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Abstract This work is concerned with scalar transport equations with random transport
velocity. We first give some sufficient conditions that can guarantee the solution to be in
appropriate random spaces. Then a Galerkin method using bi-orthogonal polynomials is
proposed, which decouples the equation in the random spaces, yielding a sequence of un-
coupled equations. Under the assumption that the random wave field has a structure of the
truncated KL expansion, a principle on how to choose the orders of the approximated poly-
nomial spaces is given based on the sensitivity analysis in the random spaces. By doing this,
the total degree of freedom can be reduced significantly. Numerical experiments are carried
out to illustrate the efficiency of the proposed method.
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1 Introduction

In simulating complex physical or engineering systems, there are always some uncertain fac-
tors associated with the physical problems, such as constitutive laws, boundary and initial
conditions, transport coefficients, source terms, geometric irregularities (e.g., roughness),
etc. In order to obtain reliable numerical predictions, one has to include uncertainty quan-
tification and to consider the randomness effects.

The methods for solving SPDEs include Monte Carlo and sampling based methods [3, 5],
perturbation methods [11, 12], the generalized polynomial chaos (gPC) methods [17, 19],
and so on. The gPC method, which was first introduced in [7, 16] as PC methods and was
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recently developed by Xiu et al. [17–19], has become one of the most widely used meth-
ods. With gPC, stochastic solutions are expressed as orthogonal polynomials of the input
random parameters, and different types of orthogonal polynomials can be chosen to achieve
better convergence. It is essentially a spectral representation in random space, and exhibits
fast convergence when the solution depends smoothly on the random parameters. How-
ever, when the governing equations take complicated forms, numerical implementations
of stochastic Galerkin methods can become nontrivial. Typically, the resulting systems are
usually coupled together, and some decoupling techniques need to be used to remain effi-
ciency [20].

When the governing equations take a hyperbolic type, additional difficulties are involved,
as the hyperbolic equations have worst regularity properties among all the three types of
equations. In [8], Gottlieb and Xiu applied the gPC-Galerkin methods to solve the random
transport equation with a random wave speed. In [13], Tang and Zhou proposed some rig-
orous regularity analysis for the same problem and demonstrated the convergence of the
stochastic collocation methods.

In this work, we consider the scalar transport equations whose transport velocity is a ran-
dom field. We first gave the sufficient conditions that allow the underlying solution to be in
BV and Hk in the random spaces. A special case when the wave speed is a random variable
was considered by Tang and Zhou [13]. Then, a Galerkin method using bi-orthogonal poly-
nomials is proposed for the problem, which decouples the equation in the random spaces,
yielding a sequence of uncoupled equations. Under the assumption that the random wave
field has a structure of the truncated KL expansion, a principle on how to choose the orders
of the approximated polynomial spaces is given based on the sensitivity analysis in the ran-
dom spaces, with which the total degree of freedom can be significantly reduced. Numerical
experiments are carried out to illustrate the efficiency of the method.

The paper is composed of the following sections. Section 2 is devoted to the regularity
analysis. The Galerkin methods based on the bi-orthogonal polynomials and the related
sensitivity analysis are described in Sect. 3. Numerical examples are given in Sect. 4 to
support the theoretical analysis. The final section gives some conclusion remarks.

2 Problem Definition and Regularity in Various Spaces

Random Transport Equation Let x ∈ D ≡ [−1,1] be the spatial coordinates, T denote the
set [0, T ] for time variable t , and (�, A, P ) be a complete probability space, whose event
space is � (ω ∈ � is the event) and is equipped with σ -algebra A, and P : A → [0,1] is
a probability measure. By such definitions, y(ω) admits a random variable. Consider the
stochastic linear wave equation: Find a random function, u : T × D × � → R such that P -
almost everywhere (a.e.) in �, or in other words, almost surely (a.s.) the following equation
holds:

∂u(x, t, y(ω))

∂t
= c(x, y(ω))

∂u(x, t, y(ω))

∂x
, (2.1a)

u(x, t = 0, y(ω)) = u0(x, y(ω)). (2.1b)

A well-posed set of boundary conditions is given by:

u(−1, t;y(ω)) = uL(t;y(ω)), c(−1, y(ω)) < 0, (2.2a)

u(1, t;y(ω)) = uR(t;y(ω)), c(1, y(ω)) > 0. (2.2b)
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Equations (2.1)–(2.2) complete the set up of the problem.
For ease of notations, we will omit ω in the remaining of the paper. Then the random field

becomes c(x, y). One can also view y as a parameter in some parametric spaces. Below we
will analyze the solution regularity in the H 1 and BV random spaces.

