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Abstract In this work we develop an efficient algorithm for the application of the method
of fundamental solutions to inhomogeneous polyharmonic problems, that is problems gov-
erned by equations of the form ��u = f , � ∈ N, in circular geometries. Following the ideas
of Alves and Chen (Adv. Comput. Math. 23:125–142, 2005), the right hand side of the
equation in question is approximated by a linear combination of fundamental solutions of
the Helmholtz equation. A particular solution of the inhomogeneous equation is then easily
obtained from this approximation and the resulting homogeneous problem in the method
of particular solutions is subsequently solved using the method of fundamental solutions.
The fact that both the problem of approximating the right hand side and the homogeneous
boundary value problem are performed in a circular geometry, makes it possible to develop
efficient matrix decomposition algorithms with fast Fourier transforms for their solution.
The efficacy of the method is demonstrated on several test problems.

Keywords Method of fundamental solutions · Polyharmonic equations · Circulant
matrices · Fast Fourier transforms

1 Introduction

In this work we apply the ideas of Alves and Chen [2] in order to solve inhomogeneous
elliptic problems using the method of fundamental solutions (MFS) [11, 13, 14, 26]. In [2],
the authors use the method of particular solutions (MPS) to solve inhomogeneous elliptic
boundary value problems by first approximating the right hand side by a linear combination
of fundamental solutions of the Helmholtz equation. This is in contrast to the conventional
approach in which the right hand side is approximated by radial basis functions (RBFs),
see e.g. [7, 12, 17], linear combinations of Chebyshev polynomials, see e.g. [15, 33, 35], or
monomials, see e.g. [8, 15, 34]. Once the approximation in terms of fundamental solutions

A. Karageorghis (�)
Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
e-mail: andreask@ucy.ac.cy

mailto:andreask@ucy.ac.cy


520 J Sci Comput (2011) 46: 519–541

of the Helmholtz equation has been obtained, one may easily construct a particular solu-
tion of the inhomogeneous equation. In the MPS (see e.g. [15]), this particular solution is
then subtracted from the solution of the inhomogeneous problem yielding a homogeneous
problem which may be solved using the MFS. The technique proposed in [2] has been suc-
cessfully applied for the solution of several inverse problems [4, 5, 29, 37]. In this study we
apply this technique to problems in circular domains. This leads to systems in which the co-
efficient matrices possess circulant [10] or block circulant structures and can thus be solved
using matrix decomposition algorithms (MDAs) [6] and fast Fourier transforms (FFTs).
Such algorithms have been used extensively with the method of fundamental solutions for
the solution of homogeneous [20, 23] and inhomogeneous problems (using RBFs) [24, 25].

The current work is closely related to a recent study on the efficient MDA-FFT appli-
cation of the so-called MFS-K method to inhomogeneous problems in circular geometries
[22]. In the MFS-K method which was introduced in [3], the so-called Kansa method [19]
is applied to inhomogeneous elliptic boundary value problems using linear combinations of
fundamental solutions of the Helmholtz equation. In contrast to the current approach, this
linear combination is collocated simultaneously in the interior of the domain to satisfy the
differential equation and on the boundary to satisfy the boundary conditions. The MFS-K
has also been used for the solution of inhomogeneous second-order equations with variable
coefficients [38] and to heat conduction problems [39]. Note that the method proposed in
[2] has also been used in the context of the boundary knot method in [18].

The paper is organized as follows. In Sect. 2 we briefly describe the method of particular
solutions for the solution of the Poisson equation. In Sect. 3 we describe a MDA for the ap-
proximation of a function in a circular domain. In Sect. 4 we present MDAs for the solution
of the homogeneous boundary value problems resulting from the application of the method
of particular solutions to various inhomogeneous polyharmonic boundary value problems in
circular domains. The general algorithmic strategy to be followed is given in Sect. 5 while
several numerical examples are presented in Sect. 6. Finally, some conclusions and ideas
about future work are given in Sect. 7.

2 The Method of Particular Solutions

In order to describe the MPS, we consider, for example, the solution of the inhomogeneous
boundary value problem

{
�u = f in �,

u = g on ∂�,
(2.1)

where � = {x ∈ R
2: |x| < �}, with boundary ∂� and f and g are given functions.

Let up be a particular solution of the Poisson equation satisfying

�up = f in �. (2.2)

Now if we let the solution of problem (2.1) be

u = up + uh, (2.3)

clearly uh satisfies the homogeneous boundary value problem
{

�u = 0 in �,

u = h on ∂�,
(2.4)

where h = g − up .
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The idea is therefore to first construct an approximation to the function f in (2.1) and
then, from it, construct an approximate particular solution up of the Poisson equation in �.
We then, using the approximate particular solution to generate the boundary condition, solve
the homogeneous boundary problem (2.4) to obtain the homogeneous solution uh. Finally,
the approximation u of the solution of problem (2.1) is obtained from (2.3).

