and the Q1-conforming rectangular FEM with interpolated
coefficients for the semilinear elliptic problem, respectively. Recently Xiong and Chen [40,
41] put the interpolation idea into FVEM for solving two-point boundary value problem
of the semilinear differential equations and studied the Q1-conforming rectangular FVEM
with interpolated coefficients for the semilinear elliptic equation.

On the quadrilateral mesh, Li and Li [24] studied the generalized difference methods for
the Poisson equation under some assumptions on the regularity of solutions and restrictions
on the quadrilateral subdivision of a convex polygon domain. Zhu and Li [45] obtained a
superconvergence result of the generalized difference methods in a discrete norm. Wang [36]
constructed a mixed FVEM based on the rectangular mesh for the biharmonic equations by
using Q1-conforming element.

In 2003, Park and Sheen [34] introduced the nonparametic P1-nonconforming quadrilat-
eral FEM to solve the second-order elliptic problems independently by a novel approach.
Unlike the usual conforming and nonconforming quadrilateral elements, their element only
consists of piecewise linear polynomials that are continuous at the midpoints of edges. One
of the benefits of using this element is convenient to use the rectangular or quadrilateral
mesh with much less degrees of freedom than the usual quadrilateral nonconforming el-
ements. Note that for Q1-conforming quadrilateral element, they have the same degrees
of freedom for different boundary conditions. On the other hand, from different points of
view, the different P1-nonconforming quadrilateral finite element can also be found in some
references, e.g. the RQC4 element proposed in [44] (has been published 20 years ago). Fur-
thermore, motivated by references [33, 34, 44], the parametric constrained nonconforming
rotated Q1 element are presented in [20] and the nonconforming double set parameter ro-
tated Q1 element are also presented in [28–32]. In 2006, Mao, Chen and Sun [31] presented
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a four-parameter quadrilateral nonconforming element with double set parameter by using
different motivation and ideas (It is originated from the nonconforming rotated Q1 element
and bilinear element, they call it QB element) and proved that it is an anisotropic and su-
perconvergent nonconforming quadrilateral element. Note that QB element is equivalent to
P1-nonconforming quadrilateral element [34] under the rectangular meshes.

Later, Man and Shi [27] studied FVEM of P1-nonconforming quadrilateral element for
the elliptic problems based on a dual partition of overlapping type and obtain optimal er-
ror estimates under additional assumptions on the source term and the partition. Moreover,
Grajewski, Hron and Turek [18] examined in detail the numerical behavior of Park-Sheen
element with special emphasis on the treatment of Dirichlet boundary conditions and made
several numerical examples for the P1-nonconforming FEM on the quadrilateral meshes.
Recently, Feng, Kim, Nam and Sheen [16] used the locally stabilized P1-nonconforming
quadrilateral and hexahedral FEM to solve the Stokes equations and obtained optimal error
estimate for velocity and pressure. In this paper, we shall use P1-nonconforming quadrilat-
eral element to solve the semilinear elliptic problems by FVM and FEM on the rectangular
mesh, respectively. Furthermore, we apply Q1-conforming quadrilateral element to the same
problems by FVM and FEM, respectively.

The outline of this paper is organized as follows. In Sect. 2, we shall introduce the FVM
with interpolated coefficients and two types of control volumes for the semilinear elliptic
equations. In Sect. 3, we will give preliminaries and some lemmas. In Sect. 4, we derive
optimal error estimate in H 1-norm on the quadrilateral mesh. Next we will prove super-
convergence of derivative on the rectangular mesh in Sect. 5. The theoretical results are
investigated in detail by numerical experiments. In addition, numerical comparisons of the
standard Q1-conforming quadrilateral FVM (or FEM) and P1-nonconforming quadrilateral
FVM (or FEM) are presented in Sect. 6. Finally, conclusions are given in Sect. 7.

2 FVM with Interpolated Coefficients

Now we consider the following second order semilinear elliptic equation

−�u + f (u) = g, in � ⊂ R2 (1)

with homogenous boundary condition of Dirichlet type, i.e., u|∂� = 0 and g ∈ L2(�). As-
sume that f ′(s) > 0 for s ∈ (−∞,+∞) and f ′′(s) is continuous with respect to s, and
� = (0,1) × (0,1).

Finite volume approximations rely on the local conservation property expressed by the
differential equation. Namely, integrating equation (1) over any control volume V ⊂ � with
piecewise smooth boundary ∂V and using the Green formula, we obtain

−
∫

∂V

∂u

∂n
ds +

∫
V

f (u)dxdy =
∫

V

gdxdy, ∀V ⊂ �, (2)

where n denotes the unit exterior normal to ∂V . The FVM of problem (2) consists of re-
placing the exact solution u by the finite-dimensional space of piecewise smooth functions
and using a finite set of control volumes. In this paper, we shall use the rectangular partition
of � and the piecewise linear interpolation with interpolated coefficients for u firstly.

Given a quasi-uniform rectangular partition Th for �, and the nodes are (xi, yj ),
i = 0,1,2, . . . ,Nx , j = 0,1,2, . . . ,Ny . Denote hxi

= xi − xi−1, i = 1,2, . . . ,Nx , hyj
=

yj − yj−1, j = 1,2, . . . ,Ny , and h = maxi,j {hxi
, hyj

}. For any rectangular element τij =
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[xi−1, xi] × [yj−1, yj ] ∈ Th, let Zh(τij ) and Eh(τij ) be the set of nodes and sides of τij re-
spectively. Setting Zh = ⋃

τij ∈Th
Zh(τij ) and Eh = ⋃

τij ∈Th
Eh(τij ). Further let Zin

h and Ein
h

be the set of interior nodes and sides of Th respectively. We denote the set of all middle
point of sides e ∈ Eh (or Ein

h ) with each node zj by Mh (or Min
h ), and denote the subset of

Eh consisting of those sides that have zj is a endpoint of sides e by Eh(j). Moreover, we
denote the set of midpoints of sides e ∈ Eh(j) by Mh(j). In what follows, we use τ with
or without subscripts to denote a element, possibly different at different occurrences in this
paper, that may be a rectangular element, a trapezoidal element or a quadrilateral element.

Now we introduce P1-nonconforming quadrilateral finite element space [34] and dual
partition T ∗

h associated with the quadrilateral partition Th. Setting

Sh = {
vh : � → R : vh|τ ∈ P1(τ ) for all τ ∈ Th and vh is continuous at every mi ∈ Min

h

}
,

S0h = {
vh ∈ Sh|vh(mi) = 0 for any mi ∈ Mh \ Min

h

}
,

where P1(τ ) = span {1, x, y}. Let φj ∈ S0h be such that

φj (m) =
{

1, if m ∈ Mh(j),

0, if m ∈ Mh \ Mh(j).

It is pointed out that if Th is decomposed into parallelograms, φj is continuous at zj

for all j . However, φj may not be continuous in general. Under the assumption that each
interior edge has at least one interior vertex as its endpoint, all functions associated with the
interior nodes Zin

h form the basis of S0h.
Next we define a control volume Vzj

of node zj ∈ Zin
h , which includes zj and four mid-

points of Mh(j). For boundary nodes, their control volumes should be modified correspond-
ingly. All the control volumes constitute the dual partition T ∗

h . In this paper we only consider
two types of dual partitions. One is the nonoverlapping rectangular control volumes of in-
terior vertices, and it is shown in the left subfigure of Fig. 1. The other is the overlapping
quadrilateral control volumes of interior vertices which consist of four diagonals, and it is
so called diagonal box [35] and shown in the right subfigure of Fig. 1.

Remark 2.1 Moreover, we consider a trapezoidal mesh in Fig. 2 which appear in [16, 20]
and two types of control volumes in Fig. 3. The trapezoidal element is an extension of the
original two dimensional rectangular element, where θ ∈ [0,1] is a relax parameter that

Fig. 1 Left: A rectangular mesh with nonoverlapping control volumes of interior vertices. Right: A rectan-
gular mesh with overlapping control volumes of interior vertices
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Fig. 2 Left: A trapezoid mesh with nonoverlapping control volumes. Right: A trapezoid mesh with overlap-
ping control volumes

Fig. 3 Left: (I). A sample nonoverlapping control volume Vz , where mi, i = 1,2,3,4, is midpoint. Right:
(II). A sample overlapping control volume Vz

Fig. 4 The shape of a trapezoid
element τ

depict the shape of a element, zi, i = 1,2,3,4, are vertexes of τ , and the length of the edge

z2z3 equates
√

h2
yj

+ 4θ2h2
xi

in Fig. 4. When θ = 0, the trapezoidal mesh degenerates to a

rectangular mesh. When θ = 1, the trapezoidal mesh degenerates to a triangle mesh.

