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Abstract We introduce an iterative method for computing the first eigenpair (λp, ep) for the
p-Laplacian operator with homogeneous Dirichlet data as the limit of (μq,uq) as q → p−,
where uq is the positive solution of the sublinear Lane-Emden equation −�puq = μqu

q−1
q

with the same boundary data. The method is shown to work for any smooth, bounded do-
main. Solutions to the Lane-Emden problem are obtained through inverse iteration of a
super-solution which is derived from the solution to the torsional creep problem. Conver-
gence of uq to ep is in the C1-norm and the rate of convergence of μq to λp is at least
O(p − q). Numerical evidence is presented.
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1 Introduction

In this paper we develop an iterative method to obtain the first eigenpair (λp, ep) of the
eigenvalue problem {−�pu = λ |u|p−2 u in �,

u = 0 on ∂�,
(1)

where �pu := div(|∇u|p−2∇u), p > 1, is the p-Laplacian operator and � ⊂ R
N , N � 2,

is any smooth, bounded domain. The p-Laplacian equation appears in several mathematical
models in fluid dynamics, such as in the modelling of non-Newtonian fluids and glaciol-
ogy [5, 16, 26, 39], turbulent flows [22], climatology [21] nonlinear diffusion (where it is
called the N -diffusion equation; see [40] for the original article and [28] for some current
developments), flow through porous media [43], power law materials [6] and in the study of
torsional creep [33].

The first eigenvalue λp of (1) is variationally characterized by

λp = min
u∈W

1,p
0 (�)/{0}

R(u) > 0

where R is the Rayleigh quotient

R(u) =
∫

�
|∇u|pdx∫

�
|u|pdx

.

The first eigenfunction ep of (1) is characterized by the fact that the minimum of R is
attained at ep , so that

λp =
∫

�
|∇ep|pdx∫
�

e
p
pdx

.

It is well-known that λp is isolated and simple, and that the corresponding eigenfunction
ep ∈ C1,α(�) can be taken positive. Since R is homogeneous, we may assume ‖ep‖∞ = 1,
where ‖ · ‖∞ stands for the L∞-norm.

In the one-dimensional case the first eigenpair (λp, ep) is explicitly determined by solv-
ing the corresponding ODE boundary value problem. If � = (a, b), then λp = (πp/(b −
a))p−1 and ep = (p − 1)−1/p sinp(πp(x − a)/(b − a)), where πp := 2(p − 1)1/p

∫ 1
0 (1 −

sp)−1/pds and sinp is a 2πp-periodic function that generalizes the classical sine function
(see [11, 38]).

When p = 2, we have �p = �, the Laplacian operator, whose first eigenpair (λp, ep) is
well-known for domains with simple geometry (that is, domains which admit some kind of
symmetry); for more general domains it can be determined by several numerical methods
(see [12, 20, 27, 29, 35]). However, if p �= 2 and N � 2, the first eigenpair is not explicitly
known even for simple symmetric domains such as a square or a ball, and there are few
available numerical methods to deal directly with the eigenproblem (1) in these domains
(see [10, 14–16, 36, 45]).

On the other hand, several numerical methods are available to solve homogeneous Dirich-
let problems for the (Poisson) p-Laplacian equation in the form

−�pu = f (x)
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when f depends only on x ∈ � (see [2, 8, 9, 23, 25, 44]). This fact motivated the devel-
opment of an inverse iteration method by some of the authors for finding the first eigenpair
in [10]. If � is a N -dimensional ball, the convergence of the method was established and nu-
merical evidence for its applicability when � is a 2-dimensional square were also presented.
In the special case of the Laplacian operator, the method was proved to work in general do-
mains and can be also used to obtain other eigenpairs (see [12]). However, since the method
was based on the iteration of the nonlinear p-Laplacian equation in (1), the difficulties in
dealing with the nonlinearity on the right-hand side of the equation prevented showing that
the method works in any domain and any p > 1.

In this work we consider a different inverse iteration approach, also based on the solution
of the Poisson p-Laplacian equation, but built around an eigenproblem which has a sublinear
nonlinearity on its right-hand side. This type on nonlinearity is more manageable and we are
able to prove that the iterative method works for any smooth, bounded domain. It is based
on obtaining positive solutions vμ,q for the Lane-Emden type problem

{−�pv = μ |v|q−2 v in �,

v = 0 on ∂�.
(2)

After rescaling, μ and vμ,q produce a family of pairs {(μq,uq)}1<q<p converging to the
first eigenpair (λp, ep) as q → p−, the convergence uq → ep being in C1(�). We will now
describe the method in more detail.

It is well known that for each fixed μ > 0, problem (2) has a unique solution vμ,q , if 1 <

q < p (see [31]). If q = p, we have the p-Laplacian eigenvalue problem. If q > p, positive
solutions of (2) usually are not unique. A nonuniqueness result for ring-shaped domains
is given in [7] when q is close to the Sobolev critical exponent p∗ (p∗ = Np/(N − p), if
1 < p < N , and p∗ = ∞, if p � N ). On the other hand, as proved in [1], positive solutions
are unique when � is a ball, while for general bounded domains the uniqueness of positive
solutions that reach the minimum energy (ground states) was established in [24] under the
conditions 1 < p < N and 1 < q < p∗.

