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Abstract We study in this paper a posteriori error estimates for H 1-conforming numerical
approximations of diffusion problems with a diffusion coefficient piecewise constant on the
mesh cells but arbitrarily discontinuous across the interfaces between the cells. Our esti-
mates give a global upper bound on the error measured either as the energy norm of the dif-
ference between the exact and approximate solutions, or as a dual norm of the residual. They
are guaranteed, meaning that they feature no undetermined constants. (Local) lower bounds
for the error are also derived. Herein, only generic constants independent of the diffusion
coefficient appear, whence our estimates are fully robust with respect to the jumps in the dif-
fusion coefficient. In particular, no condition on the diffusion coefficient like its monotonous
increasing along paths around mesh vertices is imposed, whence the present results also in-
clude the cases with singular solutions. For the energy error setting, the key requirement
turns out to be that the diffusion coefficient is piecewise constant on dual cells associated
with the vertices of an original simplicial mesh and that harmonic averaging is used in the
scheme. This is the usual case, e.g., for the cell-centered finite volume method, included in
our analysis as well as the vertex-centered finite volume, finite difference, and continuous
piecewise affine finite element ones. For the dual norm setting, no such a requirement is nec-
essary. Our estimates are based on H(div)-conforming flux reconstruction obtained thanks
to the local conservativity of all the studied methods on the dual grids, which we recall in
the paper; mutual relations between the different methods are also recalled. Numerical ex-
periments are presented in confirmation of the guaranteed upper bound, full robustness, and
excellent efficiency of the derived estimators.
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1 Introduction

We consider in this paper a model diffusion problem

−∇ · (a∇p) = f in �, (1.1a)

p = 0 on ∂�, (1.1b)

where � ⊂ R
d , d = 2,3, is a polygonal (polyhedral) domain (open, bounded, and connected

set), a is a scalar diffusion coefficient, and f is a source term. We shall derive here a pos-
teriori error estimates for continuous piecewise affine finite element, vertex-centered finite
volume, cell-centered finite volume, and finite difference approximations of this problem.

A posteriori error estimates for finite element discretization of (1.1a)–(1.1b) have been
a popular research subject starting from the Babuška and Rheinboldt work [8]. One may
formulate the following five properties describing an optimal a posteriori error estimate:
(1) deliver an upper bound on the error in the numerical solution which only uses the ap-
proximate solution and which can be fully, without the presence of any unknown quantities,
evaluated (guaranteed upper bound); (2) give an expression for the estimated error locally,
for example in each element of the computational mesh, and ensure that this estimate on the
error represents a lower bound for the actual error, up to a generic constant (local efficiency);
(3) ensure that the effectivity index, given as the ratio of the estimated and actual error, goes
to one as the computational effort goes to infinity (asymptotic exactness); (4) guarantee the
three previous properties independently of the parameters and of their variation (robustness);
(5) give estimators which can be evaluated locally (negligible evaluation cost). Property
(1) allows to give a certified error upper bound, (2) is crucial for the suitability of the esti-
mates for adaptive mesh refinement, (3) and (4) ensure the optimality of the upper bound,
and (5) guarantees that the evaluation cost will be much smaller than the cost required to
obtain the approximate solution itself.

A vast amount of books and papers have been dedicated to a posteriori error estimates for
finite elements. We cite in particular the books by Verfürth [54], Ainsworth and Oden [3],
Neittaanmäki and Repin [41], and Repin [47], cf. also Braess [13]. Among the different
types of estimators, the so-called equilibrated fluxes estimates, based on equilibration of side
fluxes and construction of an H(div)-conforming flux, enable under certain circumstances
to deliver a guaranteed upper bound. These type of estimates are pursued, e.g., by Lade-
vèze [36], Ladevèze and Leguillon [37], Repin [46], Destuynder and Métivet [24], Luce and
Wohlmuth [39], Ainsworth [2], Vejchodský [53], Korotov [35], or Braess and Schöberl [15],
and can be traced back to the Prager–Synge equality [44] and the hypercircle method, cf.
Synge [51], see also Haslinger and Hlaváček [33], Vacek [52], Nečas and Hlaváček [40],
and Hlaváček et al. [34]. They have also recently been shown robust with respect to the
polynomial degree in Braess et al. [14]. Much fewer results are known for finite volume
methods; we refer, e.g., to Xu et al. [61] and the references therein.