3 Approximation of Functions

From the description of the MPS in Sect. 2, our first objective is to approximate a given
function f in the domain �. This is achieved using a MDA similar to, but simpler than, the
one proposed in [22], in which both the differential equation and the boundary conditions are
collocated simultaneously to yield the solution of elliptic boundary value problems. In the
current approach the algorithm is simpler in the sense that only the right-hand side function
f is collocated.

3.1 The Method

The function f is approximated by

fMN(A,Q;P ) =
M∑

m=1

N∑
n=1

amn�km(P,Qn), P ∈ � = � ∪ ∂�, (3.1)

where A = (amn)
M,N
m,n=1 is the matrix of unknown coefficients, Q is a N -vector containing

the coordinates of the singularities Qn, n = 1, . . . ,N , which lie outside �, and �k(P,Q) is
a fundamental solution of the Helmholtz operator −(� + k2) given by

�k(P,Q) = i

4
H

(1)

0 (k|P − Q|), (3.2)

with |P − Q| denoting the distance between the points P and Q. In (3.2), H
(1)

0 denotes
the Hänkel function of the first kind and order zero. The test frequencies km, m = 1, . . . ,M

are chosen such that 0 < k1 < k2 < · · · < kM . The singularities Q� = (xQ�
, yQ�

) are fixed,
as usual, on a curve similar to ∂� [16], namely a circle � concentric to � and defined by
� = {x ∈ R

2: |x| = R}, where R > �. The collocation points {Pij }M,N
i,j=1 = {(xPij

, yPij
)}M,N

i,j=1

are placed in �� in the following way.

xPij
= �i cos

2(j − 1 + αi)π

N
, yPij

= �i sin
2(j − 1 + αi)π

N
,

i = 1, . . . ,M; j = 1, . . . ,N, (3.3)

where 0 < �1 < �2 < · · · < �M = �. The singularities are distributed on the circle � as
follows.

xQ�
= R cos

2(� − 1)π

N
, yQ�

= R sin
2(� − 1)π

N
, � = 1, . . . ,N. (3.4)

In (3.3) the parameters −1/2 ≤ αi ≤ 1/2, i = 1, . . . ,M , represent rotations of 2παi

N
of the

collocation points with respect to the singularities. These rotations enable us to produce a
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Fig. 1 Typical distribution of collocation (+) and singularities (o), for disk with �i = (i/M)3/4,
i = 1, . . . ,M

more uniform distribution of the collocation points [20, 24]. Typical distributions of collo-
cation points and singularities, as well as the effect of rotating the collocation points may be
observed in Fig. 1.

The unknown coefficients (amn)
M,N
m,n=1 are determined by collocating the approximation

fMN at the points {Pij }M,N
i,j=1. More precisely, for the set of points on the circle with radius �i

for each i = 1, . . . ,M , we have

fMN(A,Q;Pij ) = f (Pij ), j = 1, . . . ,N. (3.5)

Substitution of expression (3.1) into (3.5) yields

M∑
m=1

N∑
n=1

amn�km(Pij ,Qn) = f (Pij ), j = 1, . . . ,N, (3.6)

or

N∑
n=1

a1n�k1(Pij ,Qn) +
N∑

n=1

a2n�k2(Pij ,Qn) + · · · +
N∑

n=1

aMn�kM
(Pij ,Qn) = f (Pij ),

j = 1, . . . ,N. (3.7)

Equations (3.7) can be written as

M∑
m=1

Fi,mam = f i , m = 1, . . . ,M, (3.8)

where

Fi,m = (
�km(Pij ,Qn)

)N

j,n=1
, am = [am1, am2, . . . , amN ]T , m = 1, . . . ,M, (3.9)

and

f i = [
f (Pi1), f (Pi2), . . . , f (PiN)

]T
. (3.10)



J Sci Comput (2011) 46: 519–541 523

Equivalently, (3.8) can be written as the MN × MN system

Fa =

⎛
⎜⎜⎜⎝

F1,1 F1,2 . . . F1,M

F2,1 F2,2 . . . F2,M

...
...

. . .
...

FM,1 FM,2 . . . FM,M

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

a1

a2
...

aM

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

f 1

f 2
...

f M

⎞
⎟⎟⎟⎠ = f . (3.11)

It can be easily observed that each of the N × N submatrices Fi,m, i,m = 1, . . . ,M in the
coefficient matrix in (3.11) is circulant [10].

3.2 The Algorithm

3.2.1 Preliminaries

A basic tool in the algorithm for the efficient solution of system (3.11) is the unitary N × N

Fourier matrix

UN = 1√
N

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 ω̄ ω̄2 · · · ω̄N−1

1 ω̄2 ω̄4 · · · ω̄2(N−1)

...
...