Now, in order to construct the approximating sequence to the first eigenpair, first choose
any μ > 0 and a sequence (qn), 1 < qn < p, such that qn → p−. It is important to notice that
μ need not to be taken close to λp . This point is crucial, since good a priori estimates for
λp are hard to obtain. For each qn we need to solve the Lane-Emden problem (2) in order to
find vμ,qn , which is a degenerate nonlinear problem almost as hard to solve as the eigenvalue
problem for the p-Laplacian (1) itself. In order to obtain the solutions vμ,qn we first solve
the much easier torsional creep problem

{−�pφ = 1 in �,

φ = 0 on ∂�.
(3)

Then compute kp = ‖φ‖1−p
∞ and set

φ0 =
(

μ

kp

) 1
p−qn φ

‖φ‖∞
. (4)

φ0 is a supersolution to (2). One immediately sees that the easiest choice is μ = kp , so that
φ0 = φ/‖φ‖∞. Now apply an inverse iteration to φ0, finding a sequence of iterates (φm)

which satisfy {
−�pφm+1 = μφ

qn−1
m in �,

φm+1 = 0 on ∂�.
(5)
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This can be done by a number of numerical methods. Finite volume based methods are pre-
sented in [4, 25]; finite element based methods are also available (see [30] and the references
therein). After a pre-established tolerance limit has been reached at some φm, where m is a
function of μ and qn, set

vμ,qn = φm

and define uqn and μqn as

μqn := μ

‖vμ,qn‖p−qn∞
and uqn := vμ,qn

‖vμ,qn‖∞
.

In Theorem 8 we show that μqn → λp and uqn → ep in C1(�) as qn → p−. Choosing a
value for q close to p will give an approximation for the first eigenpair of the p-Laplacian.
The procedure is summarized in Algorithm 1 below.

Algorithm 1 Inverse iteration for the first p-Laplacian eigenpair (λp, ep)

1: set μ (an arbitrary positive number)
2: set q (q should be chosen close to p)
3: solve −�pφ = 1 in �, φ = 0 on ∂� (torsion function)

4: set φ0 = (μ/kp)
1

p−q φ/‖φ‖∞ (supersolution)
5: for m = 0,1,2, . . . do
6: solve −�pφm+1 = μφ

q−1
m in �, φm+1 = 0 on ∂� (Inverse iteration sequence)

7: end for
8: return μ/

∥∥φm+1
∥∥p−q
∞ (first eigenvalue λp)

9: return φm+1/
∥∥φm+1

∥∥∞ (first eigenfunction ep)

However, we are able to produce a much more robust algorithm which is also easier to
apply in practice. In Algorithm 2 below one does not need to use an arbitrary parameter
μ nor to compute the value of the constant kp . Normalization of the iterates at each step
increases robustness and thus it should be the algorithm of choice.

Algorithm 2 Inverse iteration for the first p-Laplacian eigenpair (λp, ep) with normalization
1: set q (q should be chosen close to p)
2: solve −�pφ0 = 1 in �, φ0 = 0 on ∂� (torsion function)
3: for m = 0,1,2, . . . do
4: solve −�pφm+1 = (

φm/‖φm‖∞
)q−1 in �, (Inverse iteration sequence)

φm+1 = 0 on ∂�

5: end for
6: return 1/

∥∥φm+1
∥∥p−1
∞ (first eigenvalue λp)

7: return φm+1/
∥∥φm+1

∥∥∞ (first eigenfunction ep)

The outline of the paper is as follows. In Sect. 2 we present some preliminary results
that will be used in the sequel. The sequences of approximates for both algorithms are built
in Sect. 3 and the proof of their convergence to the first eigenpair is given in Sect. 4. In
Sect. 5 we present some numerical results for the unit ball of dimensions N = 2,3,4 using
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the first algorithm, and for the two-dimensional square and the three-dimensional cube and
torus using the second algorithm.

The main advantage of the method presented here, besides its applicability to general
domains, is that approximations to both λp and ep are obtained with the desired precision
by an iterative process which is numerically simple and, in the case of a ball, also explicit.

2 Preliminary Results

In this section we state simple versions of some results on the p-Laplacian. We begin with
the following comparison principle (see [19] for a more general version).

Lemma 1 For i ∈ {1,2}, let hi ∈ C(�) and ui ∈ W 1,p(�) be such that −�pui = hi in �.
If h1 ≤ h2 in � and u1 � u2 on ∂�, then u1 � u2 in �.

The following result is a simple version of a general result proved in the classical paper
[37] of Lieberman.

Theorem 2 [37, Thm 1] Suppose that u ∈ W 1,p(�) is a weak solution of the Dirichlet
problem {−�pu = f (x,u) in �,

u = 0 on ∂�

where f is a continuous function such that

|f (x, ξ)| � 
 for all (x, ξ) ∈ � × [−M,M]
for positive constants 
 and M .

If ‖u‖∞ � M , then there exists 0 < α < 1, depending only on 
, p and the dimension N ,
such that u ∈ C1,α(�); moreover we have

‖u‖C1,α(�) � C,

where C is a positive constant that depends only on 
, p, N and M .

Thus, denoting by φ is the solution of the torsional creep problem (3) in the domain �,
one can easily verify using (12) and the comparison principle in balls that 0 < φ � M in
� for some positive constant M . Hence, Theorem 2 implies that φ ∈ C1,α(�) for some
0 < α < 1.

For the next lemma set

kp := ‖φ‖1−p
∞ > 0. (6)

Lemma 3 kp � λp.

Proof Let ep be the first eigenfuncion associated with λp satisfying ‖ep‖∞ = 1 in �. Since

⎧⎨
⎩

−�pep = λpe
p−1
p � λp = −�p

(
λ

1
p−1
p φ

)
in �,

ep = 0 = λ
1

p−1
p φ on ∂�,
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it follows from the comparison principle that

0 < ep � λ
1

p−1
p φ in �.

Hence,

1 = ‖ep‖∞ � λ
1

p−1
p ‖φ‖∞,

from what follows our claim. �

Remark 4 It follows from Picone’s identity (see [3]) that, in fact, the inequality is strict, that
is, kp < λp (for details, see [17, Lemma 8.1]).

The following result is well-known and follows from Theorem 2.

Theorem 5 Let −�−1
p : C1(�) → W

1,p

0 (�) be the operator defined as follows: for each

v ∈ C1(�) let −�−1
p v := u ∈ W

1,p

0 (�) be the unique solution of the Dirichlet problem

{−�pu = v in �,

u = 0 on ∂�.

Then −�−1
p is continuous and compact. Moreover, −�−1

p v ∈ C1,α(�) for each v ∈ C1(�).

