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Abstract This paper deals with the numerical approximation of one-dimensional hyper-
bolic systems of balance laws. We consider these systems as a particular case of hyperbolic
systems in nonconservative form, for which we use the theory introduced by Dal Maso,
LeFloch and Murat (J. Math. Pures Appl. 74:483, 1995) in order to define the concept of
weak solutions. This theory is based on the prescription of a family of paths in the phases
space. We also consider path-conservative schemes, that were introduced in Parés (SIAM
J. Numer. Anal. 44:300, 2006). The first goal is to prove a Lax-Wendroff type convergence
theorem. In Castro et al. (J. Comput. Phys. 227:8107, 2008) it was shown that, for general
nonconservative systems a rather strong convergence assumption is needed to prove such
a result. Here, we prove that the same hypotheses used in the classical Lax-Wendroff the-
orem are enough to ensure the convergence in the particular case of systems of balance
laws, as the numerical results shown in Castro et al. (J. Comput. Phys. 227:8107, 2008)
seemed to suggest. Next, we study the relationship between the well-balanced properties of
path-conservative schemes applied to systems of balance laws and the family of paths.

Keywords Hyperbolic systems of balance laws · Hyperbolic nonconservative systems ·
Path-conservative schemes · Convergence · Well-balanced schemes

1 Introduction

This paper is concerned with the numerical approximation of Cauchy problems for one-
dimensional systems of conservation laws with source terms or balance laws

Ut + F(U)x = S(U)σx, (1.1)
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where U(x, t) ∈ �, being � an open convex set of R
N , σ(x) is a known function from R

to R, F is a regular function from � to R
N , and S is also a function from � to R

N .
It is well known that standard methods that solve correctly systems of conservation laws

can fail in solving (1.1), specially when approaching equilibria or near to equilibria solu-
tions. In the context of shallow water equations Bermúdez and Vázquez-Cendón introduced
in [6] the condition called C -property: a scheme is said to satisfy this condition if it solves
correctly the steady-state solutions corresponding to water at rest. This idea of constructing
numerical schemes that preserve some equilibria, which are called in general well-balanced
schemes, has been studied by many authors. The design of numerical schemes with good
properties for problems of the form (1.1) is a very active front of research, as PDE systems
of this nature arise in many flow models: see [8] for a review on this topic.

Here, the strategy to derive well-balanced stable numerical methods for (1.1) will consist
in writing first the system in the more general form

Wt + A(W)Wx = 0 x ∈ R, t > 0. (1.2)

The main advantages of this approach is that it allows one to discretize the system as a
whole, making thus easier to balance correctly the numerical flux and the source terms.

The major difficulty of solving general systems of the form (1.2) comes from the presence
of the nonconservative product A(W)Wx , which makes difficult even the definition of the
weak solutions. After the theory developed by Dal Maso, LeFloch and Murat [12] a notion of
weak solution can be introduced for which the equality (1.2) is satisfied in the sense of Borel
measures. This notion is based on a family of paths in the phases space, whose selection is
important, as it determines the speed of propagation of the discontinuities. The choice of
an appropriate family of paths may be a difficult task. Although in physical applications it
should depend on the problem under consideration and it could be suggested by an argument
of regularization, it is natural from the mathematical point of view to impose this family to
satisfy some conditions (see [23]). It turns out that, in the particular case of systems of
balance laws, these conditions are enough to determine the family of paths, as least for close
enough states, as it will be seen is Sect. 2.

The introduction of a family of paths not only gives a way to properly define the con-
cept of weak solutions of nonconservative systems: a theoretical framework for the design
of finite difference methods for systems of the form (1.2) has been introduced in [25]. This
framework is based on the concept of path-conservative numerical scheme, which is a gen-
eralization of the usual concept of conservative method for conservation laws.

A basic requirement concerning the convergence of a numerical scheme is the following:
if the approximations produced by the scheme converge to some function as the mesh is
refined, then this function should be a weak solution of the system. In the particular case of
systems of conservation laws, the classical theorem of Lax-Wendroff [21] gives the answer
to this problem: conservative numerical methods have this property. Moreover, in [19] or
[13] some negative results have been shown concerning the failure of the convergence of
nonconservative schemes to weak solutions of conservative problems. These convergence
difficulties have also been discussed recently in [2]. In [26] a Lax-Wendroff type theorem has
been proved for a class of consistent numerical schemes for solving scalar conservation laws
with a source term. In [10] it has been proved that, for general nonconservative systems, if
the approximations produced by a path-conservative numerical scheme converges uniformly
in the sense of graphs, then the limit is a weak solution according to the same family of paths.
Unfortunately, this notion of convergence is too strong to expect the solutions produced by
a finite-difference type method to converge in this sense and, in practice, the limit of the
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approximations satisfies a perturbed problem in which an error source term supported on
the discontinuities appears.

The first goal of this paper is to prove that, for systems of balance laws (1.1) with
smooth enough σ , a Lax-Wendroff type result can be proved for path-conservative numer-
ical schemes assuming the same hypotheses of convergence of the classical theorem for
conservative problems. Together with the hypothesis concerning the convergence of the ap-
proximations, some minimal assumptions both on the chosen family of paths and on the
numerical scheme are required, so that if σ is constant the usual notion of weak solution and
a conservative numerical scheme are recovered.

In general, the assumptions on the family of paths required to prove the Lax-Wendroff
theorem are not enough to ensure the well-balanced property. The second goal of this article
is to present some general results showing that, in order to obtain well-balanced schemes,
some further assumptions have to be imposed to the family of paths, concerning the relation-
ship between the paths and the integral curves of the linearly degenerate field of the system
associated to the null eigenvalue.

The organization is as follows: in Sect. 2 we present the reformulation of (1.1) as a
system of the form (1.2) and discuss the definition of weak solutions and the choice of
paths. In Sect. 3 the notion of path-conservative numerical schemes is recalled and applied
to the particular case of a system of balance laws. Moreover, the schemes that reduce to a
conservative method when σ is constant are characterized. Next, in Sect. 4 the Lax-Wendroff
type result is proved. Some general results concerning the well-balanced property of these
schemes are presented in Sect. 5. Finally, some examples of path-conservative schemes for
systems of balance laws are recalled in the last section.

