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Abstract Finite difference operators approximating second derivatives with variable coef-
ficients and satisfying a summation-by-parts rule have been derived for the second-, fourth-
and sixth-order case by using the symbolic mathematics software Maple. The operators are
based on the same norms as the corresponding approximations of the first derivative, which
makes the construction of stable approximations to general multi-dimensional hyperbolic-
parabolic problems straightforward.
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1 Introduction

In many applications, such as general relativity [3, 28], seismology [12, 30], oceanography
[21], acoustics [2, 5, 6, 22, 29] and electromagnetics [7, 31], the underlying equations are
systems of second-order hyperbolic partial differential equations. However, as pointed out
in [13], with very few exceptions the equations are rewritten and solved as a system of first-
order equations. There are some benefits by solving the equations on second-order form
[16]. However, stability is not so easily shown for a narrow-stencil approximation of such
problems. In [19] we introduced the term narrow, to define explicit finite difference schemes
with a minimal stencil width.

Narrow-stencil approximations of second-derivatives have long been known to have good
accuracy properties [19]. Narrow-stencil second-derivative summation-by-parts (SBP) op-
erators approximating ∂2/∂x2 were derived in [17]. In the present study we derive narrow-
stencil SBP operators approximating ∂/∂x(b(x)∂/∂x), where b(x) > 0. Stability for higher-
order accurate (higher than third-order) narrow-stencil finite difference approximations ap-
plicable to second-order hyperbolic systems on general curvilinear grids have never before
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been fully addressed. The main reason has been the failure of deriving narrow-stencil higher-
order accurate SBP operators for variable coefficient second-derivatives.

In [19] we introduced an important relationship between the existing first- and second-
derivative SBP operators, referred to as compatibility. The main result of that study [19]
was to prove that compatibility is a necessary condition obtaining an energy estimate
(i.e., proving stability) for narrow-stencil approximations of problems with a combination
of mixed (∂2/∂x∂y) and non-mixed (∂2/∂x2, ∂2/∂y2) second-derivatives. However, that
study was limited to the constant coefficient case. Typical applications deal with the cor-
responding variable coefficient case involving combinations of mixed ∂/∂x(b12(x, y)∂/∂y),
∂/∂y(b21(x, y)∂/∂x) and pure ∂/∂x(b11(x, y)∂/∂x), ∂/∂y(b22(x, y)∂/∂y) second-deriva-
tives with variable coefficients, such as the compressible Navier-Stokes equations [20, 24,
25] and various second-order hyperbolic systems on curvilinear grids. The main result of the
present study is the derivation and construction of narrow-stencil compatible SBP operators
also for the variable coefficient problem. This is the first time such finite difference operators
have been presented in literature. It is imperative to use finite difference approximations that
do not allow growth in time—a property termed “strict stability” [9]. The combination of
narrow-stencil SBP operators and the Simultaneous Approximation Term (SAT) method [4]
to implement the boundary and interface conditions [15] makes it possible to exactly mimic
the continuous energy estimate and thus proving strict stability.

In Sect. 2 we introduce the SBP-SAT method for a 1-D second-order hyperbolic problem,
followed by a detailed construction procedure for the compatible SBP operators. In Sect. 3
the accuracy and stability properties of the newly developed SBP operators are verified by
performing numerical simulations in 1-D. In Sect. 4 we analyze a 2-D hyperbolic system
on second-order form having both mixed and pure second-derivatives with variable coeffi-
cients. We show that compatibility is a necessary condition obtaining an energy estimate for
narrow-stencil approximations of such problems. In Sect. 5 conclusions are drawn. The SBP
operators are presented in Appendix.

2 The 1-D Problem

In the present study the focus is on deriving SBP operators for systems involving a com-
bination of mixed and pure second-derivative terms with variable coefficients. To make the
paper more clear we begin with a presentation of the SBP and SAT concepts in 1-D.

The following definitions are needed in Sect. 4, to analyze the stability properties of the
new SBP operators. Let the inner product for real-valued functions u,v ∈ L2[0,1] be defined
by (u, v) = ∫ 1

0 uva(x)dx, a(x) > 0, and let the corresponding norm be ‖u‖2
a = (u,u). The

domain (0 ≤ x ≤ 1) is discretized using the following N + 1 equidistant grid points:

xi = ih, i = 0,1, . . . ,N, h = 1

N
.

The approximate solution at grid point xi is denoted vi , and the discrete solution vector is
vT = [v0, v1, . . . , vN ]. Similarly, we define an inner product for discrete real-valued vector
functions u,v ∈ RN+1 by (u, v)Ha = uT HAv, where H is diagonal and positive definite and
A is the projection of a(x) onto the diagonal. The corresponding norm is ‖v‖2

Ha
= vT HAv.

Remark The matrix product HA defines a norm if and only if HA is symmetric and positive
definite. This can only be guaranteed if H is a diagonal matrix (see [23] for a detailed study
on this).
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The following vectors will be frequently used:

e0 = [1,0, . . . ,0]T , eN = [0, . . . ,0,1]T . (1)

2.1 The SBP-SAT Method

To define the SBP-SAT method, we present the following two definitions (first stated in
[19]):

Definition 2.1 An explicit pth-order accurate finite difference scheme with minimal stencil
width of a Cauchy problem is called a pth-order accurate narrow-stencil.

Definition 2.2 A difference operator D1 = H−1Q approximating ∂/∂x, using a pth-order
accurate narrow-stencil, is said to be a pth-order accurate narrow-diagonal first-derivative
SBP operator if H is diagonal and positive definite and Q + QT = diag(−1,0, . . . ,0,1).

We say that a scheme is explicit if no linear system of equations needs to be solved to
compute the difference approximation. Spatial Padé discretizations [14] are often referred
to as “compact schemes.” The approximation of the derivative is obtained by solving a tri-
or penta-diagonal system of linear equations at every time step. Hence, if written in explicit
form, Padé discretizations lead to full-difference stencils, similar to spectral discretizations.

As an example of the simple, yet powerful, SBP-SAT method, we consider the following
second-order hyperbolic equation:

autt = (bux)x, 0 ≤ x ≤ 1, t ≥ 0,

αut − bux = g, x = 0, t ≥ 0,

αut + bux = g, x = 1, t ≥ 0,

u = f1, ut = f2, 0 ≤ x ≤ 1, t = 0,

(2)

where a(x) > 0 and b(x) > 0. Multiplying the first equation in (2) by ut , integrating by parts
(referred to as “the energy method”) and imposing the boundary conditions lead to

d

dt
(‖ut‖a + ‖ux‖b) = −2 (αut − g)ut |x=1 − 2 (αut − g)ut |x=0. (3)

An energy estimate is obtained if α ≥ 0. The discrete approximation of (2) using the SBP-
SAT method is

Avtt = D1BD1v − H−1τe0 {(αvt − BD1v)0 − g}
− H−1τeN {(αvt + BD1v)N − g} , (4)

where e0 and eN are defined in (1). (We assume the same initial conditions v = f1, vt = f2

as in the continuous case.) The matrices A and B have the values of a(x) and b(x) injected
on the diagonal.

Applying the energy method by multiplying (4) by vT
t H and adding the transpose lead

to

d

dt

(‖vt‖2
Ha

+ ‖D1v‖2
Hb

) = −(vt )
T
0 (2 − 2τ) (BD1v)0 + (vt )

T
N (2 − 2τ) (BD1v)N

+ 2τ
(
vT

t (g − αvt )
)

0
+ 2τ

(
vT

t (g − αvt )
)
N

.
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Setting τ = 1 leads to

d

dt

(‖vt‖2
Ha

+ ‖D1v‖2
Hb

) = −2
(
vT

t (αvt − g)
)

0
− 2

(
vT

t (αvt − g)
)
N

. (5)

Equation (5) exactly mimics (3), except for the highest frequency mode (see [18]). The
problems with the numerical scheme given by (4) are twofold: (1) It does not damp the
highest frequency mode (see Figs. 2 and 4), which can be proven with Fourier analysis [18].
(2) For a given order of accuracy, the internal numerical scheme is wider than necessary,
leading to lower than optimal numerical accuracy. A remedy would be to employ a narrow-
stencil SBP operator for ∂/∂x(b∂/∂x), where b(x) > 0.

