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Abstract In this paper we present a stabilized Discontinuous Galerkin (DG) method for hy-
perbolic and convection dominated problems. The presented scheme can be used in several
space dimension and with a wide range of grid types. The stabilization method preserves
the locality of the DG method and therefore allows to apply the same parallelization tech-
niques used for the underlying DG method. As an example problem we consider the Euler
equations of gas dynamics for an ideal gas. We demonstrate the stability and accuracy of
our method through the detailed study of several test cases in two space dimension on both
unstructured and cartesian grids. We show that our stabilization approach preserves the ad-
vantages of the DG method in regions where stabilization is not necessary. Furthermore, we
give an outlook to adaptive and parallel calculations in 3d.

Keywords Conservation laws · Higher order methods · Discontinuous Galerkin · Finite
volume · Generic limiter

1 Introduction

A wide range of numerical methods has been developed for the approximation of non-
linear hyperbolic or convection dominated problems. Among these methods the RK-DG
method [5] has become very popular over the last decade. The RK-DG method is stable
when applied to linear hyperbolic systems; however for nonlinear problems spurious os-
cillations occur near strong shocks or steep gradients. Thus the RK-DG method requires
some extra stabilization. In fact it is well known that only the first order scheme (k = 0)
produces a monotonic structure in the shock region. Many approaches have been suggested
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to make this property available in higher order schemes, without introducing the amount of
numerical viscosity, which is such a characteristic feature of first order schemes.

A first approach is motivated by higher order Finite Volume methods where slope limiters
are applied in order to avoid oscillations. This is for example studied in [3, 5, 15–18, 21,
23, 25] and many others. Another approach is to add artificial diffusion to the problem in
regions where shocks occur. Then the problem becomes sufficiently smooth and therefore
stable. This is for example studied in [11, 22, 28]. A third approach has been suggested
in [10] where a posteriori techniques are used to stabilize the DG method.

In this work we concentrate on the first approach which uses slope limiters to stabilize
the RK-DG method. Although most of the components have been presented before, their
combination and their extension to arbitrary grid structures and space dimensions is the ma-
jor contribution of this work. Especially, the reconstruction process was so far not presented
in this general setting and allows the combination of strong gradient with the DG approxi-
mation, while maintaining a small stencil. The presented RK-DG method thus contains all
features needed nowadays for large scale computations such as locality of the method (only
direct neighboring information are needed), works in several space dimensions such as 2d
and 3d both on Cartesian grids and general unstructured (hybrid) grids with conforming or
non-conforming local refinement.

As described for example in [18, 23], we combine the slope limiter with a shock de-
tector. The shock detector should detect regions where a stabilization is necessary and the
slope limiter is then used to stabilize the solution. The combination of shock detection and
limiting should avoid over-excessive limiting in the extrema of the solution in regions where
the solution is “smooth” enough, while keeping over- and undershoots in shock regions at
a minimum. Especially slope limiting in regions of contact discontinuities (linear waves)
should be treated with care since DG methods fare rather well here and too much numerical
viscosity is in this case even more problematic than with compressive shock waves. Further-
more, due to the shock detector, the limiter is only applied to a small percentage of elements
so that the computational cost of the limiter is not essential – the major cost is caused by the
computation.

In contrast to the other approaches (see [3, 5, 15–18, 21, 23, 25]) the slope limiter pre-
sented here is independent of the space dimension and of the grid element geometry type
used, i.e. the slope limiter can be used both with Cartesian and general unstructured grids
in several space dimensions, including non-conforming or hybrid grids. From the literature
mentioned above there is only one work, the work of Klieber and Rivière [16], dealing with
non-conforming (triangular) meshes. The idea in [16] is to use an appropriate reconstruc-
tion on non-conforming intersections such that a conforming situation is emulated and then
a slope limiter, developed for conforming meshes, is applied.

The rest of this paper is organized as follows. First, the general stabilization operator and
its application to the RK-DG method is described. Second, the shock detection mechanism
is explained followed by the description of the limiting procedure. The algorithm splits into
three steps: first the shock detector is computed, then a set of admissible linear functions
is computed, one of which is then chosen in the third step on cells where stabilization is
required. For the shock detection, we use an approach based on [18], and for the third step
the linear function with the largest gradient is selected. Other shock detectors could also
be applied (see [24]) or the linear function with the largest angle could be used (see [4]).
We have compared many combinations but will only report on those which for us proved
the most efficient and accurate. Finally in Sect. 6, numerical results for the stabilized RK-
DG method are presented that demonstrate the effectiveness and efficiency of the developed
method. Preliminary numerical results were published in [7, 8].
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2 The Runge-Kutta Discontinuous Galerkin Method

This sections describes a general approach for discretizing evolutions equations of the form

∂tu(t, ·) = L[u(t, ·)](·) in ([0, T ) × �) ⊂ (R × R
d), d ∈ {1,2,3}. (1)

Hereby, the spatial operator is defined by

L[v] = S(v) − ∇ · F(v),

where v : � → U ⊆ R
r is in some suitable function space V . U denotes the set of states for

a given problem. With the function S(v) we denote a source term; F(v) is the analytical
flux function. By prescribing S and F a wide range of problems can be written in this
from. A similar approach as the one described in the following sections can also be used
for problems with including higher order derivatives if F is the dominating term, e.g., the
Navier Stokes equations.

2.1 Higher Order Schemes for Systems of Evolutions Equations

In the following we focus on the spatial discretization, i.e., we construct a discrete op-
erator L G which maps one finite-dimensional function space VG onto another finite-
dimensional function space WG .