2 Weak Solutions

We consider system (1.1). In order to write the system in form (1.2) we add the trivially
satisfied equation

σt = 0,

as it has been done previously by several authors: see for instance [16, 18, 22]. The aug-
mented system is equivalent then to (1.2) with

W =
[

U

σ

]
, A(W) =

[
J (U) −S(U)

0 0

]
, (2.1)

being J (U) ∈ MN(R) the Jacobian matrix of F(U),

J (U) = ∂F

∂U
(U).

Notice that, once the problem has been written in this form, the actual value of σ is given
by the initial conditions.

Let us suppose that matrix J (U) has N real distinct eigenvalues

λ1(U) < · · · < λN(U)

with associated eigenvectors

R1(U), . . . ,RN(U).
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If we assume that these eigenvalues do not vanish, then system (1.2), (2.1) is strictly
hyperbolic, since A(W) has N + 1 real distinct eigenvalues

λ̃1(W), . . . , λ̃N (W), λ̃N+1(W)

given by

λ̃i(W) = λi(U), i = 1, . . . ,N; λ̃N+1(W) = 0.

These eigenvalues have associated eigenvectors

R̃1(W), . . . , R̃N (W), R̃N+1(W)

given by

R̃i(W) =
[

Ri(U)

0

]
, i = 1, . . . ,N; R̃N+1(W) =

[
J (U)−1S(U)

1

]
.

The (N +1)th characteristic field is linearly degenerate and we will suppose, for the sake
of simplicity, that it is the only one.

The integral curves of the first N characteristic fields are given by the solution of the
o.d.e. systems

dU

ds
= Ri(U),

dσ

ds
= 0, i = 1, . . . ,N, (2.2)

and those of the (N + 1)th field by the solutions of

dU

dσ
= J (U)−1S(U). (2.3)

These last integral curves are strongly related to the stationary solutions of the system: in
fact, stationary solutions are obtained by parametrizing in terms of x these curves. Indeed,
taking x as a parameter in (2.3), we obtain:

J (U)
dU

dx
= S(U)

dσ

dx
,

or equivalently

F(U)x = S(U)σx,

which is the system satisfied by a stationary solution.
In the case in which some of the eigenvalues of J (U) vanishes, system (1.2), (2.1) be-

comes nonstrictly hyperbolic. For these resonant problems, the definition and the analysis
of weak solutions are much more difficult. In particular, Riemann problems may have more
than one entropy solution (see [4, 14]). In this work, we will only consider the strictly hy-
perbolic case.

Notice that, when σ is discontinuous, the source term S(U)σx does not make sense in
the distributional framework. Even if here we are mainly interested in problems in which σ

is continuous, it is interesting to consider the more general case for two reasons. On the one
hand, in the numerical schemes considered here, piecewise constant approximations of σ

will be considered. Therefore, numerical schemes based on approximate or exact Riemann
solvers have to deal with the difficulty related to the lack of sense of the source term. On the
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other hand, as we shall see, the well-balanced property of the numerical schemes is strongly
related to their ability to handle with the contact discontinuities added to the system when σ

is allowed to be discontinuous.
Let us thus consider the general case in which σ is discontinuous. In order to define the

weak solutions of (1.2), (2.1) according to the theory developed in [12] a family of paths �̃

in � × R has to be chosen, i.e. a locally Lipschitz map

�̃ : [0,1] × (� × R) × (� × R) → (� × R)

satisfying some natural properties, as:

�̃(0;WL,WR) = WL, �̃(1;WL,WR) = WR,

or

�̃(s;W,W) = W, ∀s ∈ [0,1].
We will use the notation

WL =
[

UL

σL

]
, WR =

[
UR

σR

]

for the states WL and WR and

�̃(s;WL,WR) =
[

�(s;WL,WR)

�N+1(s;WL,WR)

]
,

where

�(s;WL,WR) =

⎡
⎢⎢⎣

�1(s;WL,WR)

...

�N(s;WL,WR)

⎤
⎥⎥⎦ ,

for the paths connecting both states.
The family of paths �̃ allows one to give a sense to the nonconservative product A(W)Wx

as a Borel measure for W ∈ (L∞(R × R
+) ∩ BV (R × R

+))N+1, denoted by [A(W)Wx]�.
Given a time t , the Borel measure related to the nonconservative product is defined as fol-
lows: 〈[

A(W(·, t)) ∂W

∂x
(·, t)

]
�̃

, ϕ

〉
=

∫
R

A(W(x, t))
∂W

∂x
(x, t)ϕ(x) dx

+
∑
m

(∫ 1

0
A(�̃(s;W−

m ,W+
m ))

∂�̃

∂s
(s;W−

m ,W+
m )ds

)
ϕ(xm(t)), ∀ϕ ∈ C0(R).

(2.4)

In the above equality, the expression Wx appearing in the first integral represents the point-
wise derivative of W(·, t); xm(t) are the locations of the discontinuities of W at time t ; W−

m

and W+
m are respectively the limits of W to the left and to the right at the mth discontinuity

at time t ; and C0(R) is the set of continuous maps with compact support.
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A function W ∈ (L∞(R×R
+)∩BV (R×R

+))N+1 is said to be a weak solution of (1.2),
(2.1) if it satisfies the equality

∂W

∂t
+

[
A(W)

∂W

∂x

]
�̃

= 0. (2.5)

Across a discontinuity, a weak solution must satisfy the generalized Rankine-Hugoniot con-
dition: ∫ 1

0

(
ξId − A(�̃(s;W−,W+))

∂�̃

∂s
(s;W−,W+) ds = 0, (2.6)

where ξ is the speed of propagation of the discontinuity, Id is the identity matrix, and W−

and W+ are the left and right limits of the solution at the discontinuity.
Notice that, in this particular case, by using the structure of matrix A, it can be easily seen

that the (N + 1)th component of the right-hand side of (2.4) vanishes and, for differentiable
test functions, the first N components reduce to:

−
∫

R

F(U(x, t))ϕx(x) dx −
∫

R

S(U(x))σx(x)ϕ(x) dx −
∑
m

S�̃(W−
m ,W+

m )ϕ(xm(t)), (2.7)

where

S�̃ : (� × R) × (� × R) → R
N

is defined by:

S�̃(WL,WR) =
∫ 1

0
S(�(s;WL,WR))

∂�N+1

∂s
(s;WL,WR))ds. (2.8)

In the same way, the generalized Rankine-Hugoniot condition (2.6) reduces to:

{
ξ(U+ − U−) = F(U+) − F(U−) − S�̃(W−,W+),

ξ(σ+ − σ−) = 0.
(2.9)

According to the second equality in (2.9), the discontinuities appearing in weak solutions
have to be either stationary (ξ = 0) or develop in regions where σ is continuous.