2.1 Regularity in H 1

Without lose of generality, we use D to indicate the physical space and � the parametric
space. Since stochastic functions intrinsically have different structure with respect to y and
with respect to x, the analysis of numerical approximations requires tensor spaces. The
details for the definition can be found in [2]. Following [2], u ∈ L2 ⊗ Hk(D) implies that
u(·, y; t) ∈ Hk(D) a.e. on � and u(x, t; ·) ∈ L2(�) a.e. on D. Moreover, we have (for every
fixed t < T ) the isomorphism L2 ⊗ Hk(D) � L2(�;Hk(D)) � Hk(D;L2(�)) with the
definitions

L2(�;Hk(D))

=
{
v : � × D → R | v is strongly measurable and

∫

�

‖v(·, y, t)‖2
Hk(D)

dy < +∞
}
;

Hk(D;L2(�))

=
{
v : � × D → R | v is strongly measurable and ∀|α| ≤ k,∃ ∂αv ∈ L2(�) ⊗ L2(D),

∫

�

∫

D

∂αvϕ(x, y)dxdy = (−1)|α|
∫

�

∫

D

v(x, y, t)∂αϕ(x, y)dxdy ∀ϕ ∈ C∞
0 (� × D)

}
.

We also denote

�+ =
{
y

∣∣y ∈ �, c(1, y) > 0
}
, and �− =

{
y

∣∣y ∈ �, c(−1, y) < 0
}
.

With the above definitions, we now introduce the following lemma.

Lemma 2.1 Consider problem (2.1)–(2.2). If cx(x, y) < C is bounded and the following
conditions are satisfied:

∫

�

∫

D

ρ(y)
(
∂xu0(x;y)

)2
dxdy < ∞, (2.3a)

∫ T

0

∫

�+

ρ(y)

c(1, y)

(
∂tuR(t;y)

)2
dydt < ∞, (2.3b)

∫ T

0

∫

�−

ρ(y)

|c(−1, y)|
(
∂tuL(t;y)

)2
dydt < ∞, (2.3c)

then ∫

�

∫

D

ρ(y)u2
xdxdy < C(T ), 0 < t ≤ T , (2.4)

where ρ(y) > 0 is the probability distribution function and C(T ) is a positive constant
depending on T .
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Proof Using (2.1) and (2.2), we have, for c(−1, y) < 0,

ux(−1, t;y) = 1

c(−1, y)
ut (−1, t;y) = 1

c(−1, y)
∂tuL(t;y). (2.5)

Similarly, for c(1, y) > 0,

ux(1, t;y) = 1

c(1, y)
∂tuR(t;y). (2.6)

It follows from the governing equation (2.1) that

∂t (u
2
x) = c(x, y)∂x(u

2
x) + 2cx(x, y)u2

x

= (
c(x, y)u2

x

)
x
+ cx(x, y)u2

x, x ∈ D, t > 0,

which leads to

∂t

∫

D

ρ(y)u2
xdx − ρ(y)

∫

D

cx(x, y)u2
xdx

= ρ(y)
(
c(1, y)u2

x(1, t;y) − c(−1, y)u2
x(−1, t;y)

)

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if c(1, y) < 0, c(−1, y) > 0,

ρ(y)c(1, y)u2
x(1, t;y) if c(1, y) > 0, c(−1, y) > 0,

−ρ(y)c(−1, y)u2
x(−1, t;y) if c(1, y) < 0, c(−1, y) < 0,

ρ(y)c(1, y)u2
x(1, t;y) − ρ(y)c(−1, y)u2

x(−1, t;y) if c(1, y) > 0, c(−1, y) < 0.

The above result, together with (2.5) and (2.6), yields

d

dt

∫

�

∫

D

ρ(y)u2
xdxdy

≤
∫

�+

ρ(y)

c(1, y)

(
∂tuR(t;y)

)2
dy +

∫

�−

ρ(y)

|c(−1, y)|
(
∂tuL(t;y)

)2
dy

+ C

∫

�

∫

D

ρ(y)u2
xdxdy. (2.7)

The desired estimate is obtained by using the assumption (2.3) and the Gronwall inequal-
ity. �

Theorem 2.1 Consider problem (2.1)–(2.2). Assume that there exists a constant C such that

|cy(x, y)|, |cx(x, y)| ≤ C, almost everywhere in D ⊗ �. (2.8)

If the assumption (2.3) holds and furthermore if

∫

�

∫

D

ρ(y)(∂yu0(x;y))2dxdy < ∞, (2.9a)

∫ T

0

∫

�+

ρ(y)

c(1, y)
(∂yuR(t;y))2dydt < ∞, (2.9b)
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∫ T

0

∫

�−

ρ(y)

|c(−1, y)| (∂yuL(t;y))2dydt < ∞, (2.9c)

then ∫

�

∫

D

ρ(y)u2
ydxdy < C(T ), 0 < t ≤ T , (2.10)

where C(T ) is a non-negative number depending on T .

