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Abstract The accuracy in negative-order norms is examined for a local-structure-preserving
local discontinuous Galerkin method for the Laplace equation (Li and Shu, in Methods Appl.
Anal. 13:215–233, 2006). With its distinctive feature in using harmonic polynomials as local
approximating functions, this method has lower computational complexity than the standard
local discontinuous Galerkin method while keeping the same order of accuracy in both the
energy and the L2 norms. In this note, numerical experiments are presented to demonstrate
some accuracy loss of the method in negative-order norms.

Keywords Discontinuous Galerkin method · Laplace equation ·
Local-structure-preserving · Harmonic polynomial · Negative-order norm

1 Introduction

A local-structure-preserving (LSP) local discontinuous Galerkin (LDG) method was intro-
duced in [12] for the Laplace equation. The method is based on the standard LDG method for
the second order elliptic problems [3], and its distinctive feature is to use harmonic polyno-
mials (polynomials which satisfy �u = 0, the Laplace equation) to approximate the solution
inside each mesh element. Using this local-structure-preserving discrete space significantly
reduces the size of the final algebraic system and therefore the overall computational com-
plexity. Meanwhile, the method keeps the same order of accuracy in both the energy and
the L2 norms as the standard LDG method (see [3, 12] and Sect. 2). This work is among
the series of developments in [6, 10, 11] to design discontinuous Galerkin (DG) methods
with better cost efficiency for certain differential equations. Such efficiency is achieved by
incorporating the a priori knowledge of the exact solutions into the choice of local approxi-
mating functions in DG formulations, and it is mainly due to the flexibility of these methods
in using various local discrete spaces. Some other examples of DG methods utilizing this
flexibility include [8, 17].
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The objective of this note is to investigate the accuracy of the aforementioned LSP LDG
method in negative-order norms. With harmonic polynomials as local approximations, the
standard duality argument can not be applied to obtain the error estimates in negative-order
norms for the LSP LDG method. On the other hand, negative-order norm error estimates
often contain the information on the oscillatory nature of the error, which can be used to
enhance the accuracy of the numerical solutions. In fact, a local post-processing technique
was applied to finite element solutions of elliptic problems in [2] and to DG solutions of
hyperbolic problems in [7, 15], and it filtered out the oscillation in the error and enhanced
the accuracy in the L2 norm up to the order of the error estimates in negative-order norms.
The success of this technique relies only on a negative-order norm error estimate of the
numerical solution and a local translation invariance of the mesh. Based on this, we apply
the post-processing technique of [2, 7, 15] to the numerical solutions of our LSP LDG
method. By examining the accuracy of the post-processed solutions, we indirectly study the
accuracy of the method in negative-order norms. Numerical experiments indicate that the
LSP LDG method for the Laplace equation, though having lower computational complexity
while keeping the same order of accuracy as the standard LDG method [3] in commonly
used norms, has some accuracy loss in negative-order norms. Mathematical understanding
of this result is yet to be established.

The rest of this note is organized as follows. In Sect. 2, both the standard and the LSP
LDG methods are reviewed for solving the Laplace equation. Computational complexity
and error estimates in the energy and the L2 norms are also briefly discussed. In Sect. 3,
numerical experiments are presented to indicate some accuracy loss of the LSP LDG method
in negative-order norms. Concluding remarks are given in Sect. 4.

2 Numerical Methods

In this section, the standard [3] and the LSP [12] LDG methods will be reviewed for the
Laplace equation

− � u = 0 in �, u|�D
= gD,

∂u

∂n
|�N

= gN · n, (2.1)

where � ⊂ R
d is a bounded domain with n being the outward unit normal along the domain

boundary �̄ = �̄N ∪ �̄D , �N and �D are disjoint, and |�D|Rd−1 > 0. Though these methods
can be formulated for general space dimension, they are presented here only for d = 2.