As it occurs in the conservative case, not any discontinuity is admissible. Therefore, a
notion of entropy solution has to be assumed. Let us suppose for instance that there exists
an entropy pair, i.e. a pair or smooth functions (η(U),G(U,σ)) such that η is convex and

∂UG(U,σ) = ∇η(U) · J (U), ∂σ G(U,σ) = −∇η(U) · S(U),

for every U and σ . Then a weak solution is said to be an entropy solution if it satisfies the
inequality

∂η(U)

∂t
+ ∂G(U,σ)

∂x
≤ 0

in the distributions sense.
When an entropy pair is not available, the classical shock conditions of Lax can be con-

sidered to define the notion of entropy solution.
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Even if any arbitrary choice of the family of paths allows us to give a consistent mathe-
matical meaning to the weak solutions, it is natural to impose some requirements. Following
[23], we impose the family of paths �̃ to satisfy the following assumptions:

H1 If WL and WR are such that σL = σR = σ̄ , then

�N+1(s;WL,WR) = σ̄ ∀s ∈ [0,1]. (2.10)

H2 Given two states WL and WR belonging to the same integral curve γ of the linearly
degenerate field, the path �̃(·;WL,WR) is a parametrization of the arc of γ linking WL and
WR .

H3 Let us denote by R̃P ⊂ (� × R) × (� × R) the set of pairs (WL,WR) such that the
Riemann problem ⎧⎪⎨

⎪⎩
Wt + A(W)Wx = 0,

W(x,0) =
{

WL if x < 0,

WR if x > 0,

(2.11)

has a unique self-similar weak solution composed by at most N + 1 simple waves (i.e. en-
tropy shocks, contact discontinuities or rarefaction waves). Let W±

L,R denote the limits to
the right and to the left of x = 0 of the solution of (2.11). Then, given (WL,WR) ∈ R̃P , the
curve described by the path �̃(·;WL,WR) is equal to the union of the paths linking the pairs
(WL,W−

L,R), (W−
L,R,W+

L,R), and (W+
L,R,WR).

Proposition 2.1 If we assume that the concept of weak solutions of (1.2), (2.1) is defined
on the basis of a family of paths satisfying hypotheses (H1)–(H3), then:

(i) If

W =
[

U

σ

]

is a weak solution of (1.2), (2.1) with σ constant, σ(x) = σ̄ , then U is a weak solution,
in the usual sense, of the conservative problem

Ut + F(U)x = 0. (2.12)

(ii) Given two states WL and WR belonging to the same integral curve of the linearly de-
generate field, the stationary contact discontinuity given by

W(x, t) =
{

WL if x < 0,

WR if x > 0,
(2.13)

is a weak solution of (1.2), (2.1).
(iii) If (WL,WR) belongs to R̃P , then:∫ 1

0
A(�̃(s;WL,WR))

∂�̃

∂s
(s;WL,WR)ds

=
[

F(U−
L,R) − F(UL) + F(UR) − F(U+

L,R)

0

]
, (2.14)

where U±
L,R represent the first N components of W±

L,R .
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Proof To prove (i) observe that (H1) implies

S�̃(WL,WR) = 0 if σL = σR. (2.15)

Therefore, when σ is constant, (2.7) reduces to:

−
∫

R

F(U(x, t))ϕx(x) dx,

and the usual definition of weak solution is recovered.
Next, to prove (ii) notice that (H2) implies that, given two states WL and WR belonging

to the same integral curve of the linearly degenerate field, one has:

A(�̃(s;WL,WR))
∂�̃

∂s
(s;WL,WR)ds = 0, (2.16)

and then (2.13) trivially satisfies (2.5).
Let us finally prove (iii). Notice first that (i), (ii) imply that the simple waves of the system

are: (1) contact discontinuities standing on a discontinuity of σ and linking two states that
belong to the same integral curve of the (N + 1)th characteristic field; (2) rarefaction waves
associated to the first N characteristic fields; and (3) entropy shocks also associated to the
first N characteristic fields evolving in regions where σ is continuous. Due to the hypothesis
of strict hyperbolicity of (1.2), (2.1) these shocks cannot be stationary and due to (2.15), they
satisfy the usual Rankine-Hugoniot conditions

ξ(U+ − U−) = F(U+) − F(U−).

Therefore, given (WL,WR) ∈ R̃P , the only possible discontinuity at x = 0 for t > 0
would be a stationary contact discontinuity linking two states W−

L,R = [U−
L,R, σL] and

W+
L,R = [U+

L,R, σR] belonging to the same integral curve of the linearly degenerate field.
Taking into account (H3) we have:

∫ 1

0
A(�̃(s;WL,WR))

∂�̃

∂s
(s;WL,WR)ds

=
∫ 1

0
A(�̃(s;WL,W−

L,R))
∂�̃

∂s
(s;WL,W−

L,R) ds

+
∫ 1

0
A(�̃(s;W−

L,R,W+
L,R))

∂�̃

∂s
(s;W−

L,R,W+
L,R) ds

+
∫ 1

0
A(�̃(s;W+

L,R,WR))
∂�̃

∂s
(s;W+

L,R,WR)ds. (2.17)

The second summand in the right-hand side of the (2.17) vanishes due to (2.16) and the first
and the third ones reduce respectively to:[

F(U−
L,R) − F(UL)

0

]
,

[
F(UR) − F(U+

L,R)

0

]
,

due to (2.15). Then, (2.14) is obtained from (2.17) and (iii) is also proved. �
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It is worth noticing that, as a consequence of the previous proposition, the solutions
of the Riemann problems (2.11) are the same for every family of paths satisfying (H1)–
(H3), as the families of simple curves are independent of the family of paths. Moreover, the
meaning of the nonconservative products across a discontinuity linking two states belonging
to R̃P is also the same for every family of paths satisfying (H1)–(H3), as the weight of the
corresponding Dirac mass (2.14) is independent of the paths.