Proof Differentiating both sides of (2.1) with respect to y gives

(uy)t = cy(x, y)ux + c(x, y)(uy)x,

which yields

(u2
y)t = 2cy(x, y)uxuy + c(x, y)(u2

y)x.

Integrating the above equation with respect to x leads to

∂t

∫

D

ρ(y)u2
ydx

= 2ρ(y)

∫

D

cy(x, y)uxuydx + ρ(y)

∫

D

cx(x, y)u2
ydx

+ ρ(y)
(
c(1, y)u2

y(1, t;y) − c(−1, y)u2
y(−1, t;y)

)
.

Note

ρ(y)
(
c(1, y)u2

y(1, t;y) − c(−1, y)u2
y(−1, t;y)

)

≤

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if c(1, y) < 0, c(−1, y) > 0,
ρ(y)

c(1,y)
(∂yuR)2(t;y) if c(1, y) > 0, c(−1, y) > 0,

− ρ(y)

c(−1,y)
(∂yuL)2(t;y) if c(1, y) < 0, c(−1, y) < 0,

ρ(y)

c(1,y)
(∂yuR)2(t;y) − ρ(y)

c(−1,y)
(∂yuL)2(t;y) if c(1, y) > 0, c(−1, y) < 0,

which yields

d

dt

∫

�

∫

D

ρ(y)u2
ydxdy

≤ C

∫

�

∫

D

ρ(y)u2
xdxdy + C

∫

�

∫

D

ρ(y)u2
ydxdy

+
∫

�+

ρ(y)

c(1, y)
(∂yuR(t;y))2dy +

∫

�−

ρ(y)

|c(−1, y)| (∂yuL(t;y))2dy, (2.11)

where the boundedness assumption of ∇c is used. The desired estimate (2.10) follows from
Lemma 2.1, the Gronwall inequality and the assumption (2.9). �

Remark 2.1 It is clear that if the boundary data and the initial data satisfy some further
assumptions, then the solution of problem (2.1)–(2.2) can have higher regularity. A more
detailed set of conditions can be found following the above procedures, which will be omit-
ted here.
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2.2 Regularity in BV Space

Using a similar trick used in the proof of Lemma 2.1, we can obtain the following result.

Lemma 2.2 Consider the problem (2.1)–(2.2). If cx is bounded and the following conditions
are satisfied:

∫

�

∫

D

ρ(y)|∂xu0(x;y)|dxdy < +∞, (2.12a)

∫ T

0

∫

�+

ρ(y)

c(1, y)
|∂tuR(t;y)|dydt < +∞, (2.12b)

∫ T

0

∫

�−

ρ(y)

|c(−1, y)| |∂tuL(t;y)|dydt < +∞, (2.12c)

then we have ∫

�

∫

D

ρ(y)|∂xu(x, t;y)|dxdy < C(T ), 0 < t ≤ T , (2.13)

where C(T ) is a constant dependent on T .

Theorem 2.2 Consider problem (2.1)–(2.2). Assume that the assumption (2.8) holds, i.e.,
cx, cy are bounded in the distribution sense. If the assumption (2.12) holds and furthermore
if

∫

�

∫

D

ρ(y)|∂yu0(x;y)|dxdy < +∞, (2.14a)

∫ T

0

∫

�+

ρ(y)

|c(1, y)| |∂yuR(t;y)|dydt < +∞, (2.14b)

∫ T

0

∫

�−

ρ(y)

|c(−1, y)| |∂yuL(t;y)|dydt < +∞, (2.14c)

then we have ∫

�

∫

D

ρ(y)|uy(x, t;y)|dxdy < C(T ), 0 < t ≤ T , (2.15)

where C(T ) is a finite number depending on T .