In [16] we introduced the following definition:

Definition 2.3 Let D
(b)

2 = H−1(−M(b) + B̄S) approximate ∂/∂x(b∂/∂x), where b(x) > 0,
using a pth-order accurate narrow-stencil. D

(b)

2 is said to be a pth-order accurate narrow-
diagonal second-derivative SBP operator, if H is diagonal and positive definite, M(b) is
symmetric and positive semi-definite, S approximates the first-derivative operator at the
boundaries and B̄ = diag(−b0,0, . . . ,0, bN).

By employing a narrow-diagonal SBP operator D
(b)

2 in (2), we obtain the semi-discrete
approximation

Avtt = D
(b)

2 v − H−1τe0 {(αvt − BSv)0 − g}
− H−1τeN {(αvt + BSv)N − g} . (6)

Applying the energy method by multiplying (6) by vT
t H , adding the transpose and setting

τ = 1 lead to

d

dt

(‖vt‖2
Ha

+ vT M(b)v
) = −2

(
vT

t (αvt − g)
)

0
− 2

(
vT

t (αvt − g)
)
N

. (7)

Equation (7) is a semi-discrete analogue to (3), also for the highest frequency mode.
The advantages of employing narrow-diagonal second-derivative SBP operators are

that they damp the highest frequency mode, and yield a more accurate representation of
∂/∂x(b∂/∂x). However, such operators have not yet been presented in literature, except
for second-order accuracy [16]. In [11] the variable coefficient problem (for the second,
fourth and sixth-order case) was analyzed without inclusion of boundaries (i.e., not SBP)
and mixed second-derivative terms.

Remark To obtain energy estimates for schemes utilizing both D1 and D
(b)

2 requires that
both are based on the same norm H .

Remark The boundary closure for a pth-order accurate narrow-diagonal SBP operator is of
order p/2 (see [17]). The convergence rate for narrow-stencil approximations of second-
order hyperbolic problems drops to (p/2 + 2)th-order. (See [8, 27] for more information on
the accuracy of finite difference approximations.)

It was shown in [19] that the present Definition 2.3 of a narrow-diagonal second-
derivative SBP operators alone does not guarantee stability for problems with a combina-
tion of mixed (∂2/∂x∂y) and non-mixed (∂2/∂x2, ∂2/∂y2) second-derivatives, such as the
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compressible Navier-Stokes equations [19] and the elastic wave equation [1]. In [19] we in-
troduced an important relationship between the existing narrow-diagonal first- and second-
derivative (first derived in [17]) SBP operators, referred to as compatibility. The main result
of that study was to show that compatibility is required to prove stability for problems with a
combination of mixed and non-mixed second-derivatives. That study focused on the constant
coefficient problems since high-order accurate compatible second-derivative SBP operators
with variable coefficients at the time did not exist.

2.2 Compatible Second-Derivative SBP Operators

The main goal of the present study is to derive and construct high-order accurate compat-
ible narrow-diagonal SBP operators for second-derivatives with variable coefficients. The
following definition is central in this paper:

Definition 2.4 Let D1 and D
(b)

2 be pth-order accurate narrow-diagonal first- and second-
derivative SBP operators. If M(b) = DT

1 HBD1 + R(b), and the remainder R(b) is positive
semi-definite, D1 and D

(b)

2 are called compatible.

The study of the constant coefficient problem in [19] leads to the following ansatz for the
remainders R(b) in the corresponding variable coefficient case, for the second, fourth, sixth
and eighth-order cases (starting with the second-order case and ending with the eighth-order
case below):

R(b) = h3

4
(D

(2)

2 )T C
(2)

2 B
(2)

2 D
(2)

2

R(b) = h5

18
(D

(4)

3 )T C
(4)

3 B
(4)

3 D
(4)

3 + h7

144
(D

(4)

4 )T C
(4)

4 B
(4)

4 D
(4)

4

R(b) = h7

80
(D

(6)

4 )T C
(6)

4 B
(6)

4 D
(6)

4 + h9

600
(D

(6)

5 )T C
(6)

5 B
(6)

5 D
(6)

5

+ h11

3600
(D

(6)

6 )T C
(6)

6 B
(6)

6 D
(6)

6

R(b) = h9

350
(D

(8)

5 )T C
(8)

5 B
(8)

5 D
(8)

5 + h11

2520
(D

(8)

6 )T C
(8)

6 B
(8)

6 D
(8)

6

+ h13

14700
(D

(8)
7 )T C

(8)
7 B

(8)
7 D

(8)
7 + h15

78400
(D

(8)

8 )T C
(8)

8 B
(8)

8 D
(8)

8 .

(8)

The internal schemes in D
(p)

i (p = 2,4,6,8, denoting different order of accuracy) are

narrow-stencil approximations of di

dxi and C
(p)

i are diagonal matrices with non-negative en-

tries, i = 2, . . . ,8. Note that D
(p)

i for different orders of accuracy p differ only at the bound-
aries for a given derivative order (denoted by i). To obtain a narrow stencil operator also for
the variable coefficient case, the diagonal and positive matrices B

(p)

i have special weights
(as listed in the Appendix). This construction guarantees that the R(b) are symmetric and
positive semidefinite by construction, up to eighth-order.

The interior scheme is given, since we require minimal width and pth-order accuracy.
Left to find are the boundary modifications in D

(p)

i and C
(p)

i such that the following con-
straints are met:

1. D
(b)

2 , when b(x) = 1, is identical to the compatible constant coefficient second-derivative
SBP operators first derived in [17].
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2. C
(p)

i has non-negative entries.

3. D
(p)

i is a consistent approximation of di

dxi at the boundaries.

4. D
(b)

2 is of order p/2 at the boundaries.

Altogether, the above construction leads to large non-linear system of equations, espe-
cially for the sixth and eighth-order cases. Typically you need to reduce as much as possible
the number of unknowns (in a way that still allows a solution). The first step is to restrict the
unknowns in D

(p)

i and C
(p)

i , such that the first three constraints above are met. The most dif-
ficult part is to find a valid solution such that the entries in C

(p)

i are non-negative. A fruitful
approach (found after some testing) is to set as many entries as possible to zero in C

(p)

i close
to the boundaries and just allow unknowns in a few rows in D

(p)

i (typically corresponding
to the rows with the unknown entries in C

(p)

i ). Start with as few unknowns as possible (you
need at least as many as there are equations). If no solution is found, more unknowns are
introduced. If any unknowns are left after fulfilling the first three constraints, they are used
to guarantee that the last constraint is met.

After some extensive testing, compatible SBP operators are derived (see Definition 2.4)
fulfilling the four constraints above for the second-, fourth- and sixth-order cases, by using
the symbolic mathematics software Maple, see Appendix. Strictly speaking the first con-
straint is not necessary, but it does guarantee that the operators are well behaved, meaning
that the spectral radius is small (see, for example, [26]) and that the boundary accuracy
is high. In the eighth-order case a solution fulfilling the first constraint could not be found.
However, the first constraint is not necessary for stability, but it might influence on efficiency.
Also, an earlier observation from the constant coefficient case (not presented here) is that
the existing narrow-stencil sixth order discretization is more efficient than the corresponding
eighth order. However, the above construction could be useful for other developers since it
indicates how to build an eighth order accurate compatible narrow-stencil second derivative
SBP operator from an eighth order accurate first derivative SBP operator. We therefore list
possible closures in the Appendix also for this case, although no computations have been
done in the eighth order case.

3 Efficiency Study in 1-D

The main focus in the present study is to construct compatible narrow-diagonal SBP opera-
tors for variable coefficient second derivatives, necessary when proving stability for general
multi-D problems involving variable coefficient mixed and non-mixed second-derivatives.
The necessary stability constraints (see Definition 2.4) can only be seen in a multi-D setting,
proven in Theorem 4.2. The main difference between the narrow-stencil and the correspond-
ing wide-stencil approximation (i.e., when employing only the first derivative SBP operator)
lies in the treatment of the pure second-derivative terms (such as (C11ux)x and (C22uy)y in
(19)). Hence, to motivate the use for narrow-diagonal SBP operators it is enough to compare
the accuracy- and stability-properties of the corresponding wide-stencil approximation in a
1-D setting.