For � ⊂ R
d with d ≥ 1 we choose �G ⊆ � to be an polygonal approximation of the

domain � which is partitioned by a tesselation G in the sense of the grid definition given
in [9]. The spatial operator is defined by

L[v] = S(v) − ∇ · F(v) (2)

where the function v : �G → U ⊂ R
r , r ∈ N is in V r defined to be V r := {v : �G →

R
r ∈ L2(�G ) | v|E ∈ H 1(E) ∀E ∈ G}. For simplicity we choose r = 1 in the following

and use the abbreviation V := V 1. Note that u ∈ V is a smooth function on the cells E ∈ G
but might be discontinuous over the cell interfaces. Then a discretization of the operator
L is constructed by multiplying equation (2) with a test function v ∈ V and by integrating
over the domain �G . Thereby, the divergence term is integrated by parts over the cell E.
Finally the discrete operator L G is defined by the (L2-) projection of L onto a finite subset
of V which we call V k

G . V k
G is given by V k

G := {ϕ : �G → R ∈ L2(�G ) | ϕ|E ∈ Pk(E) ∀E ∈
G} ⊂ V. We arrive at

∫
�G

L G [uG ]ϕ dx =
∑
E∈G

∫
E

S(uG )ϕ dx +
∑
E∈G

∫
E

F(uG ) · ∇ϕ dx

−
∑
E∈G

∫
∂E

ϕ G(u+
G , u−

G , . . .) · ndσ ∀ϕ ∈ V k
G . (3)

Hereby, n denotes the unit outer normal of the cell interface, u+
G and u−

G are the values of
the function uG on both sides of the cell interface. G(u,v,x) : V × V × R

d → R
d is called

a numerical flux function. The Discontinuous Galerkin method is completely described by
the physical parameters such as the functions S and F and by the numerical flux G. The
physical parameters are determined by the equation whereas the choice of the numerical
flux is the crucial part in the method. For a reasonable method the numerical flux G should
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be consistent, Lipschitz continuous, and conservative. Many numerical fluxes for different
kinds of equations can be found in standard textbooks such as [19].

To arrive at a fully discrete scheme a suitable time discretization method is applied; here
we use the standard SSP Runge-Kutta methods as suggested in [13].

2.2 Example Problem—The Euler Equations

A compressible inviscid fluid is modeled by the Euler equations of gas dynamics:

∂tu +
d∑

j=1

∂xj
f j (u) = 0, in ([0, T ) × �G ⊂ R

d), d ∈ {1,2,3} (4)

where the vector of the conservative variables is u = (ρ,ρv, e)T , ρv = (ρv1, . . . , ρvd)
T ,

and e = ρE , with u taking values in the set of states

U :=
{
(ρ,ρv, e)

∣∣∣ ρ > 0,v ∈ R
d , e − ρ

2
|v|2 > 0

}
, (5)

and the convective flux functions for i = 1, ..., d :

f i (u) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

ui+1

ui+1u2/u1 + δi,1 p(u)

...

ui+1ud+1/u1 + δi,d p(u)

(ud+2 + P (u))ui+1/u1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where δi,d is the Kronecker delta. The system is closed by the equation of state for an ideal
gas where the pressure is given by

p(u) = (γ − 1)

[
ud+2 − u1

2

d∑
i=1

(ui+1/u1)
2

]
(6)

where γ is the adiabatic constant (see for example [19]).
Now, to rewrite the system in the form of (1) we simply have to define the operator L.

Since we have no source term, i.e. S(u) = 0, the operator L[u] := −∇ · F (u) only contains
the conservative part with F (u) := (f 1, . . . ,f d). With this definition of L and an appropri-
ate numerical flux such as the Local-Lax-Friedrichs flux function or the HLL flux function
(cf. [19]) the spatial discretization is already obtained.

The boundary of the computational domain �G is partitioned into non-overlapping
parts: ∂�in (Inflow), ∂�out (Outflow), and ∂�ref l (Reflection). These boundary condi-
tions are realized such that a boundary value uB is determined by a given boundary func-
tion or due to the boundary condition. uB is then used to evaluate the numerical flux, i.e.
G = G(u+

G , uB,x). For different boundary conditions the value uB is defined to be: (Inflow)
uB = g(x) where g is a given boundary function, (Outflow) uB = u+

G , and (Reflection) uB

is obtained by toggling the sign of the normal component of the velocity in u+
G .
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3 Stabilization

Let us recall the DG scheme presented in Sect. 2. For higher order schemes for advection
dominated problems, a stabilization mechanism is required. A stabilized discrete operator
is constructed by concatenation of the DG operator L G from (3) and a stabilization opera-
tor 	G , leading to a modified discrete spatial operator L̃ G [uG (t, ·)] := (L G ◦ 	G )[uG (t, ·)].
We call

u∗
G := 	G [uG ] ∈ V ∗

G (7)

the stabilized approximate solution and u∗
E = u∗

G |E is the stabilized approximate solution
restricted to an element. Before we describe the construction of 	G we briefly describe
some properties which a reasonable stabilization should satisfy:

• Conservation property:
we require that ūE = ū∗

E,∀E ∈ G , i.e. that uG and u∗
G have the same average value on

each element of the grid.
• Physicality of u∗

E :
We require that the stabilized approximate solution satisfies u∗

G (x) ∈ U .
• Consistency for linear functions:

If the average values on E and its neighbors are given by the same linear function LE

then u∗
E = LE on E.

• Identity in “smooth” regions:
In regions where the solution is “smooth” we claim u∗

G = uG . This requires an indicator
for the smoothness of the solution (here called shock detector, see Sect. 4.1).

• Minimal stencil:
The stabilized DG method should have the same stencil as the original DG method,
Thus u∗

E should only depend on the function uG on E and its neighbors.
• Maximum-minimum principle and monotonicity:

In regions where the solution is not smooth the function u∗
E should only take values be-

tween minEe∈NE
uE and maxEe∈NE

uEe , where NE denotes the set of neighbors of E.
Also u∗

E should have the same monotonicity properties as the average values on E and its
neighbors.

In general a stabilization operator can not fulfill all of these properties is a strong sense but
should satisfy some approximation of these conditions. For example it suffices to enforce the
physicality condition for all values needed for the definition of the operator L G ; in practice
we use quadrature rules to approximate the element and boundary integrals in (3) and require
that u∗

G is in the admissible set U for all quadrature points.

4 Stabilization Operator

In this section the stabilization operator is presented and in the following we describe the
construction steps of this operator.