Proof Differentiating both sides of (2.1) with respect to y and multiplying the resulting
equation by sgn(uy) yield

|uy |t = cyux sgn(uy) + c(x, y)|uy |x, (2.16)

where sgn(uy) gives the sign of uy . Integrating the above equation with respect to x leads to

∂t

∫

D

ρ(y)|uy |dx

= ρ(y)

∫

D

cy(x, y)ux sgn(uy)dx + ρ(y)

∫

D

cx(x, y)|uy |dx
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+ ρ(y)
[
c(1, y)|uy(1, t;y)| − c(−1, y)|uy(−1, t;y)|

]
.

Using

ρ(y)
(
c(1, y)|uy(1, t;y)| − c(−1, y)|uy(−1, t;y)|)

≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if c(1, y) < 0, c(−1, y) > 0,
ρ(y)

|c(1,y)| |∂yuL(t;y)| if c(1, y) > 0, c(−1, y) > 0,
ρ(y)

|c(−1,y)| |∂yuR(t;y)| if c(1, y) < 0, c(−1, y) < 0,
ρ(y)

|c(1,y)| |∂yuL(t;y)| + ρ(y)

|c(−1,y)| |∂yuR(t;y)| if c(1, y) > 0, c(−1, y) < 0

yields

d

dt

∫

�

∫

D

ρ(y)|uy |dxdy ≤ C

∫

�

∫

D

ρ(y)|ux |dxdy + C

∫

�

∫

D

ρ(y)|uy |dxdy

+
∫

�+

ρ(y)

|c(1, y)| |∂yuR(t;y)|dy

+
∫

�−

ρ(y)

|c(−1, y)| |∂yuL(t;y)|dy, (2.17)

where the boundedness assumption of ∇c is used. The desired estimate (2.15) follows from
Lemma 2.2, the Gronwall inequality and the assumption (2.14). �

3 Numerical Methods

In many problems the source of randomness can be approximated using just a small number
of uncorrelated, sometimes independent, random variables; take, for example, the case of a
truncated Karhunen-Lòeve expansion [7]. This motivates us to make the following assump-
tion which is frequently used by various authors (see, e.g., [10, 15]).

Assumption 3.1 The random wave field has a form:

κ(x,ω) = κ(x, y1, . . . , yN) on � × D, (3.1)

where {yi}N
i=1 are real valued random variables with mean value zero and unit variance.

Example (Karhunen–Lòeve Expansion) Denote the mean and the covariance of κ(x, y) as

κ0(x) =
∫

�

κ(x, y(ω))dP (ω)

and

Covκ (x, x ′) =
∫

�

(κ(x, y(ω)) − κ0)(κ(x ′, y(ω)) − κ0)dP (ω)

respectively. The KL expansion represents κ(x, y(ω)) in the series form as

κ(x,ω) = κ0(x) +
∞∑
i=1

√
λiκi(x)yi(ω), (3.2)
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where {λi}∞
i=1 and {κi}∞

i=1 are the eigenvalues and orthogonal eigenfunctions of Covκ (x, x ′),
i.e.,

∫

�

Covκ (x, z)κi(z)dz = λiκi(x).

This series converges in the mean-square sense. By definition, Covκ (x, x ′) is symmetric and
positive semidefinite. Moreover, there exists a countable sequence of eigenpairs {λi, κi}∞

i=1
satisfying

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ · · · → 0,

and the eigenfunctions {κi(x)} are orthogonal in L2(D). Furthermore, {yi(ω)} is a set of
uncorrelated random variables with mean value zero. If the eigenfunctions are normalized,
{yi(ω)} all have unit variance. Then the N -term truncation of KL expansion reads

κN(x,ω) = κ0(x) +
N∑

i=1

√
λiκi(x)yi(ω). (3.3)

In the remaining of this work, we assume that the random wave field has a form of (3.3)
and yi(ω) has some identical distribution with probability density function ρi(yi). In what
follows, we will denote with �i ≡ yi(�) the image of yi , � = ∏N

i=1 �i . We also use ρ(y)

to stand for the accumulation density function. Consequently, the random wave problem
becomes

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∂tu(x, t, y) = c(x, y)∂xu(x, t, y),

u(1, t;y) = uR(t, y), c(1, y) > 0,

u(−1, t;y) = uL(t, y), c(−1, y) < 0,

u(x,0;y) = u0(x, y),

(3.4)

where y = (yi, . . . , yN) is a N -variable random vector and κ(x, y) has the form of (3.3).
Many standard numerical methods can be used to solve the problem.