In the remainder of the paper (λp, ep) denotes the first eigenpair of (1), φ denotes the
torsion function of � and kp := ‖φ‖1−p

∞ .

3 Construction of the Sequence of Approximates

As mentioned before, if 1 < q < p, then for each μ > 0 the Lane-Emden problem

{−�pv = μ|v|q−2v in �,

v = 0 on ∂�,
(7)

has a unique positive solution vμ,q , which can be obtained via standard variational, and
therefore non-constructive, arguments. The existence and uniqueness of solutions of (7) in
the case 1 < q < p implies that the map μ �→ vμ,q is well-defined and monotone, in the
sense that μ1 < μ2 implies vμ1,q < vμ2,q in �, since vμ1,q = (μ1/μ2)

1/(p−q)vμ2,q for any μ1,
μ2 > 0.

The basis of our constructive method is given by

Theorem 6 Suppose 1 < q < p. For each μ > 0 the unique positive solution vμ,q ∈
C1,α(�) ∩ W

1,p

0 (�) of (7) satisfies

0 <

(
μ

λp

) 1
p−q

ep � vμ,q �
(

μ

kp

) 1
p−q φ

‖φ‖∞
in �. (8)
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Moreover, vμ,q is the limit, in the C1(�) norm, of the sequence {vn} ⊂ C1,α(�) ∩
W

1,p

0 (�) iteratively defined by

v1 :=
(

μ

kp

) 1
p−q φ

‖φ‖∞
(9)

and, for n � 1, {
−�pvn+1 = μv

q−1
n in �,

vn+1 = 0 on ∂�.
(10)

Proof Define vμ,q := mep and vμ,q := Mφ

‖φ‖∞ where

m :=
(

μ

λp

) 1
p−q

and M :=
(

μ

kp

) 1
p−q

.

We have

−�pvμ,q � μvq−1
μ,q and − �pvμ,q � μvq−1

μ,q in �. (11)

Indeed, in � in we have

−�pvμ,q = λpvp−1
μ,q = λpvp−q

μ,q vq−1
μ,q = λp(mep)p−qvq−1

μ,q � λpmp−qvq−1
μ,q = μvq−1

μ,q

and

−�pvμ,q = kpMp−1 = kpMp−qMq−1 � kpMp−q

(
Mφ

‖φ‖∞

)q−1

= μvq−1
μ,q .

Since vμ,q = 0 = vμ,q on ∂� the inequalities in (11) mean that vμ,q and vμ,q are, respec-
tively, sub- and supersolutions for (7).

Moreover, vμ,q and vμ,q are ordered, that is vμ,q � vμ,q in �. For, since kp � λp , we
have

λpmp−1 = λp

(
μ

λp

) p−1
p−q

= μ
p−1
p−q

(
1

λp

) q−1
p−q

� μ
p−1
p−q

(
1

kp

) q−1
p−q

= kp

(
μ

kp

) p−1
p−q

= kpMp−1,

whence

−�pvμ,q = λpvp−1
μ,q � λpmp−1 � kpMp−1 = −�pvμ,q

in �. Thus, since vμ,q = vμ,q = 0 on ∂�, we obtain vμ,q � vμ,q in � by applying the
comparison principle.

Since u �→ μuq−1 is increasing and vμ,q � vμ,q in �, the comparison principle also
implies that the sequence {vn} defined by the iterative process (10) starting with the super-
solution vμ,q satisfies

vμ,q � vn+1 � vn � vμ,q in �.
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Hence, vn converges to a function vμ,q a.e. in �. Since ‖vn‖∞ � ‖vμ,q‖∞ = M , it follows
from Theorem 2 that {vn} ⊂ C1,α(�) for some 0 < α < 1 (which does not depend on n) and
that

‖vn‖C1,α(�) � C

for some positive constant C which is independent of n.
Thus, from Arzela-Ascoli theorem we conclude that vn → v in the C1 norm.
Now, the continuity of the operator −�−1

p : C1(�) → W
1,p

0 (�) permits passing to the

limit in (10), which yields that vμ,q ∈ C1(�) ∩ W
1,p

0 (�) is a solution of (7) satisfying

0 < vμ,q � vμ,q � vμ,q in �,

proving (8). The regularity vμ,q ∈ C1,α(�) follows from Theorem 2. �

This iterative process is also known as inverse iteration since vn+1 = −�−1
p (μv

q−1
n ). It

is essentially the sub- and supersolution method starting with the supersolution vμ,q ; the
solution vμ,q that it produces is characterized as the maximal solution between vμ,q and vμ,q .

If one starts the iteration with the subsolution then one obtains an increasing sequence
converging to the minimal solution between vμ,q and vμ,q . Because of the uniqueness this
minimal solution coincides with vμ,q . However, in order to compute the minimal solution
from this iterative process, it is necessary to know a priori a subsolution, which is exactly
one of the unknowns that we wish to find by applying the method.

On the other hand the supersolution vμ,q is easily obtainable since it involves the solution
of the simpler problem (3).

For example, if � = BR(x0), the ball centered at x0 ∈ R
N with radius R > 0, then it is

easy to verify (see also below) that the torsion function φ is the radial function

φ(r) = p − 1

pN
1

p−1

(
R

p
p−1 − |r| p

p−1

)
, r = |x − x0| � R. (12)

We then obtain that

kp = ‖φ‖1−p
∞ = N

Rp

(
p

p − 1

)p−1

(13)

and

vμ,q(r) =
(

μ

kp

) 1
p−q (

1 − |r| p
p−1

)
= μ

1
p−q

(
p − 1

pN
1

p−1

) p−1
p−q (

1 − |r| p
p−1

)

where r = |x − x0|.
In this case the sequence vn converging to vμ,q is given recursively by the formula

vn+1(r) =
∫ R

r

(∫ θ

0

( s

θ

)N−1
μvn(s)

q−1ds

) 1
p−1

dθ (14)

where v0(r) = vμ,q(r).
This integral formula follows from the more general fact: the Poisson problem

{−�pu = f (|x|) in BR(x0)

u = 0 on ∂BR(x0)
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is equivalent to the ODE boundary value problem

{
− (

rN−1|u′|p−2u′)′ = rN−1f (r), 0 < r < R

u′(0) = 0 = u(R)

for radial solutions u = u(r), r = |x − x0|. Hence, after two integrations of the ODE taking
into account the boundary conditions one obtains the following integral expression

u(r) =
∫ R

r

(∫ θ

0

(
s

θ

)N−1

f (s)ds

) 1
p−1

dθ (15)

for the solution u = u(|x − x0|) of the Poisson problem. In particular, when f (r) ≡ 1 this
integral form might be simplified in order to find the expression (12) for the torsion function
of BR(x0).