We start with a mesh Th = {K} for the domain �, with the triangular or rectangular
element being denoted as K , the edge as e, the diameter of K as hK , and the meshsize of
Th as h = maxK∈Th

hK . We further denote the union of all interior edges as Ei , the union of
boundary edges in �D (resp. �N ) as ED (resp. EN ), and E = Ei ∪ ED ∪ EN . With an auxiliary
variable q, (2.1) can be rewritten as

q = ∇u, −∇ · q = 0 in �, u|�D
= gD, q · n|�N

= gN · n. (2.2)

Based on [3], a general LDG method for (2.2) can be formulated as: finding (uh,qh) ∈
(Vh,Mh), such that

∫
K

qh ·rdx = −
∫

K

uh∇ ·rdx +
∫

∂K

ûhr · nKds,

∫
K

qh ·∇vdx =
∫

∂K

vq̂h ·nKds (2.3)
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for any (v, r) ∈ (Vh,Mh) and K ∈ Th. Here nK is the outward unit normal of K , (Vh,Mh) is
a discrete space pair to approximate (u,q), and (ûh, q̂h) are the so-called numerical fluxes,
which are single-valued and approximate (u,q) along E . To finalize the scheme, one needs
to specify (ûh, q̂h) and (Vh,Mh).

The LSP LDG method in [12] employs the same numerical fluxes as the standard LDG
method in [3]. That is, for an interior edge e ∈ Ei ,

q̂h = {{qh}} − C11[[uh]] − C12[[qh]], ûh = {{uh}} + C12 · [[uh]]. (2.4)

Here the standard notations are used for the average {{·}} and the jump [[·]]: given e =
K+ ∩ K− ∈ Ei , and with n± = nK± and (v±, r±) = (v, r)|K± , we define on e

{{v}} = (v+ + v−)/2, {{r}} = (r+ + r−)/2,

[[v]] = v+n+ + v−n−, [[r]] = r+ · n+ + r− · n−.

And for a boundary edge e ∈ ∂K , with (v+, r+) = (v, r)|K

q̂h =
{

q+
h − C11(u

+
h − gD)n for e ∈ ED,

gN for e ∈ EN,
ûh =

{
gD for e ∈ ED,

u+
h for e ∈ EN .

(2.5)

The parameters C11 and C12 in (2.4)–(2.5) can be chosen edge by edge, and their values may
affect the accuracy and stability of LDG methods as well as the matrix structures in the final
algebraic system [3].

We now turn to the choice of the discrete spaces (Vh,Mh). For the standard LDG method
in [3], (Vh,Mh) = (V k

h ,Mk
h) = (V

k,STD
h ,Mk,STD

h ) is taken, with

V
k,STD
h = {u ∈ L2(�) : u|K ∈ P k(K), ∀K ∈ Th},

Mk,STD
h = {q ∈ [L2(�)]d : q|K ∈ [P k(K)]d , ∀K ∈ Th},

where P k(K) is the set of polynomials of the total degree at most k on K . For the LSP LDG

method in [12], we use (Vh,Mh) = (V k
h ,Mk

h) = (V
k,LSP
h ,Mk,LSP

h ), with

V
k,LSP
h = {u ∈ L2(�) : u|K ∈ P k(K), �u|K = 0, ∀K ∈ Th},

Mk,LSP
h = {q ∈ [L2(�)]d : q|K ∈ [P k(K)]d , ∇ · q|K = 0, ∀K ∈ Th}.

Another choice, (V k
h ,Mk

h) = (V
k,LSP
h ,M̃k,LSP

h ), is also considered in [12] with M̃k,LSP
h =

Mk,STD
h . In both cases, the approximating functions in Vh for the LSP LDG method are

piecewise harmonic polynomials, and such functions satisfy the Laplace equation exactly in
each element K .

