
J Sci Comput (2012) 51:313–348
DOI 10.1007/s10915-011-9512-4

An Ordered Upwind Method with Precomputed Stencil
and Monotone Node Acceptance for Solving Static
Convex Hamilton-Jacobi Equations

Ken Alton · Ian M. Mitchell

Received: 26 October 2009 / Revised: 24 June 2011 / Accepted: 28 June 2011 /
Published online: 29 July 2011
© Springer Science+Business Media, LLC 2011

Abstract We define a δ-causal discretization of static convex Hamilton-Jacobi Partial Dif-
ferential Equations (HJ PDEs) such that the solution value at a grid node is dependent only
on solution values that are smaller by at least δ. We develop a Monotone Acceptance Or-
dered Upwind Method (MAOUM) that first determines a consistent, δ-causal stencil for each
grid node and then solves the discrete equation in a single-pass through the nodes. MAOUM
is suited to solving HJ PDEs efficiently on highly-nonuniform grids, since the stencil size
adjusts to the level of grid refinement. MAOUM is a Dijkstra-like algorithm that computes
the solution in increasing value order by using a heap to sort proposed node values. If δ > 0,
MAOUM can be converted to a Dial-like algorithm that sorts and accepts values using buck-
ets of width δ. We present three hierarchical criteria for δ-causality of a node value update
from a simplex of nodes in the stencil.

The asymptotic complexity of MAOUM is found to be O((�̂ρ)dN logN), where d is
the dimension, �̂ is a measure of anisotropy in the equation, and ρ is a measure of the de-
gree of nonuniformity in the grid. This complexity is a constant factor (�̂ρ)d greater than
that of the Dijkstra-like Fast Marching Method, but MAOUM solves a much more general
class of static HJ PDEs. Although ρ factors into the asymptotic complexity, experiments
demonstrate that grid nonuniformity does not have a large effect on the computational cost
of MAOUM in practice. Our experiments indicate that, due to the stencil initialization over-
head, MAOUM performs similarly or slightly worse than the comparable Ordered Upwind
Method presented in (Sethian and Vladimirsky, SIAM J. Numer. Anal. 41:323, 2003) for
two examples on uniform meshes, but considerably better for an example with rectangular
speed profile and significant grid refinement around nonsmooth parts of the solution. We

This work was supported by a grant from the National Science and Engineering Research Council
of Canada.

K. Alton · I.M. Mitchell (�)
Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
e-mail: mitchell@cs.ubc.ca
url: http://www.cs.ubc.ca/~mitchell

K. Alton
e-mail: kalton@cs.ubc.ca

mailto:mitchell@cs.ubc.ca
http://www.cs.ubc.ca/~mitchell
mailto:kalton@cs.ubc.ca

314 J Sci Comput (2012) 51:313–348

test MAOUM on a diverse set of examples, including seismic wavefront propagation and
robotic navigation with wind and obstacles.

Keywords Ordered upwind methods · Anisotropic optimal control · Anisotropic front
propagation · Hamilton-Jacobi equation · Viscosity solution · Dijkstra-like methods ·
Dial-like methods

1 Introduction

One interpretation of the viscosity solution to a static Hamilton-Jacobi Partial Differential
Equation (HJ PDE) is the first arrival time of a propagating wavefront. A level contour of
the solution is the position of the wavefront at a specific time. An intuitive and efficient
method of approximating the solution on a grid is to compute the solution values at grid
nodes in the order in which the wavefront passes through the grid nodes. The solution value
at a particular grid node is based on values of neighboring grid nodes that are smaller, in the
same way that the time at which the wavefront crosses any particular point is dependent on
the earlier times the wavefront crosses nearby points in the direction from which it emanates.
Dijkstra-like methods were developed in [23, 30] to approximate the solution to an isotropic
static HJ PDE, also known as the Eikonal equation, in a single pass through the nodes of a
grid in order of increasing solution value. Ordered Upwind Methods (OUMs) [26, 27] are
an extension of these Dijkstra-like methods that approximate the solution to static convex
HJ PDEs in a single pass.

One potential benefit of single-pass methods is that it may be possible to estimate error
and refine the grid to achieve a desired solution accuracy as the solution is computed out-
ward from the boundary condition. Because a node value is not computed until those node
values on which it depends have already been computed, there is the potential to control
error early before it has been propagated unnecessarily to dependent grid nodes. We are not
aware of any existing adaptive single-pass methods for static HJ PDEs that refine the grid
to control error on the fly. However, such an adaptive method would create significantly
nonuniform grids for many problems. We develop a Dijkstra-like single-pass method which
constructs causal stencils that extend beyond immediate neighbors but adjust to the local
and directional grid spacing. Convergence can be shown using a well-known consistency,
monotonicity, and stability proof [5]. A feature of our method is that the discretization of
the HJ PDE is δ-causal (where δ ≥ 0 is a free parameter), such that the solution value at a
grid node is dependent only on solution values that are smaller by more than δ.

We present Monotone Acceptance OUM (MAOUM), a two-pass Dijkstra-like method
for which node values are accepted in nondecreasing order on a simplicial grid. We contrast
MAOUM with the OUM introduced in [26, 27], which solves the same set of static convex
HJ PDEs but does not necessarily accept node values monotonically. Because one of the
defining features of their method is that a front of nodes with accepted values is maintained
and the stencil is formed dynamically using only nodes from this front, we call their method
Accepted Front OUM (AFOUM). MAOUM is a two-pass algorithm because the stencils
for the discrete equation are precomputed in an initial pass through the nodes of the grid,
as opposed to being computed in the same pass as the solution like in AFOUM. Because
the stencil size and shape adjusts to local grid spacing, MAOUM is particularly suited to
problems that benefit from nonuniform refinement in the grid (for an example, see Sect. 5.2).
If δ > 0, MAOUM can be modified to create a Dial-like method, for which nodes are sorted
into buckets of width δ according to value and buckets of nodes are accepted in increasing
value order [12, 30].

J Sci Comput (2012) 51:313–348 315

The rest of the introduction includes a definition of the problem, the computational grid,
and the basic Dijkstra-like algorithm, as well as a discussion of related work. In Sect. 2 we
present the discretized equation and the node value update equation, and we examine some
of their useful properties. We develop three hierarchical tests for the δ-causality of a node
value update from a simplex and prove their validity in Sect. 3. We use these tests to define
MAOUM, verify that it solves the discretized equation, and analyze its asymptotic com-
plexity in Sect. 4. Numerical examples are included in Sect. 5 to show empirically that the
algorithm is convergent, is not much less efficient/accurate than AFOUM on uniform grids
and is significantly more efficient/accurate than AFOUM for an example with appropriately
chosen grid refinement. We also demonstrate that MAOUM can be used to solve practical
problems, such as computing the first-arrival time for a seismic wavefront or finding optimal
paths for a robot to reach a goal while fighting a strong wind and avoiding obstacles.

1.1 The Problem

The Dirichlet problem for a static HJ PDE is to find a function u such that

H(x,Du(x)) = 0, x ∈ �, (1.1a)

u(x) = g(x), x ∈ ∂�, (1.1b)

where Du(x) is the gradient of u at x, � ⊂ R
d is a bounded Lipschitz domain, and ∂� is

the domain’s boundary.
An optimal continuous control problem which attempts to minimize the time to reach the

boundary leads to the following Hamiltonian H in (1.1a) [27]:

H(x,p) = max
a∈A

[(−p · a)f (x, a)] − 1, (1.2)

where A = {a ∈ R
d | ‖a‖ = 1} is the set of unit vector controls, a ∈ A is a control specifying

direction of travel, x ∈ � ∪ ∂� is a state, f : � × A → R
+ is a Lipschitz-continuous func-

tion providing the finite positive speed of travel from each state x in each direction a, and
g : ∂� → R gives the exit time penalty at each boundary state x. Note that f is positive,
which means that small-time-controllability is assumed.

For all x ∈ �, let the speed profile

Af (x) = {taf (x, a) | a ∈ A and t ∈ R such that 0 ≤ t ≤ 1}

be a closed convex set. Because f is positive, Af (x) contains the origin in its interior. In an
isotropic problem, f (x, a) is independent of a for all x, i.e., Af (x) is a hypersphere with
the origin at its center. In such a problem, the Hamiltonian H reduces to

H(x,p) = ‖p‖2f (x) − 1 (1.3)

and (1.1) becomes the Eikonal equation. In an anisotropic problem, f (x, a) depends on a

for some x, i.e., Af (x) is a closed non-spherical but convex set.
In general, it is impossible to find a classical solution u to the static Hamilton-Jacobi

PDE (1.1) where u is differentiable for all x. We seek instead the viscosity solution, a unique
weak solution which under the above conditions on Af is continuous and almost everywhere
differentiable [9].

316 J Sci Comput (2012) 51:313–348

1.2 Computational Grid

Since we typically cannot solve for the viscosity solution analytically, we compute an ap-
proximate solution u on a structured, semi-structured, or unstructured simplicial grid with
nodes forming both a discretization � of �, and a discretization ∂� of ∂�. Take � and ∂�

to be disjoint sets and let X = � ∪ ∂� be the set of all nodes in the grid. Let N (x) be the
set of grid neighbors of node x ∈ X . Let s be a simplex with ns vertices, and xs

i be the ith
vertex of s where 1 ≤ i ≤ ns . Let S be the set of grid simplices using neighboring grid nodes
in X . Define S(R) = {s ∈ S | for 1 ≤ i ≤ ns , xs

i ∈ R ⊂ R
d}, the set of grid simplices using

neighboring grid nodes in R. We may specify the number of vertices using a subscript: for
example, S d(R) is the set of grid simplices with d vertices. If left unspecified it is assumed
1 ≤ ns ≤ d , excluding simplices with d + 1 vertices.

1.3 Dijkstra-like Methods

Algorithm 1 outlines a standard Dijkstra-like method [13] for solving isotropic static HJ
PDEs on a simplicial grid, similar to the Fast Marching Method (FMM) [23]. MAOUM is
a modification of this algorithm to handle HJ PDEs with convex anisotropy, while taking
advantage of nonuniformity in the computational grid.

Informally, we refer to v(x) as the value of node x. When Algorithm 1 terminates, v is the
approximate solution u to (1.1). The function call Update(y, s) returns a real number that
replaces v(y) if it is less than the current value of v(y). In [23], the FMM algorithm employs
an Eulerian finite-difference discretization to calculate Update(y, s). For MAOUM, we use
the semi-Lagrangian discretization from [27] to calculate Update(y, s). This discretization
generalizes that for Eikonal equations from [29] to anisotropic HJ PDEs. It is discussed in
detail in Sect. 2 and the Appendix.

While the Update function in Algorithm 1 is determined by the underlying equation
which we seek to solve, it is assumed that its execution time is independent of grid resolution
and hence it does not affect the algorithm’s asymptotic complexity. The Update functions
in this paper maintain this property. Dijkstra-like algorithms are usually described as being
O(N logN), where N = |X | is the number of grid nodes. This complexity is derived by
noting that each node is removed from H once and, in the usual binary min-heap implemen-
tation of H, extraction of the minimum value node in line 1 costs O(log |H|) ≤ O(logN).

foreach x ∈ � do v(x) ← ∞1

foreach x ∈ ∂� do v(x) ← g(x)2

H ← X3

while H �= ∅ do4

x ← argminy∈H v(y)5

H ← H \ {x}6

foreach y ∈ N (x) ∩ H ∩ � do7

foreach s ∈ S(N (y) \ H) such that x ∈ s do8

v(y) ← min(v(y),Update(y, s))9

end10

end11

end12

Algorithm 1: Standard Dijkstra-like method

J Sci Comput (2012) 51:313–348 317

For an efficient implementation a node x ∈ H need only be on the heap if v(x) < ∞. Typi-
cally, the number of such nodes is much less than N .

In order for MAOUM to maintain the capability of computing node values in a single
pass, the update stencil for a node x ∈ X needs to be expanded beyond N (x) to handle
many convex anisotropic problems. MAOUM includes an initial pass to compute this sten-
cil for each x, resulting in a two-pass method. However, the asymptotic complexity for
MAOUM is only increased from that of Algorithm 1 by a constant factor of (�̂ρ)d , where
d is the dimension, �̂ measures anisotropy in the equation, and ρ measures the degree of
nonuniformity in the grid. This constant factor bounds above the number of nodes in a sten-
cil. Although ρ factors into the asymptotic complexity, experiments demonstrate that grid
nonuniformity does not appear to have a large affect on the computational cost of MAOUM
in practice.

1.4 Related Work

The first Dijkstra-like method for a first-order semi-Lagrangian discretization of the
isotropic Eikonal PDE on an orthogonal grid was developed in [29]. The Dijkstra-like
FMM was later independently developed in [23] for the first-order upwind Eulerian finite-
difference discretization of the same Eikonal PDE. FMM was then extended to handle
higher-order upwind discretizations on grids and unstructured grids in R

n and on mani-
folds [16, 24, 25]. By solving an isotropic problem on a manifold and then projecting the
solution into a subspace, FMM can solve certain anisotropic problems [25]; for example,
(1.2) with a constant elliptic speed profile Af (x) = Af can be solved by running isotropic
FMM on an appropriately tilted planar manifold and then projecting away one dimension.
Some anisotropic etching problems have also been solved using FMM [19]. A class of
axis-aligned anisotropic problems can be solved on a orthogonal grid using FMM [3].

