
J Sci Comput (2011) 46: 485–518
DOI 10.1007/s10915-010-9416-8

Edge Detection by Adaptive Splitting

Bernardo Llanas · Sagrario Lantarón

Received: 6 October 2009 / Revised: 1 July 2010 / Accepted: 24 August 2010 /
Published online: 5 September 2010
© Springer Science+Business Media, LLC 2010

Abstract In this paper we propose an algorithm (EDAS-d) to approximate the jump dis-
continuity set of functions defined on subsets of R

d . We have limited our study to the 1D
(EDAS-1) and 2D (EDAS-2) versions of the algorithm. Theoretical and computational re-
sults prove its effectiveness in the case of piecewise continuous 1D functions and piecewise
constant 2D functions. The algorithm is based on adaptive splitting of the domain of the
function guided by the value of an average integral. EDAS-d exhibits a number of attractive
features: accurate determination of the jump points, fast processing, absence of oscillatory
behavior, precise determination of the magnitude of the jumps, and ability to differentiate
between real jumps (discontinuities) and steep gradients. Moreover, low-dimensional ver-
sions of EDAS-d can be used for solving higher dimensional problems. Computational ex-
periments also show that EDAS-d can be applied to solve some problems involving general
piecewise continuous functions. EDAS-1 and EDAS-2 have been used to determine edges
in 2D-images. The results are quite satisfactory for practical purposes.

Keywords Edge detection · Jump discontinuity set · Adaptive splitting · Implicit
smoothing · Stratified edges

1 Introduction

1.1 The Edge Detection Problem

Edges can be defined as the boundaries of homogeneous regions. Their determination is im-
portant in many practical applications. Examples include image segmentation [18, 32], grain

B. Llanas (�) · S. Lantarón
Departamento de Matemática Aplicada, ETSI de Caminos, Universidad Politécnica de Madrid, Ciudad
Universitaria s/n, 28040 Madrid, Spain
e-mail: ma07@caminos.upm.es

S. Lantarón
e-mail: sagrario.lantaron@upm.es

mailto:ma07@caminos.upm.es
mailto:sagrario.lantaron@upm.es

486 J Sci Comput (2011) 46: 485–518

boundary extraction in materials science [36], modeling of organs and internal structures of
the human body [8, 30] and detection of solid-liquid interfaces [36].

Edge detection can also be used to enhance the result of some numerical algorithms:

– In function reconstruction using Fourier data, the Gegenbauer method can avoid Gibbs
oscillations, but a priori knowledge of the edges of the function is required [21].

– Post-processing techniques for the discontinuous Galerkin method were introduced for
reconstructing solutions near computational boundaries and discontinuities in the solu-
tion, as well as for changes in mesh size. These techniques require a priori knowledge of
shock locations [2].

A function f : R
d → R can be specified in two main ways:

– Data in the physical space: Given a vector x, its image f (x) is available.
– Fourier spectral data: The Fourier coefficients of f are available.

According to this classification, many methods have been proposed to determine edges:

– In the case of data in the physical space:
– Smoothing splines. These methods proceed to find a spline approximation of the dis-

continuous function and use the differentiability properties of the approximant for ob-
taining edges. The smoothing property helps to solve the problems that arise due to the
presence of noise [10–12]. Other authors use related wavelet techniques [23, 38].

– Variational methods. The edges of the function are obtained by minimizing a suitable
functional (Mumford-Shah, etc.). In this category we can include the active contour
methods (snakes) [25, 32].

– Finite difference methods. Local difference formulas have been studied in [16]. They
are typically limited to low-order of accuracy due to the oscillatory behavior of high-
order detectors.

– Polynomial fitting method. This method, proposed in [3], is based on a local polynomial
annihilation property on a set of irregularly distributed points in a bounded domain of
R

d . This procedure successfully captures discontinuities that are identified by their
enclosed cells by characterizing the convergence away from the discontinuities.

– Spatial filtering. These methods use filters or masks that operate on digital images. They
obtain a new raster image performing some computations on the neighbors of each
pixel. If these computations are linear the operation is called linear spatial filtering.
Otherwise it is called nonlinear spatial filtering. Examples of these filters are the Sobel,
Prewitt and Canny edge detectors [20].

– In the case of Fourier spectral data:
– Concentration factor methods. They are based on the fact that the conjugate partial sum

of N terms multiplied by −π/ logN converges to the jump function [f](x) = f (x+)−
f (x−). Due to the slow rate of convergence (O(1/ logN)) the so-called “concentration
factors” were introduced in [14]. These functions accelerate the convergence of the
conjugate partial sums [14, 15]. The spurious oscillations near the discontinuities are
avoided by an outside threshold parameter. In [16] these oscillations are suppressed by
an adaptive edge detector based on a cross-heading between local and global detectors
achieved by means of the minmod limiter. Refinements to the concentration method
that reduce artificial oscillations and improve its effectiveness in noisy environments
were proposed in [17]. Examples of region extraction from Fourier coefficients using
the above techniques are given in [18].

J Sci Comput (2011) 46: 485–518 487

Most methods for determining edges, try to approximate the target function f (x)

(smoothing splines, etc.) or the jump function [f](x) (polynomial fitting, concentration
methods, etc.). The first type of methods requires a considerable computational effort. The
second type of procedures presents problematic oscillations in the neighbourhood of discon-
tinuities [3, 14]. This problem arises also in the case of high-order finite difference meth-
ods [16].

1.2 Edge Detection Methods Based on Adaptive Meshing

Adaptive meshing methods for edge detection have been studied mainly in the context of
image processing (discrete functions). Below we describe the most significant approaches
in this field

1. Image Multiscale Analysis. In this approach an image can be modeled as a real function
I0(x) representing values of gray-level intensity, defined on some subset of R

d (d = 2,3).
Basic image processing operations such as selective image smoothing, edge detection and
segmentation can be modeled by the application of an evolutionary PDE to I0(x). Such
approach is known as image multiscale analysis, since the initial image I0(x) is associated
with a sequence of images It (x) depending on an abstract parameter t > 0 called scale.
Examples of such PDEs are the nonlinear anisotropic diffusion equations of Perona-
Malik type [34], and the generalized mean curvature flow equations [1]. The Perona-
Malik equation was motivated by the fact that conventional diffusion can eliminate the
noise but the edges are blurred in the process. Anisotropic diffusion can eliminate the
noise and enhance edges while running forward in time.

Adaptive (nonuniform) grids for the finite element method applied to the Perona-
Malik equation with the modification suggested in [9] were studied in [4] (and general-
ized to the 3D case in [5]). This method is based on simplicial grids generated by bisec-
tion and then again successively coarsened in the diffusion process. An improvement of
storage requirements by procedural handling of adaptive grids is proposed in [35].

These methods are computationally expensive because they require the multiplication
of large matrices, the solution of large linear systems, etc.

2. Image representation. Image mesh modeling techniques intend to build a mesh that mini-
mizes an error measurement, usually the approximation error between the original image
and that represented by the mesh (see [27] for a recent account). Many algorithms de-
voted to represent images by meshes are based on adaptive approaches. Most adaptive
methods produce an image segmentation using a variant of the split and merge method.
This method, first proposed by Horowitz and Pavlidis [24], considers an homogeneity
property (split and merge criterion) and successively subdivides the regions which do not
satisfy it. In this process the neighboring regions whose union satisfies the homogeneity
property are merged into a single region. Several criteria have been proposed as homo-
geneity property, for example, oscillation of the gray-level pixel intensity in the region
under consideration, degree of approximation by polynomials, etc. In [24] the homogene-
ity property is defined by the degree of approximation by constants and the subdivision
is performed using quadtrees. The edges of the subsets generated by this algorithm can
have only two orientations (horizontal and vertical), and their positioning is restricted
by the borders of the quadtree nodes. Therefore, it is difficult to achieve good matching
in the case of image edges of arbitrary orientation or position. A postprocessing pro-
cedure consisting of boundary elimination and contour modification has been proposed
in [33]. A new subdivision scheme that allows diagonal splitting and uses binary trees is
proposed in [39]. The results obtained with these methods do not seem satisfactory. An

488 J Sci Comput (2011) 46: 485–518

improved split and merge algorithm is proposed in [19]. The authors consider as homo-
geneity property the degree of approximation by polynomials of degree 2. In each region
the local error is computed as the sum of the squares of the individual pixel errors divided
by the number of pixels. The meshing procedure is an incremental Delaunay triangula-
tion. When a triangle does not satisfy the homogeneity property, auxiliary algorithms
are applied to determine the “edge” within the triangle: Canny’s edge detector, corner
detectors and Y-junctions detectors. Then an edge pixel is used as new vertex in the
incremental Delaunay process. Experiments with simple images show that the method
gives acceptable results even with noisy images but complex images are not tested.

To sum up, split and merge methods present several drawbacks in edge detection:

– Their aim is to produce an image segmentation. Edges are a subproduct of this process.
– Since edges are considered as the boundaries of homogeneous regions, the definition

of edge depends on the homogeneity property considered.
– They determine edges as sets of sides of the grid elements. This method has proved to

be excessively rigid in practice.
– The evaluation of the homogeneity property involves all the pixels within a region.

This can be computationally expensive.