The convergence rate is calculated as

q = log10

(‖u − v(N1)‖h

‖u − v(N2)‖h

)/
log10

(
N1

N2

)1/d

, (9)
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where d is the dimension (d = 1 in the 1-D case), u is the analytic solution, and v(N1) the
corresponding numerical solution with N1 unknowns. ‖u − v(N1)‖h is the discrete l2 norm
of the error.

We study the 1-D wave equation (2) extended to the spatial domain −1 ≤ x ≤ 1, where
the coefficients a(x), b(x) > 0 are discontinuous at x = 0, leading to the following problem

a(1)u
(1)
tt = (b(1)u(1)

x )x, −1 ≤ x ≤ 0

a(2)u
(2)
tt = (b(2)u(2)

x )x, 0 ≤ x ≤ 1
, (10)

where a(1) �= a(2), b(1) �= b(2). Here u(1,2) denote the solutions corresponding to the left and
right domains respectively. We introduce the following coordinate transformations,

x = x(ξ) = ξ

(
e−(ξ+ 4

5 )2

e−(−1+ 4
5 )2

)l

, ξ = [−1,0],

x = x(ξ) = ξ

(
e−(ξ− 4

5 )2

e−(1− 4
5 )2

)l

, ξ = [0,1],
(11)

in the left and right domains, respectively. Here l is a non-negative integer, where the case
l = 0 corresponds to the Cartesian case. A larger value on l leads to a denser clustering of
grid-points close to the interface and the outer boundaries. The problem (10) transforms to

ã(1)u
(1)
tt = (c(1)u

(1)
ξ )ξ , −1 ≤ ξ ≤ 0

ã(2)u
(2)
tt = (c(2)u

(2)
ξ )ξ , 0 ≤ ξ ≤ 1

, (12)

in curvilinear coordinates, where ã(1,2) = a(1,2)x
(1,2)
ξ and c(1,2) = b(1,2)/x

(1,2)
ξ . Continuity at

the interface (ξ = 0) means that the following interface (jump) conditions:

u(1) = u(2), c(1)u
(1)
ξ = c(2)u

(2)
ξ , (13)

have to be fulfilled. The SAT method of handling discontinuous media is used. To make
the paper self contained we write out in detail the SBP-SAT treatment of the 1-D model
problem. (A detailed analysis of this particular problem is described in [16].) The semi-
discrete approximation of (13) can be written

I1 ≡ v
(1)
N − v

(2)

0 = 0, I2 ≡ (C̄(1)Sv(1))N + (C̄(2)Sv(2))0 = 0. (14)

Here v(1,2) are the solution vectors corresponding to the left and right domains respectively.
The left and right domains are discretized using (N + 1) grid points.

A semi-discretization of the Neumann boundary conditions (that are applied at the outer
boundaries) are given by

LT
1 v(1) = (C̄(1)Sv(1))0 = g, LT

2 v(2) = (C̄(1)Sv(2))N = g. (15)

A semi-discretization of (12) using narrow-diagonal SBP operators and the SAT method
to impose the semi-discrete interface conditions (14) and boundary conditions (15), can be
written:
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Table 1 log(l2-errors) and convergence rates for different grid-stretching l (see (11)) in the first test. Sixth-
order accurate narrow-stencil

N log l2
(l=0) q(l=0) log l2

(l=1) q(l=1) log l2
(l=2) q(l=2)

51 −2.29 0.00 −2.94 0.00 −2.64 0.00

101 −4.20 6.43 −4.74 6.07 −4.40 5.92

201 −5.91 5.72 −6.54 6.01 −6.19 5.98

401 −7.58 5.59 −8.30 5.86 −7.92 5.79

801 −9.22 5.46 −10.07 5.90 −9.68 5.84

Ã1v
(1)
tt = D

(c(1))

2 v(1) Ã2v
(2)
tt = D

(c(2))

2 v(2)

+ τH−1eN(I1) − τH−1e0(I1)

+ β(C̄(1)S)T eNH−1(I1) − β(C̄(2)S)T e0H
−1(I1)

+ γH−1eN(I2) − γH−1e0(I2)

− H−1e0(L
T
1 v(1) − g), + H−1eN(LT

2 v(2) − g). (16)

The following Lemma was first stated in [16]:

Lemma 3.1 The scheme (16) is strictly stable if Dc(1,2)

2 are narrow-diagonal SBP operators,

γ = − 1
2 , β = 1

2 and τ ≤ − c(1)+c(2)

4hα
hold.

The proof can be found in [16], where the value of α = 0.1878715026 (in the above
lemma) is shown for the sixth order case.

3.1 Accuracy Property

In the first test the accuracy properties of the sixth-order accurate wide- and narrow-stencil
approximations are compared, for an analytic standing wave solution given by

u(1) = cos (π
√

b(1)a(1)t) cos (πa(1)ξ ), ξ = [−1,0],
u(2) = cos (π

√
b(2)a(2)t) cos (πa(2)ξ ), ξ = [0,1].

(17)

The analytic solution is constructed such that uξ �= 0 at the interface (ξ = 0) by choosing
a(1) = 10 + 1

2 , a(2) = 3 + 1
2 , b(1) = a(2) and b(2) = a(1). At the outer boundaries we impose

homogeneous Neumann boundary conditions. The numerical approximation is run to t =
0.7, using a time step dt = 10−4. We us a compact fourth-order accurate time discretization
(see [16] for details). The convergence study for the sixth-order accurate narrow- and wide-
stencil approximations are presented in Tables 1 and 2 respectively.

The conclusion of this first test is that the narrow-stencil approximation is much more
efficient than the corresponding wide-stencil approximation. We should mention that the
time-step restrictions of the wide- and narrow-stencil approximations are approximately the
same.

3.2 Stability Property

In the second test we focus on the stability properties of the narrow- and wide-stencil ap-
proximations. In particular the SAT method of handling the discontinuous media (see [16]
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Table 2 log(l2-errors) and convergence rates for different grid-stretching l (see (11)) in the first test. Sixth-
order accurate wide-stencil

N log l2
(l=0) q(l=0) log l2

(l=1) q(l=1) log l2
(l=2) q(l=2)

51 −1.25 0.00 −1.75 0.00 −1.69 0.00

101 −2.56 4.41 −3.27 5.15 −3.41 5.80

201 −3.86 4.34 −4.87 5.34 −5.10 5.66

401 −5.30 4.83 −6.30 4.76 −6.59 4.96

801 −6.72 4.71 −7.66 4.52 −7.89 4.31

Table 3 log(l2-errors) and convergence rates for the sixth-order SAT method in the second test, comparing
the narrow- and wide-stencil approximations

N log l2
(narrow) q(narrow) log l2

(wide) q(wide)

101 −1.39 −1.07

201 −2.31 3.12 −1.72 2.17

401 −4.23 6.43 −3.30 5.29

801 −6.14 6.37 −4.68 4.62

for details) interface is compared to the method of differentiating across the discontinuity
here referred to as the “Ignoring” method. Again the model-problem is given by (10), where
a(1) = 1 , a(2) = 2, b(1) = 2 and b(2) = 8. We now run a Gaussian initial profile to t = 10
(see Fig. 1). The reference solution is recorded using 1601 grid-points in each domain. In
Table 3 we compare the narrow- and wide-stencil approximations, treating the media jump
with the SAT method, using sixth-order accurate SBP operators and a compact fourth-order
time-discretization.

In Table 4 we compare the narrow- and wide-stencil approximations when ignoring the
media jump, which leads to first-order accurate approximations (see [10] for a detailed con-
vergence study on this problem). In Fig. 2 we present the numerical solutions at t = 10 using
201 grid points, comparing both the wide- and narrow-stencil approximations when ignoring
the media jump. The highest frequency mode is clearly visible in the wide-stencil approxi-
mation. Compare this with the corresponding result using the sixth-order SAT method (using
201 grid-points) in Fig. 1. In Table 5 we compare the narrow- and wide-stencil approxima-
tions when ignoring the media jump for the corresponding second-order case, which is the
most widely used finite difference approximation in practical applications.

