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Abstract In shape analysis, finding an optimal 1-1 correspondence between 3D surfaces
within a large class of admissible bijective mappings is of great importance. Such a process
is called surface registration. The difficulty lies in the fact that the space of all surface diffeo-
morphisms is a complicated functional space, making it challenging to exhaustively search
for the best mapping. To tackle this problem, we propose a simple representation of bijec-
tive surface maps using Beltrami coefficients (BCs)—complex-valued functions defined on
surfaces with supremum norm less than 1. Fixing any 3 points on a pair of surfaces, there is
a 1-1 correspondence between the set of surface diffeomorphisms between them and the set
of BCs. Hence, every bijective surface map may be represented by a unique BC. Conversely,
given a BC, we can reconstruct the unique surface map associated with it using the Beltrami
Holomorphic flow (BHF) method. Using BCs to represent surface maps is advantageous
because it is a much simpler functional space, which captures many essential features of a
surface map. By adjusting BCs, we equivalently adjust surface diffeomorphisms to obtain
the optimal map with desired properties. More specifically, BHF gives us the variation of the
associated map under the variation of BC. Using this, a variational problem over the space
of surface diffeomorphisms can be easily reformulated into a variational problem over the
space of BCs. This makes the minimization procedure much easier. More importantly, the
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diffeomorphic property is always preserved. We test our method on synthetic examples and
real medical applications. Experimental results demonstrate the effectiveness of our pro-
posed algorithm for surface registration.

Keywords Beltrami coefficient · Beltrami holomorphic flow · Surface diffeomorphism ·
Surface registration · Shape analysis · Optimization

1 Introduction

Surface registration is a process of finding an optimal 1-1 correspondence between surfaces
satisfying certain constraints. It is of great importance in different research areas, such as
computer graphics and medical imaging. For example, in medical imaging, surface regis-
tration is always needed for statistical shape analysis, surface-based morphometry and the
processing of signals on brain surfaces (e.g., denoising, filtering and segmentation). In many
cases, a surface must be non-rigidly aligned with another surface, while matching various
features lying on both surfaces. Finding an optimal surface registration that best matches
the required constraints is difficult, especially on convoluted surfaces such as the human
brain. It is therefore necessary to develop an effective algorithm to compute the best surface
registration.

To obtain the best 1-1 correspondence between two surfaces, an optimized surface regis-
tration is often required. Optimization of surface registrations is the process of selecting an
optimal surface diffeomorphism within a large class of admissible smooth mappings to best
satisfy certain properties. It can usually be formulated as a variational problem in the form:

min
f ∈FDiff

E0(f ) (1)

where FDiff = {f : S1 → S2 : f is a diffeomorphism} is the space of all diffeomorphisms
from surface S1 to surface S2.

Solving this type of variational problem is generally difficult, since the space of all sur-
face diffeomorphisms FDiff is a complicated functional space. For instance, FDiff is inherently
infinite-dimensional and has no natural linear structure. Constructing an efficient optimiza-
tion scheme in such a space that is guaranteed to obtain a minimizer is a big challenge. A loss
of bijectivity of the surface maps (i.e., overlap or tearing) is often observed during the opti-
mization process. To solve this problem, it is necessary to develop a simple representation
of surface diffeomorphisms that helps to simplify the optimization procedure.

In this paper, we propose a simple representation of surface diffeomorphisms using Bel-
trami coefficients (BCs). The BCs are any complex-valued functions defined on surfaces
with L∞-norm strictly less than 1. Fixing any 3 points on a pair of surfaces, there is a
one-to-one correspondence between the set of surface diffeomorphisms and the set of BCs.
Hence, every bijective surface map can be represented by a unique BC. Conversely, given
a BC, we propose to reconstruct the unique surface map associated with it, using the Bel-
trami Holomorphic flow (BHF) method introduced in this paper. The BHF formulates the
variation of the surface maps under the variation of BCs. Hence, variational problems about
surface diffeomorphisms can be easily reformulated as variational problems on BCs in the
form:

min
μ∈FBC

E(μ) (2)

where FBC = {μ : S1 → D : ‖μ‖∞ < 1} is the set of BCs.
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Fig. 1 A flow chart summarizing the framework proposed in this paper

The space of BCs is a much simpler functional space that captures the essential features
of surface maps. There are no restrictions that BCs have to be 1-1, surjective, or that they
must satisfy some constraints on their Jacobians. By adjusting BCs, we can adjust surface
registrations accordingly, using the BHF to obtain surface maps with the desired properties.
This greatly simplifies the minimization procedure. More importantly, the surface maps ob-
tained are guaranteed to be diffeomorphic (bijective and smooth) during the optimization
process. We have applied our proposed algorithm on synthetic examples and biomedical
research applications of surface registration, which demonstrate the effectiveness of our
proposed method.

In summary, our work has three main contributions:

• We propose a simple representation of surface diffeomorphisms to facilitate the optimiza-
tion of surface registrations.

• We develop a reconstruction algorithm to compute the surface diffeomorphism from a
given BC, using BHF. This completes the representation scheme and allows us to move
back and forth between BCs and surface diffeomorphisms.

• With BHF, we re-formulate variational problems about surface maps as variational prob-
lems on BCs. This greatly simplifies the optimization procedure.

A flow chart summarizing the framework proposed in this paper is shown in Fig. 1.

2 Previous Work

Surface registration has been extensively studied by different research groups. Most methods
compute the optimal surface registration by minimizing certain kinds of energy functionals.
In this section, we briefly describe some related methods commonly used.

Conformal surface registration has been widely studied to obtain smooth 1-1 correspon-
dence between surfaces and minimize angular distortions [1, 7–10, 14, 22, 36]. Conformal
maps are usually computed using variational approaches to minimize some energy func-
tionals, such as the harmonic energy [7] and the least-squares energy based on the Cauchy-
Riemann equation [22]. A 1-1 correspondence between surfaces can be obtained in the op-
timal state. However, the above registration cannot map anatomical features, such as sulcal
landmarks, consistently from subject to subject.

To obtain a surface registration that matches important landmark features, landmark-
based diffeomorphisms are often used. Optimization of surface diffeomorphisms by land-
mark matching has been extensively studied. Gu et al. [7] improved a conformal parame-
terization by composing an optimal Möbius transformation so that it minimizes a landmark
mismatch energy. The resulting parameterization remains conformal, although features can-
not be perfectly matched. Wang et al. [20, 37] proposed a variational framework to compute
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an optimized conformal registration that aligns landmarks as well as possible. However,
landmarks are not matched exactly and diffeomorphisms cannot be guaranteed when there
is a large number of landmark features. Durrleman et al. [2, 3] developed a framework using
currents, a concept from differential geometry, to match landmarks within surfaces across
subjects, for the purpose of inferring the variability of brain structure in an image database.
Landmark curves are not perfectly matched. Tosun et al. [34] proposed a more automated
mapping technique that attempts to align cortical sulci across subjects by combining para-
metric relaxation, iterative closest point registration, and inverse stereographic projection.
Glaunès et al. [6, 13] proposed to generate large deformation diffeomorphisms of a sphere
onto itself, given the displacements of a finite set of template landmarks. The diffeomor-
phism obtained can better match landmark features.