1.3 Contribution of the Paper

An adaptive splitting approximation algorithm was proposed in [29]. In the present paper
we prove that the average integral used in its splitting criterion is an effective jump detector
(Propositions 3, 4 and Theorem 2). These results imply that the algorithm is divergent for
functions with jump discontinuities, but they allow us to modify it to obtain an efficient edge
detection method. The parameters of the approximation algorithm have a new additional
meaning. The local error gives the detection threshold. The stopping criterion gives the
precision of the obtained jump points. We introduce new parameters to optimize the search
for jumps and the numerical computations. We call EDAS-d the resulting algorithm.

EDAS-d is an algorithm to detect jump discontinuities of functions defined by data in
the physical space. The domain of the function is supposed to be the difference of a convex
set and a set of Lebesgue measure zero. This method does not try to accurately approximate
f (x) or [f](x). Its output consists of an approximation of the jump discontinuity set of the
function (see Sect. 2). It is based on an integral inequality fulfilled by the sets containing
a jump discontinuity. It enables distinction between jumps discontinuities (Fig. 1(a)) and
steep gradients (Fig. 1(b)); see also [28]. Since it exhibits a non-oscillatory behavior we can
determine the magnitude of the jumps.

The algorithm builds a piecewise affine function which provides a rough approximation
of f away from the discontinuities. In the neighbourhood of an edge, this function is a good
approximant. The integrals whose evaluation is necessary to obtain the piecewise affine
function are computed by numerical methods which are exact for polynomials of a certain
degree. This provides an “implicit smoothing” of the target function, that accelerates the
convergence away from the discontinuities and makes the algorithm robust in the presence
of continuous noise.

The choice of the local error is guided by the magnitude of the searched jumps rather
than by the degree of approximation away from the discontinuities. This allows to obtain
good results with a poor approximation (homogeneity property) when the magnitude of the
jumps is large enough.

When we apply EDAS-d to determine the edges of a 2D image (discrete function), we
extend it to a function defined on a square containing the discrete domain (see Sect. 4.2).

J Sci Comput (2011) 46: 485–518 489

Fig. 1 (a) Graph of the Heaviside function. (b) Graph of y = 1/(1 + e−500x)

The resulting function is piecewise constant (each pixel is represented by a square and the
function is constant on it). EDAS-d does not try to segmentate the image, because it is not
concerned about its accurate approximation. EDAS-d determines a set of triangles contain-
ing jump discontinuity points. The approximate result is a flexible set of points instead of a
rigid set of lines. The numerical cubature process is faster than operations involving large
amounts of pixels. EDAS-d can consider triangles with arbitrary size. Since they can inter-
sect the boundary of two or more pixels, the splitting criterion based on Theorem 2 can be
applied. Finally, the average integral criterion, the implicit smoothing and a suitable choice
of the minimum magnitude of jump reported can reduce the noise of the image.

The paper is organized as follows. Section 2 gives some mathematical preliminary re-
sults. Section 3 describes the EDAS-d algorithm. Section 4 presents computational exper-
iments and compares EDAS-d with other edge detection algorithms. Section 5 provides
some concluding remarks. The paper is closed with an Appendix containing the proof of
some results.

2 Mathematical Preliminaries

Let R ⊂ R
d be a compact d-interval. We say that a function g : R → R is quasi-continuous

if the set of points where g is not continuous has zero Lebesgue measure.
Consider a finite collection {Ci}n

i=1 of connected sets with pairwise disjoint nonempty
interiors such that

R =
n⋃

i=1

Ci.

Let {fi : i = 1, . . . , n} be a set of continuous functions on R. Define the function

f (x) ≡ fi(x) if x ∈ C̊i ,

where C̊ denotes the interior of C. We say that f is a general piecewise continuous function.
If Ci, i = 1, . . . , n, are closed and convex sets, we say that f is a piecewise continuous

490 J Sci Comput (2011) 46: 485–518

function. Since the boundary of a convex set has zero Lebesgue measure, all piecewise
continuous functions are quasi-continuous.

In the above definition, if the functions fi , i = 1, . . . , n, are constant, we say that f is a
general piecewise constant function and a piecewise constant function, respectively.

Let f be a general piecewise continuous function and let �i be the boundary of Ci ,
i = 1, . . . , n. Define � ≡ ⋃n

i=1 �i . Let x ∈ �, then for some m ≤ n, x ∈ �ij , j = 1, . . . ,m,
where ij ∈ {1,2, . . . , n}. Define

A ≡ max
j=1,...,m

{fij (x)}, and B ≡ min
j=1,...,m

{fij (x)}.

If A �= B we say that f has a jump discontinuity at x (we also say that x is a jump point). We
call |A−B| magnitude of the jump of f at x. The set of points in � with jump discontinuities
is called jump discontinuity set and denoted by �J . We call edge any subset of the jump
discontinuity set. The set of points in �J with magnitude of jump greater than l is denoted
by �J

l . The set of points in �J with magnitude of jump greater than l and lower than u is
denoted by �J

lu. Our aim is to obtain a good approximation of these sets for a given function.
We use the following notation: Let {v0,v1, . . . ,vd} be a set of d + 1 vectors in R

d . This
set is called affinely independent if the vectors {v1 − v0,v2 − v0, . . . ,vd − v0} are linearly
independent. Suppose now that {v0,v1, . . . ,vd} is an affinely independent subset of R

d . The
d-simplex T generated by {v0,v1, . . . ,vd}, denoted by 〈v0,v1, . . . ,vd〉, is defined to be the
convex hull of the vectors v0,v1, . . . ,vd . We denote by |T | the diameter of a d-simplex T .

Proposition 1 Let T = 〈v0,v1, . . . ,vd〉 be a d-simplex and let w0,w1, . . . ,wd be arbitrary
real numbers. Then there is a unique affine map LT from T to R such that LT (vj) = wj ,
j = 0,1, . . . , d .

Proof See [13]. �

Consider a function f : T ⊂ R
d → R. We denote by LT f , the unique affine map such

that

LT f (vj) = f (vj), j = 0,1, . . . , d.

In this section we study the average integral

AIT (f) ≡
∫

T
|f (x) − LT f (x)|dx

v(T)
,

where v(T) denotes the Lebesgue measure of T .
As we prove below, the behavior of AIT (f) depends on the continuity or lack of continu-

ity of f on T . This fact lays the foundation for the algorithm proposed in the next section.
The comportment of AIT (f) when f is continuous is given by the following results.

Proposition 2 Let S ⊂ R
d be compact and let f : S → R be continuous. Then given ε > 0,

there exists δ > 0 such that

|f (x) − LT f (x)| < ε

for all x ∈ T , where T is a d-simplex contained into S with |T | < δ.

Proof See [13]. �

J Sci Comput (2011) 46: 485–518 491

Corollary 1 Let S ⊂ R
d be compact and let f : S → R be continuous. Then given ε > 0,

we have that AIT (f) < ε for any small enough d-simplex T ⊂ S.

If f is smooth the above result can be sharpened. Consider the vectors z1 =
(z1

1, z
1
2, . . . , z

1
d) and z2 = (z2

1, z
2
2, . . . , z

2
d) with ‖ z1 ‖= 1 and ‖ z2 ‖= 1 (‖ . ‖ denotes the

Euclidean norm on R
d). If f : R

d → R , define

Dz1f (x) ≡
d∑

k=1

z1
kDkf (x),

Dz1 z2f (x) ≡ Dz2(Dz1f (x)) =
d∑

k,l=1

z2
l z

1
kDlkf (x).

Let G ⊂ R
d , denote by W 2

d M(G) the class of functions with continuous derivatives
Dz1 z2f (x) on G, not exceeding in absolute value M > 0, for any z1, z2.

Theorem 1 Let T be a d-simplex in R
d and let f ∈ W 2

d M(T), then

max
x∈T

|f (x) − LT f (x)| ≤ dM|T |2
4(d + 1)

.

Proof See [37]. �

Corollary 2 Let f ∈ W 2
d M(S), where S is a nonempty compact set in R

d , and let T be a
d-simplex contained in S. Then

AIT (f) ≤ dM|T |2
4(d + 1)

.

From the above results, we can conclude, in the case of continuous functions, that
AIT (f) → 0 as |T | approaches zero. We study below the case in that f presents jump
discontinuities on T , when d = 1 and d = 2.

Consider the piecewise continuous function

f (x) =
{

Q(x), if x < 0,

P (x), if x > 0,

where P (x) = a0 + a1x + · · · + anx
n and Q(x) = b0 + b1x + · · · + bmxm. It is clear that

f (0+) = a0 and f (0−) = b0. Define T (η) ≡ [−η,η] (η > 0). We have the following result

Proposition 3 Given ε > 0 there exists a number δ > 0 such that

1

2η

∫ η

−η

|f (x) − LT (η)f (x)|dx >
|a0 − b0|

4
− ε

for all η such that 0 < η < δ.

The proof of this proposition is given in the Appendix.

492 J Sci Comput (2011) 46: 485–518

The above result shows that the expression

1

2η

∫ η

−η

|f (x) − LT (η)f (x)|dx

is always greater than a positive quantity irrespective of the smallness of η. We shall use this
fact as a criterion to find intervals containing jump points. From now on, we limit ourselves
to the case where f (x) is a function of Heaviside type. This suffices to study the image
processing applications given in this paper and simplifies the results.

Consider the Heaviside function

H(x) ≡
{

0, if x ≤ 0,

1, if x > 0.