1. Shock detection:
As stated in the previous section u∗

E ≡ uE should hold in regions where the solution is
smooth. To detect these regions we use an indicator function SE taking on the values 0
or 1. We require SE = 0 on cells in regions where the solution is smooth and SE = 1
on troubled cells, i.e., cells where the DG scheme might become unstable, e.g., near
discontinuities or where uE takes on unphysical values.
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2. Construction of admissible linear functions:
On cells where SE ≥ 1 we construct a set of linear functions LE . To satisfies the minimum
stencil properties, all the linear functions in LE are constructed using the average values
of uG on E and on its neighbor. Furthermore, all functions in this set satisfy a version of
the physicality, the minimum-maximum, and the monotonicity conditions.

3. Definition of u∗
E :

finally u∗
E is chosen to be uE on cells with SE = 0 and equal to one of the functions

in the set of admissible linear functions (for example the steepest one, see (14)) in the
case when SE = 1. Note that in regions where limiting is done the approximation order
of the scheme is not higher than linear since the limited solution consists only of lin-
ear functions. In regions where no limiting is performed the scheme retains the original
approximation order.

Note that if we take SE = 1 on all elements E we arrive at a second order Finite Volume
scheme. Before we give more detail on our method, we describe how we will enforce the
physicality condition:

Definition 4.1 (Non-physicality of the approximate solution) A local solution uE of uG ∈
V k

G on element E is called non-physical if the following condition is satisfied:

uE is non-physical ⇐⇒ ∃x ∈ (Q2k

Ê
∪ Q2k+1

∂Ê
) : uE

(
FE(x)

)
/∈ U , (8)

where k is the polynomial order of the basis functions of V k
G on E, Q2k

Ê
denotes an element

quadrature which is exact of order 2k, and Q2k+1
∂Ê

a quadrature for the faces of the element
which is exact of order 2k + 1. FE is the reference mapping and U is the set of states (5) of
the function uG . Notice that in the case that U = R

r the solution uE is never non-physical.

4.1 Detection of Troubled Cells—The Shock Detector

Using a scalar function φ depending on the left and right value of the discontinuous approx-
imation uG on cell boundaries, we define a discontinuity detector similar to the one given
in [18]:

J̄E =
∑

e⊂∂E,
v·ne<0

( ∫
e
φ(uE,uE)ds

αd(k)h
(k+1)/4
E |e|

)
, (9)

where e is a face of E and uEe is the value of uG on the neighboring element Ee of E

over e. The vector valued function v corresponds to some characteristic flow velocity and
d is the element’s dimension. In general the choice φ(uE,uEe ) = |uE − uEe | could be used,
but for the Euler equations the relative jump of pressure p from (6) leads to better results:
φ(uE,uEe ) = 2 p(uE)−p(uEe )

p(uE)+p(uEe )
. For the characteristic velocity v we use the velocity vector of

the Euler equations.
According to [18] the denominator of (9) is in O(hd) near discontinuities and O(hd+k+1)

in smooth regions. Thus the quantity J̄E is in O(h−β) in regions of discontinuities and
in O(hα) otherwise, with α = 3

4 (k + 1) and β = 1
4 (k + 1). Note that the authors of [18]

suggested a normalization factor of h(k+1)/2, but we obtained better results with a power of
(k + 1)/4. The local grid width hE is defined as hE := |E|

hE
m

with hE
m := mine∈IE

|e|. Based on

experimental results, the open parameter α was chosen to be αd(k) := 0.016 · d · 5k .
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Since J̄E → 0 as either h → 0 or k → ∞ in smooth regions, and J̄E → ∞ near a discon-
tinuity,

SE =
{

0 J̄E ≤ 1,

1 J̄E > 1, or uE is unphysical
(10)

can be used for shock detection in the stabilization scheme. Further indicators are studied
in [24] but only a few are easily used on general grid structures.

4.2 Construction of Admissible Linear Functions

Once the detector (10) establishes that the current DG solution uE on cell E should be lim-
ited, a set of admissible linear functions is constructed. This is achieved in two steps, where
first a set linear functions is constructed using uG on E and on the neighbors of E. Then a
set of constraints is applied to each of these linear functions, to render them admissible in
the sense described at the end of Sect. 3. Finally u∗

E is chosen to be equal to one of these
admissible functions.

4.2.1 Set of Possible Linear Functions

The most natural choice is the linear function given by the approximate solution uG by
ignoring higher order moments:

LDG(x) := ūE + ∇LDG · (x − wE), (11)

where
∫

E
LDG φ = ∫

E
uE φ, for all φ ∈ P1(E), where the average value of the solution uE is

given by ūE := 1
|E|

∫
E

uE(x) dx.
The set of possible linear functions can be enhanced using reconstruction techniques

derived for higher order Finite Volume methods. The approach described in the following
was first described for a Finite Volume method on conforming triangular meshes in the
thesis [26]. Since we want to construct a limiter for arbitrary element geometry types and
also non-conforming meshes these ideas are extended accordingly.

To define the reconstruction, we first recall the notations from [9]. For a given cell E

we call Ei the neighbor of E over intersection ei , the i-th intersection, and i = 1, . . . , ñE ,
where ñE is the number of all intersections of E with other elements or the boundary of �G .

Now, for a given cell E we define

ỸE := {1, . . . , ñE},
YE := {j := {j1, . . . , jd} ⊂ ỸE × ỸE | jl �= jm for l �= m ∀ l,m = 1, . . . , d}.

For example for a conforming triangular grid G we have

ỸE := {1,2,3} and YE := {{1,2}, {1,3}, {2,3}} ∀E ∈ G.