The conclusion of this last study can be summarized in the following: (1) It is very im-
portant to use the SAT method of handling the media jump, (2) the narrow-stencil approxi-
mation is much more efficient than the corresponding wide-stencil approximation, and (3) if
ignoring the media jump, a second-order finite difference scheme can be more efficient than
a corresponding higher-order scheme.

4 The 2-D Problem

To simplify the 2-D analysis we introduce some notation, beginning with the Kronecker
product:



J Sci Comput (2012) 51:650–682 659

Fig. 1 Solutions at t = 10, using the sixth-order accurate narrow-stencil SBP-SAT method, with N = 201
(a) and N = 1601 (b), initiated with a Gaussian profile

C ⊗ D =
⎡

⎢
⎣

c0,0D · · · c0,q−1D
...

...

cp−1,0D · · · cp−1,q−1D

⎤

⎥
⎦ ,
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Fig. 2 Solution at t = 10 initiated with a Gaussian profile. Comparing the wide-stencil (a) and narrow-stencil
(b) ignoring method using 201 grid-points

where C is a p × q matrix and D is an m × n matrix. Two useful rules for the Kronecker
product are (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) and (A ⊗ B)T = AT ⊗ BT .

The following definition will be used in subsequent sections:
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Table 4 log(l2-errors) and convergence rates for the sixth-order Ignoring method in the second test, com-
paring the narrow- and wide-stencil approximation

N log l
(narrow)
2 q(narrow) log l

(wide)
2 q(wide)

101 −0.96 −0.94

201 −1.15 0.64 −1.03 0.28

401 −1.47 1.05 −1.33 1.00

801 −1.78 1.06 −1.66 1.12

Table 5 log(l2-errors) and convergence rates for the second-order SAT and Ignoring method in the second
test, using narrow-stencil approximations

N log l
(SAT)
2 q(SAT) log l

(Ignoring)
2 q(Ignoring)

101 −0.76 −0.94

201 −0.88 0.40 −0.99 0.18

401 −1.08 0.69 −1.16 0.58

801 −1.64 1.84 −1.67 1.67

1601 −2.23 1.99 −2.15 1.60

Definition 4.1 Let x̄ = (x, y) denote grid coordinates in two dimensions. We define the 2-D
bounding box 0 ≤ x ≤ 1,0 ≤ y ≤ 1 by x̄ ∈ 	, and the line x = 1,0 ≤ y ≤ 1 by x̄ ∈ 	East .

The domain 	 is discretized with an (N + 1) × (M + 1)-point equidistant grid defined
as

xi = 0 + ihx, i = 0,1, . . . ,N, hx = 1
N

,

yj = 0 + jhy, j = 0,1, . . . ,M, hy = 1
M

.

To simplify notation (without any restriction) we assume the same dimension (N ) in both
the x- and y-direction. In the following k denotes the number of unknowns in the underlying
continuous PDE. The numerical approximation at grid point (xi, yj ) ≡ x̄i,j is a 1 × k-vector
denoted vi,j . The tensor product derivations are more transparent if we redefine the com-
ponent vector vi,j as a “vector of vectors.” Specifically, define a discrete solution vector
vT = [v0, v1, . . . , vN ], where vp = [vp,0, vp,1, . . . , vp,N ] is the solution vector at xp along
the y-direction, see Fig. 3. To distinguish whether a 2-D difference operator P is operating
in the x- or the y-direction, we use the notations Px and Py , respectively. The following 2-D
operators are frequently used:

Dx = Ik ⊗ D1 ⊗ IN , Dy = Ik ⊗ IN ⊗ D1,

D
(b)

2x = Ik ⊗ D
(b)

2 ⊗ IN , D
(b)

2y = Ik ⊗ IN ⊗ D
(b)

2 ,

R(b)
x = Ik ⊗ R(b) ⊗ IN , R(b)

y = Ik ⊗ IN ⊗ R(b),

Sx = Ik ⊗ S ⊗ IN , Sy = Ik ⊗ IN ⊗ S,

Bx = Ik ⊗ B ⊗ IN , By = Ik ⊗ IN ⊗ B, (18)

B̄x = Ik ⊗ B̄ ⊗ IN , B̄y = Ik ⊗ IN ⊗ B̄,
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Fig. 3 Domain 2-D

Hx = Ik ⊗ H ⊗ IN , Hy = Ik ⊗ IN ⊗ H,

eWest = Ik ⊗ e0 ⊗ IN , eSouth = Ik ⊗ IN ⊗ e0,

eEast = Ik ⊗ eN ⊗ IN , eNorth = Ik ⊗ IN ⊗ eN ,

where D1, D
(B)

2 , S, R, B , B̄ and H are the 1-D operators introduced in Sect. 2. Note that
D

(b)

2x = H−1
x (−DT

x BxHxDx −R(b)
x + B̄xSx), D

(b)

2y = H−1
y (−DT

y ByHyDy −R(b)
y + B̄ySy). IN

and Ik are identity matrices of appropriate sizes, and e0 and eN are 1-D “boundary” vectors
defined by (1). We further introduce the 2-D norm operators H̃ = HxHy, Ĥ = diag(H̃ , H̃ ).

4.1 Analysis

Our main focus in the present study is on deriving narrow-stencil high-order accurate
compatible second-derivative SBP operators with variable coefficients. These operators
are necessary in order to derive strictly stable narrow-stencil approximations for prob-
lems with a combination of mixed ∂/∂x(b12(x, y)∂/∂y), ∂/∂y(b21(x, y)∂/∂x) and pure
∂/∂x(b11(x, y)∂/∂x), ∂/∂y(b22(x, y)∂/∂y) second-derivatives with variable coefficients,
such as the compressible Navier-Stokes equations and various second-order hyperbolic sys-
tems on curvilinear grids. A narrow-stencil approximation will efficiently damp the highest
frequency mode (as we saw in the previous section). In Fig. 4 we compare the sixth-order
accurate narrow-stencil approximation to the wide-stencil approximation of the second or-
der wave equation on a curvilinear 2-D grid (that can formally be written as (19) with
k = 1). The simulation is initiated with a rather sharp Gaussian profile and run to t = 10.
At the outer boundaries we set homogeneous Neumann boundary conditions. The highest
frequency mode is clearly visible in the wide-stencil approximation.

Consider the 2-D hyperbolic system (with k unknowns):

Aut t = (
C11ux + C12uy

)
x
+ (

C21ux + C22uy

)
y
, x̄ ∈ 	. (19)

We Introduce

C =
[

C11 C12

C21 C22

]

, û =
[

ux

uy

]

,
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and require the 2k × 2k matrix C to be symmetric and positive semidefinite. The discrete
counterpart to û is given by

v̂ =
[
Dxv

Dyv

]

.

We consider the following boundary conditions at the 4 boundaries (East, West, North,
South):


Eastut + C11ux + C12uy = g, x̄ ∈ 	East ,


Westut − C11ux − C12uy = g, x̄ ∈ 	West ,


Northut + C21ux + C22uy = g, x̄ ∈ 	North,


Southut − C21ux − C22uy = g, x̄ ∈ 	South.

(20)

Remark Other type of well-posed boundary conditions, like Dirichlet can also be used.
However, the main focus in this paper is on the derivation of compatible second-derivative
SBP operators.

Multiplying (19) by ut , and integrating by parts with the use of (20) lead to

Et = BTEast + BTWest + BTNorth + BTSouth, (21)

where

E =
∫ ∫

	

uT
t Aut + ûT Cûdxdy, (22)

and

BTEast = −2
∫

∂	East
uT

t (�Eastut − g) dy,

BTWest = −2
∫

∂	West
uT

t (�Westut − g) dy,

BTNorth = −2
∫

∂	North
uT

t (�Northut − g) dx,

BTSouth = −2
∫

∂	South
uT

t (�Southut − g) dx.