...
...

1 ω̄N−1 ω̄2(N−1) · · · ω̄(N−1)(N−1)

⎞
⎟⎟⎟⎟⎟⎠

, where ω = e2π i/N . (3.12)

In the sequel, we shall also use extensively some properties of circulant matrices [10]. In
particular, if the N × N matrix C = (cij )

N
i,j=1 is circulant, then it can be fully described by

the elements of its first row and we write

C = circ(c11, c12, . . . , c1N).

Further, we have that

UNCU ∗
N = diag(λ1, λ2, . . . , λN), (3.13)

where

λj =
N∑

k=1

c1kω
(k−1)(j−1), j = 1, . . . ,N. (3.14)

3.2.2 Matrix Decomposition Algorithm

If IM is the M × M identity matrix, pre-multiplication of (3.11) by IM ⊗ UN yields

(IM ⊗ UN)F
(
IM ⊗ U ∗

N

)
(IM ⊗ UN)a = (IM ⊗ UN)f or F̃ ã = f̃ , (3.15)

where
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F̃ = (IM ⊗ UN)F
(
IM ⊗ U ∗

N

)

=

⎛
⎜⎜⎜⎝

UNF1,1U
∗
N UNF1,2U

∗
N · · · UNF1,MU ∗

N

UNF2,1U
∗
N UNF2,2U

∗
N · · · UNF2,MU ∗

N

...
...

...

UNFM,1U
∗
N UNFM,2U

∗
N · · · UNFM,MU ∗

N

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

D1,1 D1,2 · · · D1,M

D2,1 D2,2 · · · D2,M

...
...

...

DM,1 DM,2 · · · DM,M

⎞
⎟⎟⎟⎠ (3.16)

and

ã = (IM ⊗ UN)a =

⎛
⎜⎜⎜⎝

UNa1

UNa2
...

UNaM

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

ã1

ã2
...

ãM

⎞
⎟⎟⎟⎠ ,

f̃ = (IM ⊗ UN)f =

⎛
⎜⎜⎜⎝

UNf 1

UNf 2
...

UNf M

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

f̃ 1

f̃ 2
...

f̃ M

⎞
⎟⎟⎟⎠ .

(3.17)

From property (3.13), in (3.16), each of the N × N matrices Di,m, i,m = 1, . . . ,M is diag-
onal. If, in particular

Di,m = diag
(
D1

i,m,D2
i,m, . . . ,DN

i,m

)
and Fi,m = circ

(
F 1

i,m,F 2
i,m, . . . ,FN

i,m

)
,

we have, from property (3.14), for i, m = 1, . . . ,M ,

D
j

i,m =
N∑

k=1

Fk
i,mω(k−1)(j−1), j = 1, . . . ,N. (3.18)

Since the matrix F̃ consists of M2 blocks of order N each of which is diagonal, the solution
of system (3.15) can be decomposed into solving the N systems of order M

Ejxj = yj , j = 1, . . . ,N, (3.19)

where

(Ej )i,m = D
j

i,m i,m = 1, . . . ,M

and

(xj )i = (ãi )j , (yj )i = (f̃ i )j , i = 1, . . . ,M. (3.20)

Having obtained the vectors xj , j = 1, . . . ,N , we can recover the vectors ãm, m = 1, . . . ,M

and, subsequently, the vector a from (3.17).
In conclusion, the MDA can be summarized as follows:
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Algorithm 1

Step 1: Compute f̃ m = UNf m, m = 1, . . . ,M .
Step 2: Construct the diagonal matrices Di,m from (3.18).
Step 3: Solve the N , M × M systems (3.19) to obtain the {xj }N

j=1, and
subsequently the {ãm}M

m=1 from (3.20).
Step 4: Recover the vector of coefficients a from am = U ∗

N ãm, m =
1, . . . ,M .

As well documented, in Steps 1, 2 and 4 FFTs are used while the most expensive part
of the algorithm is the solution of N linear systems, each of order M . The FFTs are carried
out using the Matlab [30] commands fft and ifft while the Hänkel function H

(1)

0 (z)

is calculated using the Matlab function besselh(0,1,z). The cost of Steps 1 and 4
is thus O(MN logN), the cost of Step 2 is O(M2N logN) and of the cost of Step is 3
O(M3N).