AFOUM [26, 27] can solve general convex anisotropic problems on unstructured grids
with an asymptotic complexity only a constant factor ϒ̂d−1 worse than FMM, where ϒ̂

is a measure of anisotropy. FMM fails for these general problems because the neighboring
simplex from which the characteristic approaches a node y may contain another node x such
that causality does not hold: v(y) < v(x). AFOUM avoids this difficulty by searching along
the accepted front to find a set of neighboring nodes (which may not be direct neighbors
of y) whose values have been accepted, and then constructing a virtual simplex with these
nodes from which to update v(y).

Our method solves the same set of convex anisotropic problems on unstructured grids
as AFOUM. MAOUM does not maintain an accepted front but must perform an initial pass
to compute the stencils for each node and store them for the second pass that computes
the solution. The benefit of this extra initial computation and storage is that MAOUM de-
termines the stencil based on local grid spacing. This results in an algorithm that can take
better advantage of local refinements in the grid to perform updates from a smaller stencil.

An alternative to these single-pass (or label-setting) algorithms are the sweeping (or
label-correcting) algorithms, which are often even simpler to implement than FMM. Sweep-
ing algorithms are also capable of handling anisotropic and even nonconvex problems. The
simplest sweeping algorithm is to just iterate through the grid updating each node in a Gauss-
Seidel (GS) fashion (so a new value for a node is used immediately in subsequent updates)
until v converges. GS converges quickly if the node update order is aligned with the char-
acteristics of the solution, so better sweeping algorithms [7, 11, 14, 21, 22, 28, 32] alternate
among a collection of static node orderings so that all possible characteristic directions will
align with at least one ordering. It is argued in [32] that these methods achieve O(N) asymp-
totic complexity (assuming that the node orderings are already determined); however, unlike

318 J Sci Comput (2012) 51:313–348

single-pass methods the number of sweeps necessary for convergence may depend on the
problem.

There are also a number of sweeping algorithms which use dynamic node orderings; for
example [4, 6, 20]. These algorithms attempt to approximate the optimal ordering generated
by single-pass methods such as FMM without the overhead associated with managing an
accurate queue. These methods have been demonstrated to be comparable to or better than
single-pass methods for certain problems and grid resolutions. However, in general these
methods may need to revisit nodes multiple times.

Sweeping methods have been used to solve static convex Hamilton-Jacobi equations on
semi-structured grids [8] and unstructured grids [6, 22]. These methods have the advan-
tage that the update of node value depends only on immediate neighbors, so they naturally
take advantage of local refinement in the grid to compute accurate updates. However, the
discretizations used lack an easy way of determining dependencies in the solution, which
makes it difficult to know when the solution is computed correctly on a part of the domain
before the algorithm has terminated. On the other hand, for single-pass methods like OUMs
it is clear when the solution is computed correctly on a part of the domain and this might
allow adaptive error estimation and grid refinement to be done as the solution is computed.
For this reason, we develop an OUM algorithm that is suited to exploiting local refinement.

The algorithm described in [10] combines aspects of OUMs and sweeping methods. It
computes solutions iteratively for a propagating band of grid nodes, but determines periodi-
cally which band nodes’ values can no longer change and removes them from the band. This
method is found to be more efficient than the Fast Sweeping method of [28, 32] for a prob-
lem with highly-curved characteristics but less efficient for a highly-anisotropic problem
with straight characteristics. The asymptotic complexity of this method is not analyzed.

We believe that δ-Negative-Gradient-Acuteness, our first criterion for δ-causality of a
node value update, is nearly equivalent to the criterion for the applicability of Dijkstra-like
and Dial-like methods to anisotropic problems given in [31, Sect. 4]. However, δ-Negative-
Gradient-Acuteness was derived independently and does not require differentiability of the
cost function (2.11).

2 Discretization

We use the semi-Lagrangian discretization and notation from [27]. All norms are Euclidean
unless otherwise stated. Let ζ be an n-vector barycentric coordinate such that

n∑

i=1

ζi = 1 (2.1)

and ζi ≥ 0 for 1 ≤ i ≤ n. Let 	n be the set of all possible n-vector barycentric coordinates.
State x̃s ∈ s can be parameterized by ζ ∈ 	ns , that is, x̃s(ζ) = ∑ns

i=1 ζix
s
i .

Let x ∈ � and define

τs(x, ζ) = ‖x̃s(ζ) − x‖ (2.2)

and

as(x, ζ) = x̃s(ζ) − x

τs(x, ζ)
. (2.3)

Restrict x /∈ s for all x so that τs(x, ζ) > 0. We may write τs(ζ) = τs(x, ζ) and as(ζ) =
as(x, ζ) when x is clear from the context. We say that a ∈ A intersects s from x if the ray

J Sci Comput (2012) 51:313–348 319

x + ta, with t > 0, intersects s. Note that as(ζ) intersects s from x if and only if ζi ≥ 0 for
1 ≤ i ≤ ns , a condition imposed on ζ above.

We define the numerical Hamiltonian H as follows:

H(x, S, φ,μ) = max
s∈S

max
ζ∈	ns

{
μ − ∑ns

i=1 ζiφ(xs
i)

τs(x, ζ)
f (x, as(x, ζ)) − 1

}
, (2.4)

where x ∈ �, S is a set of simplices s in � ∪ ∂� such that x /∈ s and vectors xs
i − x are

independent, φ : � → R is bounded, and μ ∈ R. When we are only varying μ, we write
H(μ) = H(x, S, φ,μ) for convenience.

The discretized Dirichlet problem is to find a function u : X → R, such that

H(x, S(x), u,u(x)) = 0, x ∈ �, (2.5a)

u(x) = g(x), x ∈ ∂�, (2.5b)

where S(x), the update simplex set of x, is chosen so that H is consistent and the solution to
the discrete equation can be computed efficiently using a Dijkstra-like single-pass method.
Note that in the definition of H in (2.4) we use the continuous domain � for the proof of
consistency (Proposition 2.2), while in (2.5a) we restrict the domain to the discrete �, which
poses no technical difficulties. Excluding the boundary condition (2.5b), we have a system
of |�| nonlinear equations of the form (2.5a), one for each node x ∈ �. We wish to compute
the |�| values u(x), one for each node x ∈ �.

Propositions 2.1 and 2.2 state that the numerical Hamiltonian H is monotone and consis-
tent, which is important for the convergence of u to the viscosity solution u of the HJ PDE
(1.1) as the grid spacing goes to zero [5]. A key property for monotonicity of H is that ζi are
constrained to be nonnegative in (2.4). For consistency of H , it is crucial that the simplices
in S(x) encompass all possible directions a ∈ A. Proposition 2.3 expresses μ in H(μ) = 0
explicitly, which is useful for constructing Algorithm 2 to solve (2.5). All propositions in
this section are proved in the Appendix.

2.1 Monotonicity

H(x, S, φ,μ) is monotone in the values φ(xs
i), for s ∈ S and 1 ≤ i ≤ ns . Monotonicity of H

requires that if none of φ(xs
i) decrease, then H(x, S, φ,μ) should not increase. Monotonic-

ity of H comes naturally for the semi-Lagrangian form of (2.4). However, it is essential that
ζi ≥ 0 for 1 ≤ i ≤ d . A negative ζi can cause an increase in φ(xs

i) to increase H(x, S, φ,μ).
This requirement is equivalent to making as(ζ) intersect s from x and makes the discrete
equation (2.5) upwinding in the terminology of [27].

Proposition 2.1 Let x ∈ �. Let φ̌ : � → R and φ̂ : � → R be functions such that φ̌(xs
i) ≤

φ̂(xs
i) for all s ∈ S and 1 ≤ i ≤ ns . Then H(x, S, φ̌,μ) ≥ H(x, S, φ̂,μ).

2.2 Consistency

For the numerical Hamiltonian H to be consistent with the Hamiltonian H from (1.2), the
set of simplices S must encompass all possible action directions in A.

Definition We say that S is directionally-complete (DC) for x ∈ � if for all a ∈ A there
exists an s ∈ S such that a intersects s from x.

320 J Sci Comput (2012) 51:313–348

foreach x ∈ � do v(x) ← ∞1

foreach x ∈ ∂� do v(x) ← g(x)2

foreach x ∈ X do
←−Y (x) ← {x}, −→Y (x) ← {x}3

foreach x ∈ � do ComputeUpdateSet(x)4

H ← X5

while H �= ∅ do6

x ← argminy∈H v(y)7

H ← H \ {x}8

foreach y ∈ ←−Y (x) ∩ H ∩ � do9

foreach s ∈ S(
−→Y (y) \ H) such that x ∈ s and s is AAB for y do10

v(y) ← min(v(y),Update(y, s))11

end12

end13

end14

Algorithm 2: Monotone Acceptance Ordered Upwind Method (MAOUM)

Proposition 2.2 Let φ : � → R be smooth, x ∈ �, and y ∈ �. Let S(y) be DC for y and
such that for s ∈ S(y), we have y /∈ s. Define r̂(y) = maxs∈S(y),1≤i≤ns ‖xs

i − y‖. Then

lim
y→x, r̂(y)→0

H(y, S(y),φ,φ(y)) = H(x,Dφ(x)). (2.6)

2.3 Unique Solution

There exists a unique solution μ = μ̃ to the equation H(μ) = 0. The value μ̃ can be written
explicitly in terms of the other quantities in H(μ). This is a convenient form of the dis-
cretized equation for determining the solution u(x) at a node x in terms of the solution at
its neighbors, as is done in the Update function of Algorithm 2. It is the same form as the
semi-Lagrangian update in [27].

Proposition 2.3 The unique solution to H(μ) = 0 with H defined by (2.4) is given by

μ = μ̃ = min
s∈S

min
ζ∈	ns

{
τs(ζ)

f (x, as(ζ))
+

ns∑

i=1

ζiφ(xs
i)

}
. (2.7)

2.4 Convex Update Objective Function

Define the function ηs
φ : 	ns → R, which is the objective function in (2.7):

ηs
φ(ζ) = τs(ζ)

f (x, as(ζ))
+

ns∑

i=1

ζiφ(xs
i). (2.8)

Define the restriction of (2.7) to a single simplex s:

μ̃s = min
ζ∈	ns

ηs
φ(ζ). (2.9)

J Sci Comput (2012) 51:313–348 321

The solution μ = μ̃ to H(x, S, φ,μ) = 0 is

μ̃ = min
s∈S

μ̃s . (2.10)

We show that ηs
φ is convex in ζ . The lemma is useful for proving the truth of Propo-

sition 3.2, although this proof is not included here (see [1, Chap. 5] for the proof). Also,
convexity is useful when applying numerical optimization algorithms to solve (2.7).

Lemma 2.4 The function ηs
φ is convex.

Proof Define a function c : R
d × R

d → R:

c(x, y) =
{

0, if y = 0,
‖y‖

f (x,
y

‖y‖)
, otherwise.

(2.11)

Note that Af (x) = {y | c(x, y) ≤ 1} and that c is homogeneous in the second parameter:
c(x, ty) = tc(x, y) for t ≥ 0. Thus, by the convexity of the set Af (x), c(x, y) is convex in
y. We have

ηs
φ(ζ) = τs(ζ)

f (x, as(ζ))
+

d∑

i=1

ζiφ(xs
i)

= c(x, τs(ζ)as(ζ)) +
d∑

i=1

ζiφ(xs
i)

= c(x, x̃s(ζ) − x) +
d∑

i=1

ζiφ(xs
i). (2.12)

Since c(x, y) is convex in y, x̃s is linear in ζ , and
∑d

i=1 ζiφ(xs
i) is linear in ζ , ηs

φ is convex. �

3 Causality

Causality means that if the solution μ = μ̃ to H(x, S, φ,μ) = 0 depends on value φ(xs
i)

then it must be that μ̃ > φ(xs
i). Causality allows Dijkstra-like algorithms to be used to

compute the solution to (2.5) in a single pass through the nodes x ∈ X in order of in-
creasing value u(x). For isotropic problems, causality is satisfied if the direction vectors
(xs

i − x)/‖xs
i − x‖ for 1 ≤ i ≤ ns , when considered pairwise, form non-obtuse angles [25].

Negative-gradient-acuteness (NGA) is a similar property for more general anisotropic prob-
lems.

Let δ ≥ 0. δ-causality means that if the solution μ = μ̃ to H(x, S, φ,μ) = 0 depends on
value φ(xs

i) then it must be that μ > φ(xs
i)+ δ. δ-causality allows Dial-like algorithms with

buckets of width δ to be used to compute the solution to (2.5) in a single pass through the
nodes x ∈ X in order of increasing bucket value.

In Sect. 3.1 we define what it means for a simplex to be δ-NGA and prove that it implies
δ-causality of the discrete equation. In [31] a criterion for the δ-causality of (2.5) was pre-
sented. We believe δ-NGA is equivalent to the criterion in [31], if the function defined in
(2.11) is differentiable everywhere but at the origin. In Sect. 3.2 we define another property

322 J Sci Comput (2012) 51:313–348

Fig. 1 Depiction of symbols used in the definition of (a) δ-NGA and the proof of Theorem 3.1 (b) δ-AAB
and the proof of Theorem 3.3 (c) DRB and the proof of Lemma 3.4

on a simplex, δ-anisotropy-angle-boundedness (δ-AAB), and show that it implies δ-NGA.
δ-AAB is easier to implement in Algorithm 2, while δ-NGA is more likely to have appli-
cation beyond Algorithm 2. In Sect. 3.3 we define one last property on a simplex called
distance-ratio-boundedness (DRB). When δ = 0, DRB implies δ-AAB. DRB is used to
prove the correctness of Algorithm 3 in Theorem 4.4. Note that 0-AAB and DRB are in-
dependent of specific speed profile Af (x) as long as the degree of anisotropy remains the
same.