We stress the fact that assumptions (H1)–(H3) are not necessary to have a consistent
definition of the weak solutions. For instance, for the particular case of the shallow water
system with a bottom step, while the definition of weak solution given in [3] is equivalent to
the one associated to a family of paths satisfying these assumptions, this is not the case for
the definitions in [7] or [29]. In particular, the statement (ii) in the proposition above is not
valid for the definition of weak solutions in the two last references.

We will assume in the sequel that a family of paths satisfying (H1)–(H3) has been chosen
to define the weak solutions of (1.2), (2.1). In practice, such a family can be constructed
at least in the class R̃P as follows: given (WL,WR) in this class, first the corresponding
Riemann problem (2.11) is solved (observe that it is possible to solve this problem before
defining the family of paths, as the simple curves are already known). Then, the path linking
(WL,WR) ∈ R̃P is a parametrization in [0,1] of the curve composed by:

• the straight segment linking WL and W−
L,R ;

• the arc of the integral curve of the linearly degenerate field linking W−
L,R and W+

L,R ;
• the straight segment linking W+

L,R and WR .

To finish this section, let us remark that, when σ is continuous, every family of paths
satisfying (H1) defines the same concept of weak solution: observe that (2.7) in this case
reduces to

−
∫

R

F(U(x, t))ϕx(x) dx −
∫

R

S(U(x))σx(x)ϕ(x) dx, (2.18)

independently of the chosen family, so that the weak solution of (1.1) with initial condition

U(x,0) = U 0(x) (2.19)

can be defined by means of the following variational formulation:

∫ ∞

0

∫ ∞

−∞
U(x, t)ϕt (x, t) dx dt +

∫ ∞

0

∫ ∞

−∞
F(U(x, t)) ϕx(x, t) dx dt

+
∫ ∞

0

∫ ∞

−∞
S(U(x, t))σx(x)ϕ(x, t) dx dt +

∫ +∞

−∞
U 0(x)ϕ(x,0) dx = 0, (2.20)

where ϕ is any C 1
0(R × [0,∞)) test function.

3 Numerical Schemes

We consider problem (1.1) with initial condition (2.19) or, equivalently, problem (1.2), (2.1)
with initial condition

W(x,0) = W 0(x), (3.1)
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where

W 0 =
[

U 0

σ

]
. (3.2)

We will use the notation

Wn
i =

[
Un

i

σi

]
,

where

σi = 1

�x

∫ xi+1/2

xi−1/2

σ(x)dx,

for the approximation of the cell averages of a solution of (1.2), (2.1) obtained by a numerical
scheme.

We consider here numerical schemes which are path-conservative in the sense introduced
in [25], i.e. numerical schemes that can be written as follows:

Wn+1
i = Wn

i − �t

�x

(
D̃

n,+
i−1/2 + D̃

n,−
i+1/2

)
, (3.3)

where

D̃
n,±
i+1/2 = D̃±(

Wn
i−q, . . . ,W

n
i+p

)
,

with D̃− and D̃+ continuous functions satisfying

D̃±(W, . . . ,W) = 0 ∀W ∈ � × R (3.4)

and

D̃−(W−q, . . . ,Wp) + D̃+(W−q, . . . ,Wp)

=
∫ 1

0
A

(
�̃(s;W0,W1)

)∂�̃

∂s
(s;W0,W1) ds, (3.5)

for every Wi ∈ � × R, i = −q, . . . ,p.
Due to the structure of W and A(W) in system (1.2), (2.1), it is natural to choose D̃±

such that:

D̃± =
[

D±

0

]

and thus:

D̃
n,±
i+1/2 =

[
D

n,±
i+1/2

0

]
.

Dropping the last component in (3.3), the scheme is reduced to

Un+1
i = Un

i − �t

�x

(
D

n,+
i−1/2 + D

n,−
i+1/2

)
, (3.6)
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where D
n,±
i+1/2 = D±(Wn

i−q, . . . ,W
n
i+p), being D− and D+ two continuous functions. Condi-

tions (3.4) and (3.5) reduce then to

D±(W, . . . ,W) = 0 ∀W ∈ � × R (3.7)

and

D−(W−q, . . . ,Wp) + D+(W−q , . . . ,Wp)

= F(U1) − F(U0) − S�̃(W0,W1), (3.8)

for Wi ∈ � × R, i = −q, . . . ,p.
According to the previous section, the more appropriate choice for the family of paths

would be given by a family satisfying (H1)–(H3). The following proposition, whose proof
is trivial by (3.5) and (2.14), characterizes the numerical schemes that are path-conservative
for such a family of paths:

Proposition 3.1 Let �̃ be a family of paths satisfying (H1)–(H3). A numerical scheme of the
form (3.6)–(3.8) is �̃-conservative if and only if, given {W−q, . . . ,Wp} such that (W0,W1) ∈
R̃P one has:

D−(
W−q, . . . ,Wp

) + D+(
W−q , . . . ,Wp

)
= F(U1) − F(U+

1/2) + F(U−
1/2) − F(U0), (3.9)

where

W−
1/2 =

[
U−

1/2

σ0

]
and W+

1/2 =
[

U+
1/2

σ1

]

are, respectively, the left and right limits at x = 0 of the solution of the Riemann problem
associated to W0 and W1.