4 Polyharmonic Boundary Value Problems

In this section we consider the method of particular solutions for the solution of certain in-
homogeneous polyharmonic boundary value problems. In particular, we consider the poly-
harmonic equation (see [27])

��u = f in �, (4.1)

where � ∈ N.
In the case � is odd, that is � = 2p − 1 for some p ∈ N, (4.1) is associated with the

boundary conditions

u,
∂u

∂n
,�u,

∂�u

∂n
, . . . ,

∂�p−2u

∂n
and �p−1u specified on ∂�. (4.2)

In the case � is even, that is � = 2p for some p ∈ N, (4.1) is associated with the boundary
conditions

u,
∂u

∂n
,�u,

∂�u

∂n
, . . . ,�p−1u and

∂�p−1u

∂n
, specified on ∂�. (4.3)

In (4.2)–(4.3), ∂
∂n

denotes differentiation in the outward normal direction n = (nx, ny).
Note that in the cases examined in the sequel we shall use the fact that for the functions

�km defined in (3.2),

���km = (−1)�k2�
m �km in �, � ∈ N. (4.4)

4.1 Poisson Problems

We first consider the solution of the inhomogeneous boundary value (2.1). First, we seek a
particular solution of the Poisson equation u

p

MN satisfying

�u
p

MN = fMN in �. (4.5)
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From (4.4) each function �km satisfies the equation
(
� + k2

m

)
�km = 0 in �, (4.6)

we may readily obtain a particular solution of the Poisson equation from the expression

u
p

MN(A,Q;P ) = −
M∑

m=1

N∑
n=1

amn

k2
m

�km(P,Qn), P ∈ � = � ∪ ∂�. (4.7)

In accordance to (2.3), we let the solution of problem (2.1) be

uMN = u
p

MN + uh
MN, (4.8)

where clearly uh
MN satisfies the homogeneous boundary value problem (2.4) with h =

g − u
p

MN .
This homogeneous problem can be solved efficiently using the MFS as follows (see e.g.

[31]). We approximate the solution of problem (2.4) by

uh
MN(c,Q;P ) =

N∑
j=1

cjK1(P,Qj ), P ∈ �, (4.9)

where K1(P,Q) = − 1
2π

log |P − Q| is a fundamental solution of the Laplace equation.
A set of collocation points {Pi}N

i=1 is placed on ∂� as follows. If Pi = (xPi
, yPi

), then we
take for i = 1, . . . ,N

xPi
= � cos

2(i − 1)π

N
, yPi

= � sin
2(i − 1)π

N
. (4.10)

We choose the sources {Qj }N
j=1 as in (3.4).

The coefficients c are determined so that the boundary condition is satisfied at the bound-
ary points

uh
MN(c,Q;Pi) = h(Pi), i = 1, . . . ,N. (4.11)

This yields a N × N linear system of the form

Bc = h (4.12)

where h = (h(P1), h(P2), . . . , h(PN))T and the elements of matrix B are given by

Bi,j = − 1

2π
log |Pi − Qj |.

The matrix B is clearly circulant with B = circ{b1, b2, . . . , bN } where bj = B1,j , j =
1, . . . ,N .

4.1.1 Matrix Decomposition Algorithm

Upon premultiplication by the matrix UN defined in (3.12), using property (3.13), system
(4.12) can now be written as

UNBU ∗
NUNc = UNh (4.13)
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or

Dĉ = ĥ,

where

ĉ = UNc and ĥ = UNh.

Moreover, from property (3.14)

D = diag(d1, d2, . . . , dN), (4.14)

where

dj =
N∑

k=1

bkω
(k−1)(j−1), j = 1, . . . ,N. (4.15)

If ĥ = (ĥ1, . . . , ĥN )T , the solution is thus clearly,

ĉi = ĥi

di

, i = 1, . . . ,N. (4.16)

Having obtained ĉ, we can find c from

c = U ∗
N ĉ.

The algorithm for calculating uh
MN can thus be summarized as follows.

Algorithm 2

Step 1: Compute ĥ = UNh.
Step 2: Construct the diagonal matrix D from (4.15).
Step 3: Evaluate ĉ from (4.16).
Step 4: Compute c = U ∗

N ĉ.

In Steps 1 and 4, the operations can be carried out via FFTs at a cost of order O(N logN)

operations. FFTs can also be used for the evaluation of the diagonal entries in Step 2 at a
cost of O(N logN). Clearly, the cost of Step 3 is O(N).