Define the function h(x) ≡ JH(x − α) where J > 0 and α are real numbers. We have
the following result

Proposition 4 Let T be a compact interval in R and α ∈ T̊ . Then

J

4
≤

∫
T

|h(x) − LT h(x)|dx

v(T)
< J, (1)

where v(T) is the length of the interval T .

Proof To prove (1) we use the following equivalent approach. Assume that T = [a, b] is a
fixed interval and vary α within T . If α ∈ (a, b)

LT h(x) = J (x − a)

b − a
.

Define

I (α) ≡
∫ b

a

|h(x) − LT h(x)|dx = J

b − a

(∫ α

a

(x − a)dx +
∫ b

α

(b − x)dx

)

= J

b − a
(α2 − (a + b)α + (a2 + b2)/2).

I (α) attains a minimum at α = (a + b)/2. Therefore

I (α) ≥ I ((a + b)/2) = J (b − a)/4 for all α ∈ (a, b).

This proves the left hand side inequality in (1).
Moreover

I (α) = J

b − a

(∫ α

a

(x − a)dx +
∫ b

α

(b − x)dx

)

<
J

b − a
((b − a)(α − a) + (b − a)(b − α) = J (b − a).

This proves the right hand side inequality in (1). �

Below we generalize the above result to the 2D case.

J Sci Comput (2011) 46: 485–518 493

Theorem 2 Let h : R
2 → R be the function defined by

h(x) ≡ JH(ax1 + bx2 + c),

where a, b, c and J are real numbers such that either a or b are distinct from zero and J > 0.
Define r ≡ {x = (x1, x2) ∈ R

2 : ax1 + bx2 + c = 0} and let T be an arbitrary triangle in R
2

such that r ∩ T̊ �= ∅. Then

J

4
≤

∫
T

|h(x) − LT h(x)|dx

v(T)
≤ J, (2)

where v(T) is the area of T .

The proof of this theorem is given in the Appendix.

3 Edge Detection by Adaptive Splitting Algorithm

3.1 Statement of the Algorithm

We state the algorithm in the d-dimensional case. Consider the d-interval R = [a,b], where
a,b ∈ R

d . We can find n (closed) simplices Ti such that

T̊i ∩ T̊j = ∅, i �= j,

n⋃

i=1

Ti = R,

(for example, see [7, 31]). We call P ≡ {Ti}n
i=1 a partition of R. The set of partitions of R is

denoted by P(R). Given a d-simplex T we denote by V(T) the set of its vertices.
The proposed algorithm builds a partition P ∈ P(R) and the associated piecewise affine

approximant L(x) defined by

L(x) ≡ LT f (x) if x ∈ T ⊂ P .

The average integral

AIT (f) ≡
∫

T
|f (x) − LT f (x)|dx

v(T)
,

can be considered as the local error of the approximant L.
Given a function f : R → R and an initial partition P1 of R, denote by E1 the maximum

local error of the approximant L. In the cases where Propositions 3, 4 or Theorem 2 can be
applied, E1 also provides a detection threshold, because the algorithm will detect the jumps
with magnitude greater than 4E1. Denote by E2 the approximation error of the points in �J .
Let E4 be a positive real parameter.

If (AIT (f) ≤ E1 or |T | ≤ E2) and |T | ≤ E4 we call T a good simplex, otherwise T is
called bad.

We call E4 exploration parameter (in difficult problems, it is necessary to make E4 small.
This is due to the fact that an inaccurate numerical evaluation of AIT (f) can eliminate
simplices containing points of �J).

494 J Sci Comput (2011) 46: 485–518

Edge Detection by Adaptive Splitting Algorithm (EDAS-d)

Step 1. The good simplices in the initial partition P1 are put into the set G1 and the bad
simplices are put into the set B1.

Step 2. At each step j we have a set of good simplices Gj and a set of bad simplices Bj .
Divide each bad simplex into two simplices, by splitting its largest edge. Test whether
these children are good or bad to obtain the sets Gj+1 and Bj+1.

Step 3. The algorithm stops if Bj = ∅. Then G = Gj is the searched partition. If the
stopping criterion is not satisfied, go to Step 2.

Step 4. Obtain the following subset of G

A�J
E3

≡ {T ∈ G : AIT (f) > E1 and ja ≡ max
vi∈V(T)

{f (vi)} − min
vi∈V(T)

{f (vi)} > E3}.
(3)

where E3 is the minimum magnitude of jump reported. E2 is also a stopping criterion. The
convergence of this algorithm is guaranteed by the definition of good simplex. A�J

E3
is a set

of simplices containing points of �J
E3

. This constitutes an approximation of �J
E3

. In the cases
considered by Proposition 4 and Theorem 2, we have that A�J

E3
⊃ �J

E3
. In Sect. 4, instead of

describing A�J
E3

, we have considered the set of barycenters of T ∈ A�J
E3

to better visualize
the result.

3.2 Practical Implementation of the Algorithm

In practice we have implemented the above algorithm using a tree whose leaves correspond
to good simplices. Tree construction follows a technique similar to that detailed in [29].

The integral
∫

T
|f (x) − LT f (x)|dx has been computed in the following way:

– Dimension 1: We have used the Gauss-Legendre integration formula given in [26], that is

∫ 1

−1
f (x)dx =

n∑

k=1

A
(n)
k f (x

(n)
k).

This formula is exact for polynomials of degree less or equal than 2n − 1.
– Dimension d �= 1: We have used the Grundmann and Möller’s formula [22]. Let � =

〈(1,0, . . . ,0), (0,1, . . . ,0), . . . , (0,0, . . . ,1)〉 be the standard d-simplex in R
d . If p =

2s + 1 and s ∈ Z
+ ∪ {0}, the cubature rule of degree p is given by

∫

�

gdx �
s∑

i=0

(−1)i2−2s (p + d − 2i)p

i!(p + d − i)!
∑

|β|=s−i
β0≥...≥βd

g

((
2β0 + 1

p + d − 2i
, . . . ,

2βd + 1

p + d − 2i

)

p

)
, (4)

where β ≡ (β0, β1, . . . , βd) is a (d + 1)-tuple of nonnegative entire numbers with |β| ≡
β0 +β1 +· · ·+βd . (y)p ≡ (y0, y1, . . . , yd)p denotes the set of all d-tuples that are the last

J Sci Comput (2011) 46: 485–518 495

d components of all (d + 1)-tuples derived from y by any permutation of the d + 1 com-
ponents of y. The number of integration points in (4) is

(
d+s+1

s

)
. This formula is exact for

polynomials of degree p.

Consider now the positive real parameter E5 (adaptivity of cubature formulas parameter).
This factor allows to apply higher degree cubature formulas in large regions and low degree
cubature formulas in small regions. In this way the computational cost is optimized. The
adaptive cubature procedure is described below.

– If |T | < E5
– In 1D, the computations have been done using the Gauss-Legendre quadrature formulas

with number of points n = 5,6,7,8,9, and 10. Since the integrand functions are not
smooth we have not analytical error estimates. We have followed the usual practice of
comparing successive values of the integral corresponding to an increasing number of
points and taking the value obtained when the sequence becomes stationary. We denote
by ÂI

n

T (f) the value of AIT (f) computed by the quadrature formula with n points. We
denote by ÂIT (f) the final estimate of AIT (f). The proposed procedure is described
by the following C-like pseudocode.

Set n = 5;
Compute ÂI

5
T (f) and ÂI

6
T (f);

while (|ÂI
n

T (f) − ÂI
n+1
T (f)| ≥ E1/10 && n < 9)

{
n = n + 1;

}
if (|ÂI

n

T (f) − ÂI
n+1
T (f)| < E1/10) ÂIT (f) = ÂI

n+1
T (f);

else ÂIT (f) = 106;
– In 2D, the computations have been done using the Grundmann and Möller’s rules of

degree p = 5,7,9,11,13, and 15 with d = 2. Due to the lack of error estimates for the
Grundmann and Möller’s rules, we follow a method similar to that used in the 1D case.
We denote by ÂI

p

T (f) the value of AIT (f) computed by the cubature rule of degree p.
The pseudocode is described by the following statements.

Set p = 5;
Compute ÂI

5
T (f) and ÂI

7
T (f);

while (|ÂI
p

T (f) − ÂI
p+2
T (f)| ≥ E1/10 && p < 13)

{
p = p + 2;

}
if (|ÂI

p

T (f) − ÂI
p+2
T (f)| < E1/10) ÂIT (f) = ÂI

p+2
T (f);

else ÂIT (f) = 106;
– If |T | ≥ E5

– In 1D, the computations have been done using the Gauss-Legendre quadrature formulas
with number of points n = 9 and 10. The corresponding pseudocode is shown below.

if (|ÂI
9
T (f) − ÂI

10
T (f)| < E1/10) ÂI(T) = ÂI

10
T (f);

else ÂIT (f) = 106;

496 J Sci Comput (2011) 46: 485–518

– In 2D, the computations have been done using the Grundmann and Möller’s rules of
degree p = 13 and 15 with d = 2. The corresponding pseudocode is listed below.

if (|ÂI
13
T (f) − ÂI

15
T (f)| < E1/10) ÂIT (f) = ÂI

15
T ;

else ÂIT (f) = 106;

NOTE: In many adaptive algorithms, the local error estimate ERR is simply taken as the
absolute value of the difference between two cubature approximations [6]. In this way we
have the rough bound |I − Î | < ERR, where I is the exact value of the integral and Î is
the value computed by the cubature rule. When Î � E1, it seems natural to consider that
ERR � E1. In the above pseudocode, we have taken ERR = E1/10.