For a non-conforming situation (as shown in the right picture) these sets are

ỸE := {1, . . . ,4}, and

YE := {{1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}}.
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Using these two sets and the average values of the solution uG on the neighbors of E as
well as their barycenters (wE denotes the barycenter of element E and so on) we proceed as
follows: For all j ∈ YE we define linear functions Lj of the form

(i) Lj(x) := ūE + ∇Lj · (x − wE), and
(ii) Lj(wEi

) = ūEi
∀ i ∈ j,

(12)

i.e. Lj is a linear function and Lj evaluated at the barycenters of the involved elements
simply returns the average values of the solution on the corresponding element. The values
of ∇Lj , j ∈ YE , are calculated by solving d × d linear systems of the form

∇Lj = A−1
j bj , ∀ j ∈ YE,

Aj l
:= (wEjl

− wE), ∀ l = 1, . . . , d,

bj l
:= ūEjl

− ūE, ∀ l = 1, . . . , d.

Note that for Cartesian grids in particular but also on more general meshes the matrix A can
become singular when the considered barycenters lie in a codimension 1 plain of the space.
In this case we apply a least squares approach by successively adding other points k ∈ ỸE

such that k /∈ j and for the new (d + 1) × d matrix Ã holds: det(ÃT Ã) �= 0. The new right
hand side is then given by b̃ = ÃT b. For Cartesian grids this information has to be calculated
only once since the matrix A only contains geometrical information.

Notice that with the given definition of the reconstructions the scheme retains its local-
ity by only using information from direct neighboring cells and therefore fulfills the min-
imal stencil conditions. Furthermore, the method to obtain the linear functions described
above is completely independent of the number of neighbors, the geometry type of the el-
ements, and whether the intersections are conforming or not. Therefore, we state that this
technique of calculating reconstructions works for arbitrary geometry types, conforming or
non-conforming grids. In Sect. 6 this is demonstrated for some of the described situations,
e.g., non-conforming meshes, different geometry types (triangular, tetrahedral, hexahedral,
and Cartesian grids), for application in a parallel and adaptive environment.

4.2.2 Set of Admissible Linear Functions

In order to fulfill the monotonicity conditions suitable constraints are applied to each linear
function in the set of possible linear functions. The constraint is that along all lines con-
necting the barycenter wE of the element E with the barycenter wEi

of a neighbor Ee each
linear function stays between the average values ūE and ūEi

on E and Ee , respectively. This
is achieved by reducing the gradient of the linear function by a factor m̃ ∈ [0,1]. Note that
the constraint can always be satisfied by choosing m̃ = 0. To define this factor we define for
a set of linear functions ∇Lj , j ∈ YE,

gj,i := ∇Lj · (wEi
− wE) and dj,i := ūEi

− ūE, ∀ i ∈ ỸE.

Following the idea of [26] we now calculate a correction factor

mj,i :=
⎧⎨
⎩

0 if gj,i dj,i < 0,

dj,i/gj,i if gj,i dj,i > 0 and |gj,i | > |dj,i |,
1 otherwise.
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Fig. 1 The stencils (circles) used to define the set of linear functions are shown for a Cartesian and an
unstructured non-conforming grid; the lower row in the Cartesian grid case shows all possible singular cases,
where two neighbors and the center cell lie on a single line. In this case an additional point is added to define
the linear function using a least squares approach. The crosses denote the neighbors which are used in the
limiting process

In addition to [26], if |gj,i | ≪ 1 and |dj,i | ≪ 1 no limitation is applied to avoid rounding
errors which in particular occur on Cartesian grids. This means that we set mj,i = 1 in this
case. In the numerical experiments 10−8 has been used as upper bound.

The limitation applied to the linear functions by means of the factor mj,i , j ∈ YE, i ∈ ỸE

has the following effect:

• If dj,i = 0, i.e. ūE = ūEi
, or if dj,i and gj,i have different signs, any choice of mj,i > 0

could cause an oscillation.
• If dj,i and gj,i have the same signs and gj,i is “steeper” than dj,i , i.e. |gj,i | > |dj,i |, then

dj,i/gj,i ∈ (0,1). In this case the gradient can be reduced such that the limited reconstruc-
tion Lj is still non-constant but cannot cause an oscillation.

• In the remaining cases no limitation is necessary.

Now we adjust the gradient of the functions Lj with the minimum of mj,i ,

m̃j := min
i∈ỸE

mj,i , ∇̃Lj := m̃j∇Lj ,

L̃j (x) := ūE + ∇̃Lj · (x − wE).

Finally, we denote with LE := {L̃j | j ∈ YE and L̃j is physical} the set of admissible linear
reconstructions.

Note that in the cases where no least squares approach was applied, the set ỸE could for
efficiency reasons also be replaced by the set Ỹ j

E := (ỸE \ j), because for all i ∈ j we have
mj,i = 1 which results from the construction of Lj in (12). The same approach can be also
used for other possible linear functions, e.g., LDG, which can then be added to LE .

Two examples with both the stencil used for each of the linear reconstructions together
with the stencil used for the limiting process are shown in Fig. 1.

4.3 Choice of Linear Function u∗
E on Troubled Cells

All linear functions in LE fulfill the conditions from Sect. 3 (at least in some weak sense)
so that any one of them could be used to define u∗

E . We choose the reconstruction with the
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steepest gradient from LE , i.e., we choose l ∈ YE such that

|∇̃Ll| ≥ |∇̃Lj | ∀ j ∈ YE. (13)

In the case that there is more than one l ∈ YE such that (13) is fulfilled we select one of these
by random choice. Now we obtain are limited discrete solution:

u∗
E(x) := ūE + ∇̃Ll · (x − wE). (14)

5 Local Grid Adaptation

Computation time can be saved by applying local grid adaptivity which reduces complexity
while keeping the accuracy of the numerical scheme. For the RK-DG method several a
posteriori error estimate based approaches for scalar conservation laws can be found in the
literature. One example is the a posteriori error estimate based adaptation strategy described
in [10] which is based on ideas given in [20]. Another example are the adaptive simulations
of two-phase flow in porous media presented in [16] based on an a posteriori error estimate
from [12].