Lui et al. [21] proposed to compute shape-based landmark matching registrations be-
tween brain surfaces using the integral flow method. The one-parameter subgroup within the
set of all diffeomorphisms was considered and represented by smooth vector fields. Land-
marks can be perfectly matched and the correspondence between landmark curves is based
on shape information. Leow et al. [16] proposed a level-set-based approach for matching
different types of features, including points, 2D and 3D curves represented as implicit func-
tions. These matching features in the parameter domain were then pulled back onto surfaces
to compute correspondence fields. In related work, Lepore et al. [17] used a level-set repre-
sentation to match curves embedded in surfaces, using a diffeomorphic flow parametrized
using velocity fields on the sphere. In this work, features within the landmark curves were
not matched, and the landmark curves were matched as level sets. Later, Shi et al. [31]
computed a direct harmonic mapping between two surfaces by embedding both surfaces
as the level-set of an implicit function, and representing the mapping energy as a Dirichlet
functional in 3D volume domains. Although such an approach can incorporate landmark
constraints, it has not been proven to yield diffeomorphic mappings.

Since there may not be well-defined landmarks on surfaces, some authors proposed driv-
ing features into correspondence based on shape information or scalar fields defined on the
surfaces. Lyttelton et al. [23] computed surface parameterizations that match surface cur-
vature. Fischl et al. [4] improved the alignment of cortical folding patterns by minimizing
the mean squared difference between the average convexity across a set of subjects and that
of the individual. Wang et al. [35] computed surface registrations that maximize the mutual
information between mean curvature and conformal factor maps across subjects. Lord et al.
[18] matched surfaces by minimizing the deviation from isometry.

In most situations, one has to pay extra attention to ensure the optimal map computed
is diffeomorphic. Hence, developing an effective optimization algorithm that guarantees to
give diffeomorphic surface registrations is necessary. This motivates us to look for a simple
representation of surface diffeomorphisms, which helps to simplify the optimization proce-
dure.

3 Theoretical Background

In this section, we describe some basic mathematical concepts related to our algorithms. For
details, we refer readers to [5] and [15].

A surface S with a conformal structure is called a Riemann surface. Given two Riemann
surfaces M and N , a map f : M → N is conformal if it preserves the surface metric up
to a multiplicative factor called the conformal factor. An immediate consequence is that
every conformal map preserves angles. With the angle-preserving property, a conformal
map effectively preserves the local geometry of the surface.
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Fig. 2 Illustration of a conformal map and a quasiconformal map

A generalization of conformal maps is quasi-conformal maps, which are orientation-
preserving diffeomorphisms between Riemann surfaces with bounded conformality distor-
tion, in the sense that their first order approximation takes small circles to small ellipses
of bounded eccentricity [5]. Thus, a conformal homeomorphism that maps a small circle
to a small circle can also be regarded as quasi-conformal. Figure 2 illustrates the idea of
conformal and quasiconformal maps.

Mathematically, f : � ⊆ C → C is quasi-conformal, provided that it satisfies the Bel-
trami equation:

∂f

∂z
= μ(z)

∂f

∂z
(3)

for some complex valued functions μ satisfying ‖μ‖∞ < 1. Here,

∂

∂z
:= 1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z̄
:= 1

2

(
∂

∂x
+ i

∂

∂y

)
. (4)

In terms of the metric tensor, consider the effect of the pullback under f of the usual
Euclidean metric ds2

E ; the resulting metric is given by:

f ∗(ds2
E) =

∣∣∣∣∂f∂z

∣∣∣∣
2

|dz + μ(z)dz|2, (5)

which, relative to the background Euclidean metric dz and dz, has eigenvalues (1 +
|μ|)2| ∂f

∂z
|2 and (1 − |μ|)2| ∂f

∂z
|2. μ is called the Beltrami coefficient, which is a measure of

non-conformality. In particular, the map f is conformal around a small neighborhood of p

when μ(p) = 0. Infinitesimally, around a point p, f may be expressed with respect to its
local parameter as follows:

f (z) = f (p) + fz(p)z + fz(p)z

= f (p) + fz(p)(z + μ(p)z). (6)

Obviously, f is not conformal if and only if μ(p) �= 0 at p. Inside the local parameter
domain, f may be considered as a map composed of a translation to f (p) together with a
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Fig. 3 Illustration of how the
Beltrami coefficient μ measures
the distortion of a
quasi-conformal mapping that
maps a small circle to an ellipse
with dilation K

stretch map S(z) = z + μ(p)z, which is postcomposed by a multiplication of fz(p), which
is conformal. All the conformal distortion of S(z) is caused by μ(p). S(z) is the map that
causes f to map a small circle to a small ellipse. From μ(p), we can determine the angles
of the directions of maximal magnification and shrinkage and the amount of them as well.
Specifically, the angle of maximal magnification is arg(μ(p))/2 with magnifying factor
1 + |μ(p)|; the angle of maximal shrinkage is the orthogonal angle (arg(μ(p))−π)/2 with
shrinking factor 1 − |μ(p)|. The distortion or dilation is given by:

K = (1 + |μ(p)|)/(1 − |μ(p)|). (7)

Thus, the Beltrami coefficient μ gives us important information about the properties of the
map (see Fig. 3).

Now, suppose μ and σ are the Beltrami coefficients of the quasiconformal maps f μ and
f σ , respectively. Then the Beltrami coefficient τ of the composition map f τ = f σ ◦ (f μ)−1

can be computed as:

τ =
(

σ − μ

1 − μσ

1

θ

)
◦ (f μ)−1, (8)

where θ = p

p
and p = ∂

∂z
f μ(z). In particular, if f σ is the identity, that is, if σ = 0, then

τ = −
(

μ
p

p

)
◦ (f μ)−1. (9)

4 Main Algorithm

In this section, we discuss in detail the main algorithms in this paper. Our goal is to look
for a simple representation scheme for the space of surface diffeomorphisms, with the least
number of constraints possible, to simplify the optimization process.

4.1 The Beltrami Holomorphic Flow

In this part, we describe two theorems about the Beltrami Holomorphic Flow (BHF) on the
sphere S

2 and the unit disk D. All the algorithms developed in this paper are mainly based
on these theorems.
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Theorem 4.1 (Beltrami holomorphic flow on S
2) There is a one-to-one correspondence

between the set of quasiconformal diffeomorphisms of S
2 that fix the points 0, 1, and ∞

and the set of smooth complex-valued functions μ on S
2 with ‖μ‖∞ = k < 1. Here, we

have identified S
2 with the extended complex plane C. Furthermore, the solution f μ to the

Beltrami equation (3) depends holomorphically on μ. Let {μ(t)} be a family of Beltrami
coefficients depending on a real or complex parameter t . Suppose also that μ(t) can be
written in the form

μ(t)(z) = μ(z) + tν(z) + tε(t)(z) (10)

for z ∈ C, with suitable μ in the unit ball of C∞(C), ν, ε(t) ∈ L∞(C) such that ‖ε(t)‖∞ → 0
as t → 0. Then for all w ∈ C,

f μ(t)(w) = f μ(w) + tV (f μ, ν)(w) + o(|t |) (11)

locally uniformly on C as t → 0, where

V (f μ, ν)(w) = −f μ(w)(f μ(w) − 1)

π

∫
C

ν(z)((f μ)z(z))
2

f μ(z)(f μ(z) − 1)(f μ(z) − f μ(w))
dx dy.

(12)

Proof This theorem is due to Bojarski. For detailed proof, please refer to [5]. �

Theorem 4.1 states that any diffeomorphism of S
2 that fixes 0, 1 and ∞ can be rep-

resented uniquely by a Beltrami coefficient. In fact, the 3-point correspondence can be
arbitrarily set, instead of fixing 0, 1 and ∞ only. This can be done easily by composing
Möbius transformations to the diffeomorphism. Let f : S

2 → S
2 be any diffeomorphism

of S
2. Picking any 3-point correspondence {a, b, c ∈ S

2} ↔ {f (a), f (b), f (c) ∈ S
2}, we can

look for unique Möbius transformations φ1 and φ2 that map {a, b, c} and {f (a), f (b), f (c)}
to 0,1,∞ respectively. Then, the composition map f̃ := φ2 ◦ f ◦ φ−1

1 is a diffeomorphism
of S

2 that fixes 0, 1 and ∞ and can be represented by a unique Beltrami coefficient. In other
words, given a diffeomorphism f of S

2 and any 3-point correspondence, we can represent
f uniquely by a Beltrami coefficient.