For y ∈ �, we use the double orthogonal polynomial function space introduced in [15]
to approximate L2(�,ρ), by which we can decouple the equation in the random spaces, and
get a sequence of uncoupled equations. This kind of polynomial space has also been used
in [2, 10] for different problems. In the following, we construct the double orthogonal basis.
For any r ∈ N, the space of single-variable polynomials of degree at most r is denoted by
Pr . For r = (r1, r2, . . . , rM) ∈ N

M , we construct the multi-variable polynomial space

Pr = Pr1 ⊗ Pr2 ⊗ · · · ⊗ PrM ∈ L2(�,ρ).

For the spaces Pri , i = 1, . . . ,M , we use the double orthogonal functions, denoted by
{φj,i}ri

j=0 as basis functions. More precisely, we require

{∫
�i

ρ(yi)φj,iφk,idyi = δjk, j, k = 1, . . . , ri ,∫
�i

yiρ(yi)φj,iφk,idyi = Ck,iδjk, j, k = 1, . . . , ri ,
(3.5)

where {Ck,i}ri
k=0 are nonzero constants. Then we can construct a basis function of Pr by

selecting one polynomial basis function from each Pri , i = 1, . . . ,M and multiplying these
selected M basis functions together. It is clear that if given r = (r1, r2, . . . , rM), we have
totally Ny = ∏M

i=1(ri + 1) basis for Pr.
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Let i = (i1, i2, . . . , iM). If 0 ≤ il ≤ rl , ∀1 ≤ l ≤ M , then we say that i ≤ r. There are total
Ny multi-index i less than or equal to r. Each i corresponds to one basis function for Pr.
Then the basis functions for Pr form the set

{
�i(y)

∣∣∣�i(y) =
M∏

k=1

φik,k(yk), ik ∈ {0,1, . . . , rk}
}

i≤r

. (3.6)

In Sect. 8.7.2 in [9], it was shown that finding the above basis for {Prj }N
j=1 results in eigen-

problems, and the computational work for the eigenproblems is negligible comparing to the
cost required to solve the coupled equations if rj is not large.

The basis functions defined by (3.5) satisfy the following equations:
∫

�

ykρ(y)�i(y)�j(y)dy = Cik,kδij, (3.7)

where yk ∈ {yk}M
k=1. To see why (3.7) holds, we first note that

�i(y) = φi1(y1) · · · φiM (yM), �j(y) = φj1(y1) · · · φjM (yM),

which yields
∫

�

ykρk(y)�i(y)�j(y)dy

=
(∫

ykφik (yk)φjk (yk)dyk

)( M∏
l=1,l �=k

∫
ρlφil (yl)φjl (yl)dyk

)
= Cik,kδij.

3.1 Decoupling Procedure

By the discussions above, we construct the approximated solution by

u =
∑
i≤r

ui�i(y), u0 =
∑
i≤r

u0i�i(y).

Substituting the above equations into the wave equation (2.1) and make a Galerkin projec-
tion, we will arrive at Ny independent deterministic equations as following

∂ui

∂t
= κi(x)

∂ui

∂x
, i ≤ r, (3.8)

ui(x,0) = u0i(x), (3.9)

where

κi(x) = κ0(x) +
M∑

k=1

κk(x)Cik .

For boundary conditions, we claim that {Ck,i}ri
k=1 are all located in the support of the

variable yi . To see this, note

ȳi ≤ Ck,i =
∫

�i

yiρ(yi)φ
2
k,idyi ≤ ¯̄yi, k = 1, . . . , ri ,
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where ȳi and ¯̄yi are the lower bound and upper bound of the variable yi respectively. So it is
natural for us to impose the boundary conditions by

ui(1, t) = uRi(t), κi(1) > 0,

ui(−1, t) = uLi(t), κi(−1) < 0,

where {uRi(t), uLi(t)}i≤r are the expansion coefficients of the initial condition uR(y, t) and
uL(y, t) based on the basis {�i}i<r. The underlying problem now becomes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ui
∂t

= κi(x)
∂ui
∂x

, i ≤ r.

ui(1, t) = uRi(t), κi(1) > 0,

ui(−1, t) = uLi(t), κi(−1) < 0,

ui(x,0) = u0i(x).