To sum up, the algorithm requires the following positive real parameters

– E1: Maximum local error of the approximant L and detection threshold.
– E2: Approximation error of the points in �J and stopping criterion.
– E3: Minimum magnitude of jump reported.
– E4: Exploration parameter.
– E5: Adaptivity of cubature formulas parameter.

3.3 Theoretical Foundation of EDAS-d

Results in Sect. 2 guarantee the convergence away from the discontinuities and the suitable
local behavior of EDAS-d when d = 1 and d = 2.

– If d = 1, Proposition 4 provides a direct procedure for choosing the parameter E1 in the
case of piecewise constant functions. Proposition 3 and the Weierstrass approximation
theorem justify the application of EDAS-1 to piecewise continuous problems.

– If d = 2, Theorem 2 provides the way of selecting E1 in the case of piecewise constant
functions. Inequality (2) may not be valid if the intersection of a triangle with the jump
discontinuity set is not a straight line segment. In image processing, the set of points where
�J presents an angular shape is finite, therefore the above drawback has little practical
importance.

4 Computational Experiments

The experimental environment has been the following:

– CPU QuadCore Intel Core 2 Quad 6700, 2666 MHz.
– RAM 4 GB.
– Operating system Windows XP.
– Running software Microsoft Visual C 6.0.

In all experiments, CPU time is expressed in seconds and denoted by CPU (s).

4.1 Computational Experiments on Piecewise Continuous 1D Functions

Given a function f : T ⊂ R → R, where T is a closed interval, we denote by xe
i its jump

points and by je
i the magnitude of their corresponding jumps. The performance of EDAS-1

J Sci Comput (2011) 46: 485–518 497

Table 1 Performance of EDAS-1 on the function H

E1 E2 E3 E4 E5 NJ NI Ex Ej CPU (s)

10−1 10−1 10−2 106 10. 1 6 3.1 × 10−2 0. 0.0

10−1 10−2 10−2 106 10. 1 9 3.9 × 10−3 0. 0.0

10−1 10−3 10−2 106 10. 1 12 4.8 × 10−4 0. 0.0

10−1 10−4 10−2 106 10. 1 16 3.1 × 10−5 0. 0.0

10−1 10−5 10−2 106 10. 1 19 3.8 × 10−6 0. 0.0

10−1 10−6 10−2 106 10. 1 22 4.8 × 10−7 0. 0.0

on 1D functions is measured by its precision and compute time. We have studied the mean
error of the approximate jump points xa

i and the mean error of the magnitude ja
i (3) of their

corresponding approximate jumps. If the function has NJ jump points, we define

Ex ≡
∑NJ

i=1 |xe
i − xa

i |
NJ

,

Ej ≡
∑NJ

i=1 |j e
i − ja

i |
NJ

.

We denote by NI the number of intervals of the resulting partition.

4.1.1 Distinction Between Jumps and Steep Gradients

We study the behavior of EDAS1 when applied to the Heaviside function

H(x) =
{

0, if x ≤ 0,

1, if x > 0,

and compare with that corresponding to the function

s(x) = 1

1 + e−500x
.

We assume that both functions are defined on [−1,1]; see Fig. 1.
Table 1 shows that EDAS-1 can always find the jump point x = 0. Ex decreases with E2.

The number of intervals of the partition is moderate even in high precision cases. The large
value of E4 implies that subdivisions of the intervals based only on their size, are not per-
formed.

Table 2 shows that EDAS-1 only finds jumps near x = 0 when E2 is relatively large. If
E2 decreases it does not find jumps even if we search for jumps of very small magnitude
(E3 = 10−4).

498 J Sci Comput (2011) 46: 485–518

Table 2 Performance of
EDAS-1 on the function s E1 E2 E3 E4 E5 NJ NI CPU (s)

10−2 10−2 10−2 106 10. 2 16 0.0

10−2 5 × 10−3 10−2 106 10. 4 18 0.0

10−2 10−3 10−2 106 10. 0 22 0.0

10−2 10−4 10−2 106 10. 0 22 0.0

10−2 10−5 10−2 106 10. 0 22 0.0

10−2 10−3 10−4 106 10. 0 22 0.0

10−2 10−4 10−4 106 10. 0 22 0.0

10−2 10−5 10−4 106 10. 0 22 0.0

Table 3 Jump discontinuities
of f x j

−3π/4 1.707107

−π/2 1.000000

π/4 0.414214

π/8 0.847759

3π/8 2.234633

7π/8 1.152241

4.1.2 A Function with Several Jumps

We have considered the function [18]

f (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if −3 ≤ x < −3π/4,

1 + cos(3x), if −3π/4 ≤ x < −π/2,

0, if −π/2 ≤ x < −π/4,

1 − 2 cos(5x + 3π/2), if −π/4 ≤ x < π/8,

0, if π/8 ≤ x < 3π/8,

2 cos(x − 3π/4) − 3, if 3π/8 ≤ x < 7π/8,

0, if 7π/8 ≤ x < 3.

Figure 2(a) shows the graph of f . Its jump points and the magnitude of their correspond-
ing jumps are reported in Table 3.

The performance of EDAS-1 on f is summarized in Table 4. From the results we can
state

– The obtained results depend little on E1. It suffices that it is less than the quotient of E3

and four, such as it is stated in Proposition 3. NI decreases as E1 grows. NI is moderate
even for high precision results.

– Figure 2(b) shows the resultant piecewise affine function L. It is remarkable the absence
of oscillations in it. In this case L is a relatively accurate approximant; see Figs. 2(c)
and 2(d).

– The choice of a small E2 allows to obtain arbitrary precision in the jump points and in the
magnitude of their corresponding jumps.

J Sci Comput (2011) 46: 485–518 499

Table 4 Performance of EDAS-1 on the function f

E1 E2 E3 E4 E5 NJ NI Ex Ej CPU (s)

5 × 10−2 10−3 0.4 106 10. 6 79 1.8 × 10−4 8.7 × 10−4 0.0

5 × 10−2 10−5 0.4 106 10. 6 121 1.5 × 10−6 7.1 × 10−6 0.0

5 × 10−2 10−8 0.4 106 10. 6 181 1.8 × 10−9 5.3 × 10−9 0.0

5 × 10−2 10−3 0.6 106 10. 5 79 2.0 × 10−4 7.0 × 10−4 0.0

5 × 10−2 10−5 0.6 106 10. 5 121 1.5 × 10−6 6.2 × 10−6 0.0

5 × 10−2 10−8 0.6 106 10. 5 181 1.7 × 10−9 5.6 × 10−9 0.0

5 × 10−2 10−3 0.9 106 10. 4 79 1.8 × 10−4 7.6 × 10−4 0.0

5 × 10−2 10−5 0.9 106 10. 4 121 1.3 × 10−6 7.0 × 10−6 0.0

5 × 10−2 10−8 0.9 106 10. 4 181 1.5 × 10−9 6.8 × 10−9 0.0

5 × 10−2 10−3 1.1 106 10. 3 79 2.0 × 10−4 7.7 × 10−4 0.0

5 × 10−2 10−5 1.1 106 10. 3 121 1.7 × 10−6 6.8 × 10−6 0.0

5 × 10−2 10−8 1.1 106 10. 3 181 1.4 × 10−9 4.5 × 10−9 0.0

5 × 10−2 10−3 1.5 106 10. 2 79 1.8 × 10−4 1.1 × 10−3 0.0

5 × 10−2 10−5 1.5 106 10. 2 121 1.2 × 10−6 8.1 × 10−6 0.0

5 × 10−2 10−8 1.5 106 10. 2 181 1.7 × 10−9 6.0 × 10−9 0.0

5 × 10−2 10−3 2.0 106 10. 1 79 3.3 × 10−6 6.8 × 10−4 0.0

5 × 10−2 10−5 2.0 106 10. 1 121 4.8 × 10−7 6.1 × 10−6 0.0

5 × 10−2 10−8 2.0 106 10. 1 181 2.0 × 10−9 9.0 × 10−9 0.0

– We have tested the discrimination power of the algorithm by giving different values to
E3. The number of jump points decreases as E3 grows.

4.1.2.1 Function f with a Periodic Continuous Perturbation We have studied the
performance of the algorithm when f is perturbed by the periodic function p(x) =
k sin(100000x), where k is a positive real number. We have applied EDAS-1 to the function
gp(x) = f (x) + p(x). Table 5 shows the obtained results.

From the results, we can conclude

– NI is large due to the complexity of the function. This increases the compute time.
– The choice of a small E2 allows to obtain arbitrary precision in the value of the jump

points. The error in the magnitude of the corresponding jumps is greater than that of the
unperturbed case, due to the highly oscillatory behavior of p(x).

– Figure 3 shows a detail of the piecewise affine function L. In this case L is a very
poor approximant, nevertheless the algorithm is able to find the jump points. Cuba-
ture procedures perform an “implicit smoothing” of the function away from the jump
discontinuity set. That is, cubature formulas give the exact result for a polynomial in-
terpolant of a certain degree, not the exact value corresponding to the target func-
tion.