With (2.4)–(2.5), qh in (2.3) can be solved locally in terms of uh, so the size of the final
algebraic system of the LDG method depends only on the dimension of Vh. By incorpo-
rating the a priori knowledge of the exact solution to the discrete space Vh, the LSP LDG
method results in a smaller linear system especially when polynomials of higher degrees are
used, and therefore has lower computational complexity. More specifically, the dimension
of the local-structure-preserving space V

k,LSP
h on each element K ∈ Th is 2k + 1 which de-

pends on k linearly, whereas the dimension of the standard polynomial space V
k,STD
h on K is

(k + 2)(k + 1)/2, which depends on k quadratically. Indeed, this local-structure-preserving
approximating space V

k,LSP
h can be used in any of the DG methods discussed in [1] to provide
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high order numerical methods for the Laplace equation with low computational complexity.
The actual cost efficiency of such methods certainly needs additional investigation.

The reduction of the computational complexity discussed above does not compromise
the overall accuracy of the LSP LDG method when it is measured in the L2 norm and
the energy norm. In fact, with the meshes {Th}h being regular [4] and for the sufficiently
smooth exact solution u, one can establish the error estimate ‖∇u − qh‖L2(�) = O(hk) for
both standard and LSP LDG methods (see [3, 12]) with C11 = O(1/h) or O(1). If the full
elliptic regularity is further assumed for the adjoint problem of (2.1)

− � ψ = f in �, ψ |�D
= 0,

∂ψ

∂n

∣∣∣∣
�N

= 0, (2.6)

namely, ‖ψ‖2,� ≤ Cr‖f ‖L2(�), ∀f ∈ L2(�) with a constant Cr solely depending on � and
‖ · ‖t,� with t > 0 being the standard Sobolev norm, then a duality argument can lead to the
L2 error estimate ‖u − uh‖L2(�) = O(hk+1) with C11 = O(1/h). This estimate was given in
[3] for the standard LDG method. And it can also be established for the LSP LDG method
by following the general analysis in [1] based on the primal formulation of the scheme.
With the focus of this note in mind, we will not present the proof but mention that the
duality argument uses the fact of V

1,LSP
h = V

1,STD
h , which ensures that the discrete space

V
1,LSP
h can be used to approximate the solutions of both the Laplace equation and its adjoint

problem (2.6). One can refer to [9] for the details of the proof.

3 Accuracy in Negative-Order Norms

For many applications, numerical methods are regarded as being accurate if they are accurate
in commonly used norms such as the energy and L2 norms. In certain applications (with an
example indicated below), one may also be interested in the accuracy of the methods in

negative-order norms ‖ · ‖−s,�, namely, ‖v‖−s,� = supφ∈C∞
0 (�)

∫
� v(x)φ(x)dx

‖φ‖s,�
, with any natural

number s. The duality argument in [3] can be used to show the error estimates in negative-
order norms for the standard LDG method. However, such argument can not be applied

directly to the LSP LDG method in Sect. 2 to get similar estimates, due to that V
k,LSP
h with

k > 1 is not a suitable discrete space for the adjoint problem (2.6) of the Laplace equation.
On the other hand, error estimates in negative-order norms often contain the information

on the oscillatory nature of the error, and this has been used to enhance the accuracy of some
numerical methods by a local post-processing technique, which was originally developed
by Bramble and Schatz [2] in the context of continuous finite element methods for elliptic
problems and later by Cockburn et al. [7], Ryan et al. [15], and Ryan and Cockburn [13] in
the context of DG methods for hyperbolic equations, and was also applied to LDG methods
for convection-diffusion equations [7] and for differential equations with even higher spatial
derivatives [16]. With a negative-order norm error estimate of the numerical solution and a
local translation invariance of the mesh, this local post-processing technique can filter out
the (possible) oscillation in the error and recover the accuracy in the L2 norm, up to the
order of the error estimates in the negative-order norm. Note that a negative-order norm of
a function is no bigger than its L2 norm, that is, ‖v‖−s,� ≤ ‖v‖0,� for s ≥ 1. When the
error estimate in the negative-order norm for a numerical method is of higher order than
its L2 error estimate, the post-processed solution will be of higher order accuracy than the
original numerical solution in the L2 norm. Based on this, we next apply the post-processing
technique of [2, 7, 15] to the numerical solutions of our LSP LDG method. Instead of aiming
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Table 1 The summary of the convergence orders of the LDG approximation (uh,qh) and the post-processed
approximations (P uh, P qh). μi(k) with i, k = 1,2,3 are non-negative and they are defined by (3.1)