The properties δ-NGA and δ-AAB allow for general δ ≥ 0 so that Algorithm 2 can be
easily converted into a Dial-like method. However, we set δ = 0 for the description and dis-
cussion of Dijkstra-like Algorithm 2 in Sect. 4 and we test only the Dijkstra-like algorithm
in Sect. 5. The property DRB is not generalized to δ ≥ 0, because it is used to prove the
correctness of just the Dijkstra-like algorithm. In the future we plan to implement and test a
Dial-like version of the algorithm using δ-AAB.

3.1 Negative-Gradient-Acuteness

We show that if S is δ-negative-gradient-acute, the discrete equation H(x, S, φ,μ) = 0 is δ-
causal. Figure 1(a) is a geometric aid to understanding the definition of and proofs involving
δ-negative-gradient-acuteness.

Definition Let ζ̌ be a minimizer in (2.9). We say that (2.9) is δ-causal for x ∈ � and s ∈ S
if ζ̌i > 0 implies μ̃s − φ(xs

i) > δ, for 1 ≤ i ≤ d . When δ = 0, we may say (2.9) is causal for
x and s.

Definition We say that s ∈ S is δ-negative-gradient-acute (δ-NGA) for x ∈ � if for all
p ∈ R

d and ζ̂ ∈ 	ns such that

max
a∈A

(−p · a)f (x, a) = (−p · as(ζ̂))f (x, as(ζ̂)) = 1 (3.1)

holds, we have (xs
i − x) · (−p) > δ for i such that ζ̂i > 0. We say that S is δ-NGA for x if

all s ∈ S are δ-NGA for x. When δ = 0, we may say s (or S) is NGA for x.

J Sci Comput (2012) 51:313–348 323

Theorem 3.1 Let s ∈ S be δ-NGA for x ∈ � and let ns = d . Let (2.9) hold. Let ζ̌ be a
minimizer in (2.9) such that ζ̌i > 0 for 1 ≤ i ≤ d . Then (2.9) is δ-causal for x and s.

Proof Since xs
i − x are independent, we define p ∈ R

d by

p =

⎡

⎢⎢⎢⎣

xs
1 − x

xs
2 − x

...

xs
d − x

⎤

⎥⎥⎥⎦

−1 ⎡

⎢⎢⎢⎣

φ(xs
1) − μ̃s

φ(xs
2) − μ̃s

...

φ(xs
d) − μ̃s

⎤

⎥⎥⎥⎦ .

It follows that for 1 ≤ i ≤ d

φ(xs
i) = μ̃s + (xs

i − x) · p. (3.2)

By (3.2), (2.1), and (2.3),

d∑

i=1

ζiφ(xs
i) =

d∑

i=1

ζi[μ̃s + (xs
i − x) · p]

= μ̃s +
(

d∑

i=1

ζix
s
i − x

)
· p

= μ̃s + τs(ζ)as(ζ) · p. (3.3)

By (3.3) and because ζ̌ is a minimizer in (2.9),

(−p · as(ζ̌))f (x, as(ζ̌)) = μ̃s − ∑d

i=1 ζ̌iφ(xs
i)

τs(ζ̌)
f (x, as(ζ̌)) = 1.

On the other hand, by (2.9) and (3.3),

1 ≥ max
ζ∈	d

{
μ̃s − ∑d

i=1 ζiφ(xs
i)

τs(ζ)
f (x, as(ζ))

}
= max

ζ∈	d

[(−p · as(ζ))f (x, as(ζ))].

So,

ζ̌ ∈ argmax
ζ∈	d

[(−p · as(ζ))f (x, as(ζ))].

Since ζ̌i > 0 for 1 ≤ i ≤ d , ζ̌ is strictly feasible. In other words, ζ̌ is a local maximum of
(−p · as(ζ))f (x, as(ζ)). Since as(ζ) is a continuous mapping, as(ζ̌) is a local maximum of
(−p · a)f (x, a). Because Af (x) is convex, any local maximum â of (−p · a)f (x, a) must
be a global maximum over all a ∈ A. Thus, we have

max
a∈A

(−p · a)f (x, a) = (−p · as(ζ̌))f (x, as(ζ̌)) = 1.

This equation is just (3.1) with ζ̌ in place of ζ̂ . Since s ∈ S is δ-NGA for x and ζ̌i > 0 for
1 ≤ i ≤ d , we have (xs

i − x) · (−p) > δ for 1 ≤ i ≤ d . Therefore, by (3.2), for 1 ≤ i ≤ d

μ̃s > μ̃s + (xs
i − x) · p + δ = φ(xs

i) + δ. �

324 J Sci Comput (2012) 51:313–348

Proposition 3.2 Let s ∈ S be δ-NGA for x ∈ �. Let (2.9) hold and ζ̌ be the minimizer in
(2.9). Then (2.9) is δ-causal for x and s.

Proposition 3.2 is slightly more general than Theorem 3.1 in that the simplex s may
have 1 ≤ ns < d and it does not require ζ̌i > 0 for all i such that 1 ≤ i ≤ ns . For example,
in 3 dimensions s could be an edge instead of a triangle, or x̃s(ζ) could be on an edge of a
triangular s. However, we can make Proposition 3.2 fit the form of the proof for Theorem 3.1
by making some adjustments. We do not include a formal proof because we believe the proof
of Theorem 3.1 concisely illuminates the reason why δ-NGA implies δ-causality. The proof
of Proposition 3.2 is more complicated but not much more explanatory and is included in
[1, Chap. 5].

3.2 Anisotropy-Angle-Boundedness

A less general but more concrete way of ensuring causality of the discrete equation
H(x, S, φ,μ) = 0 is to bound the maximum angle between any two direction vectors in A
that intersect a simplex s ∈ S from x. We show that δ-AAB of a simplex s implies δ-NGA,
which in turn implies δ-causality. δ-AAB is easy to implement, so we use it in Algorithm 2.
Figure 1(b) is a geometric aid to understanding the definition of and proofs involving δ-
anisotropy-angle-boundedness.

Define f̌ (x) = mina∈A f (x, a) and f̂ (x) = maxa∈A f (x, a). Let ϒ(x) = f̂ (x)/f̌ (x) be
the local anisotropy coefficient. Note that 0 < f̌ (x) ≤ f̂ (x) < ∞, so 1 ≤ ϒ(x) < ∞. Denote
as

i = (xs
i − x)/‖xs

i − x‖. Define αs
i,j to be the angle between as

i and as
j . Let α̂s = maxi,j αs

i,j .
Let rs(x) be the minimum distance between x and any vertex of s:

rs(x) = min
i

‖xs
i − x‖. (3.4)

Definition We say that s ∈ S is δ-anisotropy-angle-bounded (δ-AAB) for x ∈ � if
δf̂ (x)/rs(x) ≤ 1 and

α̂s < arccos(δf̂ (x)/rs(x)) − arccos(1/ϒ(x)). (3.5)

We say that S is δ-AAB for x if all s ∈ S are δ-AAB for x. When δ = 0, we may say s (or S)
is AAB for x.

Theorem 3.3 If s ∈ S is δ-AAB for x ∈ �, then s is δ-NGA for x.

The following proof builds on analysis done in [27, Sect. 3.4] that bounds the angle
between the optimal action and the negative gradient of the viscosity solution u of (1.1).

Proof Let p ∈ R
d and â ∈ A be such that â intersects s from x and

max
a∈A

(−p · a)f (x, a) = (−p · â)f (x, â) = 1.

We have

(−p · â)f (x, â) ≥ (−p · (−p/‖ − p‖)) f (x,−p/‖ − p‖) ≥ ‖p‖f̌ (x).

J Sci Comput (2012) 51:313–348 325

Let β be the angle between −p and â. Since ‖â‖ = 1, we have

cos(β) = −p · â
‖ − p‖‖â‖ ≥ f̌ (x)

f (x, â)
≥ 1

ϒ(x)
. (3.6)

Because s is δ-AAB for x and by (3.6), β ≤ arccos(1/ϒ(x)), we have

α̂s + β < arccos(δf̂ (x)/rs(x)). (3.7)

Let 1 ≤ i ≤ ns . Let γi be the angle between â and as
i . Since â intersects s from x, we

have γi ≤ α̂s . Let θi be the angle between −p and as
i . By (3.7), we have

θi ≤ γi + β ≤ α̂s + β < arccos(δf̂ (x)/rs(x)). (3.8)

Since ‖â‖ = 1, we have

‖p‖f̂ (x) = (−p · (−p/‖ − p‖))f̂ (x) ≥ (−p · â)f (x, â) = 1,

and by (3.4), we have

0 ≤ δ

‖xs
i − x‖‖p‖ ≤ δf̂ (x)

rs(x)
≤ 1.

By this inequality and (3.8), it follows that cos(θi) > δf̂ (x)/rs(x) ≥ δ/(‖xs
i −x‖‖p‖). Con-

sequently, we have (xs
i − x) · (−p) = ‖xs

i − x‖‖ − p‖ cos(θi) > δ for 1 ≤ i ≤ ns . Therefore,
s is δ-NGA. �

Remark 1 We describe a way to consider the shape of the speed profile and not just the
anisotropy coefficient ϒ(x) when determining whether a simplex is δ-NGA. The upper
bound on α̂s for the δ-AAB of a simplex s can often be increased. First we define some
simplex specific notation. Let f̌s(x) = mina∈Ǎs

f (x, a), where

Ǎs = {p ∈ A | argmax
a∈A

(−p · a)f (x, a) intersects s from x}.

Let f̂s(x) = maxa∈Âs
f (x, a), where

Âs = {a ∈ A | a intersects s from x}.
Then let ϒs(x) = f̂s(x)/f̌s(x) be a simplex specific anisotropy coefficient. We have f̌s(x) ≥
f̌ (x) since Ǎs ⊂ A and f̂s(x) ≤ f̂ (x) since Âs ⊂ A. It follows that ϒs(x) = f̂s(x)/f̌s(x) ≤
f̂ (x)/f̌ (x) = ϒ(x).

If it is possible to compute f̂s(x) and f̌s(x), we can modify the definition of δ-
AAB to use the loosened restrictions δf̂s(x)/rs(x) ≤ 1 and α̂s < arccos(δf̂s(x)/rs(x)) −
arccos(1/ϒs(x)), and Theorem 3.3 still holds. This modification may result in more sim-
plices satisfying the definition, which may allow us to find a DC and δ-NGA set of update
simplices S(x) occupying a smaller region around x and thereby reduce the truncation error
and computation cost.

The definition of δ-AAB can be simplified if we restrict the problem in several ways.
If we take ϒ(x) = 1, (3.5) becomes α̂s < arccos(δf̂ (x)/rs(x)) or, equivalently, cos(α̂s) <

326 J Sci Comput (2012) 51:313–348

δf̂ (x)/rs(x). This resembles a formula for the optimal bucket width δ for a Dial-like algo-
rithm to solve the Eikonal equation derived in [31]. On the other hand, if we take δ = 0,
(3.5) becomes α̂s < arcsin(1/ϒ(x)). We use this condition in the Dijkstra-like Algorithm 2.
Finally, if we take both ϒ(x) = 1 and δ = 0, (3.5) becomes α̂s < π/2. In the appendix of
[27], it is shown that the slightly looser condition α̂s ≤ π/2 is sufficient for causality of
(2.9).

3.3 Distance-ratio-boundedness

If the ratio of the minimum distance between x and any node in simplex s and the maximum
distance between nodes in s is large enough then s ∈ S must be AAB for x. Proposition 3.6
provides a lower bound for this ratio that is sufficient for AAB. We use DRB in the proof
of correctness of Algorithm 3 in the case when δ = 0. We do not parameterize DRB by
δ because it is difficult to determine a simple and tight lower bound on the ratio for gen-
eral positive δ. Figure 1(c) is a geometric aid to understanding the definition of and proofs
involving distance-ratio-boundedness.

Let ĥs be the maximum grid edge distance in s:

ĥs = max
i,j

‖xs
i − xs

j‖. (3.9)

Lemma 3.4 Let ĥs/(2rs(x)) ≤ 1. The inequality α̂s ≤ 2 arcsin(ĥs/(2rs(x))) holds.

Proof Let i, j be such that 1 ≤ i ≤ ns , 1 ≤ j ≤ ns , and i �= j . Let b = min{‖xs
i − x‖,‖xs

j −
x‖}. Form an isosceles triangle with apex A = x and the other two vertices B = x + bas

i ,
and C = x + bas

j . We bound the length of the base above:

‖B − C‖ ≤ ‖xs
i − xs

j‖ ≤ ĥs .

By (3.4) we bound the length of either side below:

b = ‖A − B‖ = ‖A − C‖ ≥ rs(x).