In this work, for the RK-DG method a heuristic adaptation indicator is applied which is
based on the ideas of the shock detector from (9). In comparison to the shock detector, the
adaptation indicator is calculated over the whole boundary of an element E,

AE :=
∑
e⊂∂E

(∫
e
χ(uE,uEe ) ds

αd(k)h
(k+1)/4
E |e|

)
, (15)

where χ is the function describing the jump of uG on the cell interface e. This could be the
same function as for the shock detector, but it could also be different, for example, for the
Euler equations we choose χ(uE,uEe ) = 2 ρE−ρEe

ρE+ρEe
, i.e. the jump of the density instead of

the pressure. We also ensure that a maximal refinement level m is not exceeded. We now
mark an element for refinement if either SE = 1 (see (9) and (10)) or AE > θr (see (15)); an
element not mark for refinement can be coarsened if AE < θc, θc ∈ (0, θr ).

6 Numerical Results

In the following we demonstrate the effectiveness of our stabilized scheme. If not noted
otherwise we use the technique described in the previous sections using the reconstructed
linear functions L to compute the set of admissible functions—this scheme will be denoted
by D G + R. We use well known test cases for the Euler equations of gas dynamics (4) for a
perfect gas law with adiabatic constant γ = 1.4 (see Sect. 2.2 for details).

We use an implementation based on the DUNE-FEM library [9], a generic framework
for the development of grid based numerical schemes based on the DUNE interface [1, 2].
Methods based on higher order DG discretizations on arbitrary grid structures, including
non-conform or conform local adaptivity and parallelization with load balancing, are easy
to implement within the DUNE-FEM context.

For the first set of test cases exact solutions are known or can be computed thus allowing
us to compute the approximation error using the L1-norm and the experimental order of
convergence for different polynomial degrees.

The second set of test cases are well known problems taken from the literature for which
we do not have exact solutions, but for which the quality of our approach can be measured
through the comparison with other simulation results found in the literature.
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6.1 Test Cases with Exact Solution

We start the numerical study of our D G + R scheme with a set of standard Riemann prob-
lems. For these problems “exact” solutions can calculated using Chorin’s method, for ex-
ample found in [19, Sect. 4.2]. We demonstrate the effectiveness of the D G + R scheme by
studying the L1-error under grid refinement and the resulting experimental order of conver-
gence (EOC).

Numerical experiments in [19] show that one can at least expect EOC ≈ 1
2 for first order

schemes. For schemes of higher order we expect an EOC > 1
2 .

Although the exact solution of the Riemann problems remains one dimensional through-
out the whole time interval, we compute our results on the domain [0,1] × [0,0.25] ⊂ R

2.
Thus we can study both the error and the convergence rate EOC of the scheme as well as
how good it retains the one dimensional structure of the solution. This second property is
challenging for any scheme on unstructured grids. Therefore, we compute results on the un-
structured grid shown in Fig. 2 (details of how to reproduce this grid are given in Appendix);
we refine this grid by quartering all elements in each step. To demonstrate the performance
of our scheme on structured grids we will also show results for a Cartesian grid starting
with �x = �y = 0.25 and reducing the spacing such that the grid width is bisected for each
step.

The first test case is a Riemann problem with a solution consisting of a rarefaction, a
contact, and a shock wave. The second test consists of a right and a left moving rarefaction
without a contact discontinuity; this problem can lead to difficulties caused by negative
densities. For both problems we start the simulation with discontinuous initial data so that
we cannot expect a rate of convergence above one. To study the performance of the scheme
in the case of continuous solutions we use the problem with the two rarefaction waves but
initialize the simulation not with the piecewise constant Riemann data but with the exact
solution to the problem at a time t > 0; thus the solution is continuous over the whole time
interval. We will first describe the setting for all four test cases and give some interpretation
of the results later. The initial data is defined using the primitive variables V = (ρ, vx, vy,p).

(TC1) Test Case: Withman problem
Initial data:

V0(x, y) = (ρ0, vx, vy,p0)(x, y) =
{

(1,0,0,1) x < 1
2

( 1
10 ,0,0, 1

100 ) otherwise
Boundary cond.: ∂�out = ∂�G and ∂�in = ∂�ref l = ∅
Final time: T = 0.15
Solution: left moving rarefaction, right moving contact and

shock wave (see also Fig. 6b)
L1-error & EOC: see Fig. 3 for results with D G + R

The results for the first Riemann problem which includes both a contact and a shock
demonstrates that with respect to the absolute error neither the polynomial degree or the
grid structure has a strong influence on our scheme. This shows the ability of the scheme
to retain the one dimensional structure of the solution even on unstructured grids, which is
also confirmed by the solution plot shown in Fig. 6. For all polynomial degrees the order of
convergence is clearly above 0.8.
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Fig. 2 Unstructured triangular grid used for the test cases with exact solution (see TC1–TC4). The grid
was produced by the program triangle (see Appendix for the input data and link). Note that the line
{0.5} × [0,0.25] is represented by element boundaries to make sure that the initial data projection can be
done without introducing additional errors

Fig. 3 Results for TC1 on Cartesian grids (top row) and unstructured triangular grids (bottom row). We
compare the L1-error and the EOC for polynomial degree k = 1,2,3

(TC2) Test Case: Two rarefaction problem
Initial data:

V0(x, y) = (ρ0, vx, vy,p0)(x, y) =
{
(1,−1,0,1) x < 1

2
(1,1,0,1) otherwise

Final time: T = 0.15
Boundary cond.: ∂�out = ∂�G and ∂�in = ∂�ref l = ∅
Solution: left and right moving rarefaction, no contact

discontinuity (see also Fig. 6c)
L1-error & EOC: see Fig. 4 for results with D G + R
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Fig. 4 Results for TC2 on Cartesian grids (top row) and unstructured triangular grids (bottom row). We
compare the L1-error and the EOC for polynomial degree k = 1,2,3

The remarks made so far are also basically true for the two rarefaction wave problems
although the order of convergence is slightly lower in this case. The advantage of the higher
order scheme in the case of continuous initial data is clearly visible in Fig. 5. The order
of convergence is above 1.6 for all polynomial orders and both on the structured and the
unstructured grid. Although the EOC is not higher for the higher order polynomials the
error on a fixed grid is clearly smaller for k = 3 then both for k = 2 or k = 1. This shows the
advantage of the scheme in smooth regions of the solution. A higher order of convergence
is not be expected since the solution is not continuously differentiable. The quality of the
solution can be seen in Fig. 6.