Remark 2.2 For the low order conforming quadrilateral element, Q1(τ ) = span{1, x, y, xy}.
If we use Q1-conforming element and the trapezoidal mesh in Fig. 2, then when θ = 1, the
trapezoid is degenerated into the right triangle. In this case, the Q1-conforming quadrilateral
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element is well-defined and it degenerates to the P1-conforming triangular element [1, 13,
32]. For the P1-nonconforming quadrilateral element, it has the same conclusion. Note that
the smallness of the quantity dτ , the distance between the two midpoints of the two diagonals
of τ , is a good indicator of almost parallelogram [1, 11, 13, 20]. Here the midpoints distance
dτ = θhxi

in Fig. 4. Obviously, dτ → 0 as θ → 0, Q1(τ ) and P1(τ ) do work very well.

Now we introduce the standard notations and definitions for the Sobolev spaces
Hm,p(�), and their associated norms ‖ · ‖m,p and seminorms | · |m,p , m ≥ 0. If p = 2,
the subscript p may be omitted, in which case the norms, inner products and seminorms are
denoted by ‖ · ‖m, (·, ·)m and | · |m, respectively. If m = 0, the subscript m may be omitted.
The space H 0(�) coincides with L2(�), in which case the norm and inner product are de-
noted by ‖ ·‖0 and (·, ·), respectively. The space H 1

0 (�) is the subspace of H 1(�) consisting
of functions with vanishing on ∂�. Further we shall denote with p′ the adjoint number of p,
i.e. 1

p
+ 1

p′ = 1, p, p′ ≥ 1. In what follows, we use C, with or without subscripts to denote
a generic positive constant, possibly different at different occurrences in this paper, that is
independent of the mesh parameter h but may depend on the domain �.

Let S0h be the piecewise linear finite element space over the original partition Th and
S∗

h ⊂ L2(�) be the piecewise constant space over the dual partition T ∗
h , respectively. Sup-

pose z ∈ Zh and denote the basis function of Sh at the vertex z by φz. Define Vz by the
corresponding dual element of vertex z and χz by the characteristic function over Vz. Define
the interpolation operator Ih : H 2(�) ∩ H 1

0 (�) → S0h as in [34] such that

Ihϕ(m) = 1

2

(
ϕ(z1) + ϕ(z2)

)
, ∀m ∈ Mh,

where z1 and z2 are the endpoints of an edge with m as its midpoint. For any ϕ ∈ H 2(�) ∩
H 1

0 (�), its interpolation can be expressed as

Ihϕ = 1

2

∑
z∈Zh

ϕ(z)φz, ∀ϕ ∈ H 2(�) ∩ H 1
0 (�). (3)

It has the following approximation property

‖ϕ − Ihϕ‖ + h‖ϕ − Ihϕ‖1,h ≤ Ch2‖ϕ‖2, ∀ϕ ∈ H 2(�) ∩ H 1
0 (�).

Define a one-to-one operator I ∗
h : S0h → S∗

h by

I ∗
h ϕ =

∑
z∈Zh

ϕ(z)χz, ∀ϕ ∈ S0h. (4)

It has the following approximation property [27]

‖ϕ − I ∗
h ϕ‖0,q ≤ Ch|ϕ|1,q,h, ∀ϕ ∈ S0h, 1 < q < ∞.

In the finite volume discretization, we require the number of dual element should equal
to the number of unknowns to obtain a unique approximate solution. For P1-nonconforming
quadrilateral element, the basis functions are corresponding to the vertices while continuous
at the midpoints of the partition. So the standard finite volume scheme of problem (2) can
read, finding uh = ∑

zi∈Zin
h

uzi
φzi

∈ S0h, such that

−
∫

∂Vzi

∂uh

∂n
ds +

∫
Vzi

f (uh)dxdy =
∫

Vzi

gdxdy, ∀zi ∈ Zin
h . (5)
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For convenience, we now define the finite volume scheme with interpolated coefficients,
finding uh = ∑

zi∈Zin
h

uzi
φzi

∈ S0h, such that

−
∫

∂Vzi

∂uh

∂n
ds +

∫
Vzi

Jhf (uh)dxdy =
∫

Vzi

gdxdy, ∀zi ∈ Zin
h , (6)

where Jhf (uh) = ∑
zi∈Zin

h
f (uzi

)φzi
.

Obviously, the nonlinear systems of FVM with interpolated coefficients (6) is simpler
than that of the standard FVM (5) (or FEM) for the semilinear elliptic problems. If we use
the Newton (or Newton-like) iteration method and P1-nonconforming quadrilateral element
to solve equations (6), it is easy to calculate its Jacobian matrix and stiffness matrix.

3 Preliminaries and Lemmas

Below we shall presume that the exact solution u of problem (1) is sufficiently smooth for
our purpose. Next we introduce some bilinear forms and lemmas in this section. Defining

a
(
u, I ∗

h ϕh

) = −
∑
z∈Zh

ϕh(z)

∫
∂Vz\∂Th

∂u

∂n
ds, ∀ϕh ∈ S0h,

(
u, I ∗

h ϕh

) =
∑
z∈Zh

ϕh(z)

∫
Vz

udxdy, ∀ϕh ∈ S0h,

and taking V = Vz, then problem (2) is rewritten as follows

a
(
u, I ∗

h ϕh

) + (
f (u), I ∗

h ϕh

) = (
g, I ∗

h ϕh

)
, ∀ϕh ∈ S0h. (7)

Similarly, equation (6) is equivalent to finding uh ∈ S0h, such that

a
(
uh, I

∗
h ϕh

) + (
Jhf (uh), I

∗
h ϕh

) = (
g, I ∗

h ϕh

)
, ∀ϕh ∈ S0h. (8)

Assume that Th is a quasi-uniform trapezoid partition (see Fig. 2), the following two
lemmas are suitable for the usual trapezoid mesh with rectangular control volumes. In terms
of properties of interpolation and the bilinear form a(·, ·), we have

Lemma 3.1

a
(
ϕh, I

∗
h ϕh

) = |ϕh|21, ∀ϕh ∈ S0h, (9)

a
(
uh − Ihu, I ∗

h ϕh

) ≤ Ch‖u‖2|ϕh|1, ∀u ∈ H 2(�) ∩ H 1
0 (�), ϕh ∈ S0h. (10)

Proof For all ϕh ∈ S0h, we can write it as follows

ϕh|τ = u1φ1 + u2φ2 + u3φ3 + u4φ4,

where uk denotes the coefficient of the basis function φk, k = 1,2,3,4. So we have

|ϕh|21 =
∑
τ∈Th

|ϕh|21,τ =
∑
τ∈Th

∫
τ

(
∂ϕh

∂x

)2

dxdy +
∫

τ

(
∂ϕh

∂y

)2

dxdy =
∑
τ∈Th

(α1 + α2),
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where

α1 =
∫

τ

(
∂ϕh

∂x

)2

dxdy =
∫

τ

1

h2
xi

(u2 + u3 − u1 − u4)
2dxdy

= hyj

hxi

(u2 + u3 − u1 − u4)
2,

α2 =
∫

τ

(
∂ϕh

∂y

)2

dxdy =
∫

τ

1

h2
yj

(u3 + u4 − u1 − u2)
2dxdy

= hxi

hyj

[
u3 + u4 − u1 − u2 − θ(u1 − u2 − u3 + u4)

]2
.

On the other hand, we have

a
(
ϕh, I

∗
h ϕh

) = −
∑
z∈Zh

ϕh(z)

∫
∂Vz\∂Th

∂ϕh

∂n
ds

= −
∑
τ∈Th

4∑
i=1

ϕh(zi)

∫
∂Vzi

∩τ

∂ϕh

∂n
ds

= −
∑
τ∈Th

[
ϕh(z1)β1 + ϕh(z2)β2 + ϕh(z3)β3 + ϕh(z4)β4

]
,

where

β1 =
∫

∂Vz1 ∩τ

∂ϕh

∂n
ds = hyj

2hxi

(u2 + u3 − u1 − u4)

+ hxi

2hyj

(1 + θ)
[
u3 + u4 − u1 − u2 + θ(u2 + u3 − u1 − u4)

]
,

β2 =
∫

∂Vz2 ∩τ

∂ϕh

∂n
ds = hyj

2hxi

(u1 + u4 − u2 − u3)

+ hxi

2hyj

(1 − θ)
[
u3 + u4 − u1 − u2 + θ(u2 + u3 − u1 − u4)

]
,

β3 =
∫

∂Vz3 ∩τ

∂ϕh

∂n
ds = hyj

2hxi

(u1 + u4 − u2 − u3)

+ hxi

2hyj

(1 + θ)
[
u1 + u2 − u3 − u4 + θ(u1 + u4 − u2 − u3)

]
,

β4 =
∫

∂Vz4 ∩τ

∂ϕh

∂n
ds = hyj

2hxi

(u2 + u3 − u1 − u4)

+ hxi

2hyj

(1 − θ)
[
u1 + u2 − u3 − u4 + θ(u1 + u4 − u2 − u3)

]
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and

ϕh(z1) = 1

2
(3u1 + u2 − u3 + u4) + θ

2
(u1 + u4 − u2 − u3),

ϕh(z2) = 1

2
(u1 + 3u2 + u3 − u4) + θ

2
(u2 + u3 − u1 − u4),

ϕh(z3) = 1

2
(−u1 + u2 + 3u3 + u4) + θ

2
(u1 + u4 − u2 − u3),

ϕh(z4) = 1

2
(u1 − u2 + u3 + 3u4) + θ

2
(u2 + u3 − u1 − u4).