C11 Method ‖u − uh‖0,� ‖u − P uh‖0,� ‖q − qh‖0,� ‖q − P qh‖0,�

1/h LSP LDG method I k + 1 k + 1 k k + 1 + μ1(k)

LSP LDG method II k + 1 k + 1 k k + 1

Standard LDG method k + 1 2k k 2k

10 LSP LDG method I k + 1 k + 1 k + μ2(k) k + 2

LSP LDG method II k + 1 k + 1 + μ3(k) k + μ3(k) k + 1 + μ3(k)

Standard LDG method k + 1 2k + μ3(k) k + μ3(k) 2k + μ3(k)

at enhancing the accuracy of the computed solution, we use this technique as an indirect tool
to study the accuracy of the method in negative-order norms. To facilitate our understanding,
the results for the standard LDG method are also presented.

We consider an example with the smooth exact solution u(x, y) = e−x cos(y) in � =
[0,1]2 and the Dirichlet boundary condition. The numerical fluxes are taken as q̂ =
q+ − C11[[u]], û = u− for the interior edge e = K+ ∩ K− ∈ Ei , where (u−, q+) is either
(u|K+ , q|K−) or (u|K− , q|K+). Such choice results in a smaller local dependence stencil and
hence a sparser matrix in the final system. Both the standard and the LSP LDG methods
are simulated on uniform rectangular meshes in quadruple precision. We then apply the lo-
cal post-processing technique of [7, 15] by convoluting the numerical solution in (V k

h ,Mk
h)

with the two-dimensional kernel K2(k+1),k+1 defined in [15]. The tensor product of a six-
point Gaussian quadrature formula in one dimension is used to compute the errors, and this
simplifies the post-processing step into small matrix vector multiplications of the pre-stored
matrices and the coefficients which represent the numerical solution in the neighboring mesh
elements [15]. Since the kernel K2(k+1),k+1 involves a symmetric stencil, to avoid the bound-
ary effect, the errors before and after the post-processing step are computed in a sub-domain
�c = [0.25,0.75]2. Alternatively, one can combine the one-sided post-processing technique
developed in [14] for errors in the whole domain �.

For k = 1,2,3, convergence orders in the L2 norm are summarized in Table 1 for numer-
ical solutions before and after the post-processing procedure. The non-negative μi(k) with
i, k = 1,2,3 are defined as

μ1(k) =

⎧⎪⎨
⎪⎩

0, for k = 1,

1, for k = 2,

0, for k = 3,

μ2(k) =

⎧⎪⎨
⎪⎩

1, for k = 1,

1, for k = 2,

0.4 ∼ 0.5, for k = 3,

(3.1)

μ3(k) =

⎧⎪⎨
⎪⎩

1, for k = 1,

0, for k = 2,

0, for k = 3.

The more detailed errors and convergence orders are reported in Tables 2–5. Here the LSP
LDG method I uses (V

k,LSP
h ,Mk,LSP

h ) as the discrete space, and the LSP LDG method II uses
(V

k,LSP
h ,M̃k,LSP

h ). In addition, (u,q), (uh,qh), and (Puh, P qh) represent the exact solution,
the numerical solution, and the post-processed numerical solution, respectively. We take
C11 = 1/h and 10. Based on the numerical results and [7], for k = 1,2,3, we conclude that
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Table 2 Errors and convergence orders of the LDG approximation uh and the post-processed approximation
P uh . C11 = 1/h. h is the meshsize with h0 = 0.05