(23)

An energy estimate exists if �East,West,North,South are positive semidefinite.
A corresponding semi-discrete approximation of (19) with the boundary conditions (20)

can be written

Avtt = Dx

(
C11Dxv + C12Dyv

) + Dy

(
C21Dxv + C22Dyv

) + SATE,W,N,S, (24)

where SATE,W,N,S imposes the boundary conditions (20) using the penalty technique

SATE = −H−1
x eEast

(
(
East vt + C11Dxv + C12Dyv)E − g

)
,

SATW = −H−1
x eWest

(
(
Westvt − C11Dxv − C12Dyv)W − g

)
,

SATN = −H−1
y eNorth

(
(
Northvt + C21Dxv + C22Dyv)N − g

)
,

SATS = −H−1
y eSouth

(
(
Southvt − C21Dxv − C22Dyv)S − g

)
.

In the following, the subscripts E,W,N,S indicates that the quantities reside on the East,
West, North and South boundaries (see Fig. 3).
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Apply the energy method by multiplying (24) by vT
t H̃ , and adding the transpose, leading

to (21), where now

E = vT
t AH̃vt + v̂T CĤ v̂, (25)

and

BTEast = −2
(
vT

t Hy (
East vt − g)
)
E

,

BTWest = −2
(
vT

t Hy (
Westvt − g)
)
W

,

BTNorth = −2
(
vT

t Hx (
Northvt − g)
)
N

,

BTSouth = −2
(
vT

t Hx (
Southvt − g)
)
S
.

(26)

Hence, the semi-discrete energy estimate exactly mimics the continuous energy estimate,
except for the highest frequency mode (see Fig. 4). This can potentially alter the scheme
unstable. The reason for this is that the first derivative SBP operator used to build the energy
term v̂T CĤ v̂ in (25) does not damp spurious oscillations (i.e., the highest frequency mode).

Remark The compatible narrow-stencil second-derivative SBP operators are constructed to
mimic the continuous energy estimate for problems such as (19), and introduce a mechanism
for damping the highest frequency mode.

A semidiscretization of (19) using compatible narrow-diagonal SBP operators and the
SAT method can be written as

Avtt = D
(C11)

2x v + DxC12Dyv + DyC21Dxv + D
(C22)

2y v + ˜SAT E,W,N,S, (27)

where ˜SAT E,W,N,S are given by

˜SAT E = −H−1
x eEast

(
(
East vt + C11Sxv + C12Dyv)E − g

)
,

˜SAT W = −H−1
x eWest

(
(
West vt − C11Sxv − C12Dyv)W − g

)
,

˜SAT N = −H−1
y eNorth

(
(
Northvt + C21Dxv + C22Syv)N − g

)
,

˜SAT S = −H−1
y eSouth

(
(
Southvt − C21Dxv − C22Syv)S − g

)
.

(The differences between (24) and (27) are that we have replaced DxC11Dx , and DyC22Dy

with D
(C11)

2x and D
(C22)

2y respectively, and that we have replaced Dx and Dy with Sx and Sy at
the appropriate places in the penalty terms.)

One of the main results of this paper is stated in the following theorem:

Theorem 4.2 The scheme (27) is strictly stable if D1, D
(C22)

2 and D
(C11)

2 are compatible
narrow-diagonal first- and second-derivative SBP operators and 
East,West,North,South are
positive semidefinite.

Proof Multiplying (27) by vT
t H̃ from the left and adding the transpose lead to

Et = BTEast + BTWest + BTNorth + BTSouth,

where

E = vT
t AH̃vt + v̂T CĤ v̂ + vT HyR

(C11)
x v + vT HxR

(C22)
y v,
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Fig. 4 Comparing the sixth-order accurate wide-stencil (a) and narrow-stencil (b) approximations of the
second order wave equation on a curvilinear 2-D grid. Initiated with a Gaussian profile. The π -mode is
clearly visible in (a)

and

BTEast = −2
(
vT

t Hy (
East vt − g)
)
E

,

BTWest = −2
(
vT

t Hy (
Westvt − g)
)
W

,

BTNorth = −2
(
vT

t Hx (
Northvt − g)
)
N

,

BTSouth = −2
(
vT

t Hx (
Southvt − g)
)
S
.

The semi-discrete energy estimate exactly mimics the continuous energy estimate if and only
if R

(C11)
x and R

(C22)
y are positive semi-definite. Since D1, D

(C22)

2 and D
(C11)

2 are compatible,
stability follows if 
East,West,North,South are positive semidefinite. �

Remark The additional (small) energy terms vT HyR
(C11)
x v and vT HxR

(C22)
y v in Theorem 4.2

introduce a mechanism for efficient damping of spurious oscillations (see Fig. 4), without
destroying accuracy and the energy estimate.

Remark Theorem 4.2 shows why it is necessary to employ compatible narrow-diagonal SBP
operators (see Definition 2.4) to exactly mimic the continuous energy estimate for multi-D
problems consisting of mixed and pure second-derivative terms, and hence proving strict
stability.

5 Conclusions

Our approach has been to construct narrow-stencil SBP operators for variable coefficient
second-derivatives, with a property referred to as compatibility. Together with the SAT tech-
nique to impose boundary and interface conditions, strict stability can be shown using the
energy method, for general second-order hyperbolic (and parabolic) problems. The main
objective was to construct SBP operators that combined the following desirable properties:
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• stability by construction in combination with the existing first derivative SBP operators,
• capable of maintaining the overall convergence rate,
• capable of maintaining simplicity of the numerical scheme.

To achieve the three properties above, we have constructed SBP operators with the following
requirements: (1) We mimic the continuous energy estimate for general second-order 2-D
problems (the extension to 3-D is straightforward) by requiring compatibility with the first
derivative SBP operators. (2) They have the same order of accuracy as the corresponding
wide-stencil approximation. (3) They are of minimal width in the interior.

Numerical computations in 1-D corroborate the stability- and accuracy-properties and
also show that narrow-stencil approximations are more accurate and robust than the corre-
sponding wide stencil approximations.

Appendix A: Operators

Here we present the compatible second-, fourth- sixth- and eighth-order accurate narrow-
diagonal SBP operators, defined in Sect. 2.2. The first-derivative SBP operators are
given by H−1Q, where Q can be found in [17]. The second-derivative operator, D

(b)

2 =
H−1(−M(b) + B̄S), approximate ∂/∂x(b∂/∂x), where b(x) > 0, using a pth-order ac-
curate narrow-stencil. M(b) is symmetric and positive semi-definite, S approximates the
first-derivative operator at the boundaries and B̄ = diag(−b0,0 . . . ,0, bN).

In Sect. 2.2 we showed that if M(b) = DT
1 HBD1 +R(b), and the remainder R(b) is positive

semi-definite, D1 and D
(b)

2 are called compatible. The remaining terms are defined in (8).

A.1 Second-Order Accurate

For the second-order case we have

S = 1
h

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− 3
2 2 − 1

2
1

. . .

1
1
2 −2 3

2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, H = h
2

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
2

. . .

2
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The operators D
(2)

2 and C
(2)

2 are given by:

D
(2)

2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −2 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2 1
1 −2 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, C
(2)

2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0
1

. . .

1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The B
(2)

2 matrix is given by (B
(2)

2 )i,i = bi .
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The left boundary closure of M(b) (given by a 3 × 3 matrix) is given by
⎡

⎢
⎣

1
2b1 + 1

2 b2 − 1
2b1 − 1

2b2 0

− 1
2b1 − 1

2 b2
1
2 b1 + b2 + 1

2 b3 − 1
2b2 − 1

2b3

0 − 1
2b2 − 1

2b3
1
2b2 + b3 + 1

2b4

⎤

⎥
⎦ .

The corresponding right boundary closure is given by replacing bi → bN+1−i for i = 1..4
followed by a permutation of both rows and columns.

The interior stencil of M(b) at row i is given by (i = 4 . . .N − 3):

mi,i−1 = −1

2
bi−1 − 1

2
bi

mi,i = 1

2
bi−1 + bi + 1

2
bi+1

mi,i+1 = −1

2
bi − 1

2
bi+1.

A.2 Fourth-Order Accurate

The third-order accurate boundary derivative operator S is given by,

S = 1

h

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− 11
6 3 − 3

2
1
3

0
. . .

0
− 1

3
3
2 −3 11

6

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The discrete norm H is given by

H = h

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

17
48

59
48

43
48

49
48

1
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The difference operator D
(4)

3 :

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 3 −3 1

−1 3 −3 1

d31 d32 d33 d34 d35 d36

−1 3 −3 1

. . .
. . .