In our method, in order to compute the first eigenpair (λp, ep), we fix a positive value
μ > 0 and choose q close to p−. Then, we apply the inverse iteration of Theorem 6 starting
with the supersolution

vμ,q =
(

μ

kp

) 1
p−q φ

‖φ‖∞
to obtain approximations for the function vμ,q . Hence,

μ

‖vμ,q‖p−q
∞

→ λp and
vμ,q∥∥vμ,q

∥∥
∞

→ ep (in the C1 norm)

as q → p, a result that we prove in the next section.
For the construction of the normalized sequence of Algorithm 2 one needs the following

result:

Theorem 7 Suppose 1 < q < p. Then the normalized sequence {wn/‖wn‖∞} where wn is
defined by

w0 := 1 and

{
−�pwn+1 = ( wn

‖wn‖∞

)q−1
in �

wn+1 = 0 on ∂�

converges in the C1(�) norm to vq/‖vq‖∞ where vq ∈ C1,α(�) ∩ W
1,p

0 (�) is the solution
of (7) with μ = kp .

Proof Let {vn} be the sequence defined by

v1 := φ

‖φ‖∞
and

{
−�pvn+1 = kpv

q−1
n in �

vn+1 = 0 on ∂�.
(16)

It follows from Theorem 6 that the sequence {vn} is decreasing and converges in the C1(�)

norm to the solution vq ∈ C1,α(�) ∩ W
1,p

0 (�) of the Lane–Emden problem

{
−�pv = kpvq−1 in �

v = 0 on ∂�.
(17)
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Since w1 = φ we have that

w2 = k
− 1

p−1
p v2

and, in particular w2
‖w2‖∞ = v2

‖v2‖∞ . In fact, this follows from the comparison principle:

−�p(k
− 1

p−1
p v2) = k−1

p (−�pv2)

= k−1
p kpv

q−1
1 =

(
φ

‖φ‖∞

)q−1

=
(

w1

‖w1‖∞

)q−1

= −�pw2.

Repeating this procedure we obtain

−�p

(
k

− 1
p−1

p ‖v2‖− q−1
p−1∞ v3

)
= k−1

p ‖v2‖−(q−1)
∞

(−�pv3

)

= k−1
p ‖v2‖−(q−1)

∞ kpv
q−1
2

=
(

v2

‖v2‖∞

)q−1

=
(

w2

‖w2‖∞

)q−1

= −�pw3,

that is

w3 = k
− 1

p−1
p ‖v2‖− q−1

p−1∞ v3

and
w3

‖w3‖∞
= v3

‖v3‖∞
.

Therefore, by an induction argument we conclude that

wn+1 = k
− 1

p−1
p ‖vn‖− q−1

p−1∞ vn+1 and
wn+1

‖wn+1‖∞
= vn+1

‖vn+1‖∞

for all n � 2. Hence, it follows from Theorem 6 that

wn+1

‖wn+1‖∞
= vn+1

‖vn+1‖∞
→ vq

‖vq‖∞
. �

4 Convergence of the Method

Theorem 8 For μ > 0 and for each 1 < q < p set

uq := vμ,q

‖vμ,q‖∞
, (18)

where vμ,q ∈ C1,α(�) is the unique positive solution of (7), and

μq := μ

‖vμ,q‖p−q
∞

. (19)

Then μq → λp and uq → ep in C1(�) as q → p−.
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Proof Since ‖uq‖∞ = 1 and

−�puq = μ

‖vμ,q‖p−1
∞

vq−1
μ,q = μ

‖vμ,q‖p−q
∞

uq−1
q = μqu

q−1
q ,

we have that uq is the unique solution of the problem

{
−�puq = μqu

q−1
q in �,

uq = 0 on ∂�.
(20)

As a consequence of (8) we have

μ

λp

� ‖vμ,q‖p−q
∞ � μ

kp

,

(21)

0 <

(
kp

λp

) 1
p−q

ep � uq �
(

λp

kp

) 1
p−q φ

‖φ‖∞
in �

and

kp � μq � λp. (22)

Since

0 � μqu
q−1
q � λp,

it follows from Theorem 2 the existence of constants 0 < α < 1 and C > 0 independent of
q such that uq ∈ C1,α(�) and

‖uq‖C1,α(�) � C for all 1 < q < p.

Using the compactness of the immersion C1,α(�) ↪→ C1(�), letting qn → p we get, up
to a subsequence, μqn → λ ∈ [kp,λp] and uqn → u in C1(�). Taking the limit in (20), we
conclude from Theorem 5 that u must satisfy

{−�pu = λup−1 in �,

u = 0 on ∂�,

and ‖u‖∞ = 1, whence λ = λp and u = ep because λ is an eigenvalue and u �= 0 is a corre-
sponding eigenfunction that does not change the signal in � (note from (21) that u > 0 in �).
Since these limits are always the same, that is, do not depend on particular subsequences,
this ends the proof. �

Corollary 9 Using the notation of Theorem 7, it follows that

wn

‖wn‖∞
→ ep

in the C1(�) norm and

‖wn‖1−p
∞ → λp

as n → ∞ and q → p−.
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Proof For each 1 < q < p let vq denote the solution of the Lane-Emden problem (17). It
follows from Theorem 8 that vq/‖vq‖∞ converges in the C1-norm to the first eigenfunction
ep and that kp‖vq‖q−p

∞ → λp .
Using the notation of Theorem 7 we have

lim
q→p− lim

n→∞
wn

‖wn‖∞
= lim

q→p− lim
n→∞

vn

‖vn‖∞
= lim

q→p−
vq

‖vq‖∞
= ep.