From above equalities, we obtain

α1 + α2 = −[
ϕh(z1)β1 + ϕh(z2)β2 + ϕh(z3)β3 + ϕh(z4)β4

]

= hyj

hxi

(u2 + u3 − u1 − u4)
2 + hxi

hyj

[
u3 + u4 − u1 − u2 − θ(u1 − u2 − u3 + u4)

]2
.

The desired result (9) is derived from above formulations. From [27, 36] we also have
(10). �

Remark 3.1 From [36, 41], the following result is classical for the semilinear elliptic equa-
tion (1) by using Q1-conforming rectangular element, i.e.,

a
(
ϕh, Ĩ

∗
h ϕh

) ≥ 1

2
|ϕh|21, ∀ϕh ∈ S̃0h,

where S̃0h is the piecewise bilinear finite element space over the rectangular partition and
Ĩ ∗
h : C(�) → S∗

h is the interpolation operator correspondingly. From equation (9), we know
that a(·, ·) has better coercivity and stability for P1-nonconforming rectangular element.

Remark 3.2 In fact, for the general quadrilateral mesh with two types of control volumes
in Fig. 3, if we use P1-nonconforming quadrilateral FVM to solve the semilinear elliptic
equation (1), then we can obtain the same properties of bilinear form a(·, ·) by the symbolic
computation and the similar technique in [27, 36], i.e., (9) and (10) hold.

Form [16, 27], we have following useful lemma.

Lemma 3.2 The semi-norm | · |1 and the norm ‖ · ‖1 are equivalent in the space S0h, that is,
there exists positive constants C1 and C2, such that

C1|ϕh|1 ≤ ‖ϕh‖1 ≤ C2|ϕh|1, ∀ϕh ∈ S0h.

Lemma 3.3 For the quasi-uniform rectangular mesh, the operator I ∗
h has following prop-

erties
∫

τ

I ∗
h vhdxdy =

∫
τ

vhdxdy, ∀vh ∈ S0h, ∀τ ∈ Th, (11)

∫
zkzk+1

I ∗
h vhds =

∫
zkzk+1

vhds, ∀vh ∈ S0h, ∀τ ∈ Th, (12)
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‖vh − I ∗
h vh‖0,p,τ ≤ Ch|vh|1,p,τ , ∀vh ∈ S0h, ∀τ ∈ Th, 1 < p < ∞. (13)

Proof Consider τ ∈ Th (as in Fig. 4), where z5 = z1 and θ = 0. For all vh ∈ S0h, we have

vh|τ = u1φ1 + u2φ2 + u3φ3 + u4φ4

and
∫

τ

I ∗
h vhdxdy = hxi

hyj

4

[
vh(z1) + vh(z2) + vh(z3) + vh(z4)

]

= hxi
hyj

4
(2u1 + 2u2 + 2u3 + 2u4)

= hxi
hyj

2
(u1 + u2 + u3 + u4),

∫
τ

vhdxdy =
∫

τ

(u1φ1 + u2φ2 + u3φ3 + u4φ4)dxdy

= hxi
hyj

2
(u1 + u2 + u3 + u4).

The equation (11) is derived from above two equalities.
On one hand, for k = 1 and k = 3, we have

∫
zkzk+1

vhds =
∫

zkzk+1

(u1φ1 + u2φ2 + u3φ3 + u4φ4)ds = (uk + uk+1)hxi
,

∫
zkzk+1

I ∗
h vhds = hxi

2

[
vh(zk) + vh(zk+1)

] = hxi

2
(2uk + 2uk+1) = (uk + uk+1)hxi

.

On the other hand, for k = 2 and k = 4, we have
∫

zkzk+1

vhds =
∫

zkzk+1

(u1φ1 + u2φ2 + u3φ3 + u4φ4)ds = (uk + uk+1)hyj
,

∫
zkzk+1

I ∗
h vhds = hyj

2

[
vh(zk) + vh(zk+1)

] = hyj

2
(2uk + 2uk+1) = (uk + uk+1)hyj

,

where u5 = u1. Equation (12) is derived from above four equalities. �

Apply the similar technique in [7, 27], we also obtain inequality (13).

Remark 3.3 If we use the trapezoidal mesh with rectangular control volumes to instead of
rectangular mesh in Fig. 2, equation (11) can rewrite as

∣∣∣∣
∫

τ

I ∗
h vhdxdy −

∫
τ

vhdxdy

∣∣∣∣ ≤ Ch2‖vh‖1,τ , ∀vh ∈ S0h, τ ∈ Th. (14)

For all τ ∈ Th as in Fig. 4, we have

vh|τ = u1φ1 + u2φ2 + u3φ3 + u4φ4.
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By simple computation, we obtain

∫
τ

I ∗
h vhdxdy = hxi

hyj

4

[
vh(z1)(1 + θ) + vh(z2) + vh(z3) + vh(z4)(1 − θ)

]

= hxi
hyj

4

[(
2 + θ + θ2

)
u1 + (

2 + θ − θ2
)
u2 + (

2 − θ − θ2
)
u3

+ (
2 − θ + θ2

)
u4

]
.∫

τ

vhdxdy =
∫

τ

(u1φ1 + u2φ2 + u3φ3 + u4φ4)dxdy

= hxi
hyj

[
3 + θ

6
(u1 + u2) + 3 − θ

6
(u3 + u4)

]
.

By combining of these results, we obtain

∣∣∣∣
∫

τ

I ∗
h vhdxdy −

∫
τ

vhdxdy

∣∣∣∣

= hxi
hyj

4

∣∣∣∣θ2(u1 + u4 − u2 − u3) + θ

3
(u1 + u2 − u3 − u4)

∣∣∣∣

= hxi
hyj

4

∣∣∣∣2θ2

3
(u1 + u4 − u2 − u3) + θ

3

[
(1 + θ)(u1 − u3) + (1 − θ)(u2 − u4)

]∣∣∣∣

≤ h2

4

{
8θ4

9
(u1 + u4 − u2 − u3)

2 + 2θ2

9

[
(1 + θ)(u1 − u3) + (1 − θ)(u2 − u4)

]2
} 1

2

≤ Ch2
{
(u1 + u4 − u2 − u3)

2 + [
(1 + θ)(u1 − u3) + (1 − θ)(u2 − u4)

]2} 1
2

= Ch2|vh|1,τ ≤ Ch2‖vh‖1,τ .

By symbolic computation, we have the same result (12) for the trapezoidal mesh with
rectangular control volumes. Here

∫
z1z2

vhds =
∫

z1z2

(u1φ1 + u2φ2 + u3φ3 + u4φ4)ds = (u1 + u2)(1 + θ)hxi
,

∫
z1z2

I ∗
h vhds = (1 + θ)hxi

2

[
vh(z1) + vh(z2)

] = (1 + θ)hxi

2
(2u1 + 2u2) =

∫
z1z2

vhds,

∫
z2z3

vhds =
∫

z2z3

(u1φ1 + u2φ2 + u3φ3 + u4φ4)ds

= (u2 + u3)
√

h2
yj

+ 4θ2h2
xi
,

∫
z2z3

I ∗
h vhds =

√
h2

yj
+ 4θ2h2

xi

2

[
vh(z2) + vh(z3)

] =
√

h2
yj

+ 4θ2h2
xi

2
(2u2 + 2u3)

=
∫

z2z3

vhds,
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∫
z3z4

vhds =
∫

z3z4

(u1φ1 + u2φ2 + u3φ3 + u4φ4)ds = (u3 + u4)(1 − θ)hxi
,

∫
z3z4

I ∗
h vhds = (1 − θ)hxi

2

[
vh(z3) + vh(z4)

] = (1 − θ)hxi

2
(2u3 + 2u4) =

∫
z3z4

vhds,

∫
z4z1

vhds =
∫

z4z1

(u1φ1 + u2φ2 + u3φ3 + u4φ4)ds = (u4 + u1)hyj
,

∫
z4z1

I ∗
h vhds = hyj

2

[
vh(z4) + vh(z1)

] = hyj

2
(2u4 + 2u1) =

∫
z4z1

vhds.

Moreover, we use inequality (14) and apply the similar technique in [7, 27], and also
obtain inequality (13) for the trapezoidal mesh with rectangular control volumes.