The theorem also gives the variation of the diffeomorphism under the variation of the
Beltrami coefficient. In order to adjust the diffeomorphism, we can simply adjust the Bel-
trami coefficient by using the variational formula.

Theorem 4.1 can be further extended to diffeomorphisms of the unit disk D.

Theorem 4.2 (Beltrami holomorphic flow on D) There is a one-to-one correspondence
between the set of quasiconformal diffeomorphisms of D that fix the points 0 and 1 and the
set of smooth complex-valued functions μ on D for which ‖μ‖∞ = k < 1. Furthermore, the
solution f μ depends holomorphically on μ. Let {μ(t)} be a family of Beltrami coefficients
depending on a real or complex parameter t . Suppose also that μ(t) can be written in the
form

μ(t)(z) = μ(z) + tν(z) + tε(t)(z) (13)

for z ∈ D, with suitable μ in the unit ball of C∞(D), ν, ε(t) ∈ L∞(D) such that ‖ε(t)‖∞ → 0
as t → 0. Then for all w ∈ D

f μ(t)(w) = f μ(w) + tV (f μ, ν)(w) + o(|t |) (14)
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locally uniformly on D as t → 0, where

V (f μ, ν)(w) = −f μ(w)(f μ(w) − 1)

π

(∫
D

ν(z)((f μ)z(z))
2

f μ(z)(f μ(z) − 1)(f μ(z) − f μ(w))
dx dy

+
∫

D

ν(z)((f μ)z(z))
2

f μ(z)(1 − f μ(z))(1 − f μ(z)f μ(w))
dx dy.

)
. (15)

Proof The proof of this theorem can be found in the Appendix. �

Theorem 4.2 states that any diffeomorphism of D that fixes 2 points (i.e., 0 and 1) can
be represented uniquely by a Beltrami coefficient. Again, the 2-point correspondence can
be arbitrary. Let g : D → D be a diffeomorphism of D. Given any 2-point correspondence
{a, b ∈ D} ↔ {g(a), g(b) ∈ D}, we can find two unique Möbius transformations φ1 and φ2

of D that map {a, b} and {g(a), g(b)} to {0,1}, respectively. Then, the composition map g̃ :=
φ2 ◦ g ◦ φ−1

1 is a diffeomorphism of D that fixes 0 and 1 and can be represented by a unique
Beltrami coefficient. Theorem 4.2 also gives the variation of the diffeomorphism of D under
the variation of the Beltrami coefficient. Therefore, we can again adjust the diffeomorphism
of D by adjusting the Beltrami coefficient, which is a much simpler functional space.

Theorem 4.1 and Theorem 4.2 can be extended to genus 0 closed surfaces and open
surfaces with disk topology. Therefore, they can be applied to represent general surface
diffeomorphisms. This will be discussed in Sect. 4.2.

4.2 Representation of Surface Diffeomorphisms using BCs

As mentioned earlier, it is crucial to look for a simple representation for the space of all
surface diffeomorphisms so that the optimization procedure can be simplified. Surface reg-
istration is commonly represented by 3D coordinate functions in R

3. This representation
requires lots of storage space and is difficult to manipulate. For example, 3D coordinate
functions have to satisfy a constraint on the Jacobian J (namely, J > 0) in order to preserve
the 1-1 correspondence of surface maps. The Jacobian constraint is a complicated partial
differential inequality. Enforcing this constraint adds extra difficulty in manipulating and
adjusting surface maps. It is therefore important to have a simpler representation with as
few constraints as possible.

Theorem 4.1 and 4.2 allow us to represent surface diffeomorphisms of S
2 and D by

Beltrami coefficients. The theorems can be further extended to genus 0 closed surfaces and
open surfaces with disk topology.

Let S1 and S2 be two genus 0 closed surfaces with a 3-point correspondence between
them: {p1,p2,p3 ∈ S1} ↔ {q1, q2, q3 ∈ S2}. By Riemann mapping theorem, S1 and S2

can both be uniquely parameterized by conformal maps φ1 : S1 → S
2 and φ2 : S2 → S

2

respectively, such that φ1(p1) = 0, φ1(p2) = 1, φ1(p3) = ∞ and φ2(q1) = 0, φ2(q2) =
1, φ2(q3) = ∞. The conformal parameterizations can be computed using the discrete Ricci
flow method [12]. Given any surface diffeomorphism f : S1 → S2, the composition map
f̃ := φ2 ◦ f ◦ φ−1

1 : S
2 → S

2 is a diffeomorphism from S
2 to itself fixing 0, 1 and ∞. By

Theorem 4.1, f̃ can be uniquely represented by a Beltrami coefficient μ̃ defined on S
2.

Hence, f can be uniquely represented by a Beltrami coefficient μ := μ̃ ◦φ−1
1 defined on S1.

In other words, we have proven the following:

Corollary 4.3 Let S1 and S2 be two genus 0 closed surfaces. Suppose f : S1 → S2 is a
surface diffeomorphism. Given 3-point correspondence {p1,p2,p3 ∈ S1} ↔ {f (p1), f (p2),

f (p3) ∈ S2}, f can be represented by a unique Beltrami coefficient μ : S1 → C.
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Similarly, Theorem 4.2 can be extended to open surfaces with disk topology. Let M1

and M2 be two genus 0 open surfaces. Given two points correspondence {p1,p2 ∈ M1} ↔
{q1, q2 ∈ M2} between them, we can again uniquely parameterize M1 and M2 conformally
to map the corresponding points to 0 and 1. Denote them by φ1 : M1 → D and φ2 : M2 → D.

The composition map f̃ := φ2 ◦ f ◦ φ−1
1 : D → D is a diffeomorphism of D fixing 0 and 1.

Again, f̃ can be uniquely represented by a Beltrami coefficient μ̃ defined on D. Hence, f

can be uniquely represented by a Beltrami coefficient μ := μ̃ ◦ φ−1
1 defined on M1. So, we

have the following corollary:

Corollary 4.4 Let M1 and M2 be two genus 0 open surfaces with disk topology. Suppose
f : M1 → M2 is a surface diffeomorphism. Given 2-point correspondence {p1,p2 ∈ M1} ↔
{f (p1), f (p2) ∈ M2}, f can be represented by a unique Beltrami coefficient μ : M1 → C.

Corollary 4.3 and 4.4 allows us to represent diffeomorphisms of genus 0 closed surfaces
and open surfaces with disk topology using Beltrami coefficients. Thus, we can use the
Beltrami coefficient μf associated uniquely to such diffeomorphism f to represent f . First

of all, we need to compute the Beltrami coefficient μ̃f̃ of the composition map f̃ = φ2 ◦
f ◦ φ−1

1 : D → D, where D is the common conformal parameter domain of the surfaces.
Mathematically, μ̃f̃ is given by the following formula:

μ̃f̃ = ∂f̃

∂z

/
∂f̃

∂z
= 1

2

(
∂f̃

∂x
+ √−1

∂f̃

∂y

)/
1

2

(
∂f̃

∂x
− √−1

∂f̃

∂y

)
. (16)

Then, the Beltrami coefficient μf can be computed by μf := μ̃f̃ ◦ φ−1
1 : S1 → C. μf

is a complex valued functions defined on S1 with ‖μf ‖∞ < 1. There are no restrictions on
μf that it has to be 1-1, surjective or satisfy some constraints on the Jacobian. With this
representation, we can easily manipulate and adjust surface maps without worrying about
destroying their diffeomorphic property.