4.1.2.2 Function f with a random continuous perturbation We have studied the perfor-
mance of EDAS-1 when f is perturbed by the random function p(x) defined as the piece-
wise affine function such that p(xi) = yi , i = 0, . . . , np, where:

500 J Sci Comput (2011) 46: 485–518

Fig. 2 Performance of EDAS-1 on f (E1 = 10−2, E2 = 10−3, E3 = 10−1, NI = 95). (a) Graph of f .
(b) Graph of f (blue) and L (black). (c)–(d) Details of the approximation of f by L

– xi = a + (b − a)i/np, i = 0, . . . , np.
– yi = k sgn(i) r(i), i = 0, . . . , np, where sgn is a random function with values −1 or 1,

r is a random function with values in [0,1], and k is a positive real number.

We have applied EDAS-1 to the function gr(x) = f (x) + p(x).
The results obtained are similar to those in the previous case. To sum up, we can affirm

that periodic or random continuous perturbations do not seem to affect the effectiveness of
EDAS-1.

4.2 Computational Experiments on 2D Images

An image is defined as an n × m matrix I . In the 256 grayscale the entries of I are numbers
between 1 (black) and 256 (white).

J Sci Comput (2011) 46: 485–518 501

Table 5 Performance of EDAS-1 on the function gp (periodic perturbation of f)

k E1 E2 E3 E4 E5 NJ NI Ex Ej CPU (s)

0.15 5 × 10−2 10−5 10−1 106 10. 6 323729 1.5 × 10−6 8.3 × 10−2 2.6

0.15 5 × 10−2 10−7 10−1 106 10. 6 323765 2.0 × 10−8 1.3 × 10−3 2.6

0.15 5 × 10−2 10−9 10−1 106 10. 6 323807 2.0 × 10−10 1.0 × 10−5 2.6

0.50 5 × 10−2 10−5 10−1 106 10. 6 590155 1.4 × 10−6 2.8 × 10−1 4.5

0.50 5 × 10−2 10−7 10−1 106 10. 6 590191 2.0 × 10−8 4.5 × 10−3 4.5

0.50 5 × 10−2 10−9 10−1 106 10. 6 590233 2.0 × 10−10 3.5 × 10−5 4.5

1.00 5 × 10−2 10−5 10−1 106 10. 6 883963 1.5 × 10−6 5.1 × 10−1 6.4

1.00 5 × 10−2 10−7 10−1 106 10. 6 883999 2.0 × 10−8 8.9 × 10−3 6.4

1.00 5 × 10−2 10−9 10−1 106 10. 6 884041 2.0 × 10−10 7.0 × 10−5 6.3

Fig. 3 Performance of EDAS-1
on the periodically perturbed
function f (k = 0.15,
E1 = 10−3, E2 = 10−3,
E3 = 4 × 10−1, NI = 8192).
Details of the graphs of gp (blue)
and L (black)

From this matrix I , one can build a piecewise constant function Ĩ , defined on the rectan-
gle R = [0.5, n + 0.5] × [0.5,m + 0.5], in the following way.

Ĩ (x1, x2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

I11, if (x1, x2) ∈ [0.5,1.5] × [0.5,1.5],
Ii1, if (x1, x2) ∈ (i − 0.5, i + 0.5] × [0.5,1.5] (i > 1),

I1j , if (x1, x2) ∈ [0.5,1.5] × (j − 0.5, j + 0.5] (j > 1),

Iij , if (x1, x2) ∈ (i − 0.5, i + 0.5] × (j − 0.5, j + 0.5] (i, j > 1).

In image processing, it is usual consider a special coordinate system in the plane. The pos-
itive x2-axis is the standard positive x1-axis and the positive x1-axis is the standard positive
x2-axis oriented downward.

In this section we apply EDAS-1 and EDAS-2 to piecewise constant functions generated
by images. We use the following procedures:

– The first method consists of applying EDAS-1 to search for intervals containing jump
points, in the following n + m one-dimensional problems:

502 J Sci Comput (2011) 46: 485–518

Fig. 4 (a) Original Shepp-Logan phantom image. (b) Perturbed Shepp-Logan phantom image (k = 50)

– Ĩ (i, x2), i = 1, . . . , n, in [0.5,m + 0.5].
– Ĩ (x1, j), j = 1, . . . ,m, in [0.5, n + 0.5].

Considering the midpoint of each one of such intervals, we obtain the following
set of approximate jump points. (i, x2k), i = 1, . . . , n, k = 1, . . . , J (i) and (x1l , j),

j = 1, . . . ,m, l = 1, . . . , J (j). From this set, we can build a binary n × m matrix Î by
means of the following pixelation process. Consider each one of the nm squares of side
length 1 contained into R. If one or several approximate jump points belong to the ij

square, we define Îij = 1 and Îij = 256 otherwise. In this way the matrix Î contains an
approximate representation of the edges of the initial image. We call TNI the total num-
ber of intervals and TNJI the total number of intervals containing jumps, generated in the
n + m applications of EDAS-1.

– The second method divides R into two triangles with vertices: (0.5,0.5), (n + 0.5,0.5),

(n + 0.5,m + 0.5), and (0.5,0.5), (n + 0.5,m + 0.5), (0.5,m + 0.5). The initial domain
partition P1 consist of these two triangles (in complex problems the subdivision has been
different as we detail later on). Each triangle in P1 is divided into subtriangles according
to EDAS-2. When the algorithm stops we have a tessellation of R consisting of TNT
triangles. We also have TNJT triangles which contain jump points inside them. The binary
image Î is obtained from the barycenters of such triangles and proceeding as in the first
method.

4.2.1 Randomly Perturbed Shepp-Logan Phantom

In this subsection, we consider a well-known medical image, the Shepp-Logan phan-
tom image that is widely used as a benchmark for image reconstruction algorithms.
The Shepp-Logan phantom image used in this work is obtained from the MATLAB built-in
function, f = phantom (modifiedShepp-Logan); see Fig. 4(a). The image is defined as an
256 × 256 matrix with only six different entries. We have studied the effectiveness of the
proposed algorithms on the Shepp-Logan phantom with a random perturbation. We have

J Sci Comput (2011) 46: 485–518 503

Table 6 Performance of
EDAS-1 on the perturbed
Shepp-Logan phantom (k = 50)

E1 E2 E3 E4 E5 TNI TNJI CPU (s)

10−3 10−7 25. 10. 10. 3264248 34512 55.8

10−3 10−7 50. 10. 10. 3264248 1951 55.6

Table 7 Performance of
EDAS-2 on the perturbed
Shepp-Logan phantom (k = 50)

E1 E2 E3 E4 E5 TNT TNJT CPU (s)

10−1 10−1 25. 10. 10. 8806457 1102587 306.5

10−1 10−1 50. 10. 10. 8806457 62083 306.4

considered the matrix G = I + k ∗ rand(256), where I is the matrix of the original image
and rand(n) is the MATLAB function that generates a random n × n matrix with entries
between 0 and 1. We have studied different values of k. In this subsection we give the
results obtained with k = 50; see Fig. 4(b). In the case of EDAS-2 and due to RAM limi-
tations, we have divided the domain [0.5,256.5] × [0.5,256.5] into 4 squares of the same
size. Then, each one of these squares has been divided into four triangles by means of its
diagonals. The resulting set of 16 triangles has been considered as the initial domain parti-
tion P1.

The results obtained with EDAS-1 and EDAS-2 are reported in Tables 6 and 7, respec-
tively. Since the perturbation is discontinuous, the number of jump points grows consider-
ably. Figures 5(a) and 5(c) show the capability of EDAS-1 and EDAS-2 to detect them. The
only way to avoid the noise consists of increasing E3; see Figs. 5(b) and 5(d).

4.2.2 Thin “A” Image

This is a binary 218 × 262 image; see Fig. 6. We use it to test the capability of EDAS-1 and
EDAS-2 to find scarce and close jump discontinuities in large domains. Thin “A” image is
composed of lines which are only two pixels wide (x = 50, 51, 150, 151, and y = 91, 92,
170, 171).

Figure 7 shows the results obtained by EDAS-1 and EDAS-2 without the pixelation
process.

4.2.3 Lena Image

This 512 × 512 image has become a standard test; see Fig. 8. Its complexity degree is
considerably greater than that of previous examples because I has many different entries
that are irregularly distributed.

After several experiments we have selected the value E3 = 13 as the one that seems to
maximize the “description level” of �E3 and minimizes the noise.

The data obtained with EDAS-1 are reported in Table 8.
In the case of EDAS-2, we have divided the domain [0.5,512.5] × [0.5,512.5] into 16

squares of the same size. Then, each one of these squares has been divided into four triangles

504 J Sci Comput (2011) 46: 485–518

Fig. 5 Edges of the perturbed Shepp-Logan phantom image (k = 50). (a) �J
25 approximated by EDAS-1.

(b) �J
50 approximated by EDAS-1. (c) �J

25 approximated by EDAS-2. (d) �J
50 approximated by EDAS-2

by means of its diagonals. The resulting set of 64 triangles has been considered as the initial
domain partition P1. Table 9 shows the results obtained with EDAS-2.

Figures 9(a) and 9(b) show the graphs of the approximations of �J
13 obtained by EDAS-1

and EDAS-2, respectively.