Unfortunately, the design of a numerical scheme which is path-conservative for a family
satisfying (H1)–(H3) can be difficult or very costly in practice since the construction of the

path �̃ linking two states involves the resolution of a Riemann problem. Consequently, we
will consider numerical schemes that are path-conservative for an arbitrary family of paths
�̃ and we will analyze their properties.

In the sequel we will focus on numerical schemes with q = 0 and p = 1, i.e.

D̃
n,±
i+1/2 = D̃±(Wn

i ,Wn
i+1).

In order to be able to prove a Lax-Wendroff type theorem, the numerical schemes should
reduce to a conservative scheme when σ is constant. Let us characterize these schemes:

Proposition 3.2 A �̃-conservative scheme reduces, when σ is constant, to a conservative
scheme whose numerical flux is independent of σ if and only if

∂D±

∂σ

([
U0

σ

]
,

[
U1

σ

])
= 0 (3.10)
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and

S�̃

([
U0

σ

]
,

[
U1

σ

])
= 0 (3.11)

hold for every U0, U1, and σ .

Proof Let us suppose that there exists a numerical flux G(U0,U1) consistent with F such
that:

D+
([

U−1

σ

]
,

[
U0

σ

])
+ D−

([
U0

σ

]
,

[
U1

σ

])
= G(U0,U1) − G(U−1,U0) (3.12)

for every U−1, U0, U1, and σ .
Choosing U−1 = U0 we deduce:

D−
([

U0

σ

]
,

[
U1

σ

])
= G(U0,U1) − F(U0),

and choosing U0 = U1:

D+
([

U0

σ

]
,

[
U1

σ

])
= F(U1) − G(U0,U1).

So, (3.10) holds. Adding the last two equalities we obtain

D−
([

U0

σ

]
,

[
U1

σ

])
+ D+

([
U0

σ

]
,

[
U1

σ

])
= F(U1) − F(U0), (3.13)

which, compared to (3.8), gives (3.11).
Conversely, if (3.10) and (3.11) are satisfied, we can define a consistent numerical flux

either by

G(U0,U1) = D−
([

U0

σ

]
,

[
U1

σ

])
+ F(U0), (3.14)

or by

G(U0,U1) = −D+
([

U0

σ

]
,

[
U1

σ

])
+ F(U1). (3.15)

Both definitions coincide and are independent of σ due to (3.13), (3.10), and (3.11). More-
over, (3.12) is trivially satisfied. �

Remark 3.3 The reciprocal implication in the previous proposition is also valid for numeri-
cal schemes with arbitrary values of p and q .

Clearly, (3.11) is satisfied if the family of paths satisfies (H1). We will suppose in the
sequel that this hypothesis is fulfilled.
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Proposition 3.4 A �̃-conservative numerical scheme satisfying (3.10) can be written in the
form

Un+1
i = Un

i − �t

�x

(
Gn

i+1/2 − Gn
i−1/2

) + �t

�x

(
H

n,+
i−1/2 + H

n,−
i+1/2

)
, (3.16)

where

Gn
i+1/2 = G

(
Un

i ,Un
i+1

)
,

being G a continuous function such that

G(U,U) = F(U), (3.17)

and

H
n,±
i+1/2 = H±(

Wn
i ,Wn

i+1

)
,

being H− and H+ two continuous functions such that

H±(
W,W

) = 0, (3.18)

H−(
W0,W1

) + H+(
W0,W1

) = S�̃

(
W0,W1

)
(3.19)

and

H±
([

U0

σ

]
,

[
U1

σ

])
= 0. (3.20)

Conversely, a numerical scheme (3.16)–(3.20) can be written as a �̃-conservative nu-
merical scheme satisfying (3.10).

Proof Let us define G(U0,U1) by (3.14) or (3.15). Next, we define

H−(W0,W1) = −D−(W0,W1) + G(U0,U1) − F(U0) (3.21)

and

H+(W0,W1) = −D+(W0,W1) − G(U0,U1) + F(U1). (3.22)

We can easily check that conditions (3.17)–(3.19) are satisfied. Condition (3.20) is easily
deduced from the definition of G and from (3.10).

The proof of the reciprocal implication is straightforward.
�

Remark 3.5 The form (3.16) is that of an Upwind Interface Source method as presented
in [26]. In this reference, the functions H± are supposed to be of the form:

H±(WL,WR) = H̄±(UL,UR,σR − σL),

where H̄± are functions satisfying

H̄±(UL,UR,0) = 0,

for every UL, UR . Notice that, in this case, (3.18) and (3.20) are automatically satisfied.
Let us finally remark that (3.19) implies the consistency of the scheme in the sense defined
in [26].
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4 A Convergence Result

In this section we prove a Lax-Wendroff convergence theorem for the particular case of
systems of balance laws, provided that the path-numerical scheme used to solve it reduces
to a conservative scheme when σ is constant.

Assume that the mesh ratio �t/�x is a fixed constant λ as �x,�t tend to 0.
Set h = �x and introduce the piecewise constant function defined a.e. in R × [0,∞) by

Uh(x, t) = Un
i , (x, t) ∈ (xi−1/2, xi+1/2) × [tn, tn+1).

For the discretization of the initial condition we choose the cell averages

U 0
i = 1

�x

∫ xi+1/2

xi−1/2

U0(x) dx. (4.1)

We will also use the notation

Wh =
[

Uh

σ

]
.

Theorem 4.1 Let F ∈ C 2(�)N , S ∈ C 1(�)N and σ ∈ W 1,1(R). Let �̃ be any family of paths
satisfying (H1). For h > 0, let Uh be the numerical approximation obtained from a �̃-
conservative numerical scheme of the form (3.16)–(3.20) and Uh(x,0) given by (4.1).

Suppose that

‖Uh‖L∞(R×[0,∞))N ≤ C (4.2)

and that there exists a function U ∈ (L∞(R × [0,∞)) ∩ BV (R × [0,∞)))N such that

Uh −→
h→0

U in L1
loc(R × [0,∞))N . (4.3)

Then U is a weak solution of the problem (1.1) with initial condition (2.19).

Proof The proof is an adaptation of the classical Lax-Wendroff convergence theorem for
hyperbolic systems of conservation laws [21].