We split the isosceles triangle ABC in half to obtain a right-angle triangle with vertices
A = x, B = x + bas

i , and D = x + b(as
i + as

j)/2. We have

sin

(
αs

i,j

2

)
= ‖B − D‖

b
= ‖B − C‖

2b
≤ ĥs

2rs(x)
. (3.10)

By the properties of the simplex s, 0 < αs
i,j /2 < π/2. By (3.10), αs

i,j ≤ 2 arcsin(ĥs/(2rs(x)))

for any i and j . This implies that α̂s ≤ 2 arcsin(ĥs/(2rs(x))). �

Proposition 3.5 Let x ∈ � and s ∈ S . If δf̂ (x)/rs(x) ≤ 1 and

2 arcsin(ĥs/(2rs(x))) < arccos(δf̂ (x)/rs(x)) − arccos(1/ϒ(x)) (3.11)

then s is δ-AAB for x

Proof By (3.11), Lemma 3.4, and (3.5) in the definition of δ-AAB, s is δ-AAB for x. �

J Sci Comput (2012) 51:313–348 327

Equation (3.11) can be simplified if we restrict the problem in several ways. If we take
ϒ(x) = 1, (3.11) becomes 2 arcsin(ĥs/(2rs(x))) < arccos(δf̂ (x)/rs(x)). On the other hand,
if we take δ = 0, (3.11) becomes 2 arcsin(ĥs/(2rs(x))) < arcsin(1/ϒ(x)). From this condi-
tion, we can determine a lower bound �(x) on the ratio rs(x)/ĥs :

rs(x)

ĥs

>

[
2 sin

(
arcsin(1/ϒ(x))

2

)]−1

= �(x). (3.12)

Finally, if we take both ϒ(x) = 1 and δ = 0, (3.11) becomes ĥs/rs(x) <
√

2, which implies
α̂s < π/2, the condition for AAB in this case.

Definition We say that s ∈ S is distance-ratio-bounded (DRB) for x ∈ � if δ = 0 and (3.12)
holds. We say that S is DRB for x if all s ∈ S are DRB for x.

Proposition 3.6 If s ∈ S is DRB for x ∈ � then s is AAB for x.

Proof By the definition of DRB, (3.12) holds, which is equivalent to (3.11), when δ = 0.
Since δf̂ (x)/rs(x) = 0 ≤ 1, by Proposition 3.5 s is AAB for x. �

Remark 2 If we simplify the definition of DRB by replacing �(x) with ϒ(x) in (3.12),
Proposition 3.6 still holds. However, �(x) < ϒ(x), so using �(x) to define DRB re-
sults in a looser restriction on simplices. For 1 ≤ ϒ(x) < ∞, since arcsin(1/ϒ(x)) >

2 arcsin(1/(2ϒ(x))), we have �(x) < ϒ(x). When ϒ(x) = 1, �(x) = 1/
√

2 and
limϒ(x)→∞[�(x)/ϒ(x)] = 1. Finally, for 1 ≤ ϒ(x) < ∞, �(x) increases as ϒ(x) increases.

4 Algorithm

In Algorithm 2 we define MAOUM. Algorithm 2 solves the discrete system (2.5). For (2.5)
to be well-defined S(x) must be determined. The update simplex set S(x) is chosen to ensure
H(x, S(x),φ,μ) is consistent and the discrete equation H(x, S(x),φ,μ) = 0 is causal. Let

S(x) = {s ∈ S(
−→Y (x)) | s is AAB for x}, (4.1)

Q ← N (x)1

while Q �= ∅ do2

y ← Pop(Q)3 −→Y (x) ← −→Y (x) ∪ {y}4 ←−Y (y) ← ←−Y (y) ∪ {x}5

foreach s ∈ S d(
−→Y (x)) such that x /∈ s and y ∈ s do6

if s not AAB for x then7

Q ← Q ∪
(

M(s) \ −→Y (x)
)

8

end9

end10

end11

Algorithm 3: ComputeUpdateSet(x)

328 J Sci Comput (2012) 51:313–348

Table 1 Summary of symbols. The first group is used in defining the numerical problem, the second group is
used in Algorithm 2, the third group is used only in Algorithm 3, and the fourth group is used in the analysis
of algorithm correctness and complexity

Symbol Type or definition Description

X = � ∪ ∂� set of all grid nodes

� subset of X discretized domain

∂� subset of X discretized domain boundary

x R
d domain point or grid node

N (x) X → subset of X set of grid neighbors of node x

s convex subset of R
d simplex

S(R) set of simplices grid simplices with all vertices in R
and 1 ≤ ns ≤ d−→Y (x) X → subset of X update node set of x,

i.e., nodes upon which x might depend

S(x) X → set of simplices update simplex set of x

H(x, S, φ,μ) see (2.4) numerical (discrete) Hamiltonian

u(x) X → R solution of (2.5) at node x

v(x) X → R (temporary) value of node x

H subset of X min-value heap of unaccepted nodes←−Y (x) X → subset of X dependent node set of x,

i.e., nodes which might depend upon x

S d set of simplices grid simplices with ns = d

Update(x, s) X × S → R value update of node x from simplex s,

i.e., μ̃s from (2.9) with φ(xs
i
) = v(xs

i
)

Q subset of X queue to become update nodes

M(s) S → subset of X set of neighbors of all vertex nodes in s

B(x, r) convex subset of R
d ball of radius r centered on x

B1(x) convex subset of R
d ball centered on x defined in (4.3)

B2(x) convex subset of R
d ball centered on x defined in (4.4)

�(x) � → R a measure of anisotropy from (3.12)

where
−→Y (x) is the stencil or update node set of x. Let v(x) be the temporary value of

node x. We update v(x) from simplex s using Update(x, s), which evaluates to the solution
μ̃s of (2.9), where φ(xs

i) = v(xs
i). The dependent node set

←−Y (x) is the set of nodes that is

dependent on x for their updates:
←−Y (x) = {y ∈ � | x ∈ −→Y (y)}. Note that

−→Y (x) is not
symmetric, meaning that it is usually not the case that

−→Y (x) = ←−Y (x). In Algorithm 2, the
node x is included in

−→Y (x) and
←−Y (x), which does not need to be true for the correctness

of the algorithm, but it does not hurt and is done for convenience of proofs in Sect. 4.1.
In Sect. 4.1 we describe how the subroutine ComputeUpdateSet defined in Algo-

rithm 3 determines
−→Y (x), such that S(x) satisfies DC and AAB for x. We note that Al-

gorithm 3 as defined does not result in the smallest possible such set
−→Y (x). In Sect. 4.2

we explain how Algorithm 2 computes the solution u to (2.5) in a single pass (after initial-
ization) over the nodes in X . Because H(x, S(x),φ,μ) = 0 is causal, when Algorithm 2
terminates, v(x) = u(x) for all x ∈ X . We revisit the convergence of u to the solution u of
the HJ PDE (1.1) as the grid spacing goes to zero in Sect. 4.3. In Sect. 4.4 we examine the

J Sci Comput (2012) 51:313–348 329

computational and storage complexity of MAOUM. Table 1 summarizes the symbols used
in these algorithms and their analysis.

4.1 Computing the Update Set

The status of Algorithm 3 during different stages of computing
−→Y (x) is shown in Fig. 2.

To achieve more accurate and efficient computations in locally-refined parts of the grid, we
desire the maximum extent of the update node set, r̂(x) = max

y∈−→Y (x)
‖x − y‖, to shrink

towards zero as the local grid spacing goes to 0. Section 4.3 discusses why this property
is also needed for convergence. By proving Theorem 4.4, we show that the subroutine call
ComputeUpdateSet(x) given in Algorithm 3 terminates in a finite number of iterations
with a bound on r̂(x) that varies linearly with the local grid resolution. We further show that
a subset of S(

−→Y (x)) is DC and AAB for x not too near the boundary ∂�. Corollary 4.5
states that for x not too near the boundary ∂�, S(x) defined in (4.1) is DC and NGA, which
is sufficient for consistency and causality. First we define notation and prove some useful
lemmas.

Let Z ⊆ X . The set S d+1(Z) contains the d-dimensional grid simplices with all vertex
nodes in Z . Define UZ = ⋃

s∈Sd+1(Z)(s), which is the d-dimensional set covered by the
simplices in S d+1(Z).

Define F∂ (Z) = {s ∈ S d(Z) | M(s) \ Z �= ∅ or for all j , xs
j ∈ ∂�}. The set F∂ (Z) con-

tains the (d − 1)-dimensional grid simplex faces with all vertex nodes in Z , such that there
is a neighbor of all vertex nodes which is not in Z or all vertex nodes are on the boundary of
the grid. Define U∂Z = ⋃

s∈F∂ (Z)(s), which is the (d − 1)-dimensional surface covered by
the simplices in F∂ (Z).

Lemma 4.1 Let ∂UZ be the boundary of UZ . Then ∂UZ ⊆ U∂Z .

Proof Since S d+1(Z) contains only grid simplices which do not overlap except at their
boundary, S d+1(Z) is a partition of UZ . It follows that any point z ∈ ∂UZ must be on a
(d − 1)-dimensional face of at least one d-dimensional simplex in S d+1(Z). Furthermore,
there exists such a (d − 1)-dimensional face s ∈ S d(Z) such that either M(s) \ Z �= ∅ or for
all j , xs

j ∈ ∂�. If there did not then z would necessarily be in the interior of UZ , contradicting
the assumption that z ∈ ∂UZ . By definition s ∈ F∂ (Z). Thus, z ∈ U∂Z = ⋃

s∈F∂ (Z)(s). �

Lemma 4.2 If x ∈ � \ ∂� and N (x) ⊆ Z , then F∂ (Z) is DC for x.

Proof Let x ∈ � \ ∂� and N (x) ⊆ Z . Then S d+1(Z) includes all d-dimensional simplices
which have x as a vertex. Since x /∈ ∂�, we have x ∈ UZ \ ∂UZ .

Any path ξ : [0,1] → �, such that ξ(0) = x and ξ(1) /∈ UZ intersects ∂UZ . In particular,
any path ξ of the form ξ(t) = x + tCa, where t ∈ [0,1], C ∈ R

+ is a constant, a ∈ A, and
ξ(1) /∈ UZ intersects ∂UZ . By Lemma 4.1, such a path also intersects U∂Z . Since this fact
holds for any a ∈ A and U∂Z is the union of simplices in F∂ (Z), F∂ (Z) is DC for x. �

Let

ĥ = max{‖y − z‖ | y ∈ X and z ∈ N (y)} (4.2)

be the maximum grid edge length for the entire grid. Let ĥ(R) = max{‖y − z‖ | y ∈
R ∩ X and z ∈ N (y)} be the maximum length of grid edges with at least one end node
in R ⊂ R

d . Let B(x, r) be a closed ball of radius r around point x ∈ R
d . The following

330 J Sci Comput (2012) 51:313–348

Fig. 2 The status of Algorithm 3 during different stages of the computation of the update node set of x. The
star is node x. Squares are nodes in the update node set. Circles are nodes in Q. Thin solid lines are grid
edges that are AAB for x. Thin dotted lines are grid edges which are not AAB. Thick lines are grid edges on
the frontier of the update node set. Thick solid lines are AAB and thick dashed lines are not AAB. The top-left
shows the moment just after neighbors of x have been added to the update node set and the frontier edges for
which they are vertices have failed the AAB test. As a result, all nodes opposite these edges have been added
to Q. Note that the order in which nodes are removed from Q is arbitrary, although our implementation uses
first-in first-out order. Subsequent plots show subsequent but not sequential stages left to right and top to
bottom. The bottom-right shows the status at the termination of Algorithm 3. All grid edges on the frontier
of the update node set have passed the AAB test. Note that all AAB simplices on and within this frontier are
part of the update simplex set S(x) (see Remark 3)

J Sci Comput (2012) 51:313–348 331

lemma establishes that we can define a ball centered on x with radius linear in the maxi-
mum length of grid edges within the ball. This concept is used to define local grid spacing
in Theorem 4.4.

Lemma 4.3 For all x and all b ∈ R
+ there exists r̃ ∈ R

+ such that 0 < r̃ =
bĥ(B(x, r̃)) < ∞.

Proof We have bĥ(B(x,0)) = b max{‖x − y‖ | y ∈ N (x)} > 0, bĥ(B(x, r̃)) nondecreasing
on r̃, and limr̃→∞ bĥ(B(x, r̃)) = bĥ < ∞. Therefore, there exists r̃ such that 0 < r̃ < ∞ and
r̃ = bĥ(B(x, r̃)). �

As allowed by the previous Lemma, choose b = �(x) + 1 where �(x) is defined in
(3.12) and define ř(x) to be the minimum r̃ such that ĥ(B(x, r̃)) = r̃/(�(x) + 1). Define

B1(x) = B(x, ř(x)�(x)/(�(x) + 1)) (4.3)

and

B2(x) = B(x, ř(x)). (4.4)

Since �(x) > 0, we have B1(x) ⊂ B2(x). Define BC
1 (x) = � \ B1(x), and BC

2 (x) = � \
B2(x). Let λ(x) = miny∈B1(x),z∈BC

2 (x) ‖y − z‖ be the minimum distance between B1(x) and

BC
2 (x). We have

λ(x) > ř(x) − ř(x)�(x)/(�(x) + 1) = ř(x)/(�(x) + 1).

When x is clear from the context, we may abbreviate B1 = B1(x), B2 = B2(x), BC
1 = BC

1 (x),
BC

2 = BC
2 (x), and λ = λ(x). Let m(R) = |X ∩ R| be the number of grid nodes in R ⊂ R

d .
For the proof of Theorem 4.4 below we are only concerned with a single execution of

Algorithm 3. Also, we are only considering the update node set
−→Y (x) and not the dependent

node set
←−Y (x), so we abbreviate Y = −→Y (x), to make the notation less cluttered. Let a

subscript i ≥ 0 represent the state of a variable at the beginning of the (i + 1)st iteration of
the while loop in Algorithm 3. For example, Yi is the state of the update node set Y at the
beginning of iteration i + 1. From Lines 3 and 4 of Algorithm 3, we have yi+1 = Pop(Qi)

and Yi+1 = Yi ∪ {yi+1}.