4.2.4 Randomly Perturbed Lena Image

We have studied the effectiveness of the proposed methods on the Lena image with a random
perturbation. We have considered the matrix G = I + k ∗ rand(512), where I is the matrix
of the original Lena image. We have studied different values of k. In this subsection we give
the results obtained with k = 25. In the case of EDAS-2, the initial partition P1 has been that
in Sect. 4.2.3.

J Sci Comput (2011) 46: 485–518 505

Fig. 6 Original thin “A” image

Fig. 7 Thin “A” image. (a) �J approximated by EDAS-1 (E1 = 10−3, E2 = 10−7, E3 = 250.). (b) �J

approximated by EDAS-2 (E1 = 10−2, E2 = 5 × 10−2, E3 = 250.)

The results obtained with EDAS-1 and EDAS-2 are reported in Tables 10 and 11, respec-
tively. Since the perturbation is discontinuous, the number of jump points grows consider-
ably. Figures 10(a) and 10(c) show the capability of EDAS-1 and EDAS-2 to detect them.
The only way to avoid the noise consists of increasing E3; see Figs. 10(b) and 10(d).

506 J Sci Comput (2011) 46: 485–518

Fig. 8 Original Lena image

Fig. 9 Edges of Lena image. (a) �J
13 approximated by EDAS-1 (E1 = 5 × 10−2, E2 = 10−3). (b) �J

13
approximated by EDAS-2 (E1 = 10−1, E2 = 10−1)

4.2.5 Analysis of Image Experiments

– EDAS-1 and EDAS-2 are able to find a good approximation of the jump discontinuity set
�J of the piecewise constant function associated with an image. While EDAS-1 restricts
its search to two orthogonal straight lines passing through each pixel, EDAS-2 performs
an exhaustive search in the whole square corresponding to the pixel. This makes EDAS-2
slow in comparison with EDAS-1.

– The absence of oscillations makes possible to obtain accurate values of the magnitude of
the jumps. This allows to obtain stratified edges (�J

l , �J
lu) in a straightforward manner.

– Continuous noise does not change the set �J of a function. It increases the computational
effort but it does not affect the result of EDAS-d (Sect. 4.1.2). On the contrary, discontin-
uous noise can change �J drastically. Experiments in Sects. 4.2.1 and 4.2.4 confirm this
fact.

J Sci Comput (2011) 46: 485–518 507

Table 8 Performance of
EDAS-1 on the Lena image E1 E2 E3 E4 E5 TNI TNJI CPU (s)

10−3 10−7 13. 10. 10. 11867770 48689 292.9

5 × 10−2 10−3 13. 10. 10. 5247716 48689 94.8

10−1 10−2 13. 10. 10. 3829133 48689 71.5

10−1 5 × 10−2 13. 10. 10. 2883411 48689 56.0

Table 9 Performance of
EDAS-2 on the Lena image E1 E2 E3 E4 E5 TNT TNJT CPU (s)

10−1 10−1 13. 10. 10. 32549881 1556466 1128.2

Table 10 Performance of
EDAS-1 on the perturbed Lena
image (k = 25)

E1 E2 E3 E4 E5 TNI TNJI CPU (s)

5 × 10−2 10−2 13. 10. 10. 4163939 164011 78.2

5 × 10−2 10−2 28. 10. 10. 4163939 21804 76.8

Table 11 Performance of
EDAS-2 on the perturbed Lena
image (k = 25)

E1 E2 E3 E4 E5 TNT TNJT CPU (s)

10−1 10−1 15. 10. 10. 35109547 4116009 1221.9

10−1 10−1 31. 10. 10. 35109547 527207 1221.8

4.3 Comparison with other Edge Detection Methods

In this section we compare the results obtained by EDAS-d (d = 1,2) with those obtained
by the Canny and Sobel edge detectors (see Sect. 1.1). We have used the MATLAB EDGE
(‘Canny’/‘Sobel’) function with automatic choice of parameters. The four algorithms have
been tested with the synthetic images obtained in the following way. Consider the function
defined on [−4,4]2

f (x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

x2 + y2, if 0 ≤ √
x2 + y2 < 1,

1 + x2 + y2 + 0.1 ∗ sin(x), if 1 ≤ √
x2 + y2 < 2,

2 + x2 + y2 + 0.1 ∗ sin(y), otherwise.

Notice that f is not constant on sets of Lebesgue measure different from zero. From it,
define the functions:

g(x̄, ȳ) = f (x, y)

i(x̄, ȳ) = Ag(x̄, ȳ) + B

obtained by the following change of variables

(
x

y

)
= a

(
1 0
0 1

)(
x̄

ȳ

)
+ b

(
1
1

)
.

508 J Sci Comput (2011) 46: 485–518

Fig. 10 Edges of the perturbed Lena image approximated by EDAS-1. (a) �J
13 (E1 = 5×10−2, E2 = 10−2).

(b) �J
28 (E1 = 5×10−2, E2 = 10−2). Edges of the perturbed Lena image approximated by EDAS-2. (c) �J

15
(E1 = 10−1, E2 = 10−1). (d) �J

31 (E1 = 10−1, E2 = 10−1)

If a = 4/125, b = −502/125, A = 51/7, and B = 1, then the continuous function i(x̄, ȳ) is
defined on [0.5,250.5] × [0.5,250.5] and its range is contained in the interval [1,256].

Proceeding as in Sect. 4.2 we obtain an 250 × 250 image I defined by the values of i at
the node points of a rectangular grid. The corresponding piecewise constant function Ĩ is
defined on the square [0.5,250.5] × [0.5,250.5]. Image I is shown in Fig. 11(a). We have
considered the matrices Ik = I + k ∗ rand(250), for k = 0,10. Figure 11(b) shows I10.

The results obtained with EDAS-1 and EDAS-2 are reported in Tables 12 and 13, re-
spectively. The four algorithms show a very good behavior for k = 0. Figure 12 shows their
comparative performance for k = 10.

The results suggest that EDAS-d (d = 1,2) have a random noise elimination behavior
comparable to that of the best spatial filtering methods.

J Sci Comput (2011) 46: 485–518 509

Fig. 11 (a) Original synthetic image. (b) Randomly perturbed synthetic image (k = 10)

Table 12 Performance of EDAS-1 on the images Ik

image E1 E2 E3 E4 E5 TNI TNJI CPU (s)

I0 10−3 10−7 6. 10. 10. 3108512 744 106.1

I10 10−2 10−5 12. 10. 10. 2228804 133 76.6

Table 13 Performance of EDAS-2 on the images Ik

image E1 E2 E3 E4 E5 TNT TNJT CPU (s)

I0 10−1 5 × 10−2 6. 10. 10. 15366102 48374 1294.4

I10 10−1 10−1 13. 10. 10. 8263157 3462 713.8

4.4 Computational Experiments on General Piecewise Continuous 2D Functions

In the case of general piecewise continuous functions defined on a rectangle with non-
convex sets in its partition, results in Sect. 2 are not directly applicable. This is due to the
complexity of the jump discontinuity set �J . For example, if �J is curved, the intersection
of a given triangle and �J is no longer a straight line segment. In spite of this fact, EDAS-2
can be applied to solve some of these problems as we see below.

Consider the function f defined in Sect. 4.3. Its �J is a set of two concentric circumfer-
ences.

The data obtained with EDAS-2 are reported in Table 14.
Figures 13(a) and 13(b) show the grid generated by EDAS-2 and the approximation of

�J , respectively.

5 Concluding Remarks

In this paper we propose an algorithm (EDAS-d) to approximate the jump discontinuity set
of functions defined almost everywhere on convex subsets of R

d . EDAS-d can be applied to

510 J Sci Comput (2011) 46: 485–518

Fig. 12 Randomly perturbed synthetic image (k = 10): (a) Edges obtained by the Canny detector. (b) Edges
obtained by the Sobel detector. (c) �J

12 approximated by EDAS-1. (d) �J
13 approximated by EDAS-2

Table 14 Performance of
EDAS-2 on the function g E1 E2 E3 E4 E5 TNT TNJT CPU (s)

5 × 10−2 10−2 10−1 10. 10. 18560 7416 0.3

discrete functions extending their domain by interpolation and using the procedure described
in Sect. 4.2. The method is based on adaptive splitting of the domain of the function guided
by the value of an average integral. The numerical computation of these integrals introduces
an “implicit smoothing” that allows a fast convergence away from the jump points. The
algorithm needs to specify five parameters which have an intuitive meaning. They can be
easily fixed in most problems. We have studied from a theoretical and computational point
of view the cases d = 1 and d = 2. In the case of piecewise continuous 1D functions and
piecewise constant 2D functions, we can draw the following conclusions:

– EDAS-d provides a precise determination of the jump points.
– The resulting piecewise affine function L does not show oscillatory behavior near the

jump points. This makes possible to obtain accurate values of the magnitude of the jumps.

J Sci Comput (2011) 46: 485–518 511

Fig. 13 Performance of EDAS-2 on a function with curved jump discontinuity set. (a) Grid generated by
EDAS-2. (b) �J of f approximated by EDAS-2

As a consequence, we can obtain stratified edges (�J
l , �J

lu) in a straightforward manner. In
the case of images, this fact is important because stratified edges correspond to “individual
objects” in a scene.