. . .
. . .

−1 3 −3 1

−d36 −d35 −d34 −d33 −d32 −d31

−1 3 −3 1

−1 3 −3 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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where

d31 = −185893

301051
,

d32 = 79000249461

54642863857
,

d33 = −33235054191

54642863857
,

d34 = −36887526683

54642863857
,

d35 = 26183621850

54642863857
,

d46 = − 4386

181507
.

The difference operator D
(4)

4 :

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −4 6 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The left boundary closure of the diagonal matrix C
(4)

3 is given by:

[
0 0 163928591571

53268010936
189284
185893 1 · · ·].

The right boundary closure of the diagonal matrix C
(4)

3 is given by:

[· · · 1 189284
185893 0 163928591571

53268010936 0 0
]
.

The left boundary closure of the diagonal matrix C
(4)

4 is given by:

[
0 0 1644330

301051
156114
181507 1 · · ·].

The corresponding right boundary closure is given by a permutation of both rows and
columns.

The B(4) matrices are given by

(B
(4)

3 )i,i = 1

2
(bi + bi+1)

(B
(4)

4 )i,i = bi

.
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The interior stencil of −M(b) at row i is given by (i = 7 . . .N − 6):

mi,i−2 = 1

6
bi−1 − 1

8
bi−2 − 1

8
bi,

mi,i−1 = 1

6
bi−2 + 1

6
bi+1 + 1

2
bi−1 + 1

2
bi,

mi,i = − 1

24
bi−2 − 5

6
bi−1 − 5

6
bi+1 − 1

24
bi+2 − 3

4
bi,

mi,i+1 = 1

6
bi−1 + 1

6
bi+2 + 1

2
bi + 1

2
bi+1,

mi,i+2 = 1

6
bi+1 − 1

8
bi − 1

8
bi+2.

The left boundary closure of −M(b) (given by a 6 × 6 matrix) is given by

m1,1 = 12

17
b1 + 59

192
b2 + 27010400129

345067064608
b3 + 69462376031

2070402387648
b4,

m1,2 = −59

68
b1 − 6025413881

21126554976
b3 − 537416663

7042184992
b4,

m1,3 = 2

17
b1 − 59

192
b2 + 213318005

16049630912
b4 + 2083938599

8024815456
b3,

m1,4 = 3

68
b1 − 1244724001

21126554976
b3 + 752806667

21126554976
b4,

m1,5 = 49579087

10149031312
b3 − 49579087

10149031312
b4,

m1,6 = − 1

784
b4 + 1

784
b3,

m2,2 = 3481

3264
b1 + 9258282831623875

7669235228057664
b3 + 236024329996203

1278205871342944
b4,

m2,3 = − 59

408
b1 − 29294615794607

29725717938208
b3 − 2944673881023

29725717938208
b4,

m2,4 = − 59

1088
b1 + 260297319232891

2556411742685888
b3 − 60834186813841

1278205871342944
b4,

m2,5 = − 1328188692663

37594290333616
b3 + 1328188692663

37594290333616
b4,

m2,6 = − 8673

2904112
b3 + 8673

2904112
b4,

m3,3 = 1

51
b1 + 59

192
b2 + 13777050223300597

26218083221499456
b4 + 564461

13384296
b5

+ 378288882302546512209

270764341349677687456
b3,
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m3,4 = 1

136
b1 − 125059

743572
b5 − 4836340090442187227

5525802884687299744
b3 − 17220493277981

89177153814624
b4,

m3,5 = −10532412077335

42840005263888
b4 + 1613976761032884305

7963657098519931984
b3 + 564461

4461432
b5,

m3,6 = − 960119

1280713392
b4 − 3391

6692148
b5 + 33235054191

26452850508784
b3,

m4,4 = 3

1088
b1 + 507284006600757858213

475219048083107777984
b3 + 1869103

2230716
b5 + 1

24
b6

+ 1950062198436997

3834617614028832
b4,

m4,5 = − 4959271814984644613

20965546238960637264
b3 − 1

6
b6 − 15998714909649

37594290333616
b4 − 375177

743572
b5,

m4,6 = − 368395

2230716
b5 + 752806667

539854092016
b3 + 1063649

8712336
b4 + 1

8
b6,

m5,5 = 8386761355510099813

128413970713633903242
b3 + 2224717261773437

2763180339520776
b4 + 5

6
b6 + 1

24
b7

+ 280535

371786
b5,

m5,6 = − 35039615

213452232
b4 − 1

6
b7 − 13091810925

13226425254392
b3 − 1118749

2230716
b5 − 1

2
b6,

m6,6 = 3290636

80044587
b4 + 5580181

6692148
b5 + 5

6
b7 + 1

24
b8 + 660204843

13226425254392
b3 + 3

4
b6.

The corresponding right boundary closure is given by replacing bi → bN+1−i for i = 1..8
followed by a permutation of both rows and columns. Let mi,j be the coefficient at row i and
columnj in M(b). The matrix M(b) is symmetric, which means that it is completely defined
by the upper triangular part, i.e., all mi,j , i = 1..N, j = i..N .

A.3 Sixth-Order Accurate

The discrete norm H is defined:

H = h

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

13649
43200

12013
8640

2711
4320

5359
4320

7877
8640

43801
43200

1
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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The 5th-order accurate boundary derivative operator is given by:

S = 1

h

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− 25
12 4 −3 4

3
1
4

1
. . .

1
1
4 − 4

3 3 −4 25
12

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The difference operator D
(6)

4 :

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −4 6 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

d41 d42 d43 d44 d45 d46 d47 d48 d49

1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1

d49 d48 d47 d46 d45 d44 d43 d42 d41

1 −4 6 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where

d41 = 0.43819837221111761389, d46 = 0.44412187877629861379,

d42 = −1.3130959257572520973, d47 = −0.14810645777705395814,

d43 = 0.94797803521609260191, d48 = 0.068316245634253478727,

d44 = 0.62436372993537192414, d49 = −0.0047580470461699605110.

d45 = −1.0570178311926582165,
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The difference operator D
(6)

5 :

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 5 −10 10 −5 1

−1 5 −10 10 −5 1

−1 5 −10 10 −5 1

−1 5 −10 10 −5 1

−1 5 −10 10 −5 1

d51 d52 d53 d54 d55 d56 d57 d58 d59

−1 5 −10 10 −5 1

. . .
. . .

. . .
. . .

. . .
. . .

−1 5 −10 10 −5 1

−d59 −d58 −d57 −d56 −d55 −d54 −d53 −d52 −d51

−1 5 −10 10 −5 1

−1 5 −10 10 −5 1

−1 5 −10 10 −5 1

−1 5 −10 10 −5 1

−1 5 −10 10 −5 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where

d51 = −0.52131894522031211822, d56 = 0.99549078638797583937,

d52 = 2.2819596734201098934, d57 = −0.86326027050414424911,

d53 = −3.7719045450737321464, d58 = 0.32111212717600079458,

d54 = 2.9041350609575637367, d59 = −0.027844354179627268409.

d55 = −1.3183695329638344819,

The difference operator D
(6)

6 :
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −6 15 −20 15 −6 1

1 −6 15 −20 15 −6 1

1 −6 15 −20 15 −6 1

1 −6 15 −20 15 −6 1

d61 d62 d63 d64 d65 d66 d67 d68 d69

d611 d612 d613 d614 d615 d616 d617 d618 d619

1 −6 15 −20 15 −6 1

. . .
. . .

. . .
. . .

. . .
. . .

1 −6 15 −20 15 −6 1

d619 d618 d617 d616 d615 d614 d613 d612 d611

d69 d68 d67 d66 d65 d64 d63 d62 d61

1 −6 15 −20 15 −6 1

1 −6 15 −20 15 −6 1

1 −6 15 −20 15 −6 1

1 −6 15 −20 15 −6 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where

d61 = 0.75842303723660880327, d611 = 0.13990577549425331936,

d62 = −4.2539074383142963409, d612 = 0.19188572768373149785,

d63 = 9.5415070255750278950, d613 = −4.2605618076252134271,

d64 = −10.388676034100037193, d614 = 13.699047136714733223,

d65 = 4.6179225213125232458, d615 = −21.096213322723799491,

d66 = 1.0, d616 = 18.054894179643345962,

d67 = −1.8471690085250092983, d617 = −8.6164088505538261656,

d68 = 0.62695371915714817047, d618 = 2.0586773175102798144,

d69 = −0.055053822341965281964, d619 = −0.17122615614350473339.