(TC3) Test Case: Two rarefaction problem (smooth case)
Initial data: the exact solution to TC2 is used at time t = 0.05

the setting is otherwise as in TC2
Solution: see Fig. 6d
L1-error & EOC: see Fig. 5 for results with D G + R

We show the density distribution as a function of the x-coordinate together with a loga-
rithmic view of the shock indicator J̄E (9) (using the right horizontal axes). The time evo-
lution of this indicator is shown in Fig. 6a The final setting is truly two dimensional. An
initial density profile and constant velocity (vx, vy) and pressure are chosen which results
in a solution of the form u(x, y, t) = u0(x − vxt, y − vyt). We tested our scheme with a
smooth density profile which leads to optimal convergence rates of k + 1. More interesting
for our type of application is the case where the density profile includes a discontinuity. It is
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Fig. 5 Results for TC3 on Cartesian grids (top row) and unstructured triangular grids (bottom row). We
compare the L1-error and the EOC for polynomial degree k = 1,2,3

well known that the D G scheme resolves this type of contact discontinuity especially well
and our test demonstrates to what degree this good resolution is retained by our D G + R
scheme.

(TC4) Test Case: Discontinuous advection problem
Initial data:

V0(x, y) = (ρ0, vx, vy,p0)(x, y) =
{

(ρ0, 9
2 , 1

2 , 2
5 ) x − πy > 0

(ρ0 + 1, 9
2 , 1

2 , 2
5 ) otherwise

with ρ0(x, y) = 3
5 + 1

2 | sin(πx)|| sin(2πx)|
Final time: T = 0.15
Solution: V (x, y, t) = V0(x − 9

2 t, y − 1
2 t)

where we extend V0 periodically to the whole of R
2.

Boundary cond.: ∂�in = ∂�G and ∂�out = ∂�ref l = ∅,
as boundary data the exact solution is used

L1-error & EOC: see Fig. 7 for results with D G + R

In order to study the optimality of the results we compare the error and convergence
rates of the approximation with the projection of the initial data onto the triangular grid
(Fig. 8). Note that the grid is chosen such that the initial data can be projected to the grid with
producing an error, so that we only show this comparison for test cases 3 and 4. Although in
the case of the discontinuous advection problem (TC4) almost no elements are limited (only
a few elements in the first time steps) the convergence is smaller than the rate of 1 shown
by the projection error. However, as has already been shown the convergence rate increases
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Fig. 6 Scatter plots of the density obtained from 2d calculations with the D G + R scheme. The values of
the shock detector from (9) are also shown using the unstructured grid on level 4 with quadratic polynomials.
The solid line indicates values of the shock detector equal to 1, which is the threshold used for applying the
limiter. The evolution of the percentage of limited elements is also plotted. Note the starting time for the
smooth rarefaction wave test case (TC3) is t = 0.05 so that the corresponding curve does not start at t = 0

with higher order of approximation. In the case of the smooth rarefaction problem the global
convergence rate is very close to the convergence rate of the projection error.

We conclude this section with a closer look at the choice for the set of possible linear
functions. Calculations for TC3 on the triangular grid are shown in Fig. 9 comparing two
different strategies for choosing the linear functions: the D G scheme where only the linear
part of the DG approximation is limited, and the D G + R scheme where in addition linear
reconstructions are calculated. Since the solution remains smooth, the D G scheme without
limitation is stable and can be viewed as a reference solution. On coarser grids, using the
D G + R approach increases the accuracy of the scheme by an order in the grid resolution,
compared to the cheaper approach, the D G scheme, where only the DG solution is limited;
on finer grids no limiting is applied during the whole computation and the errors are the
same for all three computations.

6.2 Test Cases Without an Exact Solution

In this section we consider well-known test cases for which we can compare our method
with results found in the literature.
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Fig. 7 Results for the D G + R for the discontinuous advection problem (TC4) on Cartesian grids (top row)
and unstructured triangular grids (bottom row). We compare the L1-error and the EOC for polynomial degree
k = 1,2,3

Fig. 8 A comparison between the projection of the initial data onto the grid with the numerical solution at
the final time is shown for the triangular grid are shown

6.2.1 The Forward Facing Step Problem

Over the last decades the Forward Facing Step has become a well known benchmark prob-
lem for the Euler equations for a compressible gas, see for example [5, 27] and many others.
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Fig. 9 We compare different versions of stabilization: limiting only the linear part of the DG solution full
linear reconstruction (our D G + R scheme), and the scheme without any stabilization. The results have been
obtained using triangular grids

(TC5) Test Case: Forward Facing Step
Comp. domain: �G := ([0,3] × [0,1]) \ ([0.6,3] × [0,0.2]) ⊂ R

2

Initial data: V0(x, y) = (ρ0, vx, vy,p0)(x, y) = (1.4,3,0,1)

Final time: T = 4
Boundary cond.: ∂�in = ({0} × [0,1]),

∂�out = ({3} × [0.2,1]), ∂�ref l = ∂� \ (�in ∪ �out )

Initial grid: see Appendix

The results for the calculation on Cartesian grids are presented in Fig. 10. We see that the
shock front is well captured by the scheme. Also, the resolution of the Kelvin-Helmholtz
instability is very well developed behind the Mach stem at the top boundary. Here, one
can see the advantage of the higher polynomial ansatz space. While for both, k = 1 and
k = 2 the shock front is well captured, the resolution of the Kelvin-Helmholtz instability is
much better with the third order (k = 2) method. By comparing these results with the results
presented in [5] we see that the full vortex structure of the Kelvin-Helmholtz instability with
our method is obtained with a grid width �x = �y = 1/160. With the method presented in
[5] and [6] a grid width of �x = �y = 1/320 is necessary to see the full vortex structure. In
[5] with k = 1 the vortex structure has not been resolved on a grid with �x = �y = 1/160.
Using the D G + R method it seems that we obtain the same resolution while saving one
global refinement level.