It is pointed out that we can obtain the similar results (12), (13) and (14) by using sym-
bolic computation on the general quadrilateral mesh for P1-nonconforming quadrilateral
FVM with two types of control volumes.

By using the similar technique in [7, 27], we also have the following result.

Lemma 3.4 Assume v,w are sufficiently smooth functions. Let Ihw ∈ S0h be the interpola-
tion of w, then

∣∣(v · (w − Ihw),ϕh

)∣∣ ≤ Ch2‖w‖2,p‖ϕh‖1,p′ , ∀ϕh ∈ S0h (15)

for 1
p

+ 1
p′ = 1,1 < p ≤ ∞.

Lemma 3.5 Assume w ∈ H 2(�)
⋂

H 1
0 (�), then there exists a positive constant C indepen-

dent of the mesh size h, such that

∣∣(w − Ihw, I ∗
h ϕh

)∣∣ ≤ Ch2‖w‖2‖ϕh‖1, ∀ϕh ∈ S0h. (16)

Proof Using Lemma 3.4 and the Schwartz inequality, we obtain

∣∣(w − Ihw,ϕh − I ∗
h ϕh

)∣∣ ≤
∑
τ∈Th

∫
τ

|w − Ihw||ϕh − I ∗
h ϕh|dxdy

≤
∑
τ∈Th

Cτh
3‖w‖2,τ‖ϕh‖1,τ ≤ Ch3‖w‖2‖ϕh‖1. (17)

By using (17) and (15) with v ≡ 1 and p = 2, we get the desired result (16). �

4 Error Estimates

In this section, we provide some error estimates for the finite volume scheme (6). Firstly we
introduce an auxiliary bilinear form

A
(
u;w,I ∗

h ϕh

) = a
(
w,I ∗

h ϕh

) + (
f ′(u)w, I ∗

h ϕh

)
,

where u is the exact solution of problem (2). For the auxiliary bilinear form A(u; ·, ·), we
have following positive definite properties.
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Lemma 4.1 For u ∈ H 1
0 (�), A(u;wh, I

∗
h wh) is positive definite for sufficiently small h, i.e.,

there exists a positive constant γ , such that

A
(
u;wh, I

∗
h wh

) ≥ γ (u,f )‖wh‖2
1. (18)

Proof We rewrite A(u;wh, I
∗
h wh) as follows

A
(
u;wh, I

∗
h wh

) = a
(
wh, I

∗
h wh

) + (
f ′(u)wh,wh

) − (
f ′(u)wh,wh − I ∗

h wh

)
. (19)

From Lemmas 3.1 and 3.2, we have

a
(
wh, I

∗
h wh

) ≥ C1‖wh‖2
1. (20)

Note that f ′(s) > 0 and let C2 = infz∈� f ′(u(z)), then we have

(
f ′(u)wh,wh

) ≥ C2‖wh‖2
0 ≥ 0. (21)

In terms of (11) in Lemma 3.3, Remarks 3.1 and 3.2, we obtain

∣∣(f ′(u)wh,wh − I ∗
h wh

)∣∣ =
∣∣∣∣
∑
τ∈Th

∫
τ

f ′(u)wh

(
wh − I ∗

h wh

)
dxdy

∣∣∣∣

≤
∑
τ∈Th

[∣∣∣∣
∫

τ

(
f ′(u)wh − Cτ

)(
wh − I ∗

h wh

)
dxdy

∣∣∣∣ + Ch2‖wh‖2
1,τ

]

≤
∑
τ∈Th

[
C3h|f ′(u)wh|1,τ h|wh|1,τ + Ch2‖wh‖2

1,τ

]

≤ max
�

(|f ′′(u)∇u|, |f ′(u)|) ∑
τ∈Th

C4h
2‖wh‖2

1,τ + Ch2‖wh‖2
1

≤ C5h
2‖wh‖2

1, (22)

where Cτ is the value of f ′(u)wh at the center point in τ ∈ Th. Using (20), (21) and (22),
we obtain

A
(
u;wh, I

∗
h wh

) ≥ C1‖wh‖2
1 − C5h

2‖wh‖2
1 = (

C1 − C5h
2
)‖wh‖2

1,

which implies the desired result (18) for sufficiently small h. �

Next we derive the main result of this section.

Theorem 4.1 Assume u ∈ H2(�)
⋂

H1
0(�) is the solution of problem (1) and Th is quasi-

uniform rectangular or trapezoidal partition of domain �, then the approximate solution
uh ∈ S0h of FVM with interpolated coefficients (6) converges to the exact solution u and has
the following estimate

‖u − uh‖1 ≤ C(u,f )h (23)

for sufficiently small h.
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Proof Subtracting (8) from (7), we obtain the following error equation

a
(
u − uh, I

∗
h ϕh

) + (
f (u) − Jhf (uh), I

∗
h ϕh

) = 0. (24)

Define

f (u) − Jhf (uh) = (
f (u) − Jhf (u)

) + Jh

(
f (u) − f (uh)

) = λ1 + λ2, (25)

where λ1 = f (u)−Jhf (u). Next we analyze the function f (u)−Jhf (uh). By using Taylor
expansion in τ ∈ Th, we have

λ2 = Jh

(
f (u) − f (uh)

) =
∑

z∈Zh(τ)

(
f

(
u(z)

) − f
(
uh(z)

))
φz

≤ f ′(u)(Ihu − uh) + δ1 max
τ

|Ihu − uh| + δ2 max
τ

|Ihu − uh|2

= f ′(u)(Ihu − uh) + λ3, (26)

where

λ3 = δ1 max
τ

|Ihu − uh| + δ2 max
τ

|Ihu − uh|2,
δ1 = C max

z′,z′′∈τ
|f ′(u(z′)) − f ′(u(z′′))| = o(h),

δ2 = 1

2
f ′′(ξ) = o(1).

Substituting (26) into (24), we have

A
(
u;uh − Ihu, I ∗

h ϕh

) = a
(
u − Ihu, I ∗

h ϕh

) + (
λ1 + λ3, I

∗
h ϕh

)
.

Letting ζ = uh − Ihu ∈ S0h and taking ϕh = ζ, from Lemmas 3.5 and 4.1, we obtain

γ ‖ζ‖2
1 ≤ Ch‖ζ‖1 + C

(
h‖ζ‖0,∞ + ‖ζ‖2

0,∞
)‖ζ‖0,1.

Recalling for Bramble [3], that

‖ζ‖0,∞ ≤ C| lnh|1/2‖∇ζ‖ ≤ C| lnh|1/2‖ζ‖1

hold for all ζ ∈ S0h and using the well know Sobolev inequality

‖v‖0,p ≤ C‖v‖1, ∀1 ≤ p < ∞,

we get

γ ‖ζ‖2
1 ≤ Ch‖ζ‖1 + C

(
h| lnh|1/2‖ζ‖1 + | lnh|‖ζ‖2

1

)‖ζ‖1.

Omitting the common factor ‖ζ‖1, we have

γ ‖ζ‖1 ≤ Ch + Ch| lnh|1/2‖ζ‖1 + C| lnh|‖ζ‖2
1 (27)

for sufficiently small h.
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Omitting the second term of the right-side of (27), we get

‖ζ‖1 ≤ C1h + C2| lnh|‖ζ‖2
1. (28)

Next we adopt a continuity argument by imitating the method in [17] and prove

‖ζ‖1 ≤ ‖Ihu − uh‖ ≤ 2C1h. (29)

For all b ∈ [0,1], considering the following auxiliary semilinear elliptic problems (P b):
Find ub such that {

−�ub + bf (ub) = bg in �,

ub = 0 on ∂�.
(30)

Obviously, when b = 1, this is the original problem (1). And when b = 0, we have the exact
solution u0 = 0. We shall assume the following condition on � = (0,1)× (0,1). ∀b ∈ [0,1],
there exist a solution ub of problem (P b) and a positive constant ξ , such that the set

Nξ =
{
ω|ω ∈ H 2(�)

⋂
H 1

0 (�),max
�

|u − ω| < ξ
}

is some neighborhood of the exact solution u of problem (1).

We approximate the problem (P b): Find ub
h ∈ S0h, such that

a
(
ub

h, I
∗
h vh

) + b
(
Jhf

(
ub

h

)
, I ∗

h vh

) = b
(
g, I ∗

h vh

)
, ∀vh ∈ S0h. (31)

We intend to show that (P b
h ) is solvable. For each h, we define the set Fh ⊂ [0,1] by

Fh = {
b ∈ [0,1]|(P b

h

)
has a solution ub

h ∈ Nξ and ‖Ihu
b − ub

h‖1 ≤ 2C1h holds
}
,

where C1 is the constant appearing in (28). Next we show that the set Fh has the following
properties.