Moreover,

lim
n→∞‖wn+1‖p−1

∞ = lim
n→∞ k−1

p ‖vn+1‖p−1
∞ ‖vn‖1−q = k−1

p ‖vq‖p−q
∞ ,

and hence

lim
q→p− lim

n→∞‖wn+1‖1−p
∞ = λp. �

Next we prove an error estimate in the approximation of λp by μq or, alternatively, by
the scaled quotient


q := μ
‖vμ,q‖q

q

‖vμ,q‖p
p

,

where ‖ · ‖r denotes the norm of the Lr(�), that is, ‖w‖r = (
∫

�
|w|rdx)

1
r .

The upper bound 
q together with the lower bound μq allows one to better control the
accuracy of the approximation to λp .

Theorem 10 There holds:

(i) λp � 
q .
(ii) 
q → λp as q → p−.

(iii) There exists a positive constant K which does not depend on q such that

0 � max{(λp − μq), (
q − λp)} � K(p − q) (23)

for all q sufficiently close to p, q < p.

Proof (i) follows directly from the variational characterization of λp and (2), since

λp � ‖∇vμ,q‖p
p

‖vμ,q‖p
p

= μ‖vμ,q‖q
q

‖vμ,q‖p
p

= 
q.

In order to prove (ii) we note from Theorem 8 that

lim
q→p− ‖uq‖q

q = lim
q→p− ‖uq‖p

p = ‖ep‖p
p, (24)

since uq converges uniformly to ep as q → p−. Thus, since


q = μ
‖vμ,q‖q

q

‖vμ,q‖p
p

= μ

‖vμ,q‖p−q
∞

‖uq‖q
q

‖uq‖p
p

= μq

‖uq‖q
q

‖uq‖p
p

, (25)
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we obtain

lim
q→p− 
q = (

lim
q→p− μq

)(
lim

q→p−
‖uq‖q

q

‖uq‖p
p

)
= λp.

Now we prove error estimate (23). It follows from (i) and (22) that

μq � λp � 
q.

Hence,

0 � max{(λp − μq), (
q − λp)} � 
q − μq.

Thus, in order to prove (iii) we need only to bound 
q − μq. It follows from (25) that


q − μq = μq

( ‖uq‖q
q

‖uq‖p
p

− 1

)
= μq

∫
�
(u

q
q − u

p
q )dx∫

�
u

p
q dx

.

Therefore,


q − μq � λp

∫
�
(u

q
q − u

p
q )dx∫

�
u

p
q dx

� λp∫
�

u
p
q dx

∫
�

[
max

0�t�1
(tq − tp)

]
dx

= λp|�|∫
�

u
p
q dx

(
q

p

) q
p−q p − q

p

� λp|�|∫
�

u
p
q dx

(p − q).

Taking into account (24), there exists R > 0 such that
∫

�
u

p
q dx � R for all q near to p−.

Thus,

0 � μ
‖vμ,q‖q

q

‖vμ,q‖p
p

− μq � λp|�|
R

(p − q) = K(p − q). �

5 Some Numerical Results

5.1 Unit Balls

In this section we present some numerical results in the unit ball of dimensions N = 2,3,4
applying Algorithm 1, since in this case kp is explicitly known. Computations were per-
formed on a Windows 7/ i5 − 4.0 GHz platform, using the GCC compiler. The nu-
merical approximations for the first eigenpair were obtained choosing μ = kp and taking
q = p − 0.01. Thus, according to (13)

μ = kp = N

(
p

p − 1

)p−1

.
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We recall from (15) that for the unit ball the functions in the sequence of iterates are
radially (r = |x|) given by

vn+1(r) =
∫ 1

r

(∫ θ

0

( s

θ

)N−1
kpvn(s)

q−1ds

) 1
p−1

dθ, with v0(r) ≡
(

1 − |r| p
p−1

)
.

Thus, starting with the function

v0(r) ≡
(

1 − |r| p
p−1

)

we have implemented the sequence of iterates

vn+1(r) = pN
1

p−1

p − 1

∫ 1

r

(∫ θ

0

( s

θ

)N−1
vn(s)

(p−1.01)ds

) 1
p−1

dθ (26)

which, after normalized by the sup norm, should be close to the normalized first eigenfunc-
tion ep .

The first eigenvalue was approximated by the sequence

N

‖vn‖0.01∞

(
p

p − 1

)p−1

given by (19).
In order to compute sequence (26) we mixed the composite Simpson and trapezoidal

methods on a 101 points mesh for computation of the associated integrals. We adopted

‖vn+1 − vn‖∞
‖vn‖∞

< 10−9 (27)

as a stopping criterion.
At Table 1, the results for the first eigenvalue of the p-Laplacian for values of p ranging

from 1.1 to 4.0 for the unit balls of dimensions N = 2, 3 and 4 are displayed and truncated
at the fourth decimal place. The results compare very well with the ones presented in [10]
up to the second decimal digit.

Graphs of some eigenfunctions generated by the inverse iteration of sublinear superso-
lutions are presented in Figs. 1, 2 and 3 for N = 2,3 and 4, respectively. In these graphs
it is possible to observe the asymptotic behavior of the L∞-normalized eigenfunctions ep

with respect to p for both cases: p → 1− and p → ∞. The eigenfunctions ep converge to
the characteristic function of the ball as p → 1+ (see [34]). On the other hand (see [32]),
as p → ∞ these functions converge to the distance function to the boundary, which in this
case is 1 − |x|.