In practice, surfaces are commonly approximated by discrete meshes comprised of trian-
gular or rectangular faces. They are parameterized onto the mesh D in C. Then the partial
derivatives (or gradient) of the map can be discretely approximated on each face of D. By
taking the average, the partial derivatives and hence the Beltrami coefficient can be com-
puted on each vertex. The detailed numerical implementation can be found in the Appendix.

Besides adjusting surface maps while preserving diffeomorphism, another advantage of
Beltrami coefficients is that they consist of two real functions only, namely the real and
imaginary parts. Compared to the representation of surface maps using 3D coordinate func-
tions, this representation reduces the original storage space requirements by 1/3.

The computational algorithm can be summarized as follows:

Algorithm 1 Beltrami Representation of Surface Diffeomorphisms
Input: Surface diffeomorphism f : S1 → S2; point correspondences {pi} ↔ {qi = f (pi)}.
Output: Beltrami representation μf : S1 → C of f : S1 → S2.

(1) Compute the conformal parameterizations of S1 and S2 that map {pi} and {qi} to
consistent locations on the parameter domain D. Denote them by φ1 : S1 → D and
φ2 : S2 → D

(2) Set f̃ = φ2 ◦ f ◦ φ−1
1 : D → D and compute the Beltrami coefficient μ̃f̃ by (16).

(3) Compute the Beltrami coefficient μf : S1 → C using μf := μ̃f̃ ◦ φ−1
1 .
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4.3 Reconstruction of Surface Diffeomorphisms from BCs

Given the Beltrami coefficient μ defined on S1, it is important to have a reconstruction
scheme to compute the associated quasi-conformal diffeomorphism f μ. This allows us to
move back and forth between BCs and surface diffeomorphisms. We propose the Beltrami
holomorphic flow (BHF) method to reconstruct the surface diffeomorphism f μ : S1 → S2

associated with a given μ. BHF iteratively flows the identity map to f μ. In this part, we
describe the BHF reconstruction method in detail.

The variation of f μ under the variation of μ can be expressed explicitly. Suppose μ̃(z) =
μ(z) + tν(z) + o(|t |) where z = x + iy ∈ C. Then,

f μ̃(z)(w) = f μ(w) + tV (f μ, ν)(w) + o(|t |), (17)

where

V (f μ, ν)(w) =
∫

D

K(z,w)dx dy, (18)

and

K(z,w) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− f μ(w)(f μ(w)−1)

π

(
ν(z)((f μ)z(z))

2

f μ(z)(f μ(z)−1)(f μ(z)−f μ(w))

)
D = S

2,

− f μ(w)(f μ(w)−1)

π

(
ν(z)((f μ)z(z))

2

f μ(z)(f μ(z)−1)(f μ(z)−f μ(w))

+ ν(z)((f μ)z(z))
2

f μ(z)(1−f μ(z))(1−f μ(z)f μ(w))

)
D = D.

(19)

We can also write V (f μ, ν)(w) as:

V (f μ, ν)(w) =
∫

D

(
G1ν1 + G2ν2

G3ν1 + G4ν2

)
dx dy, (20)

where ν = ν1 + iν2 and G1, G2, G3, G4 are real-valued functions defined on D. Here, we
identify A + iB as

(
A

B

)
.

Using this fact, we propose to use BHF to iteratively flow the identity map to f μ. Given

the parameterizations φ1 : S1 → D and φ2 : S2 → D, we look for the map f̃ μ = φ2 ◦ f μ ◦
φ−1

1 : D → D associated uniquely with μ̃ = μ ◦ φ−1
1 : D → C. f μ can then be obtained by

f μ = φ−1
2 ◦ f̃ μ ◦ φ1.

We start with the identity map Id of which the Beltrami coefficient is identically equal

to 0. Let N be the number of iterations. Define μ̃k = kμ̃/N , k = {0,1,2, . . . ,N}. Let f̃ μ̃k

be the map associated with μ̃k . Note that f̃ μ̃0 = Id and f̃ μ̃N = f̃ μ̃. Equations (17) and (18)
allows us to iteratively compute f̃ μ̃k and thus obtain a sequence of maps flowing from Id to
f̃ μ̃. The iterative scheme is given by:

f̃ μ̃k+1 = f̃ μ̃k + V

(
f̃ μ̃k ,

μ̃

N

)
; f̃ μ̃0 = Id. (21)

The computational algorithm of the reconstruction scheme can be summarized in Algo-
rithm 2. The detailed numerical implementation can be found in the Appendix.

Algorithm 2 Reconstruction of Surface Diffeomorphisms from BCs
Input: Beltrami Coefficient μ on S1; conformal parameterizations of S1 and S2: φ1 and φ2;
Number of iterations, N

Output: Surface diffeomorphism f μ : S1 → S2 associated to μ.
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Fig. 4 Beltrami representation and reconstruction of a surface diffeomorphism f on the brain surface. The
top left figure shows a surface diffeomorphism between two different brain surfaces. The top right figure
shows the Beltrami representation μ of f . Here, a colormap of |μ| is shown. The bottom row shows the
reconstructed map after different number of iterations N using BHF reconstruction. When N = 20, the map
closely resembles the original map (the black dots show the exact positions under the original map)

(1) Set k = 0; f̃ μ̃0 = Id.
(2) Set μ̃k := kμ̃/N ; Compute f̃ μ̃k+1 = f̃ μ̃k + V (f̃ μ̃k ,

μ̃

N
); k = k + 1.

(3) Repeat Step 2 until k = N ; Set f μ := φ−1
2 ◦ f̃ μ̃ ◦ φ1 : S1 → S2.

Figures 4 and 5 illustrate the idea of reconstructing surface diffeomorphisms from BCs
on human brain surfaces and hippocampal surfaces respectively. BHF computes a sequence
of surface maps {f̃ μ̃k } converging to f̃ μ̃. The approximation of f̃ μ̃k is more accurate with a
smaller time step, or equivalently, a larger number of iterations N . Fig. 6 shows the error of
the reconstructed map f Re versus different number of iterations N used in the BHF process.
The error is defined as Error = sup‖f Re − f ‖, where f is the original map. As expected,
the error decreases as N increases. In practice, the approximations are very accurate when
N ≥ 15. In our experiments, we set N = 20.

4.4 BHF Optimization of Surface Registrations

We have described a simple representation scheme for surface diffeomorphisms using BCs.
The space of BCs is a simple functional space with the least amount of constraints. There
are no restrictions requiring BCs to be 1-1, surjective or satisfy some constraints on its
Jacobian. With BCs, we can easily manipulate and adjust surface maps, while ensuring the
diffeomorphic (1-1, onto and smooth) property of the surface registration.

Theorems 4.1 and 4.2 give us the variation of surface maps under the variation of their
BCs (see (18) and (19)). This allows us to perform optimization on the space of BCs, instead
of working directly on the space of surface diffeomorphisms. The diffeomorphic property of
the optimal surface registration can also be easily ensured during the optimization process.
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Fig. 5 Beltrami representation and reconstruction of a surface diffeomorphism f on hippocampal surfaces

Fig. 6 The error of the reconstructed map f Re versus the number of iterations used in the BHF process
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Fig. 7 Illustration of BHF optimization scheme on brain surfaces

Given an energy functional E defined on the space of surface diffeomorphisms, we can
easily reformulate E and redefine it on the space of BCs. With the BHF variation, we can
derive the Euler-Lagrange equation on E to optimize BCs iteratively. To demonstrate the
idea, we consider a simple example of optimizing surface maps between two human brain
surfaces.