(i) Fh is not empty. In fact, for b = 0, ub = 0 and ub
h = 0 are the solutions of continuous

and the discrete problems, respectively.
(ii) Fh is open in [0,1]. If b ∈ Fh, then (P b

h ) is solvable. Using the monotonicity condition,
we obtain the solvability of (P b

h ) for all points b̃ in a neighborhood of b. By the implicit
function theorem, ub̃

h depends continuously on b̃. Thus properly shorten the neighbor-
hood such that the strict inequality ‖Ihu

b − ub
h‖1 ≤ 2C1h and ub

h ∈ Nξ is still valid and
we have b̃ ∈ Fh for these b̃.

(iii) Fh is closed. Let b(j) ∈ Fh and b(j) → b, j → ∞. Since u
b(j)

h ∈ Nξ , there is a clus-
ter point ub

h which is the unique solution of (P b
h ) and satisfies ‖Ihu

b − ub
h‖1 ≤ 2C1h.

Recalling for (28), we conclude

‖Ihu
b − ub

h‖1 ≤ C1h + 4C2C
2
1 | lnh|h2 ≤ C1(1 + 4C1C2| lnh|h)h.

Then for sufficiently small h, we have 4C1C2| lnh|h ≤ 1 and ‖Ihu
b − ub

h‖1 ≤ 2C1h, i.e., the
strict inequality holds.

Form (i)–(iii), we know that for sufficiently small h, the set Fh is not empty, closed
and open with respect to b and thus must coincide with [0,1]. Note that for b = 1, (P 1

h ) is
solvable. We prove that (29) and uh ∈ Nξ hold for appropriately small h.

Finally, the desired result (23) follows form (29) and the approximation property

‖u − Ihu‖1 ≤ Ch‖u‖2. �
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5 Superconvergence of Derivative

In this section we show superconvergence of derivative of the finite volume scheme (6) on
the rectangular mesh. First we give the superclose property of derivative for Ihu.

Lemma 5.1 [20, 25] For sufficiently smooth function u, let Ihu ∈ S0h be the interpolation
of u on the rectangular mesh, then we have superclose property

|∇(u − Ihu)| = o
(
h2| lnh|) (32)

for the center points in all τ ∈ Th.

For the FVM with interpolated coefficients (6) on the rectangular mesh for the semilinear
elliptic problem, we have the following superconvergence results of derivative.

Theorem 5.1 Assume that u ∈ W 3∞(�), f ′(s) > 0 for s ∈ (−∞,+∞) and f ′′(s) is contin-
uous with respect to s, and g ∈ W 1

0 (�). Assume that the rectangular partition Th of � is the
quasi uniform. Then the FVM with interpolated coefficients (6) for the semilinear elliptic
problem has superconvergence of derivative, i.e.,

|∇(u − uh)| = o
(
h2| lnh|)

hold for all center points of τ ∈ Th.

Proof Choosing v = vh ∈ S0h in (7), we obtain

a(u, vh) + (
f (u), vh

) = (g, vh). (33)

Subtracting (8) from (33), we have

a(u − uh, vh) + a
(
u,vh − I ∗

h vh

) + a
(
uh − u,vh − I ∗

h vh

) + (
f (u) − Jhf (u), vh

)
+ (

Jhf (u), vh − I ∗
h vh

) + (
Jh

(
f (u) − f (uh)

)
, I ∗

h vh

) = (g, vh) − (
g, I ∗

h vh

)
. (34)

Let η = u − Ihu , ζ = uh − Ihu. It follows from (34), (25) and (26) that

A(u; ζ, vh) = a(ζ, vh) + (
f ′(u)ζ, vh

)
= a(η, vh) + a

(
u,vh − I ∗

h vh

) + a
(
uh − u,vh − I ∗

h vh

) + (λ1, vh)

+ (
Jhf (u), vh − I ∗

h vh

) + (
λ3, I

∗
h vh

) + (
g, I ∗

h vh − vh

)
. (35)

Recalling [7], we get

|a(η, vh)| =
∣∣∣∣
∫

�

∇η∇vhdxdy

∣∣∣∣ ≤ Ch2‖u‖3,∞‖vh‖1,1. (36)

Using Lemma 3.4 with p = +∞, we have

|(λ1, vh)| = |(f (u) − Jhf (u), vh

)| ≤ Ch2‖f (u)‖2,∞‖vh‖1,1. (37)
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In terms of Lemma 3.3 and the trace theorem, we have

∣∣a(
u,vh − I ∗

h vh

)∣∣ =
∣∣∣∣
∑
V ∈T ∗

h

(∫
V

∇u∇vhdxdy − vh(z)

∫
∂V

∂u

∂n
ds

)∣∣∣∣

=
∣∣∣∣
∑
V ∈T ∗

h

∫
∂V

∂u

∂n

(
vh − vh(z)

)
ds

∣∣∣∣

=
∣∣∣∣
∑
τ∈Th

4∑
i=1

∫
∂Vzi

∩τ

(
∂u

∂n
− wτ

)(
vh − I ∗

h vh

)
ds

∣∣∣∣
≤ Ch2‖u‖2,∞‖vh‖1,1, (38)

where wτ is the value of ∂u
∂n

at the midpoint on the edge zizi+1, i = 1,2,3,4, and z5 = z1.
Analogously, we get

∣∣a(
uh − u,vh − I ∗

h vh

)∣∣ =
∣∣∣∣
∑
τ∈Th

4∑
i=1

∫
zi zi+1

∂(uh − u)

∂n

(
vh − I ∗

h vh

)
ds

∣∣∣∣
≤ Ch‖uh − u‖1,∞‖vh‖0,1

≤ Ch‖uh − u‖1,∞‖vh‖1,1. (39)

Using Lemma 3.3, we obtain the following estimates

∣∣(Jhf (u), vh − I ∗
h vh

)∣∣ ≤ Ch2‖f (u)‖1,∞‖vh‖1,1, (40)
∣∣(g, vh − I ∗

h vh

)∣∣ ≤ Ch2‖g‖1,∞‖vh‖1,1. (41)

Substituting from (36)–(41) into (35), we have

A(u; ζ, vh) ≤ Ch2‖vh‖1,1 + Ch‖uh − u‖0,∞‖vh‖1,1 + C‖λ3‖0,∞‖vh‖1,1.

Note that

‖uh − u‖0,∞ ≤ ‖η‖0,∞ + ‖ζ‖0,∞ ≤ C(u)h2 + ‖ζ‖0,∞

and

‖λ2‖0,∞ ≤ Ch‖ζ‖0,∞ + Ch‖ζ‖2
0,∞,

this yields

A(u; ζ, vh) ≤ Ch2‖vh‖1,1 + Ch‖ζ‖1,∞‖vh‖1,1 + C‖ζ‖1,∞‖vh‖1,1. (42)

Choosing vh = Gh as the discrete Green function with respect to the bilinear form A(uh; ·, ·),
and noting that ‖Gh‖1,1 ≤ | lnh| (see [7]), we get

‖ζ‖1,∞ ≤ Ch2| lnh| + Ch‖ζ‖1,∞| lnh| + C‖ζ‖2
1,∞| lnh|.

For sufficiently small h, omitting the second term of the right-side, we have

‖ζ‖1,∞ ≤ Ch2| lnh| + C‖ζ‖2
1,∞| lnh|. (43)
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Similarly, we adopt the continuity argument in the proof of Theorem 4.1 and obtain

|∇ζ |0,∞ ≤ ‖ζ‖1,∞ ≤ Ch2| lnh|. (44)

Using (32) and (44), we obtain

|∇(u − uh)| ≤ |∇(u − Ihu)| + |∇ζ | = |∇(u − Ihu)| + o
(
h2| lnh|),

i.e.,

|∇(u − uh)| = o
(
h2| lnh|),

for all the center points of τ ∈ Th. This completes the proof of the theorem. �

Remark 5.1 For Q1-conforming rectangular element, if Ihu ∈ S̃0h is the Lagrange interpo-
lation of u, then the following superclose property [40]

|∇(u − Ihu)| = o
(
h2

)

holds for the center points for all τ ∈ Th. Moreover, the similar superconvergence result of
derivative in Theorem 5.1 also holds.

6 Numerical Experiments

In this section, we present one test problem to illustrate the theoretical results obtained in
the previous section. In our numerical experiments, we consider the following semilinear
elliptic problem on a unit square domain � in R2:

−�u + u3 = g, in �, u = 0, on ∂� (45)

where the exact solution is given by

u(x, y) = y(1 − x)sin
(
x(1 − y)

)
,

and the right-hand side function g is generated by problem (45). Here we use the nonuniform
triangulations of � into quadrilaterals [16]. The quadrilateral meshes are depicted in Fig. 5.
Each element is a right trapezoid whose the shape is controlled by a relax parameter θ ∈
[0,1], see Fig. 6. Here, for any fixed θ , the meshes do not satisfy the nearly parallelogram
condition when h decreases. When θ = 0, each element is a rectangle. When θ = 1, each
element is a right triangle.