4.2 Biharmonic Problems

We next consider the solution of the inhomogeneous biharmonic boundary value problem

⎧⎪⎪⎨
⎪⎪⎩

�2u = f in �,

u = g1 on ∂�,
∂u

∂n
= g2 on ∂�,

(4.17)

where f,g1 and g2 are given functions.
As in Sect. 4.1, we seek a particular solution of the biharmonic equation u

p

MN satisfying

�2u
p

MN = fMN in �. (4.18)
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From (4.4), �km satisfies the equation
(
�2 − k4

m

)
�km = 0 in �. (4.19)

Therefore, we may readily obtain a particular solution of the biharmonic equation from the
expression

u
p

MN(A,Q;P ) =
M∑

m=1

N∑
n=1

amn

k4
m

�km(P,Qn), P ∈ � = � ∪ ∂�. (4.20)

We let the solution of problem (4.17) be

uMN = u
p

MN + uh
MN, (4.21)

where clearly uh
MN satisfies the homogeneous biharmonic boundary value problem

⎧⎪⎪⎨
⎪⎪⎩

�2u = 0 in �,

u = h1 on ∂�,
∂u

∂n
= h2 on ∂�,

(4.22)

where h1 = g1 − u
p

MN and h2 = g2 − ∂u
p
MN

∂n
. Note that in the calculation of h2 we shall use

the fact that

∂H
(1)

0

∂n
(k|P − Q|) = −kH

(1)

1 (k|P − Q|)
(

xP − xQ

|P − Q|nx + yP − yQ

|P − Q|ny

)
. (4.23)

This homogeneous problem can be solved efficiently using the MFS as follows (see e.g.
[32]). We approximate the solution of problem (4.22) by

uh
MN(c,d,Q;P ) =

N∑
j=1

cjK1(P,Qj ) +
N∑

j=1

djK2(P,Qj ), P ∈ �, (4.24)

where K2(P,Q) = − 1
8π

|P − Q|2 log |P − Q| is a fundamental solution of the biharmonic
equation.

The coefficients c and d are determined so that the boundary conditions are satisfied at
the boundary points

uh
MN(c,d,Q;Pi) = h1(Pi),

∂uh
MN

∂n
(c,d,Q;Pi) = h2(Pi), i = 1, . . . ,N. (4.25)

This yields a 2N × 2N linear system of the form

(
B11 B12

B21 B22

)(
c

d

)
=

(
h1

h2

)
, (4.26)

where h1 = (h1(P1), h1(P2), . . . , h1(PN))T , h2 = (h2(P1), h2(P2), . . . , h2(PN))T , and the
elements of matrices Bmn, m,n = 1,2 are given by

(B11)i,j = − 1

2π
log |Pi − Qj |, (B12)i,j = − 1

8π
|Pi − Qj |2 log |Pi − Qj |,
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(B21)i,j = − 1

2π

(
(xPi

− xQj
)nx + (yPi

− yQj
)ny

|Pi − Qj |2
)

,

(B22)i,j = − 1

8π
(1 + 2 log |Pi − Qj |)

(
(xPi

− xQj
)nx + (yPi

− yQj
)ny

)
, i, j = 1, . . . ,N.

The matrices Bmn, m,n = 1,2 are clearly circulant with Bmn = circ{bmn
1 , bmn

2 , . . . , bmn
N }

where bmn
j = (Bmn)1,j , j = 1, . . . ,N .

4.2.1 Matrix Decomposition Algorithm

Upon premultiplication by the matrix I2 ⊗ UN , where I2 is the 2 × 2 identity matrix, using
property (3.13), system (4.26) can now be written as

(I2 ⊗ UN)

(
B11 B12

B21 B22

)(
I2 ⊗ U ∗

N

)
(I2 ⊗ UN)

(
c

d

)
= (I2 ⊗ UN)

(
h1

h2

)
(4.27)

or

(
D11 D12

D21 D22

)(
ĉ

d̂

)
=

⎛
⎝ ĥ

1

ĥ
2

⎞
⎠ , (4.28)

where

ĉ = UNc, d̂ = UNd, ĥ
1 = UNh1 and ĥ

2 = UNh2.

Also,

Dmn = diag
(
dmn

1 , dmn
2 , . . . , dmn

N

)
, (4.29)

where

dmn
j =

N∑
k=1

bmn
k ω(k−1)(j−1), j = 1, . . . ,N, m,n = 1,2. (4.30)

If ĥ
m = (ĥm

1 , . . . , ĥm
N)T , m = 1,2, the solution can be obtained by solving the N indepen-

dent 2 × 2 systems,

(
d11

� d12
�

d21
� d22

�

)(
ĉ�

d̂�

)
=

(
ĥ1

�

ĥ2
�

)
, � = 1, . . . ,N, (4.31)

which yields

(
ĉ�

d̂�

)
= 1

(d11
� d22

� − d21
� d12

� )

(
d22

� ĥ1
� − d12

� ĥ2
�

−d21
� ĥ1

� + d11
� ĥ2

�

)
, � = 1, . . . ,N. (4.32)

Having obtained ĉ and d̂ , we can find c and d from

c = U ∗
N ĉ, d = U ∗

N d̂.

The algorithm for calculating uh
MN can thus be summarized as follows.
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Algorithm 3

Step 1: Compute ĥ
m = UNhm, m = 1,2.