Example 4.1 Consider two different human brain surfaces S1 and S2 as shown in Fig. 7. De-
note the conformal parameterizations of them by φ1 : S1 → D and φ2 : S2 → D. In surface
registration, it is often important to find an optimal 1-1 correspondence that matches some
intensity feature functions defined on each of the surfaces. Let F1 : S1 → R and F2 : S2 → R

be two intensities maps (functions) defined on S1 and S2 respectively. As an illustration, we
define F1 and F2 as F1 := φ−1

1 (5.2x2 + 3.3y2) and F2 := φ−1
2 (6.8x2 + 2.8y). We propose

to find f : S1 → S2 by minimizing E(f ) = ∫
S1

(F1(w) − F2(f (w)))2 + |μ(w)|2 dw. The
optimized map f is a quasi-conformal map that best matches F1 and F2, while preserving
the conformality as far as possible. We can formulate the energy functional to be defined on
the space of BCs over the conformal parameter domain D. That is,

E(μ) =
∫

D

(F1(w) − F2(f
μ))2 + |μ(w)|2 dw. (22)
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The Euler-Lagrange equation can be derived as follows:

d

dt

∣∣∣∣
t=0

E(μ + tν) =
∫

D

d

dt

∣∣∣∣
t=0

(
(F1(w) − F2(f

μ+tν(w)))2 + |μ(w) + tν(w)|2) dw

= −
∫

D

2(F1 − F2(f
μ))∇F2(f

μ)
d

dt

∣∣∣∣
t=0

f μ+tν − 2μ · ν dw

= −
∫

D

∫
D

(
A

B

)
·
(

G1ν1 + G2ν2

G3ν1 + G4ν2

)
dz − 2μ · ν dw

= −
∫

D

(∫
D

(
AG1 + BG3

AG2 + BG4

)
dw −

(
2μ1

2μ2

))
·
(

ν1

ν2

)
dz, (23)

where
(

A

B

) = 2(F1 − F2(f
μ))∇F2; μ = μ1 + iμ2 and ν = ν1 + iν2.

So, the descent direction for μ = μ1 + iμ2 is

dμ1

dt
=

∫
D

(AG1 + BG3) dw − 2μ1 and
dμ2

dt
=

∫
D

(AG2 + BG4) dw − 2μ2. (24)

We can iteratively optimize the energy E as follow:

μn+1 = μn + dt

(∫
D
(AnGn

1 + BnGn
3) dw − 2μ1∫

D
(AnGn

2 + BnGn
4) dw − 2μ2

)
. (25)

Figure 7 shows the experimental results for this example. (A) shows the standard grid on
Brain 1. The standard grid is mapped by the initial map to Brain 2, which is shown as the
blue grid. We optimize the map such that it minimizes the energy functional. The resulting
map is plotted as the black grid. (C) shows the energy at each iteration. It decreases as
the number of iterations increases. This shows that our BHF optimization algorithm can
iteratively optimize the energy functional.

Therefore, with BHF, we can perform optimizations over the space of BCs, which is a
much simpler functional space with least amount of constraints, and simplify the optimiza-
tion procedure significantly.

5 Applications

In this section, we outline some applications of our proposed optimization algorithm to
surface registration. These applications are motivated by practical problems encountered in
medical imaging.

5.1 Optimized Conformal Parameterization with Landmark Matching

With BHF, we first develop an algorithm to effectively compute landmark-matching opti-
mized conformal maps between surfaces. A landmark-matching optimized conformal map
refers to a map that matches corresponding landmarks across surfaces, while preserving con-
formality as much as possible. It is very important for research applications in computational
anatomy [32].
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Fig. 8 This figure shows the framework of the landmark-matching optimized conformal parameterization
algorithm

For example, in human brain mapping, neuroscientists are often interested in finding
a 1-1 correspondence between brain surfaces that matches sulcal/gyral landmark curves,
which are important anatomical features [19]. Besides matching these brain features, they
also want the maps to preserve local geometry as much as possible. Conformal maps are
best known to preserve local geometry and hence are commonly used. However, landmark
matching cannot be guaranteed with conformal maps. Therefore, it is of interest to look for
maps that are as close to conformal as possible and match landmarks well.

Most existing algorithms for computing landmark-matching optimized conformal maps
cannot ensure exact landmark matching. Some existing algorithms can align landmarks con-
sistently, but bijectivity is usually not guaranteed, especially when a large number of land-
mark constraints are imposed [20]. Here, we introduce a variational approach to compute an
optimized conformal map iteratively by minimizing the L2 norm of a Beltrami coefficient μ

(the Beltrami energy). Since μ is a measure of local distortion in conformality, our proposed
algorithm is in fact looking for the best landmark-matching map, which is as conformal as
possible. In practice, the simple Beltrami energy can already effectively preserve the con-
formality of the map as far as possible, while avoiding the situation of non-diffeomorphism
(i.e. ‖μ‖∞ ≥ 1). In the situation that very dramatic adjustment of the diffeomorphism is
required, in which case the Beltrami energy might not be able to guarantee the constraint
‖μ‖∞ < 1. The log-barrier method can be applied. It should be noted that in practice, based
on our extensive experiments, the Beltrami energy is already good enough to effectively
avoid the overlapping situation and minimize the conformality distortion.

Given two surfaces S1 and S2 with the same topology, denote the corresponding land-
mark curves on S1 and S2 by {C̃1

k } and {C̃2
k }, respectively. We first parameterize S1 and S2

conformally onto a common parameter domain D (= D or S
2 ∼= C). Let φ1 : S1 → D and

φ2 : S2 → D be the parameterizations. We propose to look for two maps ϕ1 : D → D and
ϕ2 : D → D such that ϕ−1

i (i = 1,2) maps landmarks {φi(C̃
i
k)} onto the consistent land-

marks {Ck} on D (see Fig. 8), and that it minimizes the following energy functional:

E(ϕi) =
∫

D

|μϕi
|2. (26)
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Fig. 9 (Color online) Illustration of landmark-matching optimized conformal parameterizations of synthetic
surfaces with 1 landmark

Equation (26) ensures that each landmark-matching parametrization ϕi has the least con-
formality distortion. Hence, the local geometric distortion under ϕi is minimized. In practice,
starting from the conformal map with μ = 0, the Beltrami energy can effectively avoid the
non-diffeomorphic situation (‖μ‖∞ ≥ 1), and so the diffeomorphic property of the mini-
mizer can be ensured. A landmark-matching map f between S1 and S2 can then be obtained
by the composition map: f := φ−1

1 ◦ ϕ2 ◦ ϕ−1
1 ◦ φi . We can compute the Euler-Lagrange

equation of (26) with respect to μϕi
as follows:

d

dt

∣∣∣∣
t=0

E(μϕi
+ tv) =

∫
D

d

dt

∣∣∣∣
t=0

|μϕi
+ tv|2

= 2
∫

D

[Re(μϕi
)Re(v) + Im(μϕi

)Im(v)]. (27)

The derivative in (27) is negative when v = −2μϕi
. Hence, we can iteratively minimize

E(μϕi
) by the following scheme:

μn+1
ϕi

= (1 − 2dt)μn
ϕi

. (28)

In order to ensure landmarks are matched at each iteration, a smooth delta function has
to be used. The detailed computational algorithm can be described as follows:

Algorithm 3 Optimized Conformal Parameterization with Landmark Matching
Input: Surfaces S1 and S2; Landmark curves C̃1

k on S1, C̃2
k on S2.
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Fig. 10 (Color online) The Beltrami coefficients of the optimized conformal parameterizations of 2 synthetic
surfaces fixing one landmark. The norms of the Beltrami coefficients are plotted as a colormap; values are
very small except near the landmark curves

Output: Optimized conformal parameterization ϕ1 and ϕ2 of S1 and S2 with landmark match-
ing.