Figure 4 illustrates the log concavity of the eigenfunctions ep . Note from Figs. 1, 2 and 3
that each eigenfunction ep seems to be convex near the boundary (r = 1). However, log(ep)

is surely concave for convex domains, as proved in [41].
In Fig. 5 we see that p

√
λp approaches 1 as p increases, which is coherent with the fol-

lowing known asymptotic behavior (see [32]): limp→∞ p
√

λp = 1/R where R is the inradius
of the domain (that is, the radius of the largest ball that lies within the domain). Moreover,
one observes from Table 1 that λp approaches the value N of the dimension as p → 1−. It
is known (see [34]) that λp tends to N/R, if the domain is a ball of radius R.
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Table 1 First eigenvalues of the p-Laplacian on the unit ball

p N = 2 N = 3 N = 4 p N = 2 N = 3 N = 4

1.1 2.5666 3.8665 5.1761 2.6 8.0886 14.9747 23.8345

1.2 2.9601 4.5026 6.0797 2.7 8.5036 15.9521 25.6720

1.3 3.3182 5.1098 6.9731 2.8 8.9266 16.9646 27.6004

1.4 3.6637 5.7189 7.8948 2.9 9.3576 18.0130 29.6225

1.5 4.0053 6.3419 8.8605 3.0 9.7967 19.0977 31.7409

1.6 4.3477 6.9850 9.8787 3.1 10.2440 20.2194 33.9581

1.7 4.6932 7.6517 10.9550 3.2 10.6994 21.3785 36.2769

1.8 5.0434 8.3444 12.0940 3.3 11.1630 22.5755 38.6999

1.9 5.3993 9.0649 13.2991 3.4 11.6347 23.8111 41.2298

2.0 5.7616 9.8144 14.5735 3.5 12.1146 25.0856 43.8694

2.1 6.1308 10.5940 15.9202 3.6 12.6027 26.3997 46.6213

2.2 6.5071 11.4050 17.3421 3.7 13.0990 27.7539 49.4884

2.3 6.8909 12.2478 18.8418 3.8 13.6034 29.1486 52.4734

2.4 7.2823 13.1232 20.4220 3.9 14.1161 30.5844 55.5792

2.5 7.6815 14.0319 22.0855 4.0 14.6369 32.0618 58.8085

Fig. 1 Radial profiles of the first eigenfunction for unit ball when N = 2, p = 1.1,1.2,1.3,1.4 (left) and
p = 2.5,3.0,3.5,4.0 (right)

Finally, for comparison we show in Fig. 6 graphs of p versus λp obtained in two ways:
one of them through the method proposed in [10] which is directly based on the inverse
power method (IPM), while the other is the inverse iteration of sublinear supersolutions
(IISS) as developed in the present work.

5.2 Square, Cube and Torus

To compute eigenvalues on more general domains, we use a p-version finite element dis-
cretization on unstructured hexahedral meshes. The discrete equations are solved with
PETSc [42] using a Newton-Krylov method in which a matrix associated with a lowest-
order discretization is assembled for preconditioning, while the high-order operator is ap-
plied in unassembled form (see [18] for details). For these more complicated domains we
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Fig. 2 Radial profiles of the first eigenfunction for unit ball when N = 3, p = 1.1,1.2,1.3,1.4 (left) and
p = 2.5,3.0,3.5,4.0 (right)

Fig. 3 Radial profiles of the first eigenfunction for unit ball when N = 4, p = 1.1,1.2,1.3,1.4 (left) and
p = 2.5,3.0,3.5,4.0 (right)

apply Algorithm 2. This produces the system

−∇ ·
((

ε2 + |∇φm+1|2
) p−2

2 ∇φm+1

)
=

(
φm

‖φm‖∞

)q−1

where ε = 10−5 is the regularization used to avoid the singularity or degeneracy at ∇φ = 0.
The initial guess for the Newton iteration is taken to be φm which leads to very fast conver-
gence in the terminal phase. To solve 2D problems with the 3D discretization, homogeneous
Neumann boundary conditions are imposed on both faces in the z direction. The source code
is publicly available from https://github.com/jedbrown/dohp.

Table 2 shows computed eigenvalues for the unit square and unit cube. These solutions
were computed using Q5 elements and are as accurate as double precision rounding error for
the smooth solutions in the p = 2 case. The accuracy of the discretization for a given smooth
solution has been verified to be essentially independent of p using the method of manufac-
tured solutions. This indicates that the primary source of error in Table 2 is interpolation
error, as usual for finite element methods.

Figure 7 shows computed eigenfunctions for p = 1.2 and p = 5 on a torus. The unstruc-
tured hexahedral mesh was created with CUBIT version 13.0 [13] using the commands

https://github.com/jedbrown/dohp
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Fig. 4 Graphs of log(ep) versus
p for the N -dimensional unit
ball, and N = 2 (above), N = 3
(center), N = 4 (below), and
p = 1.5,2.0,2.5,3.0,3.5,4.0

create torus major radius 1 minor radius 0.4
webcut volume all with plane xplane offset 0
mesh volume 1 2

and a Q2 discretization was used. The computed eigenvalues are λp = 7.800846 for p = 1.2
and λp = 2064.08 for p = 5.
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Fig. 5 Graphs of p
√

λp versus p

for the N -dimensional unit ball,
and N = 2 (above), N = 3
(center), N = 4 (below), from
p = 50 to p = 290, step 10

Fig. 6 Graphs of λp versus p for the N -dimensional unit ball and N = 2 (left), N = 3 (center), N = 4
(right)

Experimental evidence suggests that Algorithm 2 converges with q = p, but we have
only been able to prove convergence for q < p. It is unknown whether the iteration will
break down for some domain when q = p, but one can always compute with q < p in
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Fig. 7 Eigenfunctions of the p-Laplacian for p = 1.2 (top) and p = 5 (bottom) computed on a torus with
major radius 1 and minor radius 0.4
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Table 2 Eigenvalues of the p-Laplacian on the unit square and cube. The 2D results use a 10 × 10 mesh of
Q5 elements, the 3D results use a 6 × 6 × 6 mesh of Q5 elements. For p = 2, the exact solutions 2π2 and
3π2 are available so we show the error in the Reference column; these cases are denoted by [*]