Step 2: Construct the diagonal matrices Dmn, m, m = 1,2 from (4.30).
Step 3: Evaluate ĉ, d̂ from (4.32).
Step 4: Compute c = U ∗

N ĉ, d = U ∗
N d̂ .

As in Algorithm 2, FFTs can be used in Steps 1, 2 and 4 with similar cost. In (4.23),
the Hänkel function H

(1)

1 (z) is calculated using the Matlab function besselh(1,1,z).
Note that, alternatively, in Fortran the calculation of the Hänkel functions could carried
out using the code MJY01A from [40].

4.3 Triharmonic Problems

We next consider the solution of the inhomogeneous triharmonic boundary value problem
[27, 28]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�3u = f in �,

u = g1 on ∂�,
∂u

∂n
= g2 on ∂�,

�u = g3 on ∂�,

(4.33)

where f , g1, g2 and g3 are given functions.
We seek a particular solution of the triharmonic equation u

p

MN satisfying

�3u
p

MN = fMN in �. (4.34)

From (4.4), each �km satisfies the equation

(
�3 + k6

m

)
�km = 0 in �. (4.35)

Therefore, we may readily obtain a particular solution of the triharmonic equation from the
expression

u
p

MN(A,Q;P ) = −
M∑

m=1

N∑
n=1

amn

k6
m

�km(P,Qn), P ∈ � = � ∪ ∂�. (4.36)

We let the solution of problem (4.33) be

uMN = u
p

MN + uh
MN, (4.37)

where clearly uh
MN satisfies the homogeneous triharmonic boundary value problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�3u = 0 in �,

u = h1 on ∂�,
∂u

∂n
= h2 on ∂�,

�u = h3 on ∂�,

(4.38)

where h1 = g1 − u
p

MN , h2 = g2 − ∂u
p
MN

∂n
and h3 = g3 − �u

p

MN .
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This homogeneous problem can be solved efficiently using the MFS as follows. We ap-
proximate the solution of problem (4.38) by

uh
MN(c,d,Q;P ) =

N∑
j=1

cjK1(P,Qj ) +
N∑

j=1

djK2(P,Qj ) +
N∑

j=1

ejK3(P,Qj ), P ∈ �,

(4.39)

where K3(P,Q) = − 1
128π

|P − Q|4 log |P − Q| is a fundamental solution of the triharmonic
equation [7, 27].

The coefficients c,d and e are determined so that the boundary conditions are satisfied
at the boundary points

uh
MN(c,d,Q;Pi) = h1(Pi),

∂uh
MN

∂n
(c,d,Q;Pi) = h2(Pi),

�uh
MN(c,d,Q;Pi) = h3(Pi), i = 1, . . . ,N.

(4.40)

This yields a 3N × 3N linear system of the form

⎛
⎝B11 B12 B13

B21 B22 B23

B31 B32 B33

⎞
⎠

⎛
⎜⎝

c

d

e

⎞
⎟⎠ =

⎛
⎜⎝

h1

h2

h3

⎞
⎟⎠ , (4.41)

where hm = (hm(P1), hm(P2), . . . , hm(PN))T , m = 1,2,3, and the elements of matrices
Bmn, m,n = 1,3 are given by

(B11)i,j = − 1

2π
log |Pi − Qj |, (B12)i,j = − 1

8π
|Pi − Qj |2 log |Pi − Qj |,

(B13)i,j = − 1

128π
|Pi − Qj |4 log |Pi − Qj |,

(B21)i,j = − 1

2π

(
(xPi

− xQj
)nx + (yPi

− yQj
)ny

|Pi − Qj |2
)

,

(B22)i,j = − 1

8π
(1 + 2 log |Pi − Qj |)

(
(xPi

− xQj
)nx + (yPi

− yQj
)ny

)
,

(B23)i,j = − 1

128π
|Pi − Qj |2(1 + 4 log |Pi − Qj |)

(
(xPi

− xQj
)nx + (yPi

− yQj
)ny

)
,

(B31)i,j = 0, (B32)i,j = − 1

8π
(4 log |Pi − Qj | + 4),

(B33)i,j = − 1

128π
8|Pi − Qj |2(2 log |Pi − Qj | + 1),

for i, j = 1, . . . ,N.