(1) Compute the initial map ϕ0
i that aligns landmark curves {φi(C̃

i
k)} to {Ck} on D. Set

n = 0.
(2) Compute the Beltrami coefficient μn

ϕi
of ϕn

i . Let μn+1
ϕi

= μn
ϕi

− 2μn
ϕi

dt .

(3) Compute �Vn = V (ϕn
i ,−2μn

ϕi
) using the BHF formula.

(4) Let ϕn+1
i (p) = ϕn

i (p) + δ(p) �Vn(p)dt , where δ is a smooth delta function on D that is
equal to zero around {Ci

k} and one elsewhere. This ensures landmarks are matched at
each iteration. Set n = n + 1.

(5) Repeat Step 2 to Step 5. If |E(μn+1
ϕi

) − E(μn
ϕi

)| < ε, stop.

We tested our proposed method on synthetic data as well as real medical data. Figure 9
shows the result of matching two synthetic surfaces with one landmark on each surface. The
blue curves on (A) and (B) represent the landmarks on the two surfaces. Under a conformal
map, the landmark on surface A cannot be mapped exactly onto the one on surface B (the
black curve in (B)). Using our proposed method, the corresponding landmarks on each sur-
face can be exactly matched, as shown in (C). (D) and (E) show the percentage change in
energy functionals of the optimized conformal parameterizations for surface A and B. The
energies decrease as the number of iterations increases. This indicates a decrease in the con-
formality distortion. Figure 10 shows the Beltrami coefficient of each optimized conformal
parameterization. The colormap shows the norm of the Beltrami coefficient. Note that the
norm of the Beltrami coefficient is very small, except near the landmark curve. This means
that the greatest conformality distortion is concentrated around the landmarks, as expected.
We also tested our algorithm on synthetic surfaces, with five landmarks as shown in Fig. 11.
Again, the landmarks cannot be exactly matched under a conformal map (see black curves
in (B)). However, they are exactly matched using our proposed algorithm. As shown in (D)
and (E), the percentage change in energies decreases as the number of iterations increases,
meaning that conformality distortion is progressively reduced. Figure 12 shows the Bel-
trami coefficients of the optimized conformal parameterizations fixing landmarks. Again,
the norm of the Beltrami coefficient is very small except near the landmark curves.

Finally, we tested our algorithm on real cortical hemispheric surfaces extracted from
brain MRI scans, acquired from normal subjects at 1.5 Tesla (on a GE Signa scanner). Fig-
ures 13(A) and (B) show 2 different brain surfaces with 3 major sulcal curves labeled on
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Fig. 11 Landmark-matching optimized conformal parameterizations of 2 synthetic surfaces fixing 5 land-
marks

Fig. 12 The Beltrami coefficient of the optimized conformal parameterization of 2 synthetic surfaces fixing
5 landmarks

each of them (see the blue curves). Under a conformal map, landmarks on Brain 1 and Brain
2 are not exactly matched (see the black curves in (B)). They are, however, exactly matched
using our proposed algorithm as shown in (C). (D) and (E) show the percentage change
in the energies of the optimized conformal parameterizations of the surfaces. The energies
decrease as the number of iterations increases. This shows that the conformality distortion
is gradually reduced. Figure 14 shows the Beltrami coefficients of the optimized conformal
parameterizations of the 2 brain surfaces. Again, the norms of the Beltrami coefficients are
very small except near the sulcal curves.
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Fig. 13 (Color online) Landmark-matching optimized conformal parameterizations of cortical hemispheric
surfaces with 3 major sulcal landmarks

Fig. 14 (Color online) The Beltrami coefficient of the optimized conformal parameterizations of 2 cortical
hemispheric surfaces with 3 major sulcal landmarks

5.2 Hippocampal Registration with Geometric Matching

In medical imaging, there are cases where anatomical landmark features cannot be easily
defined on some brain structures. In such cases, landmark-matching constraints cannot be
used as a criterion to establish good correspondence between surfaces. Finding the best 1-
1 correspondence between these structures becomes challenging. One typical example is
the hippocampus (HP), which is an important structure in the human brain. It belongs to
the limbic system and plays important roles in long-term memory and spatial navigation.
Surface-based shape analysis is commonly used to study local changes of HP surfaces due



576 J Sci Comput (2012) 50:557–585

Fig. 15 (Color online) Shape registration with geometric matching using Beltrami Holomorphic Flow (BHF)

to pathologies such as Alzheimer’s disease (AD), schizophrenia and epilepsy [11, 29, 30,
33].

On HP surfaces, there are no well-defined anatomical landmark features. High-field
structural or functional imaging, where discrete cellular fields are evident [38], is still not
routinely used. Finding meaningful registrations between HP surfaces becomes challeng-
ing. It is thus important to develop methods to look for good registrations between different
HP surfaces without landmarks. To achieve this, we develop an algorithm to automatically
register HP surfaces using geometric matching, while avoiding the need to manually label
landmark features. This is done by optimizing a compound energy, which minimizes the L2

norm of the Beltrami coefficient and matches curvatures defined on each surface. Given two
hippocampal surfaces S1 and S2. The compound energy Eshape is defined mathematically as

Eshape(μ) = α

∫
D

|μ|2 + β

∫
D

(H1 − H2(f
μ))2 + γ

∫
D

(K1 − K2(f
μ))2 (29)

where H1, H2 are the mean curvatures on S1, S2 respectively, defined on the common pa-
rameter domain D, and K1, K2 are the Gaussian curvatures. The first integral minimizes
the conformality distortion of the surface registration, and ensures the diffeomorphic prop-
erty of the minimizer by controlling μ. The second and third integrals ensure the optimized
registration matches the curvatures as much as possible. It turns out that Eshape is a complete
shape index which measures the dissimilarity between two surfaces. Specifically, Eshape = 0
if and only if S1 and S2 are geometrically equal, up to a rigid motion. Therefore, surface map
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minimizing Eshape is the best registration that matches the geometric information as well as
possible.

We can minimize Eshape in (29) iteratively, using the proposed BHF optimization algo-
rithm. The Euler-Lagrange equation of (29) can be computed as follows:

d

dt

∣∣∣∣
t=0

Eshape(μ)

= α

∫
D

d

dt

∣∣∣∣
t=0

|μ + tv|2 + β

∫
D

d

dt

∣∣∣∣
t=0

(H1 − H2(f
μ+tv))2

+ γ

∫
D

d

dt

∣∣∣∣
t=0

(K1 − K2(f
μ+tv))2

= 2α

∫
D

μ · v − 2β

∫
D

(H1 − H2(f
μ))∇H2(f

μ) · df μ+tv

dt

∣∣∣∣
t=0

− 2γ

∫
D

(K1 − K2(f
μ))∇K2(f

μ) · df μ+tv

dt

∣∣∣∣
t=0

= 2
∫

w

{
αμ(w) −

∫
z

[
(βH̃ + γ K̃) ·

(
G1

G2

)
, (βH̃ + γ K̃) ·

(
G3

G4

)]}
· v(w) (30)

where
∫

w
• := ∫

D
•dw and

∫
z
• := ∫

D
•dz are defined as the integral over variables w and z

respectively, H̃ := (H1 − H2(f
μ))∇H2(f

μ), K̃ := (K1 − K2(f
μ))∇K2(f

μ), and Gi is as
defined in (20).