Firstly, we apply P1-nonconforming quadrilateral FVM to the test problem (45) based
on nonoverlapping control volume (I ) and overlapping control volume (II ) in Fig. 3, re-
spectively. And then we use P1-nonconforming quadrilateral FEM to the test problem (45).
Numerical results on the trapezoidal meshes are presented in Tables 1, 2 and 3 in terms
of the H 1-seminorm convergence rates. Here we only present five cases for θ = 0, 1

4 , 1
2 , 3

4
and 1. From these tables, we observe that the convergence rates are optimal on these gen-
eral quadrilateral meshes, which confirms well our theoretical analysis. But the relatively
errors |u−uh|

|u| of three methods by using P1-nonconforming quadrilateral element increase as
θ increases, respectively.
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Table 1 FVM with P1-nonconforming quadrilateral element based on nonoverlapping control volume

N θ = 0 θ = 1
4 θ = 1

2 θ = 3
4 θ = 1

|u−uh|
|u| Rate |u−uh|

|u| Rate |u−uh|
|u| Rate |u−uh|

|u| Rate |u−uh|
|u| Rate

4 2.3883e-1 – 2.4899e-1 – 2.7641e-1 – 3.1922e-1 – 3.7512e-1 –

8 1.1924e-1 1.0032 1.2495e-1 0.9947 1.4099e-1 0.9713 1.6606e-1 0.9428 1.9891e-1 0.9153

16 5.9588e-2 1.0007 6.2512e-2 0.9992 7.0766e-2 0.9945 8.3675e-2 0.9889 1.0059e-1 0.9835

32 2.9790e-2 1.0002 3.1259e-2 0.9999 3.5412e-2 0.9988 4.1907e-2 0.9976 5.0420e-2 0.9965

64 1.4895e-2 1.0000 1.5629e-2 1.0000 1.7709e-2 0.9998 2.0961e-2 0.9995 2.5224e-2 0.9992

Table 2 FVM with P1-nonconforming quadrilateral element based on overlapping control volume

N θ = 0 θ = 1
4 θ = 1

2 θ = 3
4 θ = 1

|u−uh|
|u| Rate |u−uh|

|u| Rate |u−uh|
|u| Rate |u−uh|

|u| Rate |u−uh|
|u| Rate

4 2.3508e-1 – 2.4722e-1 – 2.7963e-1 – 3.2832e-1 – 3.8870e-1 –

8 1.1876e-1 0.9851 1.2535e-1 0.9797 1.4354e-1 0.9620 1.7100e-1 0.9411 2.0529e-1 0.9210

16 5.9527e-2 0.9964 6.2882e-2 0.9952 7.2194e-2 0.9915 8.6229e-2 0.9877 1.0374e-1 0.9847

32 2.9782e-2 0.9991 3.1466e-2 0.9989 3.6147e-2 0.9980 4.3198e-2 0.9972 5.1991e-2 0.9967

64 1.4894e-2 0.9998 1.5736e-2 0.9997 1.8079e-2 0 0.9996 2.1608e-2 0.9994 2.6099e-2 0.9993

Fig. 5 Nonuniform quadrilateral
mesh

Secondly, we apply Q1-conforming quadrilateral FVM to the test problem (45) based
on nonoverlapping control volume (I ) and overlapping control volume (II ) in Fig. 3, re-
spectively. And then we use Q1-conforming quadrilateral FEM to the test problem (45).
Numerical results on the trapezoidal meshes are presented in Tables 4–6 in terms of the H 1-
seminorm convergence rates. In Table 4, we present five cases for θ = 0, 1

4 , 1
2 , 3

4 and 1. We
observe from Table 4 that the convergence rates are optimal on these general quadrilateral
meshes, which confirm our theoretical analysis. In Tables 5–6, we only present five cases for
θ = 0, 1

32 , 1
16 , 1

8 and 1
4 , since numerical results of the last two of these methods are not good

as θ ≥ 1
4 . We observe from Tables 5–6 that the convergence rates are not optimal on these
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Fig. 6 The shape of
quadrilateral element

Table 3 FEM with P1-nonconforming quadrilateral element

N θ = 0 θ = 1
4 θ = 1

2 θ = 3
4 θ = 1

|u−uh|
|u| Rate |u−uh|

|u| Rate |u−uh|
|u| Rate |u−uh|

|u| Rate |u−uh|
|u| Rate

4 2.3507e-1 – 2.4638e-1 – 2.7643e-1 – 3.2167e-1 – 3.7855e-1 –

8 1.1876e-1 0.9851 1.2476e-1 0.9817 1.4114e-1 0.9667 1.6708e-1 0.9450 2.0002e-1 0.9204

16 5.9527e-2 0.9964 6.2561e-2 0.9959 7.1067e-2 0.9930 8.4194e-2 0.9888 1.0112e-1 0.9840

32 2.9782e-2 0.9991 3.1302e-2 0.9990 3.5573e-2 0.9984 4.2170e-2 0.9975 5.0685e-2 0.9965

64 1.4894e-2 0.9998 1.5653e-2 0.9999 1.7791e-2 0.9997 2.1093e-2 0.9995 2.5356e-2 0.9992

Table 4 FVM with Q1-conforming quadrilateral element based on nonoverlapping control volume

N θ = 0 θ = 1
4 θ = 1

2 θ = 3
4 θ = 1

|u−uh|
|u| Rate |u−uh|

|u| Rate |u−uh|
|u| Rate |u−uh|

|u| Rate |u−uh|
|u| Rate

4 1.7619e-1 – 1.8098e-1 – 1.9647e-1 – 2.2359e-1 – 2.5768e-1 –

8 8.7787e-2 1.0051 9.0160e-2 1.0046 9.7879e-2 1.0052 1.0988e-1 1.0249 1.2303e-1 1.0666

16 4.3856e-2 1.0012 4.5036e-2 1.0014 4.8874e-2 1.0019 5.4672e-2 1.0071 6.0756e-2 1.0179

32 2.1923e-2 1.0003 2.2512e-2 1.0004 2.4428e-2 1.0005 2.7302e-2 1.0018 3.0283e-2 1.0045

64 1.0961e-2 1.0001 1.1255e-2 1.0001 1.2213e-2 1.0001 1.3647e-2 1.0005 1.5130e-2 1.0011

general quadrilateral meshes and decrease as θ increases. Furthermore, the relatively errors
|u−uh|

|u| of three methods by using Q1-conforming quadrilateral element increase similarly as
θ increases, respectively.

Thirdly, we present numerical results in Tables 7–12 in terms of the L2-norm con-
vergence rates. We observe from these tables that the convergence rates are optimal
on these general quadrilateral meshes only for P1-nonconforming quadrilateral FVM
based on nonoverlapping control volume (I ) and overlapping control volume (II ) and
P1-nonconforming quadrilateral FEM, and Q1-conforming quadrilateral FVM based on
nonoverlapping control volume (I ). For other two methods, we can not obtain good nu-
merical results as θ ≥ 1

4 in Tables 11–12. The convergence rates of the last two of these
methods decrease as θ increases. Furthermore the relatively errors ‖u−uh‖0

‖u‖0
of six methods

by using P1-nonconforming quadrilateral element and Q1-conforming quadrilateral element
increase as θ increases, respectively. Moreover, we find that the results of FVE (or FEM)
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Table 5 FVM with Q1-conforming quadrilateral element based on overlapping control volume

N θ = 0 θ = 1
32 θ = 1

16 θ = 1
8 θ = 1

4
|u−uh|

|u| Rate |u−uh|
|u| Rate |u−uh|

|u| Rate |u−uh|
|u| Rate |u−uh|

|u| Rate

4 1.8057e-1 – 1.8066e-1 – 1.8079e-1 – 1.8131e-1 – 1.8409e-1 –

8 8.8289e-2 1.0322 8.8331e-2 1.0322 8.8439e-2 1.0316 8.8872e-2 1.0286 9.0863e-2 1.0187

16 4.3917e-2 1.0075 4.3940e-2 1.0074 4.4005e-2 1.0070 4.4275e-2 1.0052 4.5468e-2 0.9988

32 2.1931e-2 1.0018 2.1949e-2 1.0014 2.2002e-2 1.0000 2.2220e-2 0.9946 2.3129e-2 0.9752

64 1.0962e-2 1.0005 1.0985e-2 0.9986 1.1053e-2 0.9932 1.1324e-2 0.9752 1.2362e-2 0.9038