h ‖u − uh‖0,� ‖u − P uh‖0,�

Error Rate Error Rate

LSP LDG method I

P 1 h0 1.18e–04 – 1.18e–05 –

h0/2 2.96e–05 2.00 3.27e–06 1.85

h0/4 7.40e–06 2.00 8.56e–07 1.94

h0/8 1.85e–06 2.00 2.18e–07 1.97

P 2 h0 1.32e–06 – 1.55e–07 –

h0/2 1.65e–07 3.00 1.99e–08 2.96

h0/4 2.06e–08 3.00 2.52e–09 2.98

h0/8 2.58e–09 3.00 3.17e–10 2.99

P 3 h0 1.26e–08 – 8.11e–09 –

h0/2 7.90e–10 4.00 5.07e–10 4.00

h0/4 4.94e–11 4.00 3.17e–11 4.00

LSP LDG method II

P 1 h0 1.18e–04 – 1.27e–05 –

h0/2 2.96e–05 2.00 3.39e–06 1.91

h0/4 7.40e–06 2.00 8.71e–07 1.96

h0/8 1.85e–06 2.00 2.20e–07 1.98

P 2 h0 9.20e–07 – 7.56e–08 –

h0/2 1.15e–07 3.00 9.62e–09 2.97

h0/4 1.44e–08 3.00 1.22e–09 2.98

h0/8 1.80e–09 3.00 1.53e–10 2.99

P 3 h0 9.51e–09 – 5.24e–09 –

h0/2 5.93e–10 4.00 3.27e–10 4.00

h0/4 3.70e–11 4.00 2.04e–11 4.00

Standard LDG method

P 1 h0 1.18e–04 – 1.27e–05 –

h0/2 2.96e–05 2.00 3.39e–06 1.91

h0/4 7.40e–06 2.00 8.71e–07 1.96

h0/8 1.85e–06 2.00 2.20e–07 1.98

P 2 h0 9.20e–07 – 1.75e–08 –

h0/2 1.15e–07 3.00 1.13e–09 3.96

h0/4 1.44e–08 3.00 7.14e–11 3.98

P 3 h0 6.80e–09 – 5.44e–12 –

h0/2 4.24e–10 4.01 8.55e–14 5.99

h0/4 2.64e–11 4.00 1.34e–15 6.00



J Sci Comput (2012) 51:213–223 219

Table 3 Errors and convergence orders of the LDG approximation uh and the post-processed approximation
P uh . C11 = 10. h is the meshsize with h0 = 0.05

h ‖u − uh‖0,� ‖u − P uh‖0,�

Error Order Error Order

LSP LDG method I

P 1 h0 1.24e–04 – 4.86e–06 –

h0/2 3.19e–05 1.96 5.66e–07 3.10

h0/4 8.11e–06 1.98 6.81e–08 3.06

h0/8 2.05e–06 1.99 1.53e–08 2.16

P 2 h0 1.68e–06 – 1.73e–07 –

h0/2 2.52e–07 2.74 2.38e–08 2.86

h0/4 3.53e–08 2.84 3.14e–09 2.92

h0/8 4.71e–09 2.91 4.03e–10 2.96

P 3 h0 1.50e–08 – 9.72e–09 –

h0/2 1.08e–09 3.80 6.99e–10 3.80

h0/4 7.47e–11 3.86 4.79e–11 3.87

LSP LDG method II

P 1 h0 1.24e–04 – 6.19e–06 –

h0/2 3.19e–05 1.96 8.30e–07 2.90

h0/4 8.11e–06 1.98 1.07e–07 2.95

h0/8 2.05e–06 1.99 1.36e–08 2.98

P 2 h0 9.30e–07 – 8.14e–08 –

h0/2 1.17e–07 2.99 1.06e–08 2.94

h0/4 1.47e–08 2.99 1.36e–09 2.97

h0/8 1.84e–09 3.00 1.71e–10 2.99

P 3 h0 9.67e–09 – 5.30e–09 –

h0/2 6.10e–10 3.99 3.33e–10 3.99

h0/4 3.83e–11 3.99 2.09e–11 3.99

Standard LDG method

h0 1.24e–04 – 6.19e–06 –

P 1 h0/2 3.19e–05 1.96 8.30e–07 2.90

h0/4 8.11e–06 1.98 1.07e–07 2.95

h0/8 2.05e–06 1.99 1.36e–08 2.98

P 2 h0 9.29e–07 – 1.42e–08 –

h0/2 1.17e–07 2.99 8.12e–10 4.13

h0/4 1.47e–08 2.99 4.84e–11 4.07

P 3 h0 7.02e–09 – 5.09e–12 –

h0/2 4.46e–10 3.98 7.68e–14 6.05

h0/4 2.81e–11 3.99 1.18e–15 6.03
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Table 4 Errors and convergence orders of the LDG approximation qh and the post-processed approximation
P qh . C11 = 1/h. h is the meshsize with h0 = 0.05