Theorem 4.4 Let x ∈ �. Let ∂� ∩ B1 = ∅. The subroutine call ComputeUpdateSet(x)

terminates before iteration m(B2) of the while loop with r̂(x) ≤ ř(x). The set F∂ (
−→Y (x)) is

DC for x and AAB for x.

Section 4.3 explains why requiring that x be sufficiently far from the boundary by as-
suming ∂� ∩ B1 = ∅ does not impact convergence.

Proof A node w may be added to Y at most once. Since Y0 = {x}, we have |Yi | = i + 1.
Suppose there exists ı̌ ≥ 1, such that yı̌ ∈ BC

2 and for 1 ≤ i ≤ ı̌, yi ∈ B2. In other words,
yı̌ is the first node outside of B2 to be added to Y . By Lines 3 and 4, yı̌ must have en-
tered Q. So, by Lines 1 and 8, either yı̌ ∈ N (x) or yı̌ ∈ M(s) for s ∈ S d(B2). If yı̌ ∈ N (x),
then ‖x − yı̌‖ ≤ ĥ(B2) = ř(x)/(�(x) + 1) < ř(x), which contradicts the supposition that

332 J Sci Comput (2012) 51:313–348

yı̌ ∈ BC
2 . So yı̌ /∈ N (x), which means yı̌ ∈ M(s), for s such that xs

k ∈ B2 ∩ X for 1 ≤ k ≤ d .
Since

‖xs
k − yı̌‖ ≤ ĥ(B2) = ř(x)/(�(x) + 1) < λ,

it must be that xs
k ∈ BC

1 for 1 ≤ k ≤ d . By (3.4) and the definition of BC
1 , we have

rs(x) > ř(x)�(x)/(�(x) + 1). Thus, by (3.9), since ĥs ≤ ĥ(B2) = ř(x)/(�(x) + 1) we
have

rs(x)

ĥs

>
ř(x)�(x)/(�(x) + 1)

ĥ(B2)
= �(x). (4.5)

By definition, s is DRB for x. By Proposition 3.6, s is AAB for x and by the if condition in
Line 8, yı̌ did not enter Q, which is a contradiction.

Thus, there does not exist ı̌ ≥ 1, such that yı̌ ∈ BC
2 . Because |Yi | = i + 1, the algorithm

terminates before iteration m(B2) of the while loop. Let ı̃ be the last while iteration. We
have |N (x)| ≤ ı̃ < m(B2) and r̂(x) = maxy∈Yı̃

‖x − y‖ ≤ ř(x).
Consider each (d − 1)-dimensional simplex face s ∈ F∂ (Yı̃). Because ∂� ∩ B1 = ∅,

x /∈ ∂�. So, since N (x) ⊆ Yı̃ , x is not a vertex of s. There exists ǰ ≤ ı̃ such that yǰ = xs
k for

some k such that 1 ≤ k ≤ d and xs
k ∈ Yǰ for all k such that 1 ≤ k ≤ d . In other words, ǰ is the

first while iteration when all vertices of s are in Y . By the foreach loop, if s is not AAB for
x then M(s) ⊂ Qǰ , which implies M(s) ⊂ Yı̃ , meaning M(s) \ Yı̃ = ∅. But by definition,
M(s) \ Yı̃ �= ∅ or for all k, xs

k ∈ ∂�. It follows that s is AAB or for all k, xs
k ∈ ∂�. Since

∂� ∩ B1 = ∅, if for all k, xs
k ∈ ∂�, then for all k, xs

k ∈ BC
1 . Thus, by (4.5), s is DRB for x,

implying s is AAB for x. Therefore, we have F∂ (Yı̃) is AAB for x, and by Lemma 4.2, DC
for x. �

The following corollary states that for x not too near the boundary ∂�, S(x) is DC for
x and NGA for x. By Proposition 2.2, DC for x implies the consistency of the Hamilto-
nian H(x, S(x),φ,μ). By Proposition 3.2, NGA for x implies the causality of the discrete
equation H(x, S(x),φ,μ) = 0.

Corollary 4.5 Let ∂� ∩ B1 = ∅. Then S(x) is DC for x and NGA for x.

Proof By definition, F∂ (
−→Y (x)) ⊆ S d(

−→Y (x)) ⊆ S(
−→Y (x)). By the definition of S(x) and

since, by Theorem 4.4, F∂ (
−→Y (x)) is AAB for x, we have S(x) ⊃ F∂ (

−→Y (x)). By Theo-
rem 4.4, F∂ (

−→Y (x)) is DC for x, so its superset S(x) is DC for x. By definition S(x) is AAB
for x, so by Theorem 3.3, S(x) is NGA for x. �

Remark 3 Note that nodes are never removed from
−→Y (x) in Algorithm 3. This subroutine

call ComputeUpdateSet(x) expends most of its effort adding nodes to
−→Y (x) such that

the frontier F∂ (
−→Y (x)) is DC and AAB; however, by (4.1) the update simplex set S(x) con-

tains not just the simplices in F∂(
−→Y (x)), but also all simplices within this frontier which are

AAB. In particular, any zero dimensional simplex is automatically AAB, so direct updates
from all nodes in

−→Y (x) are always possible even if those nodes are not part of any higher
dimensional AAB simplex.

Remark 4 Although the update simplex set S(x) contains many simplices interior to
F∂ (

−→Y (x)), during the execution of the main Algorithm 2 MAOUM will not use updates

J Sci Comput (2012) 51:313–348 333

from a simplex whose nodes are in
−→Y (x) but which is not AAB, even if all nodes of that

simplex have known value. This behavior is in contrast to AFOUM, which will use updates
from any simplex on the accepted front. Because MAOUM may ignore an update from a
non-AAB but closer simplex with known node values which AFOUM uses, it is possible
that MAOUM will display higher local truncation error than AFOUM on problems with
curved characteristics (such as those with inhomogeneous cost). MAOUM could be modi-
fied to use all simplices whose nodes are in

−→Y (x) and have known value in its updates, at
the cost of abandoning its precomputed stencil property.

4.2 Discrete Solution

If the discrete equation H(x, S(x),φ,μ) = 0 is causal, then Algorithm 2 computes the so-
lution to (2.5) in a single pass (not including initialization) of the nodes in X . Causality
is the property that allows Dijkstra’s algorithm to be used to compute a minimal path to a
goal node on a weighted graph in a single pass over the nodes of the graph. Both the semi-
Lagrangian discretization in [30] and the Eulerian finite differences discretization in [23]
of the Eikonal equation are causal and a single-pass algorithm can be used to find a solu-
tion to the respective discretized systems of equations. Our argument for the applicability of
Algorithm 2 to solving (2.5) is based on those in [23, 30].

All nodes in X are added to H in Line 5. When a node x ∈ X is removed from H we say
that x is accepted. A node x is accepted just once in Line 7, since x is never re-added to H
once it has been removed. Once x is accepted, its value v(x) is fixed.

We argue that the nodes are accepted in non-decreasing order. This is because the node x

that currently has the smallest value v(x) is accepted in Line 7. However, by Theorem 3.1,
any node y whose value is updated in Line 11, must not have a smaller value than x, that is
v(y) ≥ v(x). So the next node to be accepted in Line 7 must not have a smaller value than
v(x). It follows by induction on the iterations of the while loop that the nodes are accepted
in non-decreasing value order.

When a node x is accepted, its final value v(x) has been calculated using only simplices
s ∈ S(x) such that all vertex nodes xs

i are already accepted. But since the nodes are accepted
in non-decreasing value order, v(x) has been calculated using all simplices s ∈ S(x) such
that all vertex nodes xs

i have final values v(xs
i) such that v(xs

i) ≤ v(x). By the causality of
the discrete equation, we have H(x, S(x), v, v(x)) = 0.

4.3 Convergence

For convergence of u to u, it is important that for all x ∈ X the maximum extent of the update
node set, r̂(x), goes to zero as the grid spacing goes to zero. A more rigorous treatment of
convergence can be found in [1].

Propositions 2.1 and 2.2 state that H is monotone and consistent. Noting that the up-
date simplex set S(x) always contains the immediate neighbours of x (see Remark 3) it
can be shown that u is uniformly bounded independent of the grid spacing ĥ (a straightfor-
ward extension of [1, Theorem 4.23], since the simplex update set of MAOUM is always
a superset of the update set used in the axis-aligned anisotropy algorithm in that theorem).
Consequently, we can prove the convergence of u to the solution u of the HJ PDE (1.1) as
the grid spacing goes to zero [5]. However, consistency of H(x, S, φ,μ) requires that S be
DC for x. In Corollary 4.5, ∂� ∩ B1 = ∅ is a sufficient condition for S to be DC, but for x

near the computational boundary the condition may not hold.

334 J Sci Comput (2012) 51:313–348

Fortunately, if we examine the requirements for convergence [5] carefully, we see that
the problem goes away. If for any x ∈ � there is a sequence of grids Xk and grid nodes
xk ∈ Xk , such that the grid spacing of Xk goes to 0, xk → x, and S(xk) is DC for xk , then
we can use Proposition 2.2 to prove convergence. It can be shown that such sequences exist.
For example, consider x ∈ � to be at distance ε > 0 from ∂�. For a grid with small enough
spacing, there exists a node y close to x and ř(y) such that the radius ř(y)�(y)/(�(y)+ 1)

of B1(y) is sufficiently small so that ∂� ∩ B1(y) = ∅.

Although u converges to u, for many problems
−→Y (x) is not symmetric (i.e., in general−→Y (x) �= ←−Y (x)) and the approximate solution u may not be geometric in the sense that it

is possible that u(x) < u(y) even though at a coarser scale the node values are increasing
in the y to x direction. In other words, x may be accepted before y even if more generally
the order of node acceptance is roughly in the y to x direction. Furthermore, for nodes near
∂� this effect may persist as h → 0. However, the local range over which u may not be
geometric is bounded by r̂(x), which shrinks to 0 as h → 0.

4.4 Complexity

We analyze the asymptotic computational complexity of Algorithm 2. We argue that exe-
cuting the while loop in Algorithm 2 is more computationally complex than initialization
before the while loop. Of the tasks performed during execution of the while loop, maintain-
ing the nodes in value order using a heap determines the complexity of the while loop and,
therefore, the complexity of Algorithm 2. Recall that N = |X | is the number of grid nodes.

To analyze computational complexity it is useful to prove a lemma bounding the maxi-
mum number of nodes in any update region or dependent region as N → ∞. Let ρ = ĥ/ȟ,
where ĥ is the maximum grid edge length defined in (4.2) and ȟ = min{‖y − z‖ | y ∈
X and z ∈ N (y)} is minimum grid edge length. Let

−→
M = maxx∈� |−→Y (x) ∩ X | and

←−
M =

maxx∈X |←−Y (x)∩�| be the maximum number of nodes over all update node sets and depen-
dent node sets, respectively. Let �̂ = maxx∈� �(x).

Lemma 4.6 As N → ∞,
−→
M = O((�̂ρ)d) and

←−
M = O((�̂ρ)d).

Proof By Theorem 4.4, after executing Algorithm 3,

r̂(x) ≤ (�(x) + 1)ĥ(B2) ≤ (�̂ + 1)ĥ,

for all x ∈ �. Given ȟ is the minimum spacing between nodes, we bound above the number
of nodes that can be packed into B(x, r̂(x)), for all x:

|B(x, r̂(x)) ∩ X | = O

((
r̂(x)

ȟ

)d
)

= O

⎛

⎝
(

�̂ĥ

ȟ

)d
⎞

⎠ = O((�̂ρ)d).

Therefore,
−→
M = O((�̂ρ)d).

The symmetry y ∈ ←−Y (x) if and only if x ∈ −→Y (y) is evident from Line 3 of Algorithm 2,
and Lines 4 and 5 of Algorithm 3. Since r̂(x) ≤ (�̂ + 1)ĥ for all x ∈ �, the same holds
for the maximum extent of the dependent node set: max

y∈←−Y (x)
‖x − y‖ ≤ (�̂ + 1)ĥ for all

x ∈ �. Following the same argument as above,
←−
M = O((�̂ρ)d). �

J Sci Comput (2012) 51:313–348 335

We first consider the computational cost of initializing the update regions of nodes x ∈ �

(and dependent regions of nodes x ∈ X) using the subroutine Algorithm 3. In Line 4 of
Algorithm 2, ComputeUpdateSet is called N times, once for each node x. For each

call to ComputeUpdateSet, there are O(
−→
M) iterations of the while loop in Algorithm 3.

For each while iteration, a foreach loop visits the (d − 1)-dimensional simplex faces that
include node y for a total of O(Ps) iterations, where Ps = maxy∈X |{s ∈ S d | y ∈ s}|. Each
iteration of the foreach loop performs a constant number of operations. Thus, the number

of operations to execute ComputeUpdateSet N times is O(N
−→
MPs)). Assuming Ps is

bounded as N → ∞, the computational complexity of initializing the update node sets is

O(N
−→
M).