One particular issue is the robustness with respect to discontinuous coefficient a. Robust
estimates have been derived by Dörfler and Wilderotter [25], Bernardi and Verfürth [12],
Petzoldt [43], Ainsworth [1], or Chen and Dai [23]. All these estimates are, however, based
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on the “monotonicity around vertices” condition on the distribution of the diffusion coef-
ficient [12, Hypothesis 2.7] or a similar assumption. This condition is, unfortunately, very
restrictive and in particular excludes the physically interesting cases where regions with dif-
ferent diffusion coefficients meet in a checkerboard pattern and where the weak solution
can present singularities. Recently, Cai and Zhang [17] claimed that their estimates do not
need any such a condition. This is certainly true for the error upper bound, but [12, Hypoth-
esis 2.7] is still used in [17, Sect. 4.1] in the lower bound proof.

We try to give in this paper estimates which are as close as possible to the optimality in the
sense of the five above properties. Our main purpose is to present estimates which are fully
robust with respect to the discontinuities in a, and this without the “monotonicity” condition.
We are able to achieve this in two different ways. The first one needs the harmonic averaging
to be used in the scheme definition, while simultaneously aligning the discontinuities of the
diffusion coefficient a with a dual mesh formed around vertices; it uses the energy norm.
It is based on the observation of [27] that harmonic weighting can yield robustness in a
posteriori error estimates. The second way applies to any method of this paper and requires
no alignment of the discontinuities and no use of particular averages; it is based on the
introduction of a (nonlocal and not locally computable) dual norm, the dual norm of the
residual. Such an approach has been pursued by Angermann [4] or Verfürth [55] in the
context of robust estimates for convection–diffusion problems and by Chaillou and Suri [19,
20] and in [26] in the context of monotone nonlinear problems.

None of the approaches of the present paper gives robust a posteriori error estimates
for the standard finite element method with the discontinuities aligned with the original
computational mesh elements and with the error measured in the energy norm. We also by no
means claim that the two robust approaches are the only and the best possibilities. We rather
present them as two simple ways of obtaining robust estimates in the case of discontinuous
coefficients. The first approach of aligning the discontinuities with the dual mesh is rather
unusual in the finite element method. Nevertheless, it represents a standard way of handling
discontinuous coefficients in the cell-centered finite volume (finite difference) approach.
We merely show that suitably interpreting the solution of the standard cell-centered finite
volume method with harmonic weighting in a finite element basis gives robust energy norm
estimates. The key for the robustness of the second approach is the dual norm which actually
does not see the jumps in the coefficients. Estimates in this norm are also only globally, and
not locally, efficient. We are, however, persuaded that they are more “physical” than the
energy norm estimates (see Remark 4.8 below).

We start the paper with preliminaries in Sect. 2. We then in Sect. 3 give a list of several
different H 1-conforming methods and recall some useful relations between them. In Sect. 4,
we sketch an abstract framework, both in the energy and dual norms, show its link to the
Prager–Synge equality [44], and give our a posteriori error estimates. We then discuss four
different ways of defining an equilibrated flux. Section 4 is closed by comparisons of the
present technique with the residual, equilibrated residual, averaging, functional, and other
equilibrated fluxes estimates. The proofs of the (local) efficiency and robustness are the issue
of Sect. 5. All the developments of Sects. 4 and 5 are done in an abstract form, not requiring
any particular numerical scheme. We show in Sect. 6 how the estimate and efficiency results
apply to the numerical methods of Sect. 3. Finally, a collection of numerical experiments is
presented in Sect. 7 and some conclusions are drawn in Sect. 8.

We consider the homogeneous Dirichlet boundary condition only for the sake of clarity
of exposition; general boundary conditions can easily be taken in account, as we outline it
in [59]. This paper is a detailed description of the results previously announced in [58]; some
additional numerical experiments for the finite element method, together with another local
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minimization strategy, are then studied in [21], and extensions to the reaction–diffusion case
in [22].

2 Preliminaries

We give in this section the notation and assumptions, recall some important inequalities, and
finally give details on the continuous problem (1.1a)–(1.1b).