h ‖q − qh‖0,� ‖q − P qh‖0,�

Error Order Error Order

LSP LDG method I

P 1 h0 2.66e–03 – 5.51e–05 –

h0/2 1.35e–03 0.98 1.44e–05 1.94

h0/4 6.82e–04 0.99 3.67e–06 1.97

h0/8 3.42e–04 0.99 9.25e–07 1.99

P 2 h0 7.44e–05 – 5.79e–09 –

h0/2 1.85e–05 2.00 2.89e–10 4.33

h0/4 4.63e–06 2.00 1.73e–11 4.06

h0/8 1.16e–06 2.00 1.08e–12 4.00

P 3 h0 6.67e–07 – 2.70e–09 –

h0/2 8.34e–08 3.00 1.69e–10 3.99

h0/4 1.04e–08 3.00 1.06e–11 4.00

LSP LDG method II

P 1 h0 2.66e–03 – 5.52e–05 –

h0/2 1.35e–03 0.98 1.44e–05 1.94

h0/4 6.82e–04 0.99 3.67e–06 1.97

h0/8 3.42e–04 0.99 9.26e–07 1.99

P 2 h0 1.25e–04 – 2.54e–07 –

h0/2 3.11e–05 2.01 3.18e–08 3.00

h0/4 7.76e–06 2.00 3.97e–09 3.00

h0/8 1.94e–06 2.00 4.95e–10 3.00

P 3 h0 9.94e–07 – 6.00e–09

h0/2 1.24e–07 3.00 3.75e–10 4.00

h0/4 1.55e–08 3.00 2.35e–11 4.00

Standard LDG method

P 1 h0 2.66e–03 – 5.52e–05 –

h0/2 1.35e–03 0.98 1.44e–05 1.94

h0/4 6.82e–04 0.99 3.67e–06 1.97

h0/8 3.42e–04 0.99 9.26e–07 1.99

P 2 h0 1.24e–04 – 1.45e–08 –

h0/2 3.10e–05 2.01 9.57e–10 3.92

h0/4 7.73e–06 2.00 6.24e–11 3.94

P 3 h0 7.92e–07 – 1.12e–11 –

h0/2 9.91e–08 3.00 1.76e–13 5.99

h0/4 1.24e–08 3.00 2.76e–15 5.99
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Table 5 Errors and convergence orders of the LDG approximation qh and the post-processed approximation
P qh . C11 = 10. h is the meshsize with h0 = 0.05