(3.10)

The statistics of the solution can be found from the approximate solutions ui(x). For exam-
ple, the mean of u(x, y) can be approximated by

E(uM) =
∫

�

ρ(y)u(x, y, t)dy =
∑
i≤r

ui(x, t)

∫

�

ρ(y)�idy; (3.11)

and similarly, the second-order moment of the solution can be calculated by
∫

�

ρ(y)
(∑

i≤r

ui�i

)2
dy =

∑
i≤r

(ui)
2
∫

�

ρ(y)(�i)
2dy =

∑
i≤r

(
ui(x, t)

)2
. (3.12)

Remark 3.1 We remark that the methods for constructing the bi-orthogonal polynomials can
be easily extended to problems of high dimension such as the following two-dimensional
problem:

∂u(x1, x2, t, y(ω))

∂t
= κ1(x1, x2, y(ω))

∂u

∂x1
+ κ2(x1, x2, y(ω))

∂u

∂x2
, (3.13)

where κ1, κ2 are two independent random wave fields. In fact, we only need to construct the
polynomials in each direction and then multiply them together. The extension to hyperbolic
system is also straight forward.

Remark 3.2 It can be seen from (3.5) that the Galerkin methods with bi-orthogonal poly-
nomials are equivalent to certain types of collocation methods. On the implementation side,
there seems no difficulty to extend the numerical methods described in this section to the
collocation approaches. However, one advantage of the Galerkin method is that its mathe-
matical framework is more suitable for theoretical analysis.

3.2 Sensitivity Analysis: A Principle for Choosing the Space Dimension Prj

It is known from the above discussion that given index vector r = (r1, r2, . . . , rM) a total
of Ny = ∏M

i=1(ri + 1) basis exists for Pr. If we use the same order (say, r) of polynomial
spaces in each direction, we will arrive at Ny = rM . This means Ny will become very large
when r becomes large, which may become very expensive in practice. To this end, we claim
that it is possible to use smaller rj for larger j . To see this, we give some simple analysis for
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the random wave equation in the following. Recall that the random wave field takes a form
as truncated KL expansion, namely,

κ(x, y) = κ0(x) +
N∑

i=1

√
λiκi(x)yi,

where {λi}N
i=1 have a typical decay property as [7]

λi ∼ 1

i2m
, m ≥ 1.

Here the decay index m depends on the property of the given covariance function. We further
assume {κi}M

i=0 are constants for simplicity. If the problem is also compatible, then the exact
solution for the proposed problem yields u(x, y, t) = u0(x + κ(y)t). It is easy to get

∣∣∣∣
∂u(x, y, t)

∂yi

∣∣∣∣ ∼ 1

im
,

∣∣∣∣
∂2u(x, y, t)

∂yi∂yj

∣∣∣∣ ∼ 1

imjm
. (3.14)

Below, we give a detailed analysis for the problems whose random wave fields are associate
with the space variable x. More precisely, we have the following lemma:

Lemma 3.1 Consider the problem (2.1)–(2.3) with

κ(x, y) = κ0(x) +
N∑

i=1

√
λiκi(x)yi,

0 < κmin ≤ κ(x, y) < κmax, |∂xκ(x, y)| < κ̄max.

If the following conditions are satisfied:
∫

�

∫

D

ρ(y)
(
∂xu0(x;y)

)2
dxdy < ∞, (3.15a)

∫ T

0

∫

�

ρ(y)
(
∂tuR(t;y)

)2
dydt < ∞, (3.15b)

∫ T

0

∫

�

ρ(y)
(
∂tuL(t;y)

)2
dydt < ∞, (3.15c)

then ∫

�

∫

D

ρ(y)u2
xdxdy ≤ C(T ) < ∞, 0 < t ≤ T , (3.16)

where ρ(y) > 0 is the probability distribution function and C(T ) is a positive constant
depending on T .

By using the lemma above, we have the following theorem:

Theorem 3.1 Consider the problem (2.1)–(2.3). Assume that the initial condition u0 is de-
terministic and the boundary condition have such KL expansion expression as:

uR(y, t) = uR0(t) +
N∑

i=1

√
μiuRi

(t)yi,

∫ T

0
u2

Ri
(t)dt < ∞,
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uL(y, t) = uL0(t) +
N∑

i=1

√
νiuLi

(t)yi,

∫ T

0
u2

Li
(t)dt < ∞.

If the assumption (3.15) holds, then
∫

�

∫

D

ρ(y)u2
yi
dxdy ≤ C(T )

(√
λi + √

μi + √
νi

)
, 0 < t ≤ T , (3.17)

where C(T ) is a finite number depending on T .

The proof of the above Theorem is more or less the same as Theorems 2.1 and 2.2, and
will be omitted here. Moreover, the high order derivatives of the solution can be bounded by
using the same methods; e.g., we can obtain

∫

�

∫

D

ρ(y)

(
∂2u

∂yi∂yj

)2

dxdy � C(T )
(
λi + μi + √

λiμi + √
λiνi

)
, 0 < t ≤ T , (3.18)

under some further assumptions on the initial-boundary conditions and the random wave
field.