The derivative in (30) is negative when v = −2(μ(w) − ∫
z
[(H̃ + K̃) · G,det(H̃ +

K̃,G)]). Hence, we can iteratively minimize E(μ) by the following iterative scheme:

μn+1 − μn = −2

(
αμn −

∫
z

[(βH̃ n + γ K̃n) · Gn,det(βH̃ n + γ K̃n,Gn)]
)

dt. (31)

The detailed computational algorithm can be described as follows:

Algorithm 4 BHF Registration with Geometric Matching
Input: Hippocampal surfaces S1 and S2, step length dt , threshold ε

Output: Geometric matching registration f μ and the shape index E(f μ)

(1) Compute the conformal parameterizations of S1 and S2. Denote them by φ1 : S1 → D

and φ2 : S2 → D

(2) Set ϕ0 := Id : D → D and n = 0.
(3) Compute the Beltrami coefficient μn

ϕ of ϕn (e.g. μ0
ϕ = 0). Update μn+1

ϕ by (31).

(4) Compute: �Vn = V (ϕn,μn+1
ϕ − μn

ϕ) using (18). Let ϕn+1 = ϕn + �Vn. Set n = n + 1.
(5) Repeat Step 3 to Step 5. If |E(μn+1

ϕ ) − E(μn
ϕ)| < ε, Stop.

We have tested our algorithm on 212 HP surfaces automatically extracted from 3D brain
MRI scans with a validated algorithm [25, 27, 28]. Scans were acquired from normal and
diseased (AD) elderly subjects at 1.5 Tesla (on a GE Signa scanner). In our experiments,
we set α = 1 and β = γ = 2. Experimental results show that our proposed algorithm is
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Fig. 16 (Color online) BHF
registration between two normal
subjects. The shape index Eshape
is plotted on the right, which
captures local shape differences

Fig. 17 (Color online) BHF registration between 2 normal subjects and 2 subjects with Alzheimer’s disease.
The local shape differences captured by Eshape are plotted on the surfaces

effective in registering HP surfaces with geometric matching. The proposed shape energy
can also be used to measure local shape difference between HPs. Figure 15(A) shows two
different HP surfaces. They are registered using our proposed BHF algorithm with geometric
matching. The registration is visualized using a grid map and a texture map, which shows a
smooth 1-1 correspondence. The optimal shape index Eshape is plotted as a colormap in (B).
Eshape effectively captures the local shape difference between the surfaces. (C) shows the
shape energy at each iteration. With the BHF algorithm, the shape energy decreases as the
number of iterations increases. (D) shows the curvature mismatch energy (E = ∫

β(H1 −
H2(f ))2 + γ (K1 − K2(f ))2). It decreases as the number of iterations increases, meaning
that the geometric matching improves. (E) shows the Beltrami coefficient of the map in
each iteration, which shows the conformality distortion of the map. Some conformality is
intentionally lost to allow better geometric matching.

Figure 16 shows the BHF registration between two normal HPs. The complete shape
index Eshape is plotted as color map on the right. Again, Eshape can accurately capture local
shape differences between the normal HP surfaces.

Figure 17 shows the BHF hippocampal registrations between normal elderly subjects and
subjects with Alzheimer’s disease. The BHF registrations give smooth 1-1 correspondence
between the HP surfaces. We can use the complete shape index Eshape to detect local shape
differences between healthy and unhealthy subjects.

We also study the temporal shape changes of normal and AD HP surfaces, as shown in
Fig. 18. We compute the deformation pattern of its HP surfaces for each subject, measured
at time = 0 and time = 12 months (see [24] for longitudinal scanning details). The left
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Fig. 18 (Color online) Temporal HC shape changes of normal and subjects with Alzheimer’s disease

two panels show the temporal deformation patterns for two normal subjects. The middle
two panels show the temporal deformation patterns for two AD subjects. The last column
shows the statistical significance p-map measuring the difference in the deformation pattern
between the normal (n = 47) and AD (n = 53) groups, plotted on a control HP. The deep
red color highlights regions of significant statistical difference. This method can potentially
be used to study factors that influence brain changes in AD, as in [26].

6 Conclusion

In this paper, we propose a simple representation of bijective surface maps using Beltrami
coefficients (BCs), which helps the optimization process of surface registrations. To com-
plete the representation scheme, we develop a reconstruction algorithm of the surface dif-
feomorphism from a given BC using the Beltrami holomorphic flow method. This allows
us to move back and forth between BCs and surface diffeomorphisms. By formulating the
variation of the associated surface map under the variation of BC, we reformulate varia-
tional problems over the space of surface diffeomorphisms into variational problems over
the space of BCs. It greatly simplifies the optimization procedure. More importantly, a bijec-
tive surface map is always guaranteed during the optimization process. Experimental results
on synthetic examples and real medical applications show the effectiveness of our proposed
algorithms for surface registration.

However, one limitation of our algorithm is that it can only deal with genus-0 closed sur-
faces or simply-connected open surfaces. Therefore, in future, we are interested in extending
the proposed method to high-genus closed surfaces or multiply-connected open surfaces.
We will also develop fast algorithm to compute the integral in the variational formula of the
BHF.
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Appendix

A.1 Numerical Implementation

In this part, we give detailed numerical implementations showing how the proposed algo-
rithms can be computed. In practice, all surfaces are represented by meshes that consist of
vertices, edges, and triangular/rectangular faces. In our iterative scheme, the functions and
their partial derivatives are defined on each vertex, and then linearly interpolated to define
their values inside each triangular/rectangular face.

1. Computation of the Beltrami Coefficient Let f = (f1, f2) be the diffeomorphism de-
fined on the parameter domain D. The Beltrami coefficient μf associated uniquely to f can
be computed as follows (see equation (16)):

μf =
[(

∂f1

∂x
− ∂f2

∂y

)
+ i

(
∂f2

∂x
+ ∂f1

∂y

)]/[(
∂f1

∂x
+ ∂f2

∂y

)
+ i

(
∂f2

∂x
− ∂f1

∂y

)]
. (32)

To compute μf , we simply need to approximate the partial derivatives at each vertex:
Dxfi(�v) ≈ ∂fi

∂x
(�v) and Dyfi(�v) ≈ ∂fi

∂y
(�v). We first approximate the gradient ∇T fi on each

face T by solving:

( �v1 − �v0

�v2 − �v0

)
∇T fi =

⎛
⎝

fi (�v1)−fi (�v0)

|�v1−�v0|
fi (�v2)−fi (�v0)

|�v2−�v0|

⎞
⎠ , (33)

where [ �v0, �v1] and [ �v0, �v2] are two edges on T . After the gradient ∇T fi have been computed
for each face T , Dxfi(�v) and Dyfi(�v) can be computed by taking average as follows:

(
Dxfi(�v)

Dyfi(�v)

)
=

∑
T ∈N�v

∇T fi/|N�v|, (34)

where N�v is the set of all faces around the vertex �v. Hence, the Beltrami coefficient μf (�v)

can be computed by:

μf (�v) = (Dxf1(�v) − Dyf2(�v)) + i(Dxf2(�v) + Dyf1(�v))

(Dxf1(�v) + Dyf2(�v)) + i(Dxf2(�v) − Dyf1(�v))
. (35)

2. Computation of the BHF Reconstruction For the BHF reconstruction algorithm, the
most important step is the computation of the variation V (f μ, ν) of f μ under the variation
of μ. We will discuss the computation of V (f μ, ν) for D = D. The computation for D =
S