In Fig. 11a results for the Forward Facing Step problem (TC5) on a Cartesian grid ob-
tained with a first order FV (k = 0 for DG) method and in Fig. 11b for a second order FV
method (taking the reconstruction from D G + R on all cells) are shown on a Cartesian grid
with spacing 1/160. Compared with the DG solutions presented in Fig. 10 one can see that
with the first order FV (DG) method the resolution of the shock as well as for the Kelvin-
Helmholtz instability is very poor. With the second order FV method the resolution in the
shock regions is about the same as for the second order DG (k = 1) method. However, the
Kelvin-Helmholtz instability is not resolved at all compared to the higher order D G + R
method. In Fig. 11c and 11d results for the second order FV method on finer grids with
spacing 1/320 and 1/640 are presented. One can see that the resolution in the shock regions
becomes very good. But even on the finer grids the second order FV method is not able to
resolve the structure of the Kelvin-Helmholtz instability.

The results for the calculation on a triangular grid can be found in Fig. 12. The initial
triangular grid has been chosen such that the number of elements is approximately twice
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Fig. 10 Results for the D G + R scheme for the Forward Facing Step problem (TC5) calculated on a Carte-
sian grid. From top to bottom the grid width is 1/80, 1/160. On the left hand side of the picture we see the
results for k = 1 and on the right hand side the results for k = 2

Fig. 11 Results for the Forward Facing Step problem (TC5) calculated with a first order FV (FV-1)
method (a) and with a second order FV (FV-2) method (b)–(d) on a Cartesian grids with h = �x = �y

the number of cells in the Cartesian grid. Thus, the grid width should be more or less com-
parable. The overall quality for both grid structures seems similar, with the results on the
Cartesian grid being slightly better. Also, we see again that our results compare favorably
with those presented in [5]. In Fig. 12 we see the results for the DG method with k = 2,
where we used our reconstruction strategy and only applied the limiting to the linear part of
the DG solution (D G scheme). While the resolution of the Kelvin-Helmholtz instability is
more or less the same (here the shock indicator hardly flags any cells for limiting) we see
that the resolution of the shock is superior when the full linear reconstruction (D G + R ) is
applied. This is in agreement with the results presented in Fig. 8.

6.3 Test Cases for Adaptive and 3-Dimensional Computations

In the following, adaptive simulations using the adaptation indicator described in Sect. 5 are
presented. We start with the 2d Forward Facing Step (TC5) problem, studied in the previous
section. We then conclude with results for two well known 3d problems.
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Fig. 12 Results for the D G + R scheme for the Forward Facing Step problem (TC5) calculated on a trian-
gular grid. From top to bottom the refinement level is 1,2,3. On the left hand side of the picture we see the
results for k = 1 and on the right hand side the results for k = 2

6.3.1 The Forward Facing Step Problem

We consider the setting for the Forward Facing Step test case TC5 using the following
parameters for the adaptation strategy.

(TC6) Test Case: Forward Facing Step (adaptive)
Refinement tolerance: θr = 0.25 (see also Sect. 5)
Coarsening factor: θc = 0.05 (see also Sect. 5)
Maximal refinement level: m = 4

The results of the computation are presented in Fig. 13. We plot the values of the shock
detector J̄E (9), the density ρ, and the refinement level of each cell for the simulation times
t = 2 and t = 4. One can see that the cells where J̄E > 1 (indicated by black regions) are only
located in the region of the strong shock—the region where the method actually needs extra
stabilization—regions where the density isolines are very close to each other. Cells with
unphysical values almost never appear. From measurements inside the simulation program
we know that in each time step there are less than 1� of cells which contain unphysical
values in the approximate solution and thus would cause the whole simulation to break
down. This means that although the unphysicality check is needed it does not dominate the
numerical scheme.

The Kelvin-Helmholtz instability is resolved very nicely and in this region the grid is
also refined, due to the fact that for the adaptation indicator AE (15) the jump of the density
has been considered. The fine cells of the grid (those with refinement level 4) are located
around regions where jumps in the density occur.

6.3.2 The 3d Forward Facing Step Problem

For the 3-dimensional Euler equations (4), d = 3, we present a 3d version of the test case
TC5 with a truly 3-dimensional computational domain.
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Fig. 13 Results for the D G + R scheme for the adaptive computation of test case TC6. Each selection
shows from top to bottom: values of the shock detector J̄E (9) dark regions indicate that limiting is applied,
the density ρ, and the refinement level (dark means refinement level 4) of each cell

(TC7) Test Case: 3d Forward Facing Step (adaptive)
Comp. domain: �G := ([0,3] × [0,1] × [0,1]) \ ([0.6,3] × [0,0.2]) × [0,0.2]).
Initial data: V0(x, y, z) = (ρ0, vx, vy, vz,p0)(x, y, z) = (1.4,3,0,0,1)

Final time: T = 2
Boundary cond.: ∂�in = ({0} × [0,1] × [0,1])

∂�out = ({3} × [0.2,1] × [0.2,1])
∂�ref l = ∂� \ (�in ∪ �out )

Initial grid: �x = �y = �z = 1/40
Refinement tol.: θr = 1 (see also Sect. 5)
Coarsening fac.: θc = 0.2 (see also Sect. 5)
Max. ref. level.: m = 3

In Fig. 14 the density distribution including the adaptively refined grid can be found. One
can also see the underlying grid partitioning. The simulation has been done on the parallel
supercomputer XC4000 of the SCC Karlsruhe using 512 processors. For this simulation
quadratic basis functions (k = 2) have been used. The final grid contains about 4.5 million
grid cells which leads to about 2.25 · 108 unknowns. Grid adaptation is performed in each
time step. If the local grid adaptation leads to an unbalance of work load then a dynamic
load balancing is performed such that the work load is balanced again.

In Fig. 15a and 15b the parallel performance of the code is presented. In Fig. 15a the run
times for one time step as well as for the ODE solver alone are plotted for the runs on 128,
256, and 512 processors. In Fig. 15b the efficiency based no these run times is shown. One
can see that the overall efficiency is above 0.93 and the efficiency of the serial part (ODE
solver) of the code is above 0.96 which is very close to the optimal value of 1. This indicates
that the parallelization of D G + R method is very efficient.