Now we examine the complexity of executing the while loop of Algorithm 2. For each
iteration of the while loop, a node x is accepted. A node is accepted only once, so there

are N iterations in total. For each iteration, a foreach loop visits the O(
←−
M) unaccepted

nodes in the dependent node set of x. For each such dependent node y, each neighbor of
x must be tested for membership in

−→Y (y) to determine the update simplices in Line 10 at

a cost of O(Pn log
−→
M), where Pn = maxx∈X |N (x)| and

−→Y (y) is implemented as a self-
balancing binary search tree. Also, for each y, O(Ps) updates are performed at Line 11 and
the binary min-heap implementation of H must be updated at a complexity of O(logN).

Thus, the number of operations in executing the while loop is O(N
←−
M(Pn log

−→
M + Ps +

logN)). Assuming Pn and Ps are bounded as N → ∞, the complexity is O(N
←−
M logN),

which is determined by the heap update operations.
The complexity of executing the while loop of Algorithm 2 dominates the complexity

of the initialization, including that of the calls to the subroutine Algorithm 3, which we

determined above to be O(N
−→
M) and the initialization of the heap which is O(N logN). So,

by Lemma 4.6, the overall asymptotic complexity of Algorithm 2 is

O(N
←−
M logN) = O(N(�̂ρ)d logN).

Single-pass algorithms for isotropic problems [23, 30] and limited anisotropic problems
[3, 25] have a complexity of O(N logN). The extra (�̂ρ)d factor in the complexity of
MAOUM is due to the number of nodes in the update node set, which in MAOUM has
been expanded beyond direct grid neighbors. In [27] a complexity of O(Nϒ̂d−1 logN) is
derived for AFOUM, where ϒ̂ = maxx∈� ϒ(x). As shown in Remark 2, �̂ is smaller than ϒ̂ .
However, AFOUM’s complexity has a reduced exponent of d − 1 because the update node
set lies on the lower dimensional accepted front.

The complexity claim from [27] does not consider ρ, even though it plays an important
role when the grid is highly nonuniform. If we assume ρ is bounded as N → ∞, then
MAOUM’s complexity is O(N�̂d logN). However, the optimal allocation of grid nodes for
Algorithm 2 may cause the grid to be more nonuniform as N → ∞. In Sect. 5 we examine
the relationship between the solution accuracy and the computational cost experimentally on
several problems with a progression of increasingly-refined uniform and nonuniform grids.

For practical grid sizes, it is often the CPU time spent computing node value updates
which dominates the CPU time of executing the entire algorithm, despite the fact that the
computational complexity of the heap updates dominates in asymptotic analysis. Computing
a node value may involve iteratively solving a nonlinear equation or a numerical optimiza-
tion which can be quite computationally intensive. For this reason, in Sect. 5 we use the
number of updates as our measure of computational cost.

336 J Sci Comput (2012) 51:313–348

The asymptotic storage complexity for MAOUM is dominated by that of storing the sets−→Y (x) and
←−Y (x) for each node x ∈ X , which is O(N(

−→
M + ←−

M)) = O(N(�̂ρ)d) = O(N).
Asymptotically this is the same as AFOUM but the factor of (�̂ρ)d does have a significant
impact on practical memory requirements which is reported in Sect. 5.

One of the drawbacks of MAOUM is that the sets
−→Y (x) and

←−Y (x), must be precomputed
and stored for each x. While this stencil precomputation does not affect the asymptotic
computational and storage complexity as shown above, it is a significant portion of the
computational and storage cost in practice (see Sect. 5). The computational and storage
overhead may become less of a concern if the same HJ PDE is repeatedly solved on the same
grid with different boundary conditions, allowing the precomputed stencils to be reused
several times. Also, stencils could be reused to solve a different HJ PDE with the same
anisotropy ϒ(x) on the same grid. Furthermore, in order to reduce storage requirements, it
is possible to store a reasonably tight superset of

−→Y (x) and
←−Y (x) with a compact polygonal

representation [1, Chap. 5]. In preliminary experiments we found that the number of stencil
nodes was not greatly increased, which is important for keeping local truncation error and
update counts down.

5 Experiments

We present numerical experiments to test the convergence, computational cost, and accuracy
of Algorithm 2. We also demonstrate that MAOUM can be used to solve practical problems,
such as a seismic imaging problem [27] and a robot navigation problem with obstacles and
wind. The experiments indicate that MAOUM is particularly suited to problems in which
the characteristics are highly-curved in some regions of � and straight or nearly straight
elsewhere. For such problems it is more efficient to refine the grid only in the regions with
curved characteristics.

Although we assume continuity of function f for the theoretical consistency of the nu-
merical Hamiltonian H , one of the examples in Sect. 5.3 and the example in Sect. 5.4
have discontinuous f . Despite this property, our experiments indicate that the respective
numerical solutions are converging. For all experiments reported below d = 2 and � ⊂ R

2.
However, Algorithm 2 can be used for problems in any dimension. In the following, let
x = (x1, x2)

T ∈ R
2 and y = (y1, y2)

T ∈ R
2. Note that the boundary conditions are defined

only on internal boundaries in the following examples, which is not the case in general. In
this section we use the notation ∂� to specify the internal boundary where the boundary
conditions are defined, which differs from the usual use of ∂� as the topological boundary
of �.

We use a Maubach grid [18] in our implementation but MAOUM works with any simpli-
cial grid (even unstructured or obtuse grids). Examples of uniform Maubach grids are shown
in Fig. 3 and nonuniform Maubach grids in Fig. 4. It is a semi-structured simplicial grid that
can be adaptively refined and used in any dimension.

For the Update function we must solve (2.9), which involves finding the minimum
of a convex function ηs

v for each s. We use the golden section optimization [15] which is
sufficient for d = 2. This optimization method is likely slower than more sophisticated alter-
natives that use derivative information but it is very simple to implement and can minimize
all convex functions in one dimension, even those for which the derivative is sometimes
undefined.

For the experiments below we use implementations of MAOUM and AFOUM that in-
clude some minor optimizations. Our implementation of both MAOUM and AFOUM does

J Sci Comput (2012) 51:313–348 337

Fig. 3 A sequence of uniformly-refined Maubach grids with 0, 1, 2, and 3 levels of refinement

Fig. 4 The sequence of nonuniformly-refined Maubach grids with 10, 12, and 14 levels of refinement used
for the problem with homogeneous Hamiltonian and Af that is a non-grid aligned rectangle with length that
is twice its width

not perform an update for node x from a grid edge s with vertices xs
1 and xs

2 in the update
set when (x − xs

1) and (x − xs
2) are collinear. Furthermore, our implementation of AFOUM

does a local visibility check when deciding whether to update x from a segment s on the
accepted front. If x is behind s in the sense that s is an edge of a grid triangle with all
vertices accepted and any line segment with end points at x and s cuts through the interior
of the triangle, then AFOUM does not perform the update. However, our implementation
does not perform a global visibility check that tests if all line segments with end points at x

and s pass through some segment other than s on the accepted front. These implementation
optimizations could be generalized when solving problems with d > 2 using MAOUM or
AFOUM.

In order to ensure that MAOUM indeed computes the solution to (2.5) in a single pass,
we have computed the residual of (2.5) for all of the examples below and have not found a
case where it is significantly larger than machine epsilon.

5.1 Convergence

We demonstrate numerically that the output v of MAOUM converges to the solution u of an
anisotropic HJ PDE as the grid spacing goes to zero. For this experiment we use a series of
increasingly fine uniform Maubach grids, such as those in Fig. 3.

We use a homogeneous Hamiltonian (i.e. H(x,p) = H(p)) and Af that is a non-grid
aligned ellipse. For the purpose of implementation it is easiest to define c(x, y) = c(y) from
(2.11). Let c(y) = ‖By‖2, where B is the 2 × 2 matrix

B =
[

1 0
0 4

][
cos(π/6) − sin(π/6)

sin(π/6) cos(π/6)

]

338 J Sci Comput (2012) 51:313–348

Table 2 The problem has a homogeneous Hamiltonian and Af that is a non-grid aligned ellipse with
anisotropy ϒ = 4. The table shows grid spacing h versus maximum errors and average errors of approximate
solutions computed on a progression of uniform grids by MAOUM. Level is the level of grid refinement. M

is the average over x ∈ � of the number of nodes in the update node set. h is the grid spacing in the horizontal
and vertical directions. Updates is the number of times Update(y, s) is called. e∞ is the L∞-error in the
approximation u to the true solution u of (1.1). e1 is the L1-error. The error convergence rates rh∞ and rh

1 are
computed with respect to the grid spacing h

Level N M h Updates e∞ rh∞ e1 rh
1

10 1089 56.6 6.3e−2 36750 3.1e−2 2.9e−3

12 4225 60.2 3.1e−2 152080 8.9e−3 1.8 1.2e−3 1.3

14 16641 62.1 1.6e−2 619062 3.8e−3 1.2 4.7e−4 1.3

16 66049 63.0 7.8e−3 2498574 1.8e−3 1.1 2.1e−4 1.2

18 263169 63.5 3.9e−3 10040504 8.2e−4 1.1 9.6e−5 1.1

The cost function c rotates y by π/6 counterclockwise around the origin and then scales it
by 4 in the vertical axis before taking the Euclidean norm.

Let D = {x ∈ R
2 | c(x) ≤ 0.4}. The domain for this problem is � = [−1,1]2 \ D and

the boundary is ∂� = ∂D. The boundary conditions are given as g(x) = c(x) for x ∈ D.
Notice that the boundary conditions are defined throughout D and thus extend beyond ∂�.
We also allow S(x) to extend beyond ∂�. We define the boundary to be the ellipse D to
exclude errors caused by poor approximation of the solution u near the origin, where u is
not differentiable. It is not necessary to give boundary conditions on the external boundary of
� since all characteristics flow out of this boundary. The grid resolutions and corresponding
errors are listed in Table 2.

5.2 Nonuniform Grid

To determine what benefit MAOUM gains from refining a grid intelligently, we use an
anisotropic HJ PDE which has a solution with kinks where the gradient is undefined. We
run Algorithm 2 on a series of increasingly-fine uniform grids and a series of increasingly
nonuniform grids, where newly added nodes are concentrated around the parts of the so-
lution where the gradient is undefined. For comparison, we run also AFOUM on both the
uniform and nonuniform grid series. For all four combinations of algorithm and grid series
we plot the solution error vs computational cost to see if MAOUM performs better on a
well-chosen nonuniform grid.

We use a homogeneous Hamiltonian (i.e. H(x,p) = H(p)) and Af that is a non-grid
aligned rectangle. Let c(y) = ‖By‖∞, where B is the 2 × 2 matrix

B =
[

1 0
0 2

][
cos(π/8) − sin(π/8)

sin(π/8) cos(π/8)

]

The cost function c rotates y by π/8 counterclockwise around the origin and then scales
it by 2 in the vertical axis before taking the maximum norm. The domain for this problem
is � = [−1,1]2 \ O and the boundary is ∂� = O , where O is the origin. The boundary
conditions are given as g(O) = 0.

Part of the nonuniform grid series used is shown in Fig. 4. The grids are refined within
distance 2ȟϒ of the two lines

x2 = sin(−π/8) + 1
2 cos(−π/8)

cos(−π/8) − 1
2 sin(−π/8)

x1

J Sci Comput (2012) 51:313–348 339

Table 3 The problem has a homogeneous Hamiltonian and Af that is a non-grid aligned rectangle with
length that is twice its width. The table shows the number of updates versus maximum errors (top) and
average errors (bottom) of approximate solutions computed on a progression of nonuniform and uniform grids
by MAOUM and AFOUM. Nonuni indicates the use of a nonuniform grid, while Uni indicates a uniform grid.
Level is the maximum level of grid refinement. Updates is the number of times Update(y, s) is called. e∞
is the L∞-error in the approximation u to the true solution u of (1.1). e1 is the L1-error. Because we use both
uniform and nonuniform grids, the error convergence rates rU∞ and rU

1 are computed with respect to Updates
rather than h as in Table 2. If we computed the rates for uniform grids with respect to h instead, they would
be approximately double those listed in the table because Updates is proportional to N (which is O(1/h2)),
but in that case we could no longer sensibly compare the rates for uniform and nonuniform grids

Grid Level N MAOUM AFOUM

Updates e∞ rU∞ Updates e∞ rU∞

Nonuni 10 621 9908 5.3e−2 55509 5.4e−2

12 1443 23756 3.6e−2 0.42 182632 3.9e−2 0.26

14 3051 51488 2.6e−2 0.45 490629 2.8e−2 0.35

16 6305 108008 1.8e−2 0.51 1203283 1.9e−2 0.41

18 12911 223248 1.2e−2 0.47 2837945 1.4e−2 0.40

Uni 10 1089 18668 5.3e−2 19040 5.4e−2

12 4225 76184 3.6e−2 0.26 75887 3.9e−2 0.22

14 16641 307868 2.6e−2 0.25 303647 2.8e−2 0.25

16 66049 1238000 1.8e−2 0.27 1216300 1.9e−2 0.27

18 263169 4965536 1.2e−2 0.25 4869733 1.4e−2 0.25

e1 rU
1 e1 rU

1

Nonuni 10 621 9908 2.3e−3 55509 2.5e−3

12 1443 23756 1.1e−3 0.85 182632 1.2e−3 0.60

14 3051 51488 5.2e−4 0.94 490629 5.9e−4 0.72

16 6305 108008 2.6e−4 0.95 1203283 3.0e−4 0.77

18 12911 223248 1.3e−4 0.90 2837945 1.6e−4 0.75

Uni 10 1089 18668 2.3e−3 19040 2.5e−3

12 4225 76184 1.1e−3 0.53 75887 1.2e−3 0.52

14 16641 307868 5.2e−4 0.52 303647 5.9e−4 0.51

16 66049 1238000 2.5e−4 0.51 1216300 2.9e−4 0.51

18 263169 4965536 1.2e−4 0.51 4869733 1.4e−4 0.51

and

x2 = sin(−π/8) − 1
2 cos(−π/8)

cos(−π/8) + 1
2 sin(−π/8)

x1,

where ȟ is the minimum grid edge length after refinement is complete.
The results for all four combinations of algorithm and grid series are compared in Table 3

and Fig. 5. Note that in order to compare results from uniform and nonuniform grids we
use the number of updates rather than the grid spacing as the independent variable in the
plots and rate calculations. To properly interpret the relative performance of MAOUM and
AFOUM in Fig. 5, one needs to understand the extra cost involved in the initialization of
the update sets in Algorithm 3 of MAOUM. Between 45 and 54 percent of MAOUM’s

340 J Sci Comput (2012) 51:313–348

Fig. 5 Error versus number of updates for the problem with homogeneous Hamiltonian and Af that is a
non-grid aligned rectangle with length that is twice its width. The values plotted are from Table 3

Fig. 6 Contours of first-arrival times of a seismic wave for the layered example computed using a uniform
Maubach grid of level 13 with 8321 nodes (on left) and level 18 with 263169 nodes (on right)

total run time was spent in Algorithm 3. If we consider the ratio of total run time (including
initialization) to number of updates, MAOUM took between 122 and 168 percent of the time
per update of AFOUM. Consequently, AFOUM gets nearly the same error as MAOUM in
significantly less time for uniform grids but MAOUM clearly wins for nonuniform grids.
The memory footprint of MAOUM was as much as 3.0 times that of AFOUM, because of
the overhead of storing computed stencils.