Table 6 FEM with Q1-conforming quadrilateral element

N θ = 0 θ = 1
32 θ = 1

16 θ = 1
8 θ = 1

4
|u−uh|

|u| Rate |u−uh|
|u| Rate |u−uh|

|u| Rate |u−uh|
|u| Rate |u−uh|

|u| Rate

4 1.7619e-1 – 1.7644e-1 – 1.7706e-1 – 1.7943e-1 – 1.8889e-1 –

8 8.7787e-2 1.0051 8.8356e-2 0.9978 9.0019e-2 0.9760 9.6322e-2 0.8974 1.1765e-1 0.6830

16 4.3855e-2 1.0012 4.5287e-2 0.9642 4.9318e-2 0.8681 6.2742e-2 0.6184 0.9820e-2 0.2607

32 2.1923e-2 1.0003 2.5044e-2 0.8570 3.2512e-2 0.6015 5.2512e-2 0.2568 0.9571e-2 0.3711

64 1.0961e-2 1.0001 1.6541e-2 0.5960 2.7056e-2 0.2650 5.0358e-2 0.0604 0.9649e-2 −0.012

Table 7 FVM with P1-nonconforming quadrilateral element based on nonoverlapping control volume

N θ = 0 θ = 1
4 θ = 1

2 θ = 3
4 θ = 1

|u−uh|
|u| Rate |u−uh|

|u| Rate |u−uh|
|u| Rate |u−uh|

|u| Rate |u−uh|
|u| Rate

4 6.5202e-2 – 7.5280e-2 – 1.0452e-1 – 1.6836e-1 – 2.6297e-1 –

8 1.6180e-2 2.0107 1.9475e-2 1.9506 2.9217e-2 1.8388 4.9105e-2 1.7776 7.8978e-2 1.7354

16 4.0630e-3 1.9936 4.9271e-3 1.9828 7.5049e-3 1.9609 1.2756e-2 1.9447 2.0766e-2 1.9272

32 1.0460e-3 1.9576 1.2487e-3 1.9803 1.8770e-3 1.9994 3.9140e-3 1.9977 5.2293e-3 1.9896

64 2.9930e-4 1.8503 3.3409e-4 1.9023 4.6295e-4 2.0195 7.7547e-4 2.0422 1.2796e-3 2.0309

Table 8 FVM with P1-nonconforming quadrilateral element based on overlapping control volume

N θ = 0 θ = 1
4 θ = 1

2 θ = 3
4 θ = 1

|u−uh|
|u| Rate |u−uh|

|u| Rate |u−uh|
|u| Rate |u−uh|

|u| Rate |u−uh|
|u| Rate

4 5.8302e-2 – 7.6605e-2 – 1.2680e-1 – 2.1466e-1 – 3.3036e-1 –

8 1.4740e-2 1.9839 2.0596e-2 1.8951 3.7260e-2 1.7669 6.6243e-2 1.6962 1.0586e-1 1.6419

16 3.6962e-3 1.9956 5.2518e-3 1.9715 9.7184e-3 1.9388 1.7528e-2 1.9181 2.8414e-2 1.8975

32 9.2977e-4 1.9911 1.3079e-3 2.0056 2.4262e-3 2.0020 4.4100e-3 1.9908 7.1993e-3 1.9807

64 2.4837e-4 1.9044 3.2265e-4 2.0192 5.7964e-4 2.0655 1.0687e-3 2.0449 1.7676e-3 2.0261

with P1-nonconforming quadrilateral element are similar to the results of FVE with Q1-
conforming quadrilateral element. As expected, the errors become smaller as the meshes are
refined.
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Table 9 FEM with P1-nonconforming quadrilateral element

θ = 0 θ = 1
4 θ = 1

2 θ = 3
4 θ = 1

N
|u−uh|

|u| Rate |u−uh|
|u| Rate |u−uh|

|u| Rate |u−uh|
|u| Rate |u−uh|

|u| Rate

4 5.8301e-2 – 7.4998e-2 – 1.1518e-1 – 1.8540e-1 – 2.8177e-1 –

8 1.4740e-2 1.9839 1.9843e-2 1.9182 3.2922e-2 1.8067 5.5775e-2 1.7330 8.8058e-2 1.6780

16 3.6962e-3 1.9956 5.0363e-3 1.9782 8.5216e-3 1.9491 1.4663e-2 1.9274 2.3488e-2 1.9066

32 9.2977e-4 1.9911 1.2558e-3 2.0038 2.1273e-3 2.0028 3.6834e-3 1.9931 5.9380e-3 1.9838

64 2.4837e-4 1.9044 3.1321e-4 2.0034 5.1284e-4 2.0525 8.9529e-4 2.0406 1.4541e-3 2.0298

Table 10 FVM with Q1-conforming quadrilateral element based on nonoverlapping control volume

N θ = 0 θ = 1
4 θ = 1

2 θ = 3
4 θ = 1

|u−uh|
|u| Rate |u−uh|

|u| Rate |u−uh|
|u| Rate |u−uh|

|u| Rate |u−uh|
|u| Rate

4 5.1254e-2 – 6.5901e-2 – 9.2076e-2 – 1.2492e-1 – 1.6231e-1 –

8 1.2510e-2 2.0345 1.5988e-2 2.0433 2.2080e-2 2.0601 2.9670e-2 2.0739 3.8447e-2 2.0778

16 3.1072e-3 2.0095 3.9642e-3 2.0119 5.4567e-3 2.0166 7.3133e-3 2.0204 9.4783e-3 2.0202

32 7.7549e-4 2.0024 9.8897e-4 2.0030 1.3602e-3 2.0042 1.8222e-3 2.0048 2.3636e-3 2.0036

64 1.9379e-4 2.0006 2.4711e-4 2.0008 3.3982e-4 2.0010 4.5525e-4 2.0010 5.9080e-4 2.0002

Table 11 FVM with Q1-conforming quadrilateral element based on overlapping control volume

N θ = 0 θ = 1
32 θ = 1

16 θ = 3
8 θ = 1

4
|u−uh|

|u| Rate |u−uh|
|u| Rate |u−uh|

|u| Rate |u−uh|
|u| Rate |u−uh|

|u| Rate

4 2.7044e-2 – 2.8855e-2 – 3.0713e-2 – 3.4931e-2 – 4.4806e-2 –

8 6.1174e-3 2.1443 6.6195e-3 2.1240 7.1292e-3 2.1071 8.2743e-3 2.0778 1.1753e-2 2.0241

16 1.4482e-3 2.0393 1.6167e-3 2.0337 1.7483e-3 2.0278 2.0696e-3 1.9993 3.2522e-3 1.8536

32 3.6974e-4 2.0101 4.0175e-4 2.0087 4.3988e-4 1.9908 5.9398e-4 1.8009 1.4053e-3 1.2105

64 9.2206e-5 2.0025 1.0136e-4 1.9869 1.2925e-4 1.7669 3.1461e-4 0.9169 1.1162e-3 0.3324

Table 12 FEM with Q1-conforming quadrilateral element

N θ = 0 θ = 1
32 θ = 1

16 θ = 3
8 θ = 1

4
|u−uh|

|u| Rate |u−uh|
|u| Rate |u−uh|

|u| Rate |u−uh|
|u| Rate |u−uh|

|u| Rate

4 5.1295e-2 – 5.2526e-2 – 5.4197e-2 – 5.8785e-2 – 7.2364e-2 –

8 1.2705e-2 2.0134 1.2958e-2 2.0192 1.3236e-2 2.0338 1.3959e-2 2.0743 1.7108e-2 2.0806

16 3.1684e-3 2.0036 3.1714e-3 2.0307 3.1400e-3 2.0756 3.9742e-3 1.8124 1.2042e-2 0.5058

32 7.9158e-4 2.0009 7.4859e-4 2.0829 1.0088e-3 1.6381 3.6072e-3 0.1398 1.4301e-2 −0.247

64 1.9786e-4 2.0002 2.5507e-4 1.5533 9.6791e-4 0.0597 3.9956e-3 −0.148 1.5411e-2 −0.108

Finally, we present the superconvergence of derivative of six methods. Here EDu de-
notes the mean relative error of derivative of uh at center points of the quadrilateral mesh.
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Table 13 Mean relative error of derivative at the central point of partition for P1-nonconforming quadrilat-
eral FVM with nonoverlapping control volume

N θ = 0 θ = 1
4 θ = 1

2 θ = 3
4 θ = 1

EDu Rate EDu Rate EDu Rate EDu Rate EDu Rate

4 4.6618e-2 – 1.2343e-1 – 2.0473e-1 – 2.8420e-1 – 3.5022e-1 –

8 1.4235e-2 1.7115 5.8244e-2 1.0835 1.0955e-1 0.9021 1.5158e-1 0.9069 1.8451e-1 0.9246

16 3.6987e-3 1.9443 2.9543e-2 0.9793 5.6957e-2 0.9437 7.9237e-2 0.9358 9.5695e-2 0.9472

32 1.0064e-3 1.8778 1.5060e-2 0.9720 2.9259e-2 0.9610 4.0781e-2 0.9583 4.9267e-2 0.9578