We know that the approximation error by orthogonal polynomials usually depends on the
derivatives of the exact solution. Equation (3.18) and Theorem 3.1 suggest that the leading
error terms come from the first derivative with respect to yi when i is small. This tells us that
we can use relatively large ri when i, is small, and use relatively small ri when i, is large.
Consequently, the resulting system is of reasonably small size. Such “dimension-adaptivity”
approach has been used by many researchers for different application problems, see, e.g.,
[4, 6]. The main strategy can be summarized as follows: assume that the Total Degree (TD)
principle is used to deal with the high-dimension cases, that is, we chose the orders by

M∑
i=1

ri ≤ P,

where P is the “total order” which is given beforehand. The modified TD is to chose the
order in an anisotropic way, i.e., to use

M∑
i=1

(ri + αi) ≤ P,

where αi are some non-negative integers. In general, αi are chosen relatively large when the
ith direction is less important.

4 Numerical Example

It is pointed out in Sect. 3 that different orthogonal polynomials can be constructed accord-
ing to different weights (i.e., different distributions). This implies that order reductions may
be affected by difference choice of distributions. On the other hands, the results of (3.17)–
(3.18) are independent of the distribution types, which means that for different distributions
similar “anisotropic” approaches can be used and similar sensitivity results can be obtained.
Therefore we will employ the uniform distribution in this numerical experiment section.
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Example 4.1 To illustrate efficiency of the proposed method in random spaces, we consider
the following simple example:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tu(x, t, y) = κ(y)∂xu(x, t, y),

u(1, t, y) = sin(1 + κ(y)t), κ(y) > 0,

u(−1, t, y) = sin(−1 + κ(y)t), κ(y) < 0,

u(x, t = 0, y) = sin(x),

(4.1)

where

κ(y) = 0.5 ∗
4∑

n=1

1

n2
yn, (4.2)

and each yn has a uniform distribution in (−1,1). Note in this example, κ depends only on
the variable y, and this will enable us to check the convergence results in random spaces
easily. In the computation, we need to check the sign of each κi and impose the numerical
boundary conditions correspondingly. The errors between the numerical solutions unum and
the exact solutions uexa are defined as follows, the error in mean:

emean = max
x

|E(unum) − E(uexa)|,

the error in standard deviation (STD):

estd = max
x

|σunum − σuexa |,

and the mean-square error:

e2 = max
x

(
E(unum − uexa)

2
)1/2

.

In Fig. 1, we plot the exact and numerical solutions at different times, where we can see
that the numerical solutions match well with the exact solutions when very lower order
(r1, r2, r3, r4) = (3,2,1,1) of approximate spaces are used. In Fig. 2 (Top), we plot the
uniform convergence results, where “uniform” means that the same order is used in every
direction. We can see that the methods converge fast. In Fig. 2 (bottom), we plot the conver-
gence results versus time t . The influence of time to the convergence rate is clear, and it is
typically a linear dependence. The same phenomenon was observed in [8] for gPC methods
and [13] for collocation methods. This “long-time integral” phenomenon is notorious, see,
e.g., Wan and Karniadakis [14].

In Table 1, we give some convergence results for nonuniform approximation for t = 2.
It is observed from the table that enhancing the order for lower index i gives much bet-
ter convergence than doing the same for the larger i. For example, by comparing the re-
sults for (r1, r2, r3, r4) = (1,3,3,2), (2,3,3,2), (3,3,3,2) we can see an order of 2 error
reduction each time; but there is no significant change in errors by using (r1, r2, r3, r4) =
(2,3,3,1), (2,3,3,2), (2,3,3,3.

To see the nonuniform convergence, we consider the case that

κ(y) = 1 + 0.5 ∗
(

3∑
n=1

1

n2
yn + 10−8y4

)
, (4.3)
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Fig. 1 Example 4.1: Mean solutions of different times (top), and Std solutions of different times (bottom).
Orders of (3, 2, 1, 1) are used

namely, λ4 is much more smaller than other eigenvalues. In Fig. 3, we plot the nonuniform
convergence result for the mean error. We first fix the orders of the last three direction as
(r1, r2, r3, r4) = (•,4,4,2), and let the order of the first direction change from 1 to 7. In
this case, the error goes to zero exponentially (solid line). We then fix the first three orders
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Fig. 2 Example 4.1: Uniform convergence results for t = 0.9 (top), and Convergence results for different
times (bottom), with a fixed approximate order of (4, 4, 4, 4)

as (r1, r2, r3, r4) = (2,4,4,•), and let the last order change from 1 to 7. In this case, the
errors with differ N do note have much difference (dashed line). We also plot the errors for
different order in the second direction (dashdot line), where we fix the other three orders
as (r1, r2, r3, r4) = (5,•,4,2). This is a good support for the nonuniform convergence for
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Table 1 Example 4.1: Nonuniform convergence results for different directions (t = 2)