– EDAS-d allows to discriminate between real jumps (discontinuities) and steep gradients.
– EDAS-d is robust against continuous perturbations. Discontinuous perturbations change

the set �J of the unperturbed function. This affects the results of the algorithm, due to
its high sensitivity to detect jumps. In the case of random perturbation of images, the
experimental results suggest that EDAS-d has a noise elimination behavior comparable
to that of the best spatial filtering methods.

– In all computational experiments, EDAS-d runs quite fast. EDAS-1 is preferable to
EDAS-2 when fast image processing is required.

EDAS-2 has proved its computational effectiveness in some problems involving general
piecewise continuous functions with curved �J .

A drawback of EDAS-d is the approximate method of evaluation of integrals that can
lead to the oversight of some jump points. This can be avoided by decreasing the exploration
parameter E4 or by modifying the adaptive procedure to compute integrals.

Future work should address the analysis of EDAS-d when d > 2. It would also be inter-
esting to study theoretically the global behavior of the algorithm.

Acknowledgements We would like to thank the anonymous reviewers for their careful reading of our
manuscript and the insightful comments they provided.

Appendix: Proofs of Proposition 3 and Theorem 2

Proposition 3 Given ε > 0 there exists a number δ > 0 such that

1

2η

∫ η

−η

|f (x) − LT (η)f (x)|dx >
|a0 − b0|

4
− ε

for all η such that 0 < η < δ.

512 J Sci Comput (2011) 46: 485–518

Proof

1

2η

∫ η

−η

|f (x) − LT (η)f (x)|dx = 1

2η

∫ η

0
|f (x) − LT (η)f (x)|dx

+ 1

2η

∫ 0

−η

|f (x) − LT (η)f (x)|dx

≥
∣∣∣∣

1

2η

∫ η

0
(f (x) − LT (η)f (x))dx

∣∣∣∣

+
∣∣∣∣

1

2η

∫ 0

−η

(f (x) − LT (η)f (x))dx

∣∣∣∣.

It suffices to show that the limit of the right hand side of the above inequality as η approaches
zero is |a0 − b0|/4.

We can assume that m = n by making as many coefficients as necessary equal to zero.
Then LT (η)f (x) = l1x + l2, where

l1 = 1

2η

n∑

k=0

(ak + (−1)k+1bk)η
k,

l2 = 1

2

n∑

k=0

(ak + (−1)kbk)η
k.

Hence

1

2η

∫ η

0
(f (x) − LT (η)f (x))dx = 1

2η

∫ η

0

(
n∑

k=0

akx
k − l1x − l2

)
dx

= 1

2η

n∑

k=0

akη
k+1

k + 1
− 1

8

n∑

k=0

(ak + (−1)k+1bk)η
k

− 1

4

n∑

k=0

(ak + (−1)kbk)η
k,

1

2η

∫ 0

−η

(f (x) − LT (η)f (x))dx = 1

2η

∫ 0

−η

(
n∑

k=0

bkx
k − l1x − l2

)
dx

= 1

2η

n∑

k=0

(−1)k+2bkη
k+1

k + 1
+ 1

8

n∑

k=0

(ak + (−1)k+1bk)η
k

− 1

4

n∑

k=0

(ak + (−1)kbk)η
k.

And the result follows. �

Theorem 2 Let h : R
2 → R be the function defined by

h(x) ≡ JH(ax1 + bx2 + c),

J Sci Comput (2011) 46: 485–518 513

where a, b, c and J are real numbers such that either a or b are distinct from zero and J > 0.
Define r ≡ {x = (x1, x2) ∈ R

2 : ax1 + bx2 + c = 0} and let T be an arbitrary triangle in R
2

such that r ∩ T̊ �= ∅. Then

J

4
≤

∫
T

|h(x) − LT h(x)|dx

v(T)
≤ J, (2)

where v(T) is the area of T .

Proof Let A(a1, a2), B(b1, b2) and C(c1, c2) be the vertices of the triangle T . Consider the
change of variables given by x = τ(y)

(
x1

x2

)
=

(
b1 − a1 c1 − a1

b2 − a2 c2 − a2

)(
y1

y2

)
+

(
a1

a2

)
.

Define

Mτ ≡
(

b1 − a1 c1 − a1

b2 − a2 c2 − a2

)
.

We have that T = τ(�) where � is the triangle in the plane (y1, y2) with vertices P1(0,0),
P2(1,0), and P3(0,1).

If we use the change of variables formula for multiple integrals and consider that v(T) =
|det(Mτ)|/2

AIT (h) =
∫

T
|h(x) − LT h(x)|dx

v(T)
=

∫
�

|h(τ(y)) − LT h(τ(y))||det(Mτ)|dy

v(T)

= 2
∫

�

|h(τ(y)) − LT h(τ(y))|dy. (5)

There are two possible cases:

(i) h is equal to J at two vertices of T and is equal to zero at the third vertex.
(ii) h is equal to J at one vertex of T and is equal to zero at the other two vertices.

(i) Assume that h is equal to J at A and C and is equal to zero at B . For finding
LT h(τ(y)) it suffices to find the affine interpolant L� such that L�(P1) = L�(P3) = J

and L�(P2) = 0. It is clear that L�(y) = J (1 − y1). Therefore

LT h(τ(y)) = L�(y) = J (1 − y1),

and (5) can be written as

AIT (h) = 2
∫

�

|h(τ(y)) − J (1 − y1)|dy.

Assume first that h(τ(y)) = JH(α − y1), that is

h(τ(y)) =
{

J, if y1 < α,

0, if y1 ≥ α.

514 J Sci Comput (2011) 46: 485–518

Fig. 14 Illustration for the proof
of Theorem 2

If α ∈ (0,1), define

�α ≡ T ∩ {y : y1 ≤ α},
�1−α ≡ T ∩ {y : y1 ≥ α},

AI(α) ≡ 2
∫

�

|h(τ(y)) − J (1 − y1)|dy.

Figure 14(a) shows the sets �α and �1−α . Then

AI(α) = 2
∫

�α

|J − J (1 − y1)|dy1dy2 + 2
∫

�1−α

|0 − J (1 − y1)|dy1dy2

= 2J

∫ α

0
dy1

∫ 1−y1

0
y1dy2 + 2J

∫ 1

α

dy1

∫ 1−y1

0
(1 − y1)dy2

= J

3
(2 − 6α + 9α2 − 4α3).

The global minimum of AI(α) in [0,1] is attained at α = 1/2, therefore

AI(α) ≥ AI(1/2) = J

4
, α ∈ (0,1). (6)

We must prove that inequality (6) can be extended to the general case

h(τ(y)) = JH((β − α)y2 − (1 − β)y1 + α(1 − β)),

where 0 ≤ α,β < 1. Figure 14(b) shows the straight line

(β − α)y2 − (1 − β)y1 + α(1 − β) = 0.

There are eight possible cases:

1) α < 1/2, α < β ≤ 1/2,

2) α < 1/2, 0 < β < α,

3) α < 1/2, 1/2 < β < 1,

4) α > 1/2, α < β < 1,

5) α > 1/2, 1/2 ≤ β ≤ α,

J Sci Comput (2011) 46: 485–518 515

Fig. 15 Illustration for the proof
of Theorem 2

6) α > 1/2, 0 < β < 1/2,

7) α = 1/2, 1/2 < β < 1,

8) α = 1/2, 0 < β < 1/2.

Define

AI(α,β) ≡ 2J

∫

�

|H((β − α)y2 − (1 − β)y1 + α(1 − β)) − (1 − y1)|dy1dy2.

It suffices to prove that AI(α,β) ≥ J/4 in the eight cases. We detail only two of them. The
remaining cases can be proved similarly.

– Case (1) Using the notation in Fig. 15(a)

AI(α,β) = 2J

∫

R1

y1dy1dy2 + 2J

∫

Ru

y1dy1dy2

+ 2J

∫

Rd

(1 − y1)dy1dy2 + 2J

∫

R2

(1 − y1)dy1y2, (7)

AI(β,β) = 2J

∫

R1

y1dy1y2 + 2J

∫

Ru

y1dy1dy2 + 2J

∫

Rd

y1dy1dy2

+ 2J

∫

R2

(1 − y1)dy1dy2.

In Rd , y1 ≤ 1/2, therefore y1 ≤ 1 − y1. Hence
∫

Rd

(1 − y1)dy1dy2 ≥
∫

Rd

y1dy1dy2.

From this inequality and using (6)

AI(α,β) ≥ AI(β,β) = AI(β) ≥ J

4
.

– Case (3) Using the notation in Fig. 15(b)

AI(α,β) = 2J

∫

R1

y1dy1dy2 + 2J

∫

Ru

y1dy1dy2 + 2J

∫

Rd

(1 − y1)dy1dy2

+ 2J

∫

R2

(1 − y1)dy1dy2,

516 J Sci Comput (2011) 46: 485–518

AI (1/2,1/2) = 2J

∫

R1

y1dy1dy2 + 2J

∫

Ru

(1 − y1)dy1dy2 + 2J

∫

Rd

y1dy1dy2

+ 2J

∫

R2

(1 − y1)dy1dy2.

In Ru, y1 ≥ 1/2, therefore y1 ≥ 1 − y1. Hence
∫

Ru

y1dy1dy2 ≥
∫

Ru

(1 − y1)dy1dy2.