2D 3D

p Computed Reference Computed Reference

1.2 6.195550328210643 8.642315135978254

1.5 10.07201415299496 10.0722 [14] 14.47791516619582

1.75 14.28146165697044 14.2815 [14] 20.96672431961172

2 19.73920880217817 5.36 × 10−13 [∗] 29.60881320326431 3.77 × 10−12 [∗]
2.2 25.24862830212583 25.2412 [10] 38.51651963302274

2.5 35.94868349730170 35.9493 [14] 56.19031685699854

3 62.75762286200781 62.7633 [14] 101.8697977481977

4 176.5980821441738 176.693 [14] 306.1647710559179

5 463.8206306371868 849.9777670614186

Table 3 Convergence of the computed eigenvalue λp,q → λ−
p as q → p− for the unit cube using a 4×4×4

mesh with Q5 discretization

p = 1.5 p = 3

p − q λp,q λp − λp,q λp,q λp − λp,q

10−1 13.797661713072 6.7943×10−1 96.414190427672 5.4559

10−2 14.405694866696 7.1393×10−2 101.31034449471 5.5975 × 10−1

10−3 14.469912150762 7.1756×10−3 101.81397339451 5.6119 × 10−2

10−4 14.476369813850 7.1792×10−4 101.86447907670 5.6133 × 10−3

10−5 14.477015941408 7.1796×10−5 101.86953107554 5.6135 × 10−4

10−6 14.477080557778 7.1796×10−6 101.87003628973 5.6135 × 10−5

0 14.477087737416 – 101.87009242480 –

which case Theorem 8 guarantees convergence with an error less than K(p − q) for some
positive constant K depending only on the domain and p. Table 3 shows numerical evidence
of this result and quantifies K for the unit cube with p = 1.5 and p = 3.

In practice, the total computational cost to solve the eigenvalue problem is about twice
that of only solving the torsion creep problem. Table 4 shows the convergence of inverse
iteration when the Newton iteration at each step is started using the solution at the last
iteration. The initial guess for the torsion creep problem is zero, which leads to a difficult
nonlinear solve. The Newton iteration is guarded by a cubic backtracking line search which
is sufficient in this case; a parameter continuation or grid sequencing is more robust. The
torsion creep problem is significantly easier to solve for less extreme values of p or for
larger values of the regularization ε. After the torsion creep problem has been solved, a line
search is no longer necessary and accurate estimates of the eigenvalue can be obtained in a
few more Newton iterations.
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Table 4 Convergence rate for
inverse iteration applied to the
torus with p = 1.2 and p = 5.
Each nonlinear solve is
converged to a relative tolerance
of 10−8

p = 1.2 p = 5

Newton its. λp Newton its. λp

37 torsion 18 torsion

5 7.7670871 6 1628.81

4 7.7965212 4 1975.40

3 7.8003037 4 2043.11

3 7.8007802 3 2057.15

2 7.8008389 3 2061.17

2 7.8008456 3 2062.74

2 7.8008462 3 2063.35

3 2063.38

3 2063.98

3 2064.08

Acknowledgements The authors would like to thank the support of FAPEMIG and CNPq.

References

1. Adimurthi, R., Yadava, S.L.: An elementary proof of the uniqueness of positive radial solutions of a
quasilinear Dirichlet problem. Arch. Ration. Mech. Anal. 127, 219–229 (1994)

2. Ainsworth, M., Kay, D.: The approximation theory for the p-version finite element method and applica-
tion to non-linear elliptic PDEs. Numer. Math. 82(3), 351–388 (1999)

3. Allegretto, W., Huang, Y.X.: A Picone’s identity for the p-Laplacian and applications. Nonlinear Anal.
32, 819–830 (1998)

4. Andreianov, B., Boyer, F., Hubert, F.: On the finite-volume approximation of regular solutions of the
p-Laplacian. IMA J. Numer. Anal. 26(3), 472–502 (2006)

5. Antontsev, S.N., Díaz, J.I., de Oliveira, H.B.: Mathematical models in dynamics of non-Newtonian fluids
and in glaciology. In: Proceedings of the CMNE/CILAMCE Congress. Universidade do Porto, Porto
(2007), 20 pp.

6. Atkinson, C., Champion, C.R.: Some boundary value problems for the equation ∇ · (|∇ϕ|N). Q. J. Mech.
Appl. Math. 37, 401–419 (1984)

7. Azorero, J.G., Alonso, J.P.: On limits of solutions of elliptic problems with nearly critical exponent.
Commun. Partial Differ. Equ. 17, 2113–2126 (1992)

8. Barrett, J.W., Liu, W.B.: Finite element approximation of the p-Laplacian. Math. Comput. 61(204),
523–537 (1993)

9. Bermejo, R., Infante, J.A.: A multigrid algorithm for the p-Laplacian. SIAM J. Sci. Comput. 21(5),
1774–1789 (2000)

10. Biezuner, R.J., Ercole, G., Martins, E.M.: Computing the first eigenvalue of the p-Laplacian via the
inverse power method. J. Funct. Anal. 257, 243–270 (2009)

11. Biezuner, R.J., Ercole, G., Martins, E.M.: Computing the sinp function via the inverse power method.
Comput. Methods Appl. Math. 11(2), 129–140 (2011)

12. Biezuner, R.J., Ercole, G., Martins, E.M.: Eigenvalues and eigenfunctions of the Laplacian via inverse
iteration with shift (submitted)

13. Blacker, T., Bohnhoff, W., Edwards, T., Hipp, J., Lober, R., Mitchell, S., Sjaardema, G., Tautges, T.,
Wilson, T., Oakes, W. et al.: CUBIT mesh generation environment. Technical Report, Sandia National
Labs., Albuquerque, NM. Cubit Development Team (1994)

14. Bognár, G., Szabó, T.: Solving nonlinear eigenvalue problems by using p-version of FEM. Comput.
Math. Appl. 43, 57–68 (2003)