h ‖q − qh‖0,� ‖q − P qh‖0,�

Error Order Error Order

LSP LDG method I

P 1 h0 1.52e–03 – 2.98e–05 –

h0/2 4.11e–04 1.88 4.07e–06 2.87

h0/4 1.07e–04 1.94 5.32e–07 2.94

h0/8 2.74e–05 1.97 6.79e–08 2.97

P 2 h0 5.10e–05 – 5.82e–09 –

h0/2 7.81e–06 2.71 3.20e–10 4.18

h0/4 1.10e–06 2.83 1.99e–11 4.01

h0/8 1.47e–07 2.90 1.26e–12 3.98

P 3 h0 4.96e–07 – 1.89e–09 –

h0/2 4.46e–08 3.48 7.45e–11 4.67

h0/4 4.21e–09 3.41 2.67e–12 4.80

LSP LDG method II

P 1 h0 1.51e–03 – 3.00e–05 –

h0/2 4.11e–04 1.88 4.10e–06 2.87

h0/4 1.07e–04 1.94 5.36e–07 2.93

h0/8 2.74e–05 1.97 6.86e–08 2.97

P 2 h0 1.24e–04 – 2.71e–07 –

h0/2 3.09e–05 2.01 3.48e–08 2.96

h0/4 7.71e–06 2.00 4.41e–09 2.98

h0/8 1.93e–06 2.00 5.54e–10 2.99

P 3 h0 9.90e–07 – 6.07e–09 –

h0/2 1.23e–07 3.00 3.82e–10 3.99

h0/4 1.54e–08 3.00 2.40e–11 3.99

Standard LDG method

P 1 h0 1.51e–03 – 3.00e–05 –

h0/2 4.11e–04 1.88 4.10e–06 2.87

h0/4 1.07e–04 1.94 5.36e–07 2.93

h0/8 2.74e–05 1.97 6.86e–08 2.97

P 2 h0 1.24e–04 – 1.26e–08 –

h0/2 3.08e–05 2.01 7.38e–10 4.09

h0/4 7.68e–06 2.00 4.66e–11 3.99

P 3 h0 7.84e–07 – 1.05e–11 –

h0/2 9.78e–08 3.00 1.58e–13 6.05

h0/4 1.22e–08 3.00 2.43e–15 6.03
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(1) for standard LDG approximations in (V
k,STD
h ,Mk,STD

h ), the post-processing technique
enhances the accuracy of (uh,qh) from (k + 1, k) to (2k,2k) in the L2 norm. This
is consistent to the error estimate for uh in negative k-th order norm, namely, ‖u −
uh‖−k,� = O(h2k). Such estimate was not stated explicitly yet it is a direct consequence
of Lemmas 2.4, 3.3, and 3.6 in [3]. The accuracy enhancement after the post-processing
step also suggests ‖q − qh‖−k,� = O(h2k).

(2) for LSP LDG approximations in either (V
k,LSP
h ,Mk,LSP

h ) or (V
k,LSP
h ,M̃k,LSP

h ), the post-
processing technique in general does not improve the accuracy order for uh in the
L2 norm, though the actual errors of the post-processed Puh are smaller. Such post-
processing step does improve the accuracy for qh by at least one order. These results
indicate that the error for uh ∈ V

k,LSP
h in the negative k-th order norm is generally of the

same order as its L2 error, namely, ‖u−uh‖−k,� = O(hk+1+ν) with ν ≥ 0, and the error
for qh ∈ Mk,LSP

h or M̃k,LSP
h in the negative k-th order norm is of at least one order higher

than its L2 error, namely, ‖q − qh‖−k,� = O(hk+ν), ν ≥ 1.

Compared with the standard LDG method, the LSP LDG method has some accuracy
loss when measured in negative-order norms. In practice, one can always apply the local
post-processing technique to the LDG approximations to reduce the errors and therefore to
enhance the resolution of the numerical solutions.

When C11 = O(1), another relevant work is the superconvergence result in [5], which is
established for the LDG method in [3] when the numerical fluxes are suitably chosen, and
the finite elements with tensor structures are used on Cartesian meshes. It was proved that
‖u − uh‖L2(�) = O(hk+1) and ‖q − qh‖L2(�) = O(hk+ 1

2 ). These results are sharp, and the
estimate in qh is 1

2 order higher than that of the general LSP LDG methods. The numerical
experiments in this section with C11 = O(1) are also on Cartesian meshes with the same
type of numerical fluxes as in [5], and the only difference is in discrete spaces. Numerically,
compared with the LDG method in [5], the LSP LDG method I is 1

2 order more accurate in
qh when k = 1 and 2, and the LSP LDG method II is 1

2 order less accurate in qh when k �= 1,
while the convergence orders in uh are the same among all methods in this note and in [5].

4 Concluding Remarks

To certain extent, this note reports some negative finding for the LSP LDG method in [12]
to solve the Laplace equation, and the mathematical understanding of this result is yet to be
established. In many applications when it is sufficient to have schemes which are accurate
in commonly used norms such as the energy and the L2 norms, this LSP LDG method is
still competitive due to its low computational complexity.