2.1 Meshes and Notation

We shall work in this paper with triangulations Th which for all h > 0 consist of closed
simplices (triangles when d = 2 and tetrahedra when d = 3) such that � = ⋃

K∈Th
K . We

suppose that the triangulations Th are conforming (matching), i.e., such that if K,L ∈ Th,
K �= L, then K ∩ L is either an empty set or a common face, edge, or vertex of K and
L. Let hK denote the diameter of K and let h := maxK∈Th

hK . We denote by Eh the set of
all sides of Th, by E int

h the set of interior, by E ext
h the set of boundary, and by EK the set of

all the sides of an element K ∈ Th; hσ stands for the diameter of a side σ ∈ Eh. We also
denote by Vh (V int

h , V ext
h ) the set of all (interior, boundary) vertices of Th. For V ∈ Vh, set

TV := {L ∈ Th;L ∩ V �= ∅}, the set of all the elements of Th which share the given vertex
V . Similarly, for K ∈ Th, set TK := {L ∈ Th;L ∩ K �= ∅}, the set of all the elements of Th

which share at least a vertex with the given element K .
We shall also consider dual partitions Dh of � such that � = ⋃

D∈Dh
D and such that for

each vertex V ∈ Vh, V ∈ D◦
V for exactly one dual volume DV ∈ Dh. The notation VD stands

inversely for the vertex associated with a given dual volume D ∈ Dh. We denote by Dint
h

(Dext
h ) the dual volumes associated with the interior vertices from V int

h (boundary vertices
from V ext

h ), respectively. Next, Fh stands for all sides of the dual partition Dh and F int
h (F ext

h )
for all interior (boundary) sides of Dh. Let V ∈ Vh. We shall always suppose that DV lies in
the interior of the polygon/polyhedron given by TV (recall that TV stands for all the simplices
sharing the vertex V ). We will also suppose that E int

h ∩ F int
h has a zero (d − 1)-dimensional

Lebesgue measure. An example of such a partition Dh is given in the left part of Fig. 1. In
Sect. 3 below, the meshes Dh will be kept as general as possible. In the other parts of the
paper, we will assume that Dh consist of polygonal/polyhedral dual volumes.

In order to define our a posteriori error estimates, we will need a second conforming sim-
plicial triangulation of �, that we denote by Sh. The basic requirement is that the interiors
of the elements of Sh do not intersect the sides of neither the primal partition Th, nor of the
dual partition Dh. That is, we require Sh to be a conforming refinement of both Th and Dh.
For the local efficiency proofs of our estimators, we will later need the assumption that the
family of meshes {Sh}h is shape-regular in the sense that there exists a constant κS > 0 such
that minK∈Sh

ρK/hK ≥ κS for all h > 0, where ρK denotes the diameter of the largest ball

Fig. 1 Original simplicial mesh
Th and an associated dual mesh
Dh (left) and the fine simplicial
mesh SD of a dual volume
D ∈ Dh (right)
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inscribed in the element K . We will suppose the existence of a local triangulation SD of
each dual volume D ∈ Dh as shown in the right part of Fig. 1 and then set Sh := ⋃

D∈Dh
SD .

We will use the notation Gh for all sides of Sh and G int
h (G ext

h ) for all interior (boundary) sides
of the partition Sh. The notation G int

D stands for all interior sides of SD , G ext
D for all boundary

sides of SD , and GD for G int
D ∪ G ext

D .
Next, for an element K ∈ Th, nK will always denote its exterior unit normal vector; we

shall also employ the notation nσ for a unit normal vector of a side σ ∈ Eh, whose orientation
is chosen arbitrarily but fixed for interior sides and coinciding with the exterior normal of
� for boundary sides. For a side from E int

h shared by K,L ∈ Th, which we denote by σK,L,
such that nσK,L

points from K to L and a function ϕ, we shall define the jump operator [[·]]
by

[[ϕ]] := (ϕ|K)|σ − (ϕ|L)|σ . (2.1)

We set [[ϕ]]σ := ϕ|σ for any σ ∈ E ext
h . We next associate with each K ∈ Th and each σ ∈ EK

a weight ωK,σ such that

0 ≤ ωK,σ ≤ 1 ∀K ∈ Th, ∀σ ∈ EK, (2.2a)

ωK,σ + ωL,σ = 1 ∀σ = σK,L ∈ E int
h , (2.2b)

ωK,σ = 1 ∀σ ∈ E ext
h and K ∈ Th such that σ ∈ EK. (2.2c)

For σ = σK,L ∈ E int
h , we define the weighted average operator {{·}}ω by

{{ϕ}}ω := ωK,σ (ϕ|K)|σ + ωL,σ (ϕ|L)|σ , (2.3)

whereas for σ ∈ E ext
h , {{ϕ}}ω := ϕ|σ . Recall that we have denoted by a the diffusion coeffi-

cient. Two basic choices for the weights in {{a}}ω on a side σ = σK,L ∈ E int
h are:

ωK,σ = ωL,σ = 1

2
, (2.4)

which corresponds to the arithmetic averaging, and

ωK,σ = aL

aK + aL

, ωL,σ = aK

aK + aL

, (2.5)

which corresponds to the harmonic averaging. The present paper is done as generally as
possible, for different numerical methods and different estimates using different types of the
averages introduced above. We do not necessarily promote the harmonic averaging (2.5);
we only show below that it can lead, in contrast to the arithmetic average (2.4), to robust a
posteriori error estimates for the error measured in the energy norm. Finally, we denote by
{{ϕ}} the standard average operator with ωK,σ = ωL,σ = 1

2 and {{ϕ}} := ϕ|σ for σ ∈ E ext
h . We

use the same type of notation also for the meshes Dh and Sh.
We shall be working below with numerical methods whose approximate solution can be

represented by continuous piecewise affine functions on the primal simplicial mesh Th, with
value 0 on the boundary of �. We denote this space by X0

h. The basis of X0
h is spanned by

the pyramidal (“hat”) functions ψV associated with the vertices V ∈ V int
h , such that ψV (U) =

δV U , U ∈ Vh, δ being the Kronecker delta.
Let S ⊂ �. We denote by (·, ·)S the L2-scalar product on S and by ‖ · ‖S the associated

norm; when S = �, the index dropped off. We mean by |S| the Lebesgue measure of S,
by |σ | the (d − 1)-dimensional Lebesgue measure of σ ⊂ R

d−1, and in particular by |s| the



402 J Sci Comput (2011) 46: 397–438

length of a segment s. Next, H 1(S) is the Sobolev space of functions with square-integrable
weak derivatives and H 1

0 (S) is its subspace of functions with traces vanishing on ∂S. Finally,
H(div, S) is the space of functions with square-integrable weak divergences, H(div, S) =
{v ∈ L2(S);∇ · v ∈ L2(S)}, and 〈·, ·〉∂S stands for the appropriate duality pairing on ∂S.

2.2 Assumptions

We shall suppose that f (x) ∈ L2(�) and that a(x) is a piecewise constant scalar-valued
function. We in particular consider cases where a is piecewise constant on the triangulation
Th and cases where a is piecewise constant on the dual partition Dh. This assumption corre-
sponds to a situation where there exist subdomains of the domain � where a is constant and
where the meshes (Th or Dh) are conforming with respect to these subdomains. We denote
by ca,K and Ca,K for all K ∈ Th the best positive constants such that ca,K ≤ a(x) ≤ Ca,K for
all x ∈ K . Similar notation will be used also for D ∈ Dh, for TK , K ∈ Th, or for the entire
domain.

2.3 Poincaré and Friedrichs Inequalities

Let D be a polygon or a polyhedron. The Poincaré inequality states that

‖ϕ − ϕD‖2
D ≤ CP,Dh2

D‖∇ϕ‖2
D ∀ϕ ∈ H 1(D), (2.6)

where ϕD is the mean of the function ϕ over D given by ϕD := (ϕ,1)D/|D| and where the
constant CP,D can for each convex D be evaluated as 1/π2, cf. [11, 42]. To evaluate CP,D for
nonconvex elements D is more complicated but it still can be done, cf. [29, Lemma 10.2]
or [18, Sect. 2].

Let the polygon/polyhedron D be such that |∂� ∩ ∂D| �= 0. Then the Friedrichs inequal-
ity states that

‖ϕ‖2
D ≤ CF,D,∂�h2

D‖∇ϕ‖2
D ∀ϕ ∈ H 1(D) such that ϕ = 0 on ∂� ∩ ∂D. (2.7)

As long as D and ∂� are such that there exists a vector b ∈ R
d such that for almost all

x ∈ D, the first intersection of Bx and ∂D lies in ∂�, where Bx is the straight semi-line
defined by the origin x and the vector b, the constant CF,D,∂� can be taken equal to 1,
cf. [56, Remark 5.8]. To evaluate CF,D,∂� in the general case is more complicated but it still
can be done, cf. [56, Remark 5.9] or [18, Sect. 3].

2.4 Continuous Problem

We define a bilinear form B by

B(p, q) := (a∇p,∇q) p,q ∈ H 1
0 (�). (2.8)

The weak formulation of problem (1.1a)–(1.1b) is to find p ∈ H 1
0 (�) such that

B(p, q) = (f, q) ∀q ∈ H 1
0 (�). (2.9)

The energy norm of problem (1.1a)–(1.1b) is defined by

|||q|||2 := B(q, q) = ‖a 1
2 ∇q‖2, q ∈ H 1

0 (�). (2.10)
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We will present our a posteriori error estimates in this norm. Following the approaches
of Angermann [4] or Verfürth [55] and Chaillou and Suri [19, 20], we will also present a
posteriori error estimates in a dual norm. We will use the H−1 norm of the residual given by

|||q|||# := sup
ϕ∈H 1

0 (�)

B(q,ϕ)

‖∇ϕ‖ , q ∈ H 1
0 (�) (2.11)

for this purpose.