5.3 Seismic Imaging

We consider the seismic imaging examples from the top-left and bottom-right of Fig. 6
in [27]. The domain for this problem is � = [−0.5,0.5]2 \ O and the boundary is ∂� = O ,
where O is the origin. The boundary conditions are given as g(O) = 0. A wave propagates
from the origin and passes through �, which is split into four layers by three vertically-
shifted sinusoidal curves. The problem is to compute the first arrival time for the seismic
wave.

J Sci Comput (2012) 51:313–348 341

Fig. 7 Error versus grid spacing h for first-arrival time of a seismic wave. The values plotted are from Table 4

The set Af (x) is an ellipse with the long axis aligned with the tangent of the sinusoidal
curves at x1 and hence the problem is both anisotropic and inhomogeneous. The dimensions
of the elliptical Af (x) are constant within a layer. The layers in the top-left example are
homogeneous, although Af (x) is still inhomogeneous in x1. In all layers, this example has
elliptical Af (x) with a length of 0.8 and width of 0.2. We call this example nonlayered.
On the other hand, the layers in the bottom-right example are inhomogeneous. Moving
through the layers in the positive x2 direction, the lengths/widths of the elliptical Af (x)

are 0.8/0.2, 1.0/1.0, 3.0/1.0, and 0.8/0.2. We call this example layered. More details can be
found in [27].

We test MAOUM on the layered example using uniform Maubach grids from levels 13
to 18. The computed solution for levels 13 and 18 grids are shown in Fig. 6. Experiments
indicate that refining the grid along the sinusoidal layer boundaries does not improve accu-
racy significantly. We believe this is because the characteristics are curved to roughly the
same degree throughout � due to the inhomogeneity of Af (x). Localized grid refinement
is most beneficial when characteristics are highly-curved in some parts of � and nearly
straight elsewhere.

We compare MAOUM and AFOUM on both the nonlayered and layered seismic exam-
ples by running all four algorithm/example combinations on a series of uniform Maubach
grids with even levels from 12 to 18. Since we do not have an analytic solution to these ex-
amples, the error is computed relative to the solutions computed by AFOUM on a level-20
Maubach grid. The solution error vs grid spacing for all four algorithm/example combina-
tions is plotted in Fig. 7. For these examples on the range of uniform grid resolutions tested
both algorithms produce similar results, although MAOUM has a much larger memory foot-
print. For the nonlayered example, the total run time (including initialization) of MAOUM
was between 1.17 and 1.22 times that of AFOUM. The memory footprint of MAOUM was
as much as 4.5 times that of AFOUM. For the layered example, the total run time (including
initialization) of MAOUM was between 0.71 and 0.79 times that of AFOUM. The mem-
ory footprint of MAOUM was as much as 3.3 times that of AFOUM. For both examples
between 26 and 29 percent of MAOUM’s total run time was spent in Algorithm 3.

Despite the discontinuities in the speed function for the layered case, the average error
is significantly larger for the nonlayered case because the layered case has less anisotropy
in two of the four layers, and is in fact isotropic in one layer. It is not clear whether the
slightly smaller average error displayed by AFOUM on the finer grids in both the layered
and nonlayered cases is a manifestation of the potentially larger local truncation error of

342 J Sci Comput (2012) 51:313–348

Table 4 The problem is to calculate the first-arrival time of a seismic wave. The table shows the grid spacing
h versus maximum errors (top) and average errors (bottom) of approximate solutions computed on a pro-
gression of uniform grids by MAOUM and AFOUM for the nonlayered and layered example. Nonlay/Lay
indicates the nonlayered/layered example from the top-left/bottom-right of Fig. 6 in [27] is being solved.
Level is the maximum level of grid refinement. h is the grid spacing in the horizontal and vertical directions.
Updates is the number of times Update(y, s) is called. e∞ is the L∞-error in the approximation u to the
solution computed by AFOUM on a level-20 grid. e1 is the L1-error. The error convergence rates rh∞ and rh

1
are computed with respect to the grid spacing h

Example Level N h MAOUM AFOUM

Updates e∞ rh∞ Updates e∞ rh∞

Nonlay 12 4225 1.6e−2 152906 3.0e−1 136869 3.4e−1

14 16641 7.8e−3 622304 7.7e−2 2.0 546776 9.1e−2 1.9

16 66049 3.9e−3 2510808 3.4e−2 1.2 2184552 3.7e−2 1.3

18 263169 2.0e−3 10078844 1.1e−2 1.5 8745903 1.2e−2 1.7

Lay 12 4225 1.6e−2 102962 2.4e−1 138878 2.8e−1

14 16641 7.8e−3 411006 7.2e−2 1.8 548440 9.1e−2 1.6

16 66049 3.9e−3 1641828 3.1e−2 1.2 2181326 3.5e−2 1.4

18 263169 2.0e−3 6557579 1.0e−2 1.6 8700919 1.1e−2 1.7

e1 rh
1 e1 rh

1

Nonlay 12 4225 1.6e−2 152906 8.4e−2 136869 9.7e−2

14 16641 7.8e−3 622304 3.0e−2 1.5 546776 3.3e−2 1.5

16 66049 3.9e−3 2510808 1.3e−2 1.2 2184552 1.3e−2 1.3

18 263169 2.0e−3 10078844 5.0e−3 1.4 8745903 4.3e−3 1.6

Lay 12 4225 1.6e−2 102962 3.5e−2 138878 4.1e−2

14 16641 7.8e−3 411006 1.2e−2 1.6 548440 1.3e−2 1.7

16 66049 3.9e−3 1641828 5.0e−3 1.3 2181326 4.7e−3 1.4

18 263169 2.0e−3 6557579 2.0e−3 1.5 8700919 1.5e−3 1.7

MAOUM (see Remark 4). These two examples are inhomogeneous and hence have curved
characteristics; however, the error is measured against a higher resolution AFOUM solution,
which may bias the results. What is clear is that any such increase in error is relatively small
for these examples.

5.4 Robot Navigation with Wind and Obstacles

An optimal time-to-reach problem with obstacles is a natural candidate for exploiting local-
ized grid refinement. An optimal trajectory that must go around an obstacle to achieve the
goal will closely track the obstacle boundary for some portion. Refining the grid to better
resolve these obstacle boundaries should allow for a more accurate solution in portions of
the domain that do not have an obstacle-free optimal path to the goal. Although this spe-
cific example is not physically realistic, it does use data of suitable complexity for realistic
scenarios and demonstrates MAOUM on a spatially-inhomogeneous anisotropic problem.

The objective is for a robot to navigate from any location in the domain to a goal
in optimal time. To make the task difficult the robot must avoid obstacles on its way
to the goal and there is an inhomogeneous but static wind that pushes the robot. The
goal is x∗ = (80.75,46.25)T , g(x∗) = 0, and ∂� = {x∗} The domain is � = [72,112] ×

J Sci Comput (2012) 51:313–348 343

Fig. 8 The problem of navigating a robot with wind and obstacles. The top-left shows the laser-rangefinder
data (red) of the obstacles and the grid (blue) refined in a band around the collision set C and the goal x∗.
The other three figures show C in solid black. The top-right includes the wind vector field, the contours of the
computed time-to-reach function, and four optimal trajectories from different starting locations to the goal.
The bottom-left compares the optimal trajectories computed with the wind and without. The contours are of
the isotropic (i.e. without wind) time-to-reach function. The solid lines are trajectories with the wind and
the dash-dotted lines are trajectories without the wind. The bottom-right shows contours of the time-to-reach
function and trajectories, computed using a level 15 uniform Maubach grid with roughly the same number of
nodes. Note that for trajectories 2 and 4 the characteristic ODE computation of the optimal trajectories gets
stuck near the boundary of C , which is insufficiently resolved by the uniform grid

[17.5,57.5] \ ∂�. The robot is circular with a radius of 1.1429. The obstacles are a set of
points obtained from a laser range finder map downloaded with the Saphira robot control
system software [17]. The same point data was used for a isotropic path planning problem
in [2], but we map the data from the square domain [−4000,−500] × [−3500,0] to �. The
point obstacles are shown in Fig. 8 (top-left). To prevent the robot from attempting to plan
a path through obstacles, it moves at a very slow speed of f (x, a) = 0.5 for any a ∈ A and
any x ∈ C , where C is the set of states such that the robot is in collision with a point obstacle.
The collision set C is depicted in black in Fig. 8. The wind velocity is represented by a vector

344 J Sci Comput (2012) 51:313–348

field shown in Fig. 8 (top-right). We used a vector field from the wind arrays in Matlab to
obtain the wind velocity vector function �fw : � → R2.1

In the absence of wind, the robot moves with speed fr = 75.0, resulting in an isotropic
speed profile Afr = {y | ‖y‖ ≤ fr}. Although not physically realistic, we shift the isotropic
speed profile by the local wind velocity, so the anisotropic speed profile is

Af (x) = {y | ‖y − �fw(x)‖ ≤ fr}.

Note that fr = 75.0 > maxx∈� ‖ �fw(x)‖, so Af (x) contains the origin in its interior. In order
to determine the cost c(x, y), we first find the point by lying on ∂Af (x) by solving the
quadratic ‖by − �fw(x)‖2 = f 2

r for b ∈ R
+:

b = y · �fw(x) +
√

(y · �fw(x))2 − ‖y‖2(‖ �fw(x)‖2 − f 2
r)

‖y‖2
.

Then since f (x, y/‖y‖) = b‖y‖, we have

c(x, y) = ‖y‖
f (x, y/‖y‖) = 1

b
.

We note that an HJ PDE with the same form of isotropic control and advection component
was derived and solved in [26].

To compute an optimal trajectory ξ(·) from a starting location z to x∗, we solve the
characteristic ordinary differential equation (ODE)

dξ(t)

dt
= f (x, a∗)a∗ = �fw(x) − fr

p

‖p‖ (5.1)

with initial condition ξ(0) = z, where a∗ ∈ argmaxa∈A[(−p · a)f (x, a)], p = Du(x), and
x = ξ(t). Note that this is not gradient descent, because the gradient and the optimal char-
acteristic will not generally align in anisotropic problems. To solve the ODE we used the
function ode23 in Matlab. In order to determine f (x, a∗)a∗ in (5.1) for any x, we first
approximate p = Du(x) as the constant gradient of the linearly interpolated u in the grid
simplex containing x.

We use a Maubach grid that is additionally refined within a distance ȟϒ of C and the
goal x∗. The grid is uniformly refined to level 10 and then refined a further 8 levels near
C and x∗. The resulting grid is shown in Fig. 8 (top-left) and has 38728 nodes. We com-
pute the time-to-reach function u for the anisotropic problem (i.e. with the wind) and the
isotropic problem (i.e. without the wind) on the nonuniformly refined grid. Solution con-
tours are shown in Figs. 8 (top-right) and (bottom-left), respectively. Optimal trajectories
for the anisotropic problem are shown in Fig. 8 (top-right). Notice how trajectories 2 and 4
minimize the distance traveled through regions where the wind is strong and blowing away
from the goal. Contrast these trajectories with the straight line optimal trajectories for the
isotropic problem in Fig. 8 (bottom-left). We also solve the anisotropic problem on a uni-
form level 15 Maubach grid of 33025 nodes. Solution contours and optimal trajectories are

1To load the wind data into Matlab type load wind;. The data is a 3D vector field. We used only the

6th page of the data and ignored any component in the 3rd dimension. In other words, we used u(:,:,6)
and v(:,:,6) for the arrays of wind vector components and x(:,:,6) and y(:,:,6) for the arrays of
spatial coordinates. This discrete data was linearly interpolated to form �fw .