The left boundary closure of the diagonal matrix C
(6)

4 is given by:

[
0 0 0 0 0 16.652411984262326459 1.1325448501150501650 1 · · ·].
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The corresponding right boundary closure is given by a permutation of both rows and
columns. The left boundary closure of the diagonal matrix C

(6)

5 is given by:

[
0 0 0 0 0 80.195967307267258036 1 · · ·].

The right boundary closure of the diagonal matrix C
(6)

5 is given by:

[· · · 1 0 80.195967307267258036 0 0 0 0 0
]
.

The left boundary closure of the diagonal matrix C
(6)

6 is given by:

[
0 0 0 0 106.92521670797294276 11.429565737638910841 1 · · ·].

The corresponding right boundary closure is given by a permutation of both rows and
columns.

The different B(6) matrices are given by

(B
(6)

4 )i,i = 1

3
(bi−1 + bi + bi+1)

(B
(6)

5 )i,i = 1

2
(bi + bi+1)

(B
(6)

6 )i,i = bi

.

The interior stencil of M(b) at row i is given by (i = 10 . . .N − 9):

mi,i−3 = 1

40
bi−2 + 1

40
bi−1 − 11

360
bi−3 − 11

360
bi

mi,i−2 = 1

20
bi−3 − 3

10
bi−1 + 1

20
bi+1 + 7

40
bi + 7

40
bi−2

mi,i−1 = − 1

40
bi−3 − 3

10
bi−2 − 3

10
bi+1 − 1

40
bi+2 − 17

40
bi − 17

40
bi−1

mi,i = 1

180
bi−3 + 1

8
bi−2 + 19

20
bi−1 + 19

20
bi+1 + 1

8
bi+2 + 1

180
bi+3 + 101

180
bi

mi,i+1 = − 1

40
bi−2 − 3

10
bi−1 − 3

10
bi+2 − 1

40
bi+3 − 17

40
bi − 17

40
bi+1

mi,i+2 = 1

20
bi−1 − 3

10
bi+1 + 1

20
bi+3 + 7

40
bi + 7

40
bi+2

mi,i+3 = 1

40
bi+1 + 1

40
bi+2 − 11

360
bi − 11

360
bi+3

.

The left boundary closure of M(b) (given by a 9 × 9 matrix) is given by
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m1,1 = 0.79126675946955820939b1 + 0.29684720906380007429b2

+ 0.0031855190887964290152b3 + 0.016324040425909519534b4

+ 0.031603022440944150877b5 + 0.031679647480161052996b6

+ 0.031485777339472539205b7,

m1,2 = −1.0166893393503381444b1 − 0.028456273704916113690b3

− 0.041280298383492988198b4 − 0.13922814516201405075b5

− 0.11957773256112017666b6 − 0.11942677565293334109b7,

m1,3 = 0.070756429372437150463b1 − 0.18454761060241510503b2

− 0.043641631471118923470b4 + 0.24323679072077324609b5

+ 0.15821270735372154440b6 + 0.16023485783647863076b7,

m1,4 = 0.22519915328913532127b1 − 0.16627487110970548953b2

+ 0.027105309616486712977b3 − 0.19166461859684399091b5

− 0.076841171601990145944b6 − 0.082195869498316975759b7,

m1,5 = −0.052244034642020563167b1 + 0.044400639485098762210b2

− 0.0010239765473093878745b3 + 0.074034846453161740905b4

+ 0.012416255689984968954b6 + 0.071886528478926012827b5

+ 0.013793629971047355034b7,

m1,6 = −0.018288968138771973527b1 + 0.0095746331632217580607b2

− 0.00081057845305764042779b3 − 0.0073488455877755196984b4

+ 0.010636019497239069970b5 − 0.013159670383826183824b6

− 0.021179364788387535246b7,

m1,7 = 0.0019118885633161709274b4 − 0.040681303555291499361b5

+ 0.013196749810737491670b6 + 0.025572665181237836763b7,

m1,8 = 0.015596528711367857640b5 − 0.0064861841573315378995b6

− 0.0091103445540363197401b7,

m1,9 = 0.00055939836966298630593b6 − 0.0013848225351007963723b5

+ 0.00082542416543781006633b7,

m2,2 = 1.3063321571116676286b1 + 0.25420017604573457435b3

+ 0.10438978280925626095b4 + 0.66723280210321129509b5

+ 0.46818193597227494411b6 + 0.46764154101958369201b7,

m2,3 = −0.090914102699924646049b1 + 0.11036113131714764253b4

− 1.2903975449975188870b5 − 0.66396052487350447871b6

− 0.66159744640052061842b7,
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m2,4 = −0.28935573956534316666b1 − 0.24213200040645927216b3

+ 1.1876702550280310277b5 + 0.39565981499041363328b6

+ 0.38600489217558000007b7,

m2,5 = 0.067127744758037639890b1 + 0.0091471926820756301800b3

− 0.18721961430038080217b4 − 0.13193585588531745301b6

− 0.48715757368119118874b5 − 0.10475163122754481381b7,

m2,6 = 0.023499279745900688694b1 + 0.0072409053835651813164b3

+ 0.018583789963916794487b4 − 0.092896161339386761743b5

+ 0.12235132704188076670b6 + 0.11135203204362950339b7,

m2,7 = −0.0048347914064469075906b4 + 0.23106838326878204031b5

− 0.10807741421960079917b6 − 0.11815617764273433354b7,

m2,8 = −0.083681414344034553537b5 + 0.040934994667670546616b6

+ 0.042746419676364006921b7,

m2,9 = −0.0035765451326969831434b6 + 0.0073893991241210786821b5

− 0.0038128539914240955387b7,

m33 = 0.0063271611471368738078b1 + 0.11473182007158685275b2

+ 0.11667405542796800075b4 + 2.7666108082854440372b5

+ 1.0709206899608171042b6 + 1.0131613910329730572b7,

m34 = 0.020137694138847972466b1 + 0.10337179946308864017b2

− 2.9132216211517427243b5 − 0.87558073434822622598b6

− 0.69099571834888124265b7,

m35 = −0.0046717510915754628683b1 − 0.027603533656377128278b2

− 0.19792902986208699745b4 + 0.54029853383734330523b6

+ 1.2391775930319110779b5 + 0.26280380502473582273b7,

m36 = −0.0016354308669218878195b1 − 0.0059524752758832596197b2

+ 0.019646827777442752194b4 + 0.32366400126390466006b5

− 0.46595166932288709739b6 − 0.22172727209417368594b7,

m37 = −0.0051113531893524745496b4 − 0.53558781637747543460b5

+ 0.33283351044897389336b6 + 0.20786565911785401579b7,

m38 = 0.18243281741342895622b5 − 0.10598160301968184459b6

− 0.076451214393747111630b7,

m39 = 0.0092090899634437994856b6 − 0.015915028188724931671b5

+ 0.0067059382252811321853b7,
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m44 = 0.064092997759871869867b1 + 0.093136576388046999489b2