In Rd , y1 ≤ 1/2, therefore y1 ≤ 1 − y1. Hence
∫

Rd

(1 − y1)dy1dy2 ≥
∫

Rd

y1dy1dy2.

Consequently

AI(α,β) ≥ AI (1/2,1/2) = AI (1/2) = J

4
.

In the case (i), since for any h(x) satisfying the assumptions of the proposition, AIT (h) can
be written as AI(α,β) for some α and β , we have that the left hand side inequality in (2) is
proven.

The proof of the right hand side inequality in (2) can be obtained from any expression of
AI(α,β), for example (7). Taking into account that y1 ≤ 1 and 1 − y1 ≤ 1 in �, we have that

AI(α,β) ≤ 2J (v(R1) + v(Ru) + v(Rd) + v(R2)) = 2Jv(�) = J.

(ii) In the second case we can assume that h is zero at A and C and is 1 at B .
For finding LT h(τ(y)) it suffices to find the affine interpolant L� such that L�(P1) =

L�(P3) = 0 and L�(P2) = 1. It is clear that L�(y) = Jy1. Therefore

LT h(τ(y)) = L�(y) = Jy1.

(5) can be written as

AIT (h) = 2
∫

�

|h(τ(y)) − Jy1|dy.

The reasoning to prove that AIT (h) ≥ J/4 and AIT (h) ≤ J is similar to that given in
case (i). �

References

1. Alvarez, L., Lions, P.L., Morel, J.M.: Image selective smoothing and edge detection by nonlinear diffu-
sion II. SIAM J. Numer. Anal. 29, 845–866 (1992)

2. Archibald, R., Gelb, A., Gottlieb, S., Ryan, J.: One-sided post-processing for the discontinuous Galerkin
method using ENO type stencil choosing and the local edge detection method. J. Sci. Comput. 28, 167–
190 (2006)

3. Archibald, R., Gelb, A., Yoon, J.: Polynomial fitting for edge detection in irregularly sampled signals
and images. SIAM J. Numer. Anal. 43, 259–279 (2005)

4. Bänsch, E., Mikula, K.: A coarsening finite element in image selective smoothing. Comput. Vis. Sci. 1,
53–61 (1997)

J Sci Comput (2011) 46: 485–518 517

5. Bänsch, E., Mikula, K.: Adaptivity in 3D image processing. Comput. Vis. Sci. 4, 21–30 (2001)
6. Berntsen, J., Espelid, T.O.: Error estimation in automatic quadrature routines. ACM Trans. Math. Softw.

17, 233–252 (1991)
7. Bliss, A., Su, F.E.: Lower bounds for simplicial covers and triangulations of cubes. Discrete Comput.

Geom. 33, 669–686 (2005)
8. Bosnjak, A., Montilla, G., Villegas, R., Jara, I.: 3D segmentation with an application of level set-method

using MRI volumes for image guided surgery. In: Proceedings of the 29th Annual International Confer-
ence of the IEEE EMBS, pp. 5263–5266, Lyon, France, August 23–26 (2007)

9. Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge detection by nonlinear
diffusion. SIAM J. Numer. Anal. 29, 182–193 (1992)

10. Chen, M.-H., Chin, R.T.: Partial smoothing splines for noisy + boundaries with corners. IEEE Trans.
Pattern Anal. Mach. Intell. 15, 1208–1216 (1993)

11. Chen, G., Yang, Y.H.: Edge detection by regularized cubic B-spline fitting. IEEE Trans. Syst. Man Cy-
bern. 25, 636–643 (1995)

12. Fujioka, H., Kano, H.: Extrema detection of optimal smoothing splines with application to edge detec-
tion problem. In: Proceedings of the 32nd Annual Conference on Industrial Electronics (IECON 2006),
pp. 3294–3299. IEEE, New York (2006)

13. Gamelin, Th.W., Greene, R.E.: Introduction to Topology. Dover, New York, Mineola (1999)
14. Gelb, A., Tadmor, E.: Detection of edges in spectral data. Appl. Comput. Harmon. Anal. 7, 101–135

(1999)
15. Gelb, A., Tadmor, E.: Detection of edges in spectral data II. Nonlinear enhancement. SIAM J. Numer.

Anal. 38, 1389–1408 (2000)
16. Gelb, A., Tadmor, E.: Adaptive edge detectors for piecewise smooth data based on the minmod limiter.

J. Sci. Comput. 28, 279–306 (2006)
17. Gelb, A., Cates, D.: Detection of edges in spectral data III-refinement of the concentration method. J. Sci.

Comput. 36, 1–43 (2008)
18. Gelb, A., Cates, D.: Segmentation of images from Fourier spectral data. Commun. Comput. Phys. 5,

326–34 (2009)
19. Gevers, T., Smeulders, A.W.M.: Combining region splitting and edge detection through guided Delaunay

image subdivisions. In: IEEE Proceedings of CVPR, pp. 1021–1026 (1997)
20. González, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing using MATLAB. Prentice Hall,

New York (2004)
21. Gottlieb, D., Shu, Ch.-W.: On the Gibbs phenomenon and its resolution. SIAM Rev. 39, 644–668 (1997)
22. Grundmann, A., Möller, H.M.: Invariant integration formulas for the n-simplex by combinatorial meth-

ods. SIAM J. Numer. Anal. 15, 282–290 (1978)
23. Guan, X., Guan, Z.: Edge detection of high resolution remote sensing imaginary using wavelet. In:

Proceedings of the International Conference on Info-tech and Info-net (ICII 2001), vol. 1, pp. 302–307.
IEEE, New York (2001)

24. Horowitz, S.L., Pavlidis, T.: Picture segmentation by a tree traversal algorithm. J. ACM 23, 368–388
(1975)

25. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis. 1, 321–331
(1988)

26. Krylov, V.I.: Approximate Calculation of Integrals. Dover, New York (2005)
27. Lizier, M.A.S., Martins, D.C. Jr., Cuadros-Vargas, A.J., Cesar, R.M. Jr., Nonato, L.G.: Generated seg-

mented meshes from textured color images. J. Vis. Commun. Image R. 20, 190–203 (2009)
28. Llanas, B., Lantarón, S., Sáinz, F.J.: Constructive approximation of discontinuous functions by neural

networks. Neural Process. Lett. 27, 209–226 (2008)
29. Llanas, B., Sáinz, F.J.: Fast training of neural trees by adaptive splitting based on cubature. Neurocom-

puting 71, 3387–3408 (2008)
30. Meinhardt, E., Zacur, E., Frangi, A.F., Caselles, V.: 3D edge detection by selection of level surface

patches. J. Math. Imaging Vis. 34, 1–16 (2009)
31. Orden, D., Santos, F.: Asymptotically efficient triangulations of the d-cube. Discrete Comput. Geom. 30,

509–528 (2003)
32. Paragios, N., Chen, Y., Faugeras, O. (eds.): Handbook of Mathematical Models in Computer Vision.

Springer, Berlin (2006)
33. Pavlidis, T., Liow, Y.-T.: Integrating region growing and edge detection. IEEE Trans. Pattern Anal. Mach.

Intell. 12, 225–233 (1990)
34. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. In: Proceedings of the

IEEE Workshop on Computer Vision, Miami, pp. 16–22 (1987)
35. Preußer, T., Rumpf, M.: An adaptive finite element method for large scale image processing. J. Vis.

Commun. Image R. 11, 183–195 (2000)

518 J Sci Comput (2011) 46: 485–518

36. Rumpf, M., Voigt, A., Berkels, B., Rätz, A.: Extracting grain boundaries and macroscopic deformations
from images on atomic scale. J. Sci. Comput. 35, 1–23 (2008)

37. Subbotin, Y.N.: Error of the approximation by interpolation polynomials of small degrees on n-simplices.
Math. Notes 48, 1030–1037 (1990)

38. Tang, Y.Y., Yang, L., Liu, J.: Quadratic spline wavelet approach to automatic extraction of baselines
from document images. In: Proceedings of the Fourth International Conference on Document Analysis
and Recognition, vol. 2, pp. 693–696. IEEE, New York (1997)

39. Wu, X.: Adaptive split-and-merge segmentation based on piecewise least-square approximation. IEEE
Trans. Pattern Anal. Mach. Intell. 15, 808–815 (1993)

	Edge Detection by Adaptive Splitting
	Abstract
	Introduction
	The Edge Detection Problem
	Edge Detection Methods Based on Adaptive Meshing
	Contribution of the Paper

	Mathematical Preliminaries
	Edge Detection by Adaptive Splitting Algorithm
	Statement of the Algorithm
	Practical Implementation of the Algorithm
	Theoretical Foundation of EDAS-d

	Computational Experiments
	Computational Experiments on Piecewise Continuous 1D Functions
	Distinction Between Jumps and Steep Gradients
	A Function with Several Jumps
	Function f with a Periodic Continuous Perturbation
	Function f with a random continuous perturbation

	Computational Experiments on 2D Images
	Randomly Perturbed Shepp-Logan Phantom
	Thin "A" Image
	Lena Image
	Randomly Perturbed Lena Image
	Analysis of Image Experiments

	Comparison with other Edge Detection Methods
	Computational Experiments on General Piecewise Continuous 2D Functions

	Concluding Remarks
	Acknowledgements
	Appendix: Proofs of Proposition 3 and Theorem 2
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