We want to prove that (2.20) is satisfied for every ϕ ∈ C 1
0(R × [0,∞)).

Let ϕ ∈ C 1
0(R × [0,∞)) be a test function and set

ϕn
i = ϕ(xi, t

n).

By multiplying (3.16) by �x ϕn
i and summing over i and n we have:

�x

∞∑
n=0

∞∑
i=−∞

(
Un+1

i − Un
i

)
ϕn

i + �t

∞∑
n=0

∞∑
i=−∞

(
Gn

i+1/2 − Gn
i−1/2

)
ϕn

i

− �t

∞∑
n=0

∞∑
i=−∞

(
H

n,+
i−1/2 + H

n,−
i+1/2

)
ϕn

i = 0.

Notice that all these sums are finite since ϕ has a compact support.
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Applying summation by parts we obtain:

�x

∞∑
n=1

∞∑
i=−∞

Un
i

(
ϕn

i − ϕn−1
i

) + �t

∞∑
n=0

∞∑
i=−∞

Gn
i+1/2

(
ϕn

i+1 − ϕn
i

)

+ �t

∞∑
n=0

∞∑
i=−∞

(
H

n,+
i+1/2 ϕn

i+1 + H
n,−
i+1/2 ϕn

i

) + �x

∞∑
i=−∞

U 0
i ϕ0

i = 0.

Now set

ϕn
i+1/2 = ϕ(xi+1/2, t

n).

It is straightforward to verify that

ϕn
j = ϕn

i+1/2 + O(�x), j = i, i + 1,

and then

�x

∞∑
n=1

∞∑
i=−∞

Un
i

(
ϕn

i − ϕn−1
i

) + �t

∞∑
n=0

∞∑
i=−∞

Gn
i+1/2

(
ϕn

i+1 − ϕn
i

)

+ �t

∞∑
n=0

∞∑
i=−∞

(
H

n,−
i+1/2 + H

n,+
i+1/2

)(
ϕn

i+1/2 + O(�x)
) + �x

∞∑
i=−∞

U 0
i ϕ0

i = 0. (4.4)

If we consider the functions defined a.e. by

ϕh(x, t) = ϕn
i , (x, t) ∈ (xi−1/2, xi+1/2) × [tn, tn+1),

ψh(x, t) = ϕn
i+1/2, (x, t) ∈ (xi, xi+1) × [tn, tn+1),

Gh(x, t) = Gn
i+1/2, (x, t) ∈ (xi, xi+1) × [tn, tn+1)

and

Hh(x, t) = 1

�x

(
H

n,−
i+1/2 + H

n,+
i+1/2

) = 1

�x
S�̃

(
W̃ n

i , W̃ n
i+1

)
,

for (x, t) ∈ (xi, xi+1) × [tn, tn+1), then (4.4) can be rewritten as

∫ ∞

�t

∫ ∞

−∞
Uh(x, t)

ϕh(x, t) − ϕh(x, t − �t)

�t
dx dt

+
∫ ∞

0

∫ ∞

−∞
Gh(x, t)

ϕh(x + �x/2, t) − ϕh(x − �x/2, t)

�x
dx dt

+
∫ ∞

0

∫ ∞

−∞
Hh(x, t)

(
ψh(x, t) + O(h)

)
dx dt

+
∫ ∞

0

∫ ∞

−∞
U 0(x)ϕh(x,0)dx = 0. (4.5)

We want to prove that (2.20) can be obtained by passing to the limit as h tends to 0
in (4.5).
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It is not difficult to check that the first, the second and the last term in (4.5) converge to
the first, the second and the last term in (2.20), respectively. It remains to prove that the third
term in (4.5) converges to the third one in (2.20).

It suffices to study the convergence of∫ ∞

0

∫ ∞

−∞
Hh(x, t)ψh(x, t) dx dt.

In order to do that, we use the decomposition∫ ∞

0

∫ ∞

−∞
(Hh(x, t)ψh(x, t) − S(U(x, t))σx(x)ϕ(x, t)) dx dt

=
∫ ∞

0

∫ ∞

−∞
Hh(x, t)

(
ψh(x, t) − ϕ(x, t)

)
dx dt

+
∫ ∞

0

∫ ∞

−∞
(Hh(x, t) − S(U(x, t))σx(x))ϕ(x, t) dx dt. (4.6)

The first summand in (4.6) trivially converges to zero because Hh is bounded and ψh

converges uniformly to ϕ as h tends to 0.
To prove the convergence to zero of the second summand we want to prove that Hh

converges to S(U)σx in L1
loc(R × [0,∞))N .

For (x, t) ∈ (xi, xi+1) × [tn, tn+1) we have:

Hh(x, t) = 1

�x
S�̃

(
Wh(x − �x/2, t),Wh(x + �x/2, t)

)
and we can use the decomposition

Hh(x, t) − S(U(x, t))σx(x)

=
∫ 1

0
S
(
�(s;Wh(x − �x/2, t),Wh(x + �x/2, t))

)( 1

�x

∂�N+1

∂s
(s) − σx(x)

)
ds

+
∫ 1

0

(
S
(
�(s;Wh(x − �x/2, t),Wh(x + �x/2, t))

) − S(U(x, t))
)
σx(x) ds.

(4.7)

The second summand converges to zero because of the convergence of Wh(x − �x/2, t)

and Wh(x + �x/2, t) to W(x, t) in L1
loc(R × [0,∞)), the regularity of S and �̃ , and the

Lebesgue dominated convergence theorem.
To prove the convergence to zero of the first summand in (4.7) we just need to prove the

convergence to zero of∫ 1

0

(
1

�x

∂�N+1

∂s

(
s;Wh(x − �x/2, t),Wh(x + �x/2, t)

) − σx(x)

)
ds

= σ(x + �x/2) − σ(x − �x/2)

�x
− σx(x),

what is given by the hypothesis σ ∈ W 1,1(R).
The Lebesgue dominated convergence theorem assures the convergence of Hh to S(U)σx

in L1
loc(R × [0,∞)) and allows us to finish the proof of the theorem. �



290 J Sci Comput (2011) 48:274–295

5 Well-Balancing

We have seen in the previous section that, in order to prove the convergence to the weak
solutions of the problem when σ is smooth, only the property (H1) has to be imposed to the
family of paths. In this section we will see that further assumptions have to be imposed if
we want to obtain well-balanced path-conservative numerical schemes.