64 3.1655e-4 1.6687 7.6500e-3 0.9724 1.4898e-2 0.9738 2.0769e-2 0.9735 2.5099e-2 0.9730

Table 14 Mean relative error of derivative at the central point of partition for P1-nonconforming quadrilat-
eral FVM with overlapping control volume

N θ = 0 θ = 1
4 θ = 1

2 θ = 3
4 θ = 1

EDu Rate EDu Rate EDu Rate EDu Rate EDu Rate

4 3.6501e-2 – 9.7746e-2 – 1.6695e-1 – 2.5406e-1 – 3.5997e-1 –

8 9.7271e-3 1.9078 4.8802e-2 1.0021 9.1540e-2 0.8670 1.2803e-1 0.9887 1.6610e-1 1.1158

16 2.5840e-3 1.9124 2.5446e-2 0.9395 4.7608e-2 0.9432 6.4667e-2 0.9854 8.1747e-2 1.0228

32 7.1634e-4 1.8509 1.3003e-2 0.9686 2.4361e-2 0.9666 3.2829e-2 0.9781 4.1281e-2 0.9857

64 2.3768e-4 1.5916 6.5917e-3 0.9801 1.2372e-2 0.9775 1.6626e-2 0.9816 2.0903e-2 0.9818

Table 15 Mean relative error of derivative at the central point of partition for P1-nonconforming quadrilat-
eral FEM

N θ = 0 θ = 1
4 θ = 1

2 θ = 3
4 θ = 1

EDu Rate EDu Rate EDu Rate EDu Rate EDu Rate

4 3.6486e-2 – 1.0352e-1 – 1.7815e-1 – 2.4520e-1 – 3.1933e-1 –

8 9.7252e-3 1.9076 5.3475e-2 0.9529 1.0143e-1 0.8126 1.3970e-1 0.8116 1.6787e-1 0.9274

16 2.5839e-3 1.9122 2.7949e-2 0.9361 5.3409e-2 0.9253 7.3343e-2 0.9296 8.7808e-2 0.9349

32 7.1634e-4 1.8509 1.4321e-2 0.9647 2.7516e-2 0.9568 3.7843e-2 0.9546 4.5191e-2 0.9883

64 2.3768e-4 1.5916 7.2834e-3 0.9754 1.4015e-2 0.9733 1.9274e-2 0.9733 2.3006e-2 0.9740

Numerical results of the superconvergence of derivative are presented in Tables 13–16. We
observe from these tables that the superconvergence points of derivative exist if and only
if θ = 0 for these methods. For other cases, there are no similar superconvergences at the
nodes of the partition and the midpoints of edges. Furthermore, we can obtain better conver-
gence of derivative of uh at center points as θ increases for P1-nonconforming quadrilateral
FVM and P1-nonconforming quadrilateral FEM, and Q1-conforming quadrilateral FVM
with nonoverlapping control volume. On the other hand, we can observe that numerical
results are not good as θ ≥ 1

4 in Tables 17–18 for other two methods.

Remark 6.1 The smallness of the quantity dτ is a good indicator of almost parallelogram.
From Fig. 6, we obtain the midpoints distance dτ = θh. On one hand, if θ = o(h), i.e., dτ =
o(h2) satisfies the usual Bi-section condition [20], we can obtain good numerical results. On
the other hand, if θ → 0, i.e., dτ → 0, then we have good numerical results similarly. In a
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Table 16 Mean relative error of derivative at the central point of partition for Q1-conforming quadrilateral
FVM with nonoverlapping control volume

N θ = 0 θ = 1
4 θ = 1

2 θ = 3
4 θ = 1

EDu Rate EDu Rate EDu Rate EDu Rate EDu Rate

4 4.3958e-2 – 9.6325e-2 – 1.7191e-1 2.3491e-1 – 2.7949e-1 –

8 1.1518e-2 1.9323 4.6292e-2 1.0572 8.9263e-2 0.9455 1.2368e-1 0.9255 1.4710e-1 0.9260

16 3.0116e-3 1.9353 2.2976e-2 1.0106 4.5761e-2 0.9640 6.3831e-2 0.9543 7.6020e-2 0.9523

32 7.7410e-4 1.9599 1.1525e-2 0.9954 2.3302e-2 0.9736 3.2578e-2 0.9704 3.8825e-2 0.9694

64 1.9652e-4 1.9779 5.8262e-3 0.9841 1.1849e-2 0.9754 1.6580e-2 0.9744 1.9764e-2 0.9741

Table 17 Mean relative error of derivative at the central point of partition for Q1-conforming quadrilateral
FVM with overlapping control volume

N θ = 0 θ = 1
32 θ = 1

16 θ = 1
8 θ = 1

4
EDu Rate EDu Rate EDu Rate EDu Rate EDu Rate

4 3.6645e-2 – 3.7460e-2 – 4.3507e-2 – 5.8696e-2 – 9.4814e-2 –

8 9.6639e-3 1.9151 1.2052e-2 1.6361 1.5943e-2 1.4483 2.5579e-2 1.1983 4.8917e-2 0.9548

16 2.5188e-3 1.9398 4.1869e-3 1.5253 6.5071e-3 1.2928 1.2045e-2 1.0865 2.5289e-2 0.9518

32 6.4923e-4 1.9160 1.6473e-3 1.3458 2.9344e-3 1.1490 5.9721e-3 1.0121 1.2916e-2 0.9694

64 1.6522e-4 1.9744 7.2941e-4 1.1753 1.4277e-3 1.0393 3.0379e-3 0.9752 6.7100e-3 0.9448

Table 18 Mean relative error of derivative at the central point of partition for Q1-conforming quadrilateral
FEM

N θ = 0 θ = 1
32 θ = 1

16 θ = 1
8 θ = 1

4
EDu Rate EDu Rate EDu Rate EDu Rate EDu Rate

4 4.4148e-2 – 4.7424e-2 – 5.4727e-2 – 7.8010e-2 – 1.1311e-1 –

8 1.1793e-3 1.9044 1.6687e-2 1.5069 2.4987e-2 1.1311 4.5375e-2 0.7818 8.9740e-2 0.5469

16 3.0952e-3 1.9298 7.4370e-3 1.1660 1.3944e-2 0.8415 2.8542e-2 0.6688 6.1612e-2 0.5425

32 7.9596e-4 1.9593 3.8950e-3 0.9331 8.0240e-3 0.7972 1.7908e-2 0.6724 4.4086e-2 0.4829

64 2.0204e-4 1.9780 2.1575e-3 0.8523 4.8484e-3 0.7268 1.2367e-2 0.5341 3.6057e-2 0.2900

word, the convergence rate of the P1-nonconforming quadrilateral element is independent
of the mesh distortion parameter θ . These numerical results coincide with the theoretical
results.

Remark 6.2 In 2005, Hu and Shi [20] defined a constrained nonconforming rotated Q1-
element (CNR-Q1) and analyzed the superconvergence of the CNR-Q1 element for the
linear elliptic problems. They pointed out the CNR-Q1 element is equivalent to the P1-
nonconforming element [34] on the rectangle mesh. They have the same properties on the
rectangle mesh. For the general quadrilateral mesh, it is still unknown whether there are
similar results. From numerical experiments in [20], we know the relative errors of P1-
nonconforming quadrilateral element is smallest on the general quadrilateral mesh for Pois-
son equation, and the convergence rate of P1-nonconforming element is independent of the
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mesh distortion parameter. From Tables 1–18, we can obtain the similar numerical laws for
the semilinear elliptic problems by P1-nonconforming quadrilateral element.

Remark 6.3 Recently, Mao et al. give a more general framework to construct effective FEM
by using the different ideas, and novel DSP element and QB element are proposed in [29,
31, 32]. In fact, QB element is equivalent to the nonparametic P1-nonconforming quadri-
lateral element [34] under rectangular meshes, but for general quadrilateral meshes, they
are not equivalent. Moreover, the nonparametic P1-nonconforming quadrilateral element
has the optimal convergence without the Bi-section condition on the meshes and it can be
implemented easily.

Remark 6.4 In our numerical experiments, the number of unknown variables is same for
every method. And the number of nonzero elements of the coefficient matrix is the least
by using P1-nonconforming element. Each line has at most five nonzero elements by using
P1-nonconforming element and at most nine nonzero elements by using Q1-conforming
element on the rectangle mesh. For other cases, each line of the coefficient matrix has at most
nine nonzero elements by using P1-nonconforming element and Q1-conforming element
respectively.

7 Conclusions

In conclusion, P1-nonconforming quadrilateral element is a simple and stable element. Nu-
merical analysis and examples have demonstrated excellent stability and convergence prop-
erties of the nonconforming FEM and FVM by using the nonoverlapping control volumes
and overlapping control volumes, respectively. Moreover, P1-nonconforming quadrilateral
element has better convergence of derivative.
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