Remark 2.1 (Energy and Dual Norms) The energy norm (2.10) and the dual norm (2.11)
coincide when a = 1. They, however, differ in general. The energy norm (2.10) admits a
local decomposition and is easily computable. The dual norm (2.11) is a global norm and
its practical computation is not obvious except of particular cases. In any case, however,
it is immediate from (2.11) that there exist easily and locally computable upper and lower
bounds for ||| · |||#:

‖a 1
2 ∇q‖2

‖∇q‖ ≤ |||q|||# ≤ ‖a∇q‖ ∀q ∈ H 1
0 (�). (2.12)

3 Some H 1-Conforming Methods and Their Mutual Relations

The purpose of this section is to recall several classical numerical methods for prob-
lem (1.1a)–(1.1b) and their mutual relations. This section can be skipped and read later;
the results of Sects. 4 and 5 below are completely independent of it.

3.1 Definitions

We start by giving the definitions.

Definition 3.1 (Weighted Cell-Centered Finite Volume Method) Let Dh be the Voronoï grid
given by the vertices from Vh, cf. Eymard et al. [29] (this requires that the vertices V ∈ V ext

h

are suitably placed so that � = ⋃
D∈Dh

D). Let next N (D) denote the set of “neighbors” of
D ∈ Dh, i.e., of such E ∈ Dh that σD,E := ∂D ∩ ∂E is such that |σD,E | �= 0; in such a case,
let dD,E stand for the Euclidean distance of the associated vertices VD and VE . Let finally
the diffusion coefficient a be piecewise constant on Dh. Then the weighted cell-centered
finite volume method for problem (1.1a)–(1.1b) reads: find the values pD , D ∈ Dint

h , with
pD = 0 for all D ∈ Dext

h , such that

−
∑

E∈N (D)

{{a}}ω

|σD,E |
dD,E

(pE − pD) = (f,1)D ∀D ∈ Dint
h . (3.1)

Recall the notation ψVD
for the hat function associated with the vertex VD associated with

the dual volume D ∈ Dh. Then the solution of (3.1) can be interpreted as a function ph ∈ X0
h,

ph = ∑
D∈Dh

pDψVD
. The two basic choices for the weights in {{a}}ω are the arithmetic

averaging (2.4) and the harmonic averaging (2.5).

Definition 3.2 (Vertex-Centered Finite Volume Method) Let the dual grid Dh, as described
in Sect. 2.1, consist of polygonal/polyhedral dual volumes and let a be piecewise constant on
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Th so that a is not double-valued on F int
h , the interior sides of Dh. Then the vertex-centered

finite volume method for problem (1.1a)–(1.1b) reads: find ph ∈ X0
h such that

−〈a∇ph · nD,1〉∂D = (f,1)D ∀D ∈ Dint
h . (3.2)

Definition 3.3 (Weighted Vertex-Centered Finite Volume Method) Let the dual grid Dh, as
described in Sect. 2.1, consist of polygonal/polyhedral dual volumes. Then we can design
a weighted vertex-centered finite volume method for problem (1.1a)–(1.1b) as follows: find
ph ∈ X0

h such that

−〈{{a}}ω∇ph · nD,1〉∂D = (f,1)D ∀D ∈ Dint
h . (3.3)

Remark 3.4 (Arithmetic/Harmonic Averaging in the Vertex-Centered Finite Volume Method)
We first remark that when a is piecewise constant on Th, the above Definition 3.3 coincides
with the standard Definition 3.2, which is known to lead to arithmetic-like averaging of a.
When, however, a is piecewise constant on Dh, then as in the cell-centered finite volume
case of Definition 3.1, the two basic choices for the weights {{a}}ω in (3.3) are (2.4) and (2.5),
leading respectively to arithmetic and harmonic averaging of a.

Definition 3.5 (Finite Element Method) The finite element method for problem (1.1a)–
(1.1b) reads: find ph ∈ X0

h such that

(a∇ph,∇ψV )TV
= (f,ψV )TV

∀V ∈ V int
h . (3.4)

Recall that in the above definition, ψV is the hat function associated with the vertex V

and TV is the set of elements of the mesh Th which share the vertex V .

Definition 3.6 (Finite Element Method with Harmonic Averaging) Let the dual grid Dh, as
described in Sect. 2.1, consist of polygonal/polyhedral