In the end, we want to mention that such post-processing technique was also applied
to the locally divergence-free DG approximations for time-dependent Maxwell equations
in [6]. This is another example of local-structure-preserving DG methods. Numerical results
in [6] suggest that using local-structure-preserving discrete spaces in DG frameworks does
not necessarily lead to accuracy loss in negative-order norms. In fact, the accuracy order of
the numerical solutions in [6] was enhanced from k + 1 to 2k + 1 in the L2 norm by the
post-processing technique, same as what occurs to the standard DG approximations. This
indicates that such local-structure-preserving DG approximations have the same (2k + 1)-st
order of accuracy in negative k-th order norm as the standard DG approximations [7] when
solving the Maxwell equations. Mathematical justification for this is still an open problem.



J Sci Comput (2012) 51:213–223 223

Acknowledgements The author wants to thank Bernardo Cockburn for his helpful discussion. The research
was supported in part by NSF grant DMS-0652481, NSF CAREER award DMS-0847241 and an Alfred P.
Sloan Research Fellowship.

References

1. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin meth-
ods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2001/02)

2. Bramble, J.H., Schatz, A.H.: Higher order local accuracy by averaging in the finite element method.
Math. Comput. 31, 94–111 (1977)

3. Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous
Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38, 1676–1706 (2000)

4. Ciarlet, P.: The Finite Element Methods for Elliptic Problems. North-Holland, Amsterdam (1975)
5. Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous

Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39, 264–285 (2001)
6. Cockburn, B., Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for the

Maxwell equations. J. Comput. Phys. 194, 588–610 (2004)
7. Cockburn, B., Luskin, M., Shu, C.-W., Süli, E.: Enhanced accuracy by post-processing for finite element

methods for hyperbolic equations. Math. Comput. 72, 577–606 (2003)
8. Gittelson, C.J., Hiptmair, R., Perugia, I.: Plane wave discontinuous Galerkin methods: analysis of the

h-version. Math. Model. Numer. Anal. 43, 297–331 (2009)
9. Li, F.: A priori error estimates of a local-structure-preserving LDG method. http://www.rpi.edu/

~lif/publication.html (2011)
10. Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for MHD equations. J. Sci.

Comput. 22–23, 413–442 (2005)
11. Li, F., Shu, C.-W.: Reinterpretation and simplified implementation of a discontinuous Galerkin method

for Hamilton–Jacobi equations. Appl. Math. Lett. 18, 1204–1209 (2005)
12. Li, F., Shu, C.-W.: A local-structure-preserving local discontinuous Galerkin method for the Laplace

equation. Methods Appl. Anal. 13, 215–233 (2006)
13. Ryan, J.K., Cockburn, B.: Local derivative post-processing for the discontinuous Galerkin method.

J. Comput. Phys. 228, 8642–8664 (2009)
14. Ryan, J.K., Shu, C.-W.: On a one-sided post-processing technique for the discontinuous Galerkin meth-

ods. Methods Appl. Anal. 10, 295–308 (2003)
15. Ryan, J.K., Shu, C.-W., Atkins, H.L.: Extension of a post-processing technique for the discontinuous

Galerkin method for hyperbolic equations with application to an aeroacoustic problem. SIAM J. Sci.
Comput. 26, 821–843 (2005)

16. Yan, J., Shu, C.-W.: Local discontinuous Galerkin methods for partial differential equations with higher
order derivatives. J. Sci. Comput. 17, 27–47 (2002)

17. Yuan, L., Shu, C.-W.: Discontinuous Galerkin method based on non-polynomial approximation spaces.
J. Comput. Phys. 218(1), 295–323 (2006)

http://www.rpi.edu/~lif/publication.html
http://www.rpi.edu/~lif/publication.html

	On the Negative-Order Norm Accuracy of a Local-Structure-Preserving LDG Method
	Abstract
	Introduction
	Numerical Methods
	Accuracy in Negative-Order Norms
	Concluding Remarks
	Acknowledgements
	References