The matrices Bmn,m,n = 1,2,3 are clearly circulant with Bmn = circ{bmn
1 , bmn

2 , . . . , bmn
N }

where bmn
j = (Bmn)1,j , j = 1, . . . ,N . Note that B31 = 0 is trivial.
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4.3.1 Matrix Decomposition Algorithm

Upon premultiplication by the matrix I3 ⊗UN , where I3 is the 3 × 3 identity matrix, system
(4.41) can now be written as

(I3 ⊗ UN)

⎛
⎝B11 B12 B13

B21 B22 B23

B31 B32 B33

⎞
⎠(

I3 ⊗ U ∗
N

)
(I3 ⊗ UN)

⎛
⎜⎝

c

d

e

⎞
⎟⎠ = (I3 ⊗ UN)

⎛
⎜⎝

h1

h2

h3

⎞
⎟⎠ (4.42)

or

⎛
⎝D11 D12 D13

D21 D22 D23

0 D32 D33

⎞
⎠

⎛
⎜⎝

ĉ

d̂

ê

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

ĥ
1

ĥ
2

ĥ
3

⎞
⎟⎟⎟⎠ , (4.43)

where

ĉ = UNc, d̂ = UNd, ê = UNe, and ĥ
m = UNhm, m = 1,2,3.

Also (excluding the zero matrix D31),

Dmn = diag
(
dmn

1 , dmn
2 , . . . , dmn

N

)
, (4.44)

where

dmn
j =

N∑
k=1

bmn
k ω(k−1)(j−1), j = 1, . . . ,N, m,n = 1,2,3. (4.45)

If ĥ
m = (ĥm

1 , . . . , ĥm
N)T , m = 1,2,3, the solution can be obtained by solving the N inde-

pendent 3 × 3 systems,

⎛
⎝d11

� d12
� d13

�

d21
� d22

� d23
�

0 d32
� d33

�

⎞
⎠

⎛
⎝ ĉ�

d̂�

ê�

⎞
⎠ =

⎛
⎝ ĥ1

�

ĥ2
�

ĥ3
�

⎞
⎠ , � = 1, . . . ,N, (4.46)

which the solution of which yields ĉ, d̂ and ê.
Having obtained ĉ, d̂ and ê, we can find c,d and e from

c = U ∗
N ĉ, d = U ∗

N d̂, e = U ∗
N ê.

The algorithm for calculating uh
MN can thus be summarized as follows.

Algorithm 4

Step 1: Compute ĥ
m = UNhm, m = 1,2,3.

Step 2: Construct the diagonal matrices Dmn, m = 1,2,3 from (4.45).
Step 3: Evaluate ĉ, d̂ , ê from (4.46).
Step 4: Compute c = U ∗

N ĉ, d = U ∗
N d̂ , e = U ∗

N ê.

As in Algorithms 2 and 3, FFTs can be used in Steps 1, 2 and 4 with similar costs.
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5 Solution Strategy

By combining Algorithm 1 of Sect. 3 and Algorithms 2, 3 and 4 described in Sect. 4.3 we can
obtain the solution of the general inhomogeneous polyharmonic problem (4.1)–(4.2)/(4.3)
from the following steps.

Step 1: Use Algorithm 1 to obtain approximation (3.1) to the right
hand side f in problem (2.1).

Step 2: Construct an approximation u
p

MN of the particular solu-
tion from (3.1) using (4.4).

Step 3: Solve the resulting homogeneous boundary value problem
using the appropriate MFS algorithm to obtain uh

MN . (Algo-
rithm 2 for (2.4), Algorithm 3 for (4.22) and Algorithm 4 for
(4.38)).

Step 4: Obtain the approximation uMN to boundary value problem
(4.1)–(4.2)/(4.3) from (4.8).

The most expensive part in the above process is Step 1 with a dominant cost of O(NM3),
due to the solution of N linear systems of order M .

The above strategy can be easily extended to more general polyharmonic problems (4.1)–
(4.2)/(4.3) with the particular solution taken equal to

u
p

MN(A,Q;P ) = (−1)�

M∑
m=1

N∑
n=1

amn

k2�
m

�km(P,Qn), P ∈ � = � ∪ ∂�. (5.1)

The fundamental solutions of the corresponding operators can be derived from the formulæ
provided in e.g. [7, 9].

6 Numerical Examples

In all numerical examples considered in the unit disk (� = 1) we took collocation points
described by �i = (i/M)3/4 and αi = (−1)i/4, i = 1, . . . ,M in (3.3) (see also, Fig. 1).
Following the recommendations of [2, 3], we chose the frequencies km = 2m, m = 1, . . . ,M .
A somehow related discussion on the choice of the frequencies and singularities to avoid
singular coefficient matrices may be found in [36]. We calculated the maximum relative error
in both the approximation of the right hand side f and the approximation of the solution u

in boundary value problem (2.1) on a grid of 25 × 50 uniformly distributed points in ��, and
will be denoting them by Ef and Eu, respectively. These values were obtained for a range
of values of R > 1. It should be noted that the evaluation of the exact right hand sides f

from the solutions u for some of the examples considered is very tedious. As a result, in
some cases we have used repeatedly the differentiation command diff from the Symbolic
Math Toolbox of Matlab.