A numerical scheme (3.3) is said to be well-balanced for a stationary solution W(x) if
it solves exactly that solution, i.e. if, when the numerical scheme is applied to the initial
conditions

W 0
i = W(xi) ∀i,

then

Wn
i = W 0

i ∀i, n.

It has been seen in Sect. 2 that every stationary solution of the problem may be understood
as a parametrization of an integral curve γ of the linearly degenerate field, i.e. an integral
curve of the o.d.e. system (2.3). This fact motivates the following definition: a numerical
scheme (3.3) with q = 0 and p = 1 is said to be well-balanced for an integral curve γ of the
linearly degenerate field if

D̃±(W0,W1) = 0 ∀W0, W1 ∈ γ. (5.1)

Clearly, a numerical scheme which is well-balanced for γ is well-balanced for any sta-
tionary solution constructed by parameterizing an arc of γ with x. Moreover, remember
from Sect. 2 that the contact discontinuities of the problem also link two states belonging
to an integral curve of the linearly degenerate field. Therefore, a numerical scheme which
is exactly well-balanced for a curve γ solves exactly any contact discontinuity linking two
states belonging to γ . And for a numerical scheme (3.3) with q = 0 and p = 1, the reciprocal
implication is also true (see [25]), so that such a numerical scheme is exactly well-balanced
for an integral curve γ if and only if it solves exactly every contact discontinuity linking two
states belonging to γ .

For schemes of the form (3.6)–(3.8), equality (5.1) reduces to

D±(W0,W1) = 0 ∀W0, W1 ∈ γ. (5.2)

In particular, a numerical scheme of the form (3.16) is well-balanced for an integral curve γ

of the linearly degenerate field if and only if

H−(W0,W1) = G(U0,U1) − F(U0) ∀W0, W1 ∈ γ (5.3)

and

H+(W0,W1) = F(U1) − G(U0,U1) ∀W0, W1 ∈ γ. (5.4)

Let us consider now a numerical scheme (3.3) which is path-conservative for a family of
paths �̃ . Then, the following result can be easily proved by using (3.5) and (5.1):

Proposition 5.1 A necessary condition for a �̃-conservative scheme to be well-balanced
for γ ∈ � is that∫ 1

0
A

(
�̃(s;W0,W1)

)∂�̃

∂s
(s;W0,W1) ds = 0, ∀W0, W1 ∈ γ. (5.5)
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In particular, if the family of paths satisfies the following property:

(Pγ ) For every WL and WR belonging to γ , �̃(·;WL,WR) is a parametrization of the arc of
γ connecting WL and WR ,

then condition (5.5) is fulfilled. Observe that, if the family of paths satisfies (H2), then (5.5)
holds for every integral curve γ .

Condition (5.5) is not sufficient to obtain a well-balanced scheme. Indeed, consider the
numerical scheme defined by:

D−(W0,W1) = F(U−
1/2) − F(U0) − K(W−

1/2,W
+
1/2),

D+(W0,W1) = F(U1) − F(U+
1/2) + K(W−

1/2,W
+
1/2),

where W−
1/2 and W+

1/2 are, respectively, the left and right limits of the solution of the Riemann
problem that has W0 and W1 as initial condition, and K is any continuous function from
(� × R) × (� × R) into � such that

K(W,W) = 0 ∀W ∈ � × R

and

K(WL,WR) �= 0

for a pair of states WL and WR belonging to the same integral curve of the linearly degenerate
field. This numerical scheme is path-conservative for a family of paths �̃ satisfying (H1)–
(H3) (see Proposition 3.1) and thus (5.5) is satisfied for every integral curve of the linearly
degenerate field. Nevertheless, it is not well-balanced. To see it, apply the numerical scheme
to the initial condition:

W 0
i =

⎧⎨
⎩

WL if i ≤ 0,

WR if i > 0.

Nevertheless, as it will be seen in next section, in most cases property (Pγ ) is enough to
ensure the well-balanced property of a numerical scheme.

6 Examples

We present in this section some families of path-conservative schemes that reduce to con-
servative methods when σ is constant and we briefly discuss their well-balanced properties.

6.1 Godunov Method

The extension of the classical Godunov method [15] to systems of balance laws is given by

Un+1
i = Un

i − �t

�x

(
F(U

n,−
i+1/2) − F(U

n,+
i−1/2)

)
,

where:

W
n,−
i+1/2 =

[
U

n,−
i+1/2

σi

]
, W

n,+
i+1/2 =

[
U

n,+
i+1/2

σi+1

]
,
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are the limits to the left and to the right of x = 0 of the solution of the Riemann prob-
lem with initial conditions Wn

i = [Un
i , σi]T and Wn

i+1 = [Un
i+1, σi+1]T . This scheme is path-

conservative for any family of paths satisfying (H1)–(H3) and is exactly well-balanced for
any integral curve γ of the linearly degenerate field: see [23] for details.

6.2 Roe Methods

A Roe scheme which is path-conservative for a family of paths �̃ can be written in the form
(3.16) with the choices:

Gn
i+1/2 = 1

2

(
F(Un

i ) + F(Un
i+1)

) − 1

2

∣∣J n
i+1/2

∣∣ (Un
i+1 − Un

i ), (6.1)

H
n,±
i+1/2 = P n,±

i+1/2 · Sn
i+1/2(σi+1 − σi), (6.2)

where J n
i+1/2 is a Roe matrix for the homogeneous problem, i.e. a matrix satisfying

J n
i+1/2(U

n
i+1 − Un

i ) = F(Un
i+1) − F(Un

i ),

Sn
i+1/2 is a vector satisfying

Sn
i+1/2(σi+1 − σi) = S�̃(Wn

i ,Wn
i+1),

and

P n,±
i+1/2 = 1

2

(
Id ± ∣∣J n

i+1/2

∣∣ (J n
i+1/2)

−1
)
.