J Sci Comput (2012) 51:313–348 345

shown in Fig. 8 (bottom-right). Although the solution contours are smoother away from C
in this uniform grid case, the ODE computation gets stuck near C for trajectories 2 and 4,
likely due to insufficient grid refinement and poor solution quality near C .

6 Conclusion

We presented three simple criteria for the δ-causality of the discretization of a static convex
HJ PDE. We showed that with respect to a node, δ-anisotropy-angle-boundedness of a sim-
plex implies δ-negative-gradient-acuteness of the simplex, which in turn implies δ-causality
of the equation for the node value update from the simplex. We defined the MAOUM al-
gorithm, which in the initial pass through the grid determines a causal and consistent set of
discretized equations by computing stencils for each node which are directionally-complete
and anisotropy-angle-bounded. The second pass solves the causal discretized equations in a
Dijkstra-like fashion. This pass is essentially FMM with a first-order semi-Lagrangian up-
date and an enlarged stencil. In comparison to AFOUM, the extra computation and storage
for the precomputed stencil allows MAOUM to accept node values monotonically and to use
a stencil size which adjusts to the local grid refinement. The latter property makes MAOUM
efficient for solving static convex HJ PDEs on highly nonuniform grids. This strength of
MAOUM was demonstrated in a problem with a homogeneous rectangular speed profile
and in a robot navigation problem involving wind and obstacles.

We hope in future work to investigate inhomogeneous problems more fully. The lack of
an analytic solution to the seismic imaging problem in section 5.3 confounded our attempts
to experimentally measure the difference in local truncation error between AFOUM and
MAOUM under inhomogeneity. It would be very useful to develop a benchmark problem
with smoothly varying (and perhaps adjustable) inhomogeneity and an analytic solution, in
order to better study the effects of stencil and grid adaptation in algorithms such as these.

Although demonstrated only in 2D with Maubach grids, the algorithms described here
will work in any dimension on any simplicial grid. However, Algorithm 3 does not generate
the smallest possible stencil

−→Y (x) such that S(x) satisfies DC and AAB for x; for example,
Fig. 2 (bottom-right) shows a

−→Y (x) that is not minimal. Consequently, Algorithm 3 could be
improved. Ideally, it would generate a

−→Y (x) that is minimal without substantially increasing
the computational cost.

MAOUM is best suited to solving problems with a suitably-refined grid which have
highly-curved characteristics in some regions of the domain and straight or nearly straight
characteristics elsewhere. However, in many cases it is not obvious where the grid should
be refined without approximating the solution first. We plan as future work a single-pass
method that estimates error in the solution and refines the grid appropriately as the solution
is being computed. Another potential future project is to modify MAOUM to be a Dial-like
algorithm with bucket width δ, which may be more suitable for parallelization [30]. An open
question is how to choose δ for a given problem and grid. This leads to an investigation of
the tradeoff between bucket width and stencil size [31]. A larger bucket width would likely
make the algorithm more parallelizable, but the accompanying large stencil size would lead
to greater truncation error.

Acknowledgements We would like to thank Professor Alexander Vladimirsky for many constructive com-
ments about our work, and in particular for pointing out connections to [31] and the reasons for the larger
error in the nonlayered case of the seismic examples in Sect. 5.3 taken from [27]. We would also like to thank
Professor Hongkai Zhao for his work as external examiner on the first author’s thesis [1].

346 J Sci Comput (2012) 51:313–348

Appendix: Discretization Proofs

We prove the Propositions of Sect. 2, demonstrating important properties of the discrete
equation such as monotonicity and consistency. These proofs are not a novel contribution,
but can be helpful for a more complete understanding of the convergence properties of the
discretization.

A.1 Monotonicity

We prove Proposition 2.1, showing H(x, S, φ,μ) is monotone in φ(xs
i).

Proof Let s ∈ S(x) and 1 ≤ i ≤ ns . Since φ̌(xs
i) ≤ φ̂(xs

i), ζi ≥ 0 for 1 ≤ i ≤ ns , and sum-
mation is monotone, we have

μ −
ns∑

i=1

ζi φ̌(xs
i) ≥ μ −

ns∑

i=1

ζi φ̂(xs
i).

Therefore, since f is positive, τs is positive, and max is monotone, we have from (2.4) that
H(x, S, φ̌,μ) ≥ H(x, S, φ̂,μ). �

A.2 Consistency

We prove Proposition 2.2, showing that the numerical Hamiltonian H is consistent with the
Hamiltonian H , where consistency is defined by (2.6).

Proof By (2.4), the smoothness of φ and the continuity of max and f , (2.3), the DC for y

of S(y), and (1.2)

lim
y→x, r̂(y)→0

H(y, S(y),φ,φ(y))

= lim
y→x, r̂(y)→0

max
s∈S(y)

max
ζ∈	ns

{
φ(y) − ∑ns

i=1 ζiφ(xs
i)

τs(y, ζ)
f (y, as(y, ζ)) − 1

}

= lim
y→x, r̂(y)→0

max
s∈S(y)

max
ζ∈	ns

{
φ(y) − φ(

∑ns

i=1 ζix
s
i) + O(r̂(y)2)

τs(y, ζ)
f (y, as(y, ζ)) − 1

}

= max
s∈S(y)

max
ζ∈	ns

[(−Dφ(x) · as(x, ζ))f (x, as(x, ζ))] − 1

= max
a∈A

[(−Dφ(x) · a)f (x, a)] − 1

= H(x,Dφ(x)) �

A.3 Unique Solution

Lastly, we prove Proposition 2.3, showing the unique solution to H(μ) = 0 is given by (2.7).

Proof Let s ∈ S and ζ ∈ 	ns . Define function Hs
ζ (μ) : R → R to be

Hs
ζ (μ) = μ − ∑ns

i=1 ζiφ(xs
i)

τs(ζ)
f (x, as(ζ)) − 1.

J Sci Comput (2012) 51:313–348 347

The function Hs
ζ (μ) is strictly increasing, since it is linear with positive slope

f (x, as(ζ))/τs(ζ). Furthermore, Hs
ζ (μ) = 0 has a unique solution

μ = μ̃s
ζ = τs(ζ)

f (x, as(ζ))
+

ns∑

i=1

ζiφ(xs
i).

Now define function λs
ζ (μ) : R → R to be

λs
ζ (μ) = τs(ζ)

f (x, as(ζ))
H s

ζ (μ) = μ −
ns∑

i=1

ζiφ(xs
i) − τs(ζ)

f (x, as(ζ))
.

The function λs
ζ (μ) is also strictly increasing, since it is linear with a slope of 1. Note

that μ = μ̃s
ζ is also the unique solution to λs

ζ (μ) = 0. Because Hs
ζ (μ) and λs

ζ (μ) are both
increasing and μ̃s

ζ is the unique solution to both Hs
ζ (μ) = 0 and λs

ζ (μ) = 0 for all s ∈ S and
ζ ∈ 	ns , the solution μ = μ̃ to

H(μ) = max
s∈S

max
ζ∈	ns

H s
ζ (μ) = 0,

must also be the solution to

max
s∈S

max
ζ∈	ns

λs
ζ (μ)

= max
s∈S

max
ζ∈	ns

{
μ −

ns∑

i=1

ζiφ(xs
i) − τs(ζ)

f (x, as(ζ))

}
= 0.

By negating both sides of this equation and rearranging the terms, we get the formula (2.7)
for the unique solution μ = μ̃. �

References

1. Alton, K.: Dijkstra-like ordered upwind methods for solving static Hamilton-Jacobi equations. PhD the-
sis, University of British Columbia (2010)

2. Alton, K., Mitchell, I.: Optimal path planning under different norms in continuous state spaces. In:
Proceedings of the International Conference on Robotics and Automation, pp. 866–872 (2006)

3. Alton, K., Mitchell, I.M.: Fast marching methods for stationary Hamilton-Jacobi equations with axis-
aligned anisotropy. SIAM J. Numer. Anal. 43, 363–385 (2008)

4. Bak, S., McLaughlin, J., Renzi, D.: Some improvements for the fast sweeping method. SIAM J. Sci.
Comput. (2010). doi:10.1137/090749645

5. Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order
equations. Asymptot. Anal. 4, 271–283 (1991)

6. Bornemann, F., Rasch, C.: Finite-element discretization of static Hamilton-Jacobi equations based on a
local variational principle. Comput. Vis. Sci. 9, 57–69 (2006)

7. Boue, M., Dupuis, P.: Markov chain approximations for deterministic control problems with affine dy-
namics and quadratic cost in the control. SIAM J. Numer. Anal. 36(3), 667–695 (1999)

8. Cecil, T.C., Osher, S.J., Qian, J.: Simplex free adaptive tree fast sweeping and evolution methods for
solving level set equations in arbitrary dimension. J. Comput. Phys. 213, 458–473 (2006)

9. Crandall, M.G., Ishii, H., Lions, P.: User’s guide to viscosity solutions of second order partial differential
equations. Bull. Am. Math. Soc. 27(1), 1–67 (1992)

10. Cristiani, E.: A fast marching method for Hamilton-Jacobi equations modeling monotone front propaga-
tions. J. Sci. Comput. 39(2), 189–205 (2009)

11. Danielsson, P.-E.: Euclidean distance mapping. Comput. Graph. Image Process. 14(3), 227–248 (1980)

http://dx.doi.org/10.1137/090749645

348 J Sci Comput (2012) 51:313–348

12. Dial, R.B.: Algorithm 360: shortest-path forest with topological ordering. Commun. ACM 12, 632–633
(1969)

13. Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math. 1, 269–271 (1959)
14. Kao, C.Y., Osher, S., Tsai, Y.: Fast sweeping methods for static Hamilton-Jacobi equations. SIAM J.

Numer. Anal. 42(6), 2612–2632 (2004–2005)
15. Kiefer, J.: Sequential minimax search for a maximum. Proc. Am. Math. Soc. 4, 502–506 (1953)
16. Kimmel, R., Sethian, J.A.: Fast marching methods on triangulated domains. Proc. Natl. Acad. Sci. USA

95, 8341–8435 (1998)
17. Konolige, K.: Saphira robot control system (2011). http://www.ai.sri.com/konolige/saphira/
18. Maubach, J.M.: Local bisection refinement for n-simplicial grids generated by reflection. J. Sci. Comput.

16(1), 210–227 (1995)
19. Osher, S., Fedkiw, R.P.: Level set methods: An overview and some recent results. J. Comput. Phys.

169(2), 463–502 (2001)
20. Polymenakos, L.C., Bertsekas, D.P., Tsitsiklis, J.N.: Implementation of efficient algorithms for globally

optimal trajectories. IEEE Trans. Autom. Control 43, 278–283 (1998)
21. Qian, J., Zhang, Y., Zhao, H.: Fast sweeping methods for Eikonal equations on triangulated meshes.

SIAM J. Numer. Anal. 45, 83–107 (2007)
22. Qian, J., Zhang, Y.-T., Zhao, H.-K.: A fast sweeping method for static convex Hamilton-Jacobi equations.

J. Sci. Comput. 31, 237–271 (2007)
23. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad.

Sci. USA 93, 1591–1595 (1996)
24. Sethian, J.A.: Fast marching methods. SIAM Rev. 41(2), 199–235 (1999)
25. Sethian, J.A., Vladimirsky, A.: Fast methods for Eikonal and related Hamilton-Jacobi equations on un-

structured meshes. Proc. Natl. Acad. Sci. USA 97(11), 5699–5703 (2000)
26. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton-Jacobi equations. Proc.

Natl. Acad. Sci. USA 98(20), 11069–11074 (2001)
27. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton-Jacobi equations: Theory

and algorithms. SIAM J. Numer. Anal. 41(1), 323–363 (2003)
28. Tsai, Y.-H.R., Cheng, L.-T., Osher, S., Zhao, H.-K.: Fast sweeping algorithms for a class of Hamilton-

Jacobi equations. SIAM J. Numer. Anal. 41(2), 673–694 (2003)
29. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. In: Proceedings of the 33rd Con-

ference on Decision and Control, pp. 1368–1373 (1994)
30. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Autom. Control 40(9),

1528–1538 (1995)
31. Vladimirsky, A.: Label-setting methods for multimode stochastic shortest path problems on graphs.

Math. Oper. Res. 33(4), 821–838 (2008)
32. Zhao, H.: A fast sweeping method for Eikonal equations. Math. Comput. 74(250), 603–627 (2004)

http://www.ai.sri.com/konolige/saphira/

	An Ordered Upwind Method with Precomputed Stencil and Monotone Node Acceptance for Solving Static Convex Hamilton-Jacobi Equations
	Abstract
	Introduction
	The Problem
	Computational Grid
	Dijkstra-like Methods
	Related Work

	Discretization
	Monotonicity
	Consistency
	Unique Solution
	Convex Update Objective Function

	Causality
	Negative-Gradient-Acuteness
	Anisotropy-Angle-Boundedness
	Distance-ratio-boundedness

	Algorithm
	Computing the Update Set
	Discrete Solution
	Convergence
	Complexity

	Experiments
	Convergence
	Nonuniform Grid
	Seismic Imaging
	Robot Navigation with Wind and Obstacles

	Conclusion
	Acknowledgements
	Appendix: Discretization Proofs
	Monotonicity
	Consistency
	Unique Solution

	References