In the following examples we shall consider the following exact solutions ([2]):

• u1(x, y) = cos(x + y),
• u2(x, y) = sin(y − x2),

• u3(x, y) = 1

1 + x4 + y2
.
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Fig. 2 Results for Example 1

6.1 Poisson Problems

We first consider the Dirichlet problem (2.1) on the unit disk with f and g corresponding
to the exact solutions u1, u2 and u3. In all cases, it can be observed that the error decreases
when we increase M and N .

Example 1 (Exact solution u = u1) In Fig. 2 we present the maximum relative errors Ef

and Eu versus R for the three cases M = 10, N = 14, M = 12, N = 16, M = 14, N = 18.

Example 2 (Exact solution u = u2) In Fig. 3 we present the maximum relative errors Ef

and Eu versus R for the three cases M = 8, N = 16, M = 10, N = 20 and M = 12, N =
24.

Example 3 (Exact solution u = u3) In Fig. 4 we present the maximum relative errors Ef and
Eu versus R for the three cases M = 12, N = 36, M = 14, N = 42 and M = 16, N = 48.

6.2 Biharmonic Problems

We next consider the biharmonic problem (4.17) on the unit disk with f , g1 and g2 corre-
sponding to the exact solutions u1, u2 and u3. As in the Poisson problems, it can be observed
that the error decreases when we increase M and N .

Example 4 (Exact solution u = u1) In Fig. 5 we present the maximum relative errors Ef

and Eu versus R for the three cases M = 10, N = 20, M = 14, N = 28, M = 18, N =
36.
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Fig. 3 Results for Example 2

Fig. 4 Results for Example 3
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Fig. 5 Results for Example 4

Fig. 6 Results for Example 5
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Fig. 7 Results for Example 6

Example 5 (Exact solution u = u2) In Fig. 6 we present the maximum relative errors Ef and
Eu versus R for the three cases M = 10, N = 20, M = 12, N = 24 and M = 24, N = 28.

Example 6 (Exact solution u = u3) In Fig. 7 we present the maximum relative errors Ef and
Eu versus R for the three cases M = 16, N = 48, M = 18, N = 54 and M = 20, N = 60.
In this case, due to the complicated nature of the function f more degrees of freedom are
necessary to approximate it satisfactorily.

6.3 Triharmonic Problems

We finally consider the triharmonic problem (4.33) on the unit disk with f , g1, g2 and
g3 corresponding to the exact solutions u1, u2 and u3. As in the Poisson and biharmonic
problems, it can be observed that the error decreases when we increase M and N .

Example 7 (Exact solution u = u1) In Fig. 8 we present the maximum relative errors Ef

and Eu versus R for the three cases M = 10, N = 20, M = 12, N = 24, M = 14, N =
28.

Example 8 (Exact solution u = u2) In Fig. 9 we present the maximum relative errors Ef and
Eu versus R for the three cases M = 12, N = 24, M = 14, N = 28 and M = 16, N = 32.

Example 9 (Exact solution u = u3) In Fig. 10 we present the maximum relative errors Ef

and Eu versus R for the three cases M = 20, N = 60, M = 24, N = 72 and M = 30, N = 90.
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Fig. 8 Results for Example 7

Fig. 9 Results for Example 8
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Fig. 10 Results for Example 9

In this case, a large number of degrees of freedom is necessary to satisfactorily approximate
the complicated function f = �3u.

7 Conclusions

In this work we propose efficient FFT-based matrix decomposition algorithms for the so-
lution of inhomogeneous polyharmonic problems in circular domains. The inhomogeneous
part of the governing polyharmonic equations is approximated using linear combinations of
fundamental solutions of the Helmholtz equation as proposed in [2]. The evaluation of this
approximation is carried out using a matrix decomposition algorithm which takes advan-
tage of the block circulant structure of the matrices resulting from the collocation equations.
Once the approximation is calculated, a particular solution of the inhomogeneous polyhar-
monic equation is easily constructed using the properties of the fundamental solutions of the
Helmholtz operator. The particular solution is then subtracted from the problem yielding a
homogeneous polyharmonic problem which can be easily solved using standard matrix de-
composition algorithms for the MFS in circular domains. Several numerical examples have
been considered with very satisfactory results.

The choice of the optimal positioning of the pseudoboundary in both stages of the solu-
tion problem remains a challenging problem as the behaviour of the error appears to depend
differently on the distance of the pseudoboundary from the boundary in each of the two
stages. Research in this direction could be carried out using some of the methods recently
proposed in the literature [1, 21]. Also, the choice of the frequencies km in (3.1) remains a
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delicate issue and could be the subject of a future study. The extension of the current ap-
proach to polyharmonic problems in axisymmetric three-dimensional domains is currently
under investigation.
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