6.3.3 The Shock Bubble Problem

As a last test we consider the so called Shock Bubble problem which can for example be
found in [14]. In addition, on the homepage of the software package CLAWPACK (see
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Fig. 14 Density distribution obtained with the D G + R scheme, adapted grid and partitioning of the grid
at time t = 2 for test TC7. The calculation used ALUCUBEGRID (a hexahedral grid from DUNE) and 512
processors. Quadratic basis functions (k = 2) have been used. The initial grid contains 185856 hexahedrons
and the final grid contains about 4.5 million hexahedrons

http://www.amath.washington.edu/~claw/) results for this test problem can be found. The
setup is the following.

In Fig. 16 the density and the adapted grid at time t = 0.3 for Test Case TC8 is shown.
Again, we can see that the grid is refined around the shock wave that has already passed the
bubble.

(TC8) Test Case: 3d Shock Bubble
Computational domain: �G := ([0,1.2] × [0,0.5] × [0,0.5]) ⊂ R

3.
Initial data: V0(x, y, z) = (ρ0, vx, vy, vz,p0)(x, y, z) =⎧⎪⎪⎨

⎪⎪⎩

(2.81818,1.60644,0,0,5) x < 1
5

( 1
10 ,0,0,0,1)

√
((x, y, z) − ( 1

2 , 1
2 ,0))2 < 1

5
(1,0,0,0,1) otherwise

Final time: T = 0.3
Boundary conditions: ∂�in = ({0} × [0,0.5] × [0,0.5])

∂�out = ({1.2} × [0,0.5] × [0,0.5])
∂�ref l = ∂� \ (�in ∪ �out )

Refinement tolerance: θr = 1 (see also Sect. 5)
Coarsening factor: θc = 0.2 (see also Sect. 5)
Maximal refinement level: m = 3
Initial grid: see Appendix

The results obtained for this test are in good agreement with the results shown on the
CLAWPACK homepage (see above). We can also see that the shock and bubble structures
are quite well retained on this unstructured tetrahedral grid. This also confirms the function-
ality of the D G + R scheme for tetrahedral grids including non-conform refinement.

http://www.amath.washington.edu/~claw/
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Fig. 15 Run times for a parallel computation (a) and efficiency of the parallel code (b) for the Euler equations
using the third order D G + R scheme using hexahedral elements (ALUCUBEGRID)

Fig. 16 Density distribution (a) at time t = 0.3 obtained with the D G + R scheme, adapted grid and parti-
tioning of the grid (b) at t = 0.3 for test TC8. The calculation used ALUSIMPLEXGRID (a tetrahedral grid
from DUNE) and 64 processors. Quadratic basis functions (k = 2) have been used. The initial grid contains
14999 tetrahedrons and the final grid contains about 6 · 105 tetrahedrons

7 Conclusions

In this paper we have demonstrated for various numerical experiments that the newly de-
veloped D G + R method is applicable in 2d and 3d (on Cartesian as well as on general
unstructured grids) for hyperbolic problems. Also, parallel and adaptive computations on
both unstructured and structured non-conforming grids (including dynamic load balancing)
were considered. An efficiency study shows that this method can be used for efficient high-
resolution simulations on parallel supercomputers.

In the presented method it is easily possible to use either strong gradients on troubled
cells or to limit the linear part of the DG approximation. While in our test cases the former
led to better results, the possibility to switch between the two different approaches is a
feature of the presented approach and could be of advantage in other settings. In the future
we will investigate the possible extension of the method to less restrictive limiting, keeping
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higher order moments of the DG solution where possible. This could, for example, increase
the resolution of the method for problems like the shock interaction with entropy waves (see
[18, Example 2] and [25, Example 3.7]) where our results coincide with the results obtained
in [18] and [25]. This would make it possible to keep more of the subscale resolution which
is characteristic of the DG method.
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contract number 03SF0310C.

Appendix: Initial Triangular Grids

The initial triangular grids for the Riemann problems (TC1–TC4) and the Forward Fac-
ing Step (TC5) problem have been created with the Delaunay triangulator triangle
(see http://www.cs.cmu.edu/~quake/triangle.html, version 1.6). The command line call
for triangle to create the initial triangular grid for TC1–TC4 is: triangle -ej
-q30 -a0.005 rp.node and for TC5: triangle -ej -Ap -q30 -a0.00195
ffs.poly. For the Shock Bubble (TC8) problem the 3d Delaunay triangulator tetgen
has been used (see http://tetgen.berlios.de/). The command line call for tetgen to create
the SB initial tetrahedral grid (needs the files sb.node,sb.ele,sb.face): tetgen
-rq25a3.8e-05 sb. The files needed by triangle/tetgen are the following:

rp.node

8 2 0 0
0 0 0
1 1 0
2 1 0.25
3 0 0.25
4 0.5 0
5 0.5 0.25
6 0.5 0.17
7 0.5 0.08
0 1
0
0

ffs.poly

6 2 0 0
0 0 0
1 0.6 0
2 0.6 0.2
3 3 0.2
4 3 1
5 0 1
6 1
0 0 1 3
1 5 0 1
2 1 2 4
3 2 3 4
4 3 4 2
5 4 5 4
0
0

sb.node

8 3 0 0
0 0 0 0
1 0 0.5 0
2 0 0.5 0.5
3 0 0 0.5
4 1.2 0 0
5 1.2 0.5 0
6 1.2 0.5 0.5
7 1.2 0 0.5

sb.ele

6 4 0
0 0 1 2 4
1 1 2 4 5
2 2 4 5 6
3 2 4 6 7
4 4 2 0 7
5 2 0 7 3

sb.face

12 0
0 0 1 2
1 0 4 1
2 1 5 2
3 4 5 1
4 4 6 5
5 5 6 2
6 4 7 6
7 6 7 2
8 0 7 4
9 2 3 0
10 0 3 7
11 7 3 2
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