2 ≡ C is similar. From (18) and (19),

V (f μ, ν)(w) =
∫

D

K(z,w)dx dy,

where

K(z,w) = −f μ(w)(f μ(w) − 1)

π

(
ν(z)((f μ)z(z))

2

f μ(z)(f μ(z) − 1)(f μ(z) − f μ(w))

+ ν(z)((f μ)z(z))
2

f μ(z)(1 − f μ(z))(1 − f μ(z)f μ(w))

)
.
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Now, f μ and ν are both defined on each vertex �v. Also, (f μ)z(�v) can be approximated
as:

(f μ)z(�v) ≈ (Dxf1(�v) − Dyf2(�v)) + i(Dxf2(�v) + Dyf1(�v))

2
. (36)

For each pair of vertices (�v, �w), K(�v, �w) can be easily approximated. In case K(�v, �w) is
singular, we set K(�v, �w) = 0. Now, for each vertex �v, we define A�v as

A�v =
∑
T ∈N�v

Area(T )/NT , (37)

where NT is the number of vertices on T . That is, NT = 3 if T is a triangle and NT = 4 if T

is a rectangle. Then, V (f μ, ν) can be approximated by:

V (f μ, ν)( �w) =
∑

�v
K(�v, �w)A�v. (38)

A.2 Proof of Theorem 4.2

To prove the theorem, we need the following lemma:

Lemma 7.1 Let f : D → D be a diffeomorphism of the unit disk fixing 0 and 1 and satisfy-
ing the Beltrami equation fz = μfz with μ defined on D. Let f̃ be the extension of f to C

defined as

f̃ (z) =
⎧⎨
⎩

f (z), if |z| ≤ 1,

1
f (1/z)

, if |z| > 1.
(39)

Then f̃ satisfies the Beltrami equation

f̃z = μ̃f̃z (40)

on C, where the Beltrami coefficient μ̃ is defined as

μ̃(z) =
⎧⎨
⎩

μ(z), if |z| ≤ 1,

z2

z2 μ(1/z), if |z| > 1.
(41)

Proof We need to prove f̃ satisfies the Beltrami equation:

f̃z = μ̃f̃z. (42)

Here, f̃z and f̃z are defined as in 4. Clearly, f̃ satisfies (40) on D. Outside D, we consider
f and f̃ as functions in z and z.
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Note that:

∂

∂z
f (z, z) = ∂

∂z
f (z, z). (43)

We have:

∂f̃ (z, z)

∂z
= ∂

∂z

1

f (1/z,1/z)
= −f (1/z,1/z)

−2 ∂

∂z
f (1/z,1/z)

= −f (1/z,1/z)
−2 ∂

∂z
f (1/z,1/z) = −f (1/z,1/z)

−2
(−1/z2)fz(1/z,1/z)

= z−2f (1/z,1/z)
−2

fz(1/z,1/z). (44)

Also,

∂f̃ (z, z)

∂z
= ∂

∂z

1

f (1/z,1/z)
= −f (1/z,1/z)

−2 ∂

∂z
f (1/z,1/z)

= −f (1/z,1/z)
−2 ∂

∂z
f (1/z,1/z) = −f (1/z,1/z)

−2
(−1/z2)fz(1/z,1/z)

= z−2f (1/z,1/z)
−2

fz(1/z,1/z) = z−2f (1/z,1/z)
−2

μ(1/z)fz(1/z,1/z). (45)

Now from (44),

fz(1/z,1/z) = z2f (1/z,1/z)
2 ∂f̃ (z, z)

∂z
. (46)

Thus, we have,

∂f̃ (z, z)

∂z
= z−2f (1/z,1/z)

−2
μ(1/z)fz(1/z,1/z)

= z−2f (1/z,1/z)
−2

μ(1/z)z2f (1/z,1/z)
2 ∂f̃ (z, z)

∂z

= z2

z2 μ(1/z)
∂f̃ (z, z)

∂z
= μ̃(z)

∂f̃ (z, z)

∂z
. (47)

�

Proof of Theorem 4.2 According to Quasiconformal Teichmuller Theory, there is a one-
to-one correspondence between the set of quasiconformal homeomorphisms of C fixing 3
points and the set of smooth complex-valued functions μ on D for which sup |μ| = k <

1. If a diffeomorphism f on C satisfies (40), (41), then 1/f (1/z) also satisfies the same
equation. By the uniqueness of the solution according to Theorem 4.1, we must have f (z) =
1/f (1/z). On ∂D, z = 1/z. This implies f (z) = 1/f (z), and hence |f (z)| = 1 on ∂D.
Therefore, by restricting the solution of (40) on C fixing 0, 1 and ∞ to D, we can get a
diffeomorphism of D fixing 0 and 1. Equation (12) can then be applied to get the variational
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formula V (f μ, ν) of f μ under the variation ν of μ. To get V (f μ, ν), we evaluate the integral
in (12).

∫
C

ν(z)((f μ)z(z))
2

f μ(z)(f μ(z) − 1)(f μ(z) − f μ(w))
dx dy

=
∫

D

ν(z)((f μ)z(z))
2

f μ(z)(f μ(z) − 1)(f μ(z) − f μ(w))
dx dy

+
∫

C\D

ν(z)((f μ)z(z))
2

f μ(z)(f μ(z) − 1)(f μ(z) − f μ(w))
dx dy. (48)

Now, outside the disk D,

ν(z) = z2

z2 ν(1/z) and
∂f (z)

∂z
= z−2f (1/z,1/z)

−2
fz(1/z,1/z). (49)

We have: ∫
C

ν(z)((f μ)z(z))
2

f μ(z)(f μ(z) − 1)(f μ(z) − f μ(w))
dx dy

=
∫

D

ν(z)((f μ)z(z))
2

f μ(z)(f μ(z) − 1)(f μ(z) − f μ(w))
dx dy

+
∫

C\D

ν(z)((f μ)z(z))
2

f μ(z)(f μ(z) − 1)(f μ(z) − f μ(w))
dx dy

=
∫

D

ν(z)((f μ)z(z))
2

f μ(z)(f μ(z) − 1)(f μ(z) − f μ(w))
dx dy

+
∫

C\D

(z2/z2)ν(1/z)((f μ)z(z))
2

f μ(z)(f μ(z) − 1)(f μ(z) − f μ(w))
dx dy

=
∫

D

ν(z)((f μ)z(z))
2

f μ(z)(f μ(z) − 1)(f μ(z) − f μ(w))
dx dy

+
∫

D

(z2/z2)ν(z)((f μ)z(1/z))2

f μ(1/z)
−1

(f μ(1/z)
−1 − 1)(f μ(1/z)

−1 − f μ(w))

1

|z|4 dx dy

=
∫

D

ν(z)((f μ)z(z))
2

f μ(z)(f μ(z) − 1)(f μ(z) − f μ(w))
dx dy

+
∫

D

ν(z)((f μ)z(z))
2

f μ(z)(1 − f μ(z))(1 − f μ(z)f μ(w))
dx dy. (50)

Substituting (50) into (12), we get an integral flow equation on D, which is given by

V (f μ, ν)(w) = −f μ(w)(f μ(w) − 1)

π

(∫
D

ν(z)((f μ)z(z))
2

f μ(z)(f μ(z) − 1)(f μ(z) − f μ(w))
dx dy

+
∫

D

ν(z)((f μ)z(z))
2

f μ(z)(1 − f μ(z))(1 − f μ(z)f μ(w))
dx dy.

)
. (51)

�
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