15. Bognár, G.: Estimation on the first eigenvalue for some nonlinear Dirichlet eigenvalue problems. Non-
linear Anal. 71(12), e2242–e2448 (2009)



J Sci Comput (2012) 52:180–201 201

16. Bognár, G., Rontó, M.: Numerical-analytic investigation of the radially symmetric solutions for some
nonlinear PDEs. Comput. Math. Appl. 50, 983–991 (2005)

17. Bueno, H., Ercole, G., Zumpano, A.: Positive solutions for the p-Laplacian and bounds for its first
eigenvalue. Adv. Nonlinear Stud. 9, 313–338 (2009)

18. Brown, J.: Efficient nonlinear solvers for nodal high-order finite elements in 3D. J. Sci. Comput. 45(1),
48–63 (2010)

19. Damascelli, L.: Comparison theorems for some quasilinear degenerate elliptic operators and applications
to symmetry and monotonicity results. Ann. Inst. Henry Poincaré 15, 493–516 (1998)

20. Descloux, J., Tolley, M.: An accurate algorithm for computing the eigenvalues of a polygonal membrane.
Comput. Methods Appl. Mech. Eng. 39(1), 37–53 (1983)

21. Diaz, J.I., Hernandez, J.: On the multiplicity of equilibrium solutions to a nonlinear diffusion equation
on a manifold arising in climatology. J. Math. Anal. Appl. 216, 593–613 (1997)

22. Diaz, J.I., de Thelin, F.: On a nonlinear parabolic problem arising in some models related to turbulent
flows. SIAM J. Math. Anal. 25(4), 1085–1111 (1994)

23. Diening, L., Kreuzer, C.: Linear convergence of an adaptative finite element method for the p-Laplacian
equation. SIAM J. Numer. Anal. 46(2), 614–638 (2008)

24. Drábek, P.: The uniqueness for a superlinear eigenvalue problem. Appl. Math. Lett. 12, 47–50 (1999)
25. Droniou, J.: Finite volume schemes for fully non-linear elliptic equations in divergence form. Modél.

Math. Anal. Numér. 40(6), 1069–1100 (2006)
26. Glowinski, R., Rappaz, J.: Approximation of a nonlinear elliptic problem arising in a non-Newtonian

fluid model in glaciology. Modél. Math. Anal. Numér. 37(1), 175–186 (2003)
27. Guidotti, P., Lambers, J.V.: Eigenvalue characterization and computation for the Laplacian on general

2-D domains. Numer. Funct. Anal. Optim. 29(5–6), 507–531 (2008)
28. Guan, M., Zheng, L.: The similarity solution to a generalized diffusion equation with convection. Adv.

Dyn. Syst. Appl. 1(2), 183–189 (2006)
29. Heuveline, V.: On the computation of a very large number of eigenvalues for selfadjoint elliptic operators

by means of multigrid methods. J. Comput. Phys. 184, 321–337 (2003)
30. Huang, Y.Q., Li, R., Liu, W.: Preconditioned descent algorithms for p-Laplacian. J. Sci. Comput. 32(2),

343–371 (2007)
31. Huang, Y.X.: A note on the asymptotic behavior of positive solutions for some elliptic equation. Nonlin-

ear Anal. TMA 29, 533–537 (1997)
32. Juutine, J., Lindqvist, P., Manfredi, J.: The ∞-eigenvalue problem. Arch. Ration. Mech. Anal. 148, 89–

105 (1999)
33. Kawohl, B.: On a family of torsional creep problems. J. Reine Angew. Math. 410, 1–22 (1990)
34. Kawohl, B., Fridman, V.: Isoperimetric estimates for the first eigenvalue of the p-Laplace operator and

the Cheeger constant. Comment. Math. Univ. Carol. 44, 659–667 (2003)
35. Kuttler, J.R., Sigillito, V.G.: Eigenvalues of the Laplacian in two dimensions. SIAM Rev. 26(2), 163–193

(1984)
36. Lefton, L., Wei, D.: Numerical approximation of the first eigenpair of the p-Laplacian using finite ele-

ments and the penalty method. Numer. Funct. Anal. Optim. 18(3–4), 389–399 (1997)
37. Lieberman, G.M.: Boundary regularity for solutions of degenerate elliptic equations. Nonlinear Anal.

TMA 12, 1203–1219 (1988)
38. Lindqvist, P.: Some remarkable sine and cosine functions. Ric. Mat. 2, 269–290 (1995)
39. Pélissier, M.-C., Reynaud, M.L.: Etude d’un modèle mathématique d’écoulement de glacier. C. R. Acad.

Sci. Paris Ser. I Math. 279, 531–534 (1974)
40. Philip, J.R.: N -diffusion. Aust. J. Phys. 14, 1–13 (1961)
41. Sakaguchi, S.: Concavity properties of solutions to some degenerated quasilinear elliptic Dirichlet prob-

lems. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 14, 403–421 (1987)
42. Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., Curfman

McInnes, L., Smith, B.F., Zhang, H.: PETSc Users Manual, Technical Report ANL-95/11—Revision 3.1,
Argonne National Laboratory (2010)

43. Showalter, R.E., Walkington, N.J.: Diffusion of fluid in a fissured medium with microstructure. SIAM J.
Math. Anal. 22, 1702–1722 (1991)

44. Veeser, A.: Convergent adaptive finite elements for the nonlinear Laplacian. Numer. Math. 92(4), 743–
770 (2002)

45. Yao, X., Zhou, J.: Numerical methods for computing nonlinear eigenpairs. I. Iso-homogeneous cases.
SIAM J. Sci. Comput. 29(4), 1355–1374 (2007)


	Computing the First Eigenpair of the p-Laplacian via Inverse Iteration of Sublinear Supersolutions
	Abstract
	Introduction
	Preliminary Results
	Construction of the Sequence of Approximates
	Convergence of the Method
	Some Numerical Results
	Unit Balls
	Square, Cube and Torus

	Acknowledgements
	References