Here, Id represents the identity matrix and

|J n
i+1/2| = Kn

i+1/2

∣∣Ln
i+1/2

∣∣ (Kn
i+1/2)

−1,

where |Ln
i+1/2| is the diagonal matrix whose coefficients are the absolute value of the eigen-

values of J n
i+1/2 and Kn

i+1/2 a N × N matrix whose columns are associated eigenvectors.
This scheme is obtained by applying to system (1.2), (2.1) a Roe scheme [27] based

on a generalized Roe linearization in the sense introduced in [30] (see [16, 24]). Several
extensions of Roe method for systems of balance laws have been used in the literature: see
for instance [6, 17, 28]. See also [1].

A Roe scheme is well-balanced for a curve γ ∈ � if the family of paths satisfies the
property (Pγ ). In particular, if the family of paths satisfies (H2), the scheme is well-balanced
for every γ .

If the family of straight segments is chosen, the numerical scheme is still exactly well-
balanced for the integral curves γ which are straight lines in the phases space: this is the
case for water at rest solutions for both the shallow water and the two-layer shallow water
systems. Moreover, all the smooth stationary solutions are solved up to second order (see
[24] for details).

6.3 Lax-Friedrichs Scheme

A path-conservative extension of the classical Lax-Friedrichs scheme [20] based on a Roe
linearization is given by (3.16) with the choices:

Gn
i+1/2 = 1

2

(
F(Un

i ) + F(Un
i+1) − �x

�t
(Un

i+1 − Un
i )

)
,
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H
n,±
i+1/2 = 1

2

(
Id ± �x

�t
(J n

i+1/2)
−1

)
Sn

i+1/2(σi+1 − σi),

where J n
i+1/2 and Sn

i+1/2 are defined as above. This scheme is also well-balanced for an
integral curve γ of the linearly degenerate field if (Pγ ) is satisfied. Nevertheless, when the
family of straight segments is chosen, the property of solving with second order accuracy
all the smooth stationary solutions is lost.

Notice that the numerical scheme is not well defined when the Roe matrix J n
i+1/2 is sin-

gular. This difficulty has been discussed in [11]. In this reference, a family of well-balanced
numerical schemes including this Lax-Friedrichs scheme as a particular case, as well as
path-conservative extensions of the Lax-Wendroff, FORCE, and GFORCE schemes have
also been introduced.

6.4 Generalized Hydrostatic Reconstruction

In [9] the Hydrostatic Reconstruction technique, introduced for the shallow water system in
[5], has been generalized to obtain a numerical scheme which is exactly well-balanced for
a set �0 of integral curves of the linearly degenerate field. The expression of the numerical
scheme is again (3.16) with:

Gn
i+1/2 = G(U

n,−
i+1/2,U

n,+
i+1/2),

H
n,±
i+1/2 =

∫ 1

0
S
(
P

n,±
i+1/2(s)

)∂p
n,±
i+1/2,N+1(s)

∂s
ds,

where G is any consistent numerical flux for the homogeneous problem, U
n,±
i+1/2 are two

chosen intermediate states, and

s ∈ [0,1] �→ P̃
n,−
i+1/2(s) =

[
P

n,−
i+1/2(s)

p
n,−
i+1/2,N+1(s)

]
=

⎡
⎢⎢⎢⎢⎢⎣

p
n,−
1,i+1/2(s)

...

p
n,−
i+1/2,N (s)

p
n,−
i+1/2,N+1(s)

⎤
⎥⎥⎥⎥⎥⎦ , (6.3)

s ∈ [0,1] �→ P̃
n,+
i+1/2(s) =

[
P

n,+
i+1/2(s)

p
n,+
i+1/2,N+1(s)

]
=

⎡
⎢⎢⎢⎢⎢⎣

p
n,+
1,i+1/2(s)

...

p
n,+
i+1/2,N (s)

p
n,+
i+1/2,N+1(s)

⎤
⎥⎥⎥⎥⎥⎦ , (6.4)

are two paths linking respectively the pairs of states (Wn
i ,W

n,−
i+1/2) and (W

n,+
i+1/2,W

n
i+1), where

W
n,±
i+1/2 =

[
U

n,±
i+1/2

σi+1/2

]
,

being σi+1/2 a chosen intermediary value of σ . In order to be well-balanced for the curves
of the set �0 these paths have to be such that
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• If Wn
i belongs to a curve γ ∈ �0 then s ∈ [0,1] �→ P̃

n,−
i+1/2(s) is a parametrization of an arc

of γ .
• If Wn

i+1 belongs to a curve γ ∈ �0 then s ∈ [0,1] �→ P̃
n,+
i+1/2(s) is a parametrization of an

arc of γ .
• If σi = σi+1 = σ then σi+1/2 = σ .
• If σi = σi+1/2 then W

n,−
i+1/2 = Wn

i .
• If σi+1/2 = σi+1 then W

n,+
i+1/2 = Wn

i .
• If both the states Wn

i and Wn
i+1 belong to a curve γ ∈ �0, then W

n,−
i+1/2 = W

n,+
i+1/2.

This numerical scheme is path-conservative with respect to the family of paths defined
as follows: the path linking Wn

i and Wn
i+1 is the union of the path (6.3), the straight segment

linking W
n,−
i+1/2 and W

n,+
i+1/2, and finally the path (6.4).

If it is possible to choose the functions P̃
n,±
i+1/2(s) in such a way that, for every pair of

states Wn
i and Wn

i+1, the paths (6.3) and (6.4) are parametrizations of the integral curves of
the linearly degenerate field passing by Wn

i and Wn+1
i , then the numerical scheme is exactly

well-balanced for every integral curve of the linearly degenerate field: see [9] for details. In
this reference, this technique was applied to obtain a first order numerical scheme for the
shallow water system which is exactly well-balanced for every smooth stationary solution.
It was also applied to obtain high-order numerical schemes which are exactly well-balanced
for water at rest solutions for both the one and the two layer shallow-water system.
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