+ 0.23063676246347492291b3 + 3.6894403082837166203b5

+ 1.1905503386876088738b6 + 0.59124795468888565194b7,

m45 = −0.014868958192656041286b1 − 0.024870405993901607642b2

− 0.0087129289077117541871b3 − 1.2635078373718242057b6

− 0.30583173978439973269b7 − 1.4706919260458029548b5,

m46 = −0.0052051474298559556576b1 − 0.0053630987475285424890b2

− 0.0068971427657906095463b3 − 0.78575245216674501017b5

+ 0.22911480054237346001b7 + 0.99770643562927505292b6,

m47 = 0.66972974880676622652b5 − 0.50132473560721279390b6

− 0.17951612431066454373b7,

m48 = −0.20229090601117515652b5 + 0.14534218580636584986b6

+ 0.056948720204809306656b7,

m49 = −0.012004296184410038337b6 − 0.0047769156693859238415b7

+ 0.016781211853795962179b5,

m55 = 0.0034494550959102336252b1 + 0.0066411834994278261016b2

+ 0.00032915450832718628585b3 + 0.33577217075764772000b4

+ 2.0964133295790264390b6 + 0.23173232041831268550b7

+ 0.0061078257643682645765b8 + 0.71091258506833766956b5,

m56 = 0.0012075440723041938061b1 + 0.0014321166657521476075b2

+ 0.00026055826461832559573b3 − 0.033329411132516353908b4

− 0.28082416973855326836b7 − 0.027209080835250836084b8

+ 0.10458654356829219874b5 − 1.3484369866671155432b6,

m57 = 0.0086710380841746926251b4 + 0.17360734113554285637b6

+ 0.053313621252876254126b8 − 0.24249352624045263018b5

+ 0.15690152576785882706b7,

m58 = −0.086316839802171222760b6 + 0.026988423604709992435b7

+ 0.080981941477156510853b5 − 0.032764636390806391639b8,

m59 = 0.0074620594845308550733b6 − 0.00081216403616686789496b7

+ 0.00055227020881270902093b8 − 0.0072021656571766961993b5,

m66 = 0.00042272261734493450425b1 + 0.00030882419443789644048b2

+ 0.00020625757066474306202b3 + 0.0033083434042009682567b4

+ 0.58280470164050018158b5 + 0.80541742203662154736b7
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+ 0.13383632334100334433b8 + 0.0055555555555555555556b9

+ 1.1903620718618930511b6,

m67 = −0.00086070442526864133026b4 − 0.17480747086739049893b5

− 0.31325448501150501650b8 − 0.025000000000000000000b9

− 0.31691663053104292713b7 − 0.66916070916479291611b6,

m68 = 0.033546617916933521087b5 − 0.33436200223869714050b7

+ 0.050000000000000000000b9 + 0.21697906098076027508b6

+ 0.18383632334100334433b8,

m69 = 0.029125184768230046430b7 + 0.022790919164749163916b8

− 0.030689859975187405305b6 − 0.0017817995133473605962b5

− 0.030555555555555555556b9,

m77 = 0.00022392237357715991790b4 + 0.12754377854309566738b5

+ 1.0116994839296081646b6 + 0.96988172751725752475b8

+ 0.12500000000000000000b9 + 0.0055555555555555555556bi−3

+ 0.48231775430312815001b7,

m78 = −0.037841139730330129499b5 − 0.29975568851348273616b6

− 0.30000000000000000000b9 − 0.025000000000000000000bi−3

− 0.39914868674468211784b7 − 0.43825448501150501650b8,

m79 = 0.046981462180226839339b6 − 0.29668637874712374587b8

+ 0.050000000000000000000bi−3 + 0.17163557041460064817b7

+ 0.0030693461522962583624b5 + 0.17500000000000000000b9,

m88 = 0.012303289427168044554b5 + 0.11836475296458983325b6

+ 0.94105118982279433342b7 + 0.95000000000000000000b9

+ 0.12500000000000000000bi−3 + 0.0055555555555555555556bi−2

+ 0.56994743445211445545b8,

m89 = −0.023080678926719163396b6 − 0.29866250537751494972b7

− 0.30000000000000000000bi−3 − 0.025000000000000000000bi−2

− 0.0010477348605150508026b5 − 0.42720908083525083608b8

− 0.42500000000000000000b9,

m99 = 0.0051393702211491099770b6 + 0.12477232150094220014b7

+ 0.95055227020881270902b8 + 0.95000000000000000000bi−3

+ 0.12500000000000000000bi−2 + 0.0055555555555555555556bi−1

+ 0.000091593624651536418269b5 + 0.56111111111111111111b9.
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The corresponding right boundary closure is given by replacing bi → bN+1−i for i =
1..12 followed by a permutation of both rows and columns.

A.4 Eighth-order accurate

For the eighth order case, we did not manage to find boundary closures in D
(8)

5,6,7,8 and C8
5,6,7,8

such that we get back the compatible narrow stencil SBP operator presented in [19]. This is
not to say that such closure does not exist with the construction in (8). However, we are free
to chose for example the difference operator D

(8)

5 :

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 5 −10 10 −5 1

−1 5 −10 10 −5 1

−1 5 −10 10 −5 1

−1 5 −10 10 −5 1

. . .
. . .

. . .
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

the difference operator D
(8)

6 :

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −6 15 −20 15 −6 1

1 −6 15 −20 15 −6 1

1 −6 15 −20 15 −6 1

1 −6 15 −20 15 −6 1

1 −6 15 −20 15 −6 1

. . .
. . .

. . .
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

the difference operator D
(8)
7 :

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −6 15 −20 15 −6 1

−1 7 −21 35 −35 21 −7 1

−1 7 −21 35 −35 21 −7 1

−1 7 −21 35 −35 21 −7 1

−1 7 −21 35 −35 21 −7 1

. . .
. . .

. . .
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,
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and the difference operator D
(8)

8 :

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −6 15 −20 15 −6 1

1 −8 28 −56 70 −56 28 −8 1

1 −8 28 −56 70 −56 28 −8 1

1 −8 28 −56 70 −56 28 −8 1

1 −8 28 −56 70 −56 28 −8 1

1 −8 28 −56 70 −56 28 −8 1

. . .
. . .

. . .
. . .

. . .
. . .

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Based on the closures in the corresponding 4th and 6th order cases an initial guess is to set
the first 6–8 points to zero in C8

5,6,7,8 to zero to get a closure not to bad.

At least we know how to chose the diagonal matrices B
(8)

5,6,7,8 in (8) to obtain a narrow
interior stencil:

(B
(8)

5 )i,i = 1

4
(bi−1 + bi + bi+1 + bi+2)

(B
(8)

6 )i,i = 3

10

(

bi−1 + 4

3
bi + bi+1

)

(B
(8)
7 )i,i = 1

2
(bi + bi+1)

(B
(8)

8 )i,i = bi

.

at i = 1..N −2. Since B
(8)

5,6,7,8 are multiplied with C8
5,6,7,8 that are zero at the first few bound-

ary points, we can as well put the corner points to zero in B
(8)

5,6,7,8.
This means that to the interior stencil of M(b) at row i is given by (i = 13 . . .N − 12):

mi,i−4 = − 1

280
bi−2 − 1

210
bi−3 − 1

210
bi−1 + 5

672
bi−4 + 5

672
bi,

mi,i−3 = 2

35
bi−2 + 2

35
bi−1 − 1

70
bi−4 − 1

70
bi+1 − 1

18
bi−3 − 1

18
bi,

mi,i−2 = 11

105
bi−3 − 2

5
bi−1 + 3

280
bi−4 + 3

280
bi+2 + 11

105
bi+1 + 31

168
bi−2 + 31

168
bi,

mi,i−1 = −13

35
bi−2 − 1

15
bi−3 − 1

210
bi−4 − 1

15
bi+2 − 13

35
bi+1 − 1

210
bi+3 − 5

14
bi−1 − 5

14
bi,
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mi,i = 1

1120
bi+4 + 53

280
bi−2 + 17

630
bi−3 + 69

70
bi−1 + 1

1120
bi−4 + 53

280
bi+2 + 69

70
bi+1

+ 17

630
bi+3 + 445

1008
bi,

mi,i+1 = − 1

210
bi+4 − 1

15
bi−2 − 1

210
bi−3 − 13

35
bi−1 − 13

35
bi+2 − 1

15
bi+3 − 5

14
bi+1 − 5

14
bi,

mi,i+2 = 3

280
bi+4 + 3

280
bi−2 + 11

105
bi−1 − 2

5
bi+1 + 11

105
bi+3 + 31

168
bi+2 + 31

168
bi,

mi,i+3 = − 1

70
bi+4 − 1

70
bi−1 + 2

35
bi+2 + 2

35
bi+1 − 1

18
bi − 1

18
bi+3,

mi,i+4 = − 1

280
bi+2 − 1

210
bi+1 − 1

210
bi+3 + 5

672
bi+4 + 5

672
bi.
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