Order emean estd e2 Order emean estd e2

(1,3,3,1) 0.5544 1.2568 2.5614 (2,3,3,2) 3.1792e-3 2.8139e-2 2.7634e-1

(1,3,3,2) 0.5522 1.2517 2.5446 (2,3,3,3) 3.1260e-3 2.8109e-2 2.8549e-1

(2,3,3,1) 6.8164e-3 3.3813e-2 3.3347e-1 (3,3,3,2) 5.5919e-5 2.4277e-4 8.0764e-3

Fig. 3 Example 4.1: Nonuniform convergence results for t = 1. The solid line is for (•,4,4,2), the first
order changes from 1 to 7. The dashdot line is for (2,4,4,•), the fourth order changes from 1 to 7. The
dashed line is for (5,•,4,2), the second order changes from 1 to 7

different directions. Note we use the framework of the Galerkin methods which for smooth
solutions, usually 3–5 order of expansion is enough to get a satisfactory convergence results.
Using the principle to choose relatively small order for large i, we then end up with only
few uncoupled equations.

Example 4.2 Our second example is a simple hyperbolic system:

(
u

v

)

t

=
(

0 μ

ξ 0

)(
u

v

)

x

,

(
u

u

)

t=0

=
(

u0

v0

)
,

where μ = μ(ȳ) > 0 and ξ = ξ(ỹ) > 0, and ȳ, ỹ are random vectors. This simple system
shares many important properties with some other equations, such us the second order wave
equation and the Maxwell equation. In the computation, we assume

μ(ȳ) = 1 + 0.5 ∗
3∑

i=1

1

i2
ȳi , ξ(ỹ) = 1 + 0.5 ∗

3∑
j=1

1

j 2
ỹj ,
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Fig. 4 Example 4.2: Mean solutions for t = 1 (top), and Std solutions at t = 1 (bottom). Each random vector
has an approximate order of (3, 2, 2)

where {ȳi}3
i=1, and {ỹj }3

j=1 are random variables having uniform distribution in (−1,1),
namely, there are totally six dimension of random spaces. The initial condition is u0 = 0,
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Fig. 5 Example 4.2: Uniform convergence results at t = 0.8

v0 = 2f (x), where f (x) = exp(−(x − π)2). The exact solution is

uexa = √
μ

(
f (x + ct) − f (x − ct)

)
, vexa = √

ξ
(
f (x + ct) + f (x − ct)

)
,

where c = √
μξ . We assume again the random variables have uniform distribution in

(−1,1). In Fig. 4, we plot the exact and numerical solutions (both mean and std) at t = 1,
where very low orders (r1, . . . , r6) = (3,2,2;3,2,2) are used. It is again observed that the
numerical solutions match well with the exact solutions. In Fig. 5, we also give the uniform
convergence results for the underlying hyperbolic system problem.

5 Conclusion

In this work, we first give some regularity results to the scalar transport equations whose
transport velocity is a random field. A Galerkin method using bi-orthogonal polynomials is
proposed for the first order wave equation with a random wave field, and hyperbolic sys-
tems with a random coefficient matrix. This decouples the equations in the random space,
yielding just a number of uncoupled systems. The double orthogonal polynomials are able
to perform the decoupling whenever the random variables in the KL expansion are indepen-
dent. Otherwise, an iterative procedure should be applied, and at each step we may use the
product of the marginal densities

∏N

i=1 ρi , as an approximation of the density ρ, to acceler-
ate the convergence [1]. The method proposed here uses a Galerkin framework but results
in a uncoupled system like those given by the collocation methods and other simple based
methods.

In Sect. 3.1, we give a principle of how to choose the orders of the approximate polyno-
mial spaces, with which the total freedom will be significant reduced. The method in some
sense overcomes “curse of dimensionality.” Numerical examples are given in Sect. 4, which
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give a good support to the analysis in Sect. 3.1. The principle can also be used for other
problems, e.g., stochastic elliptic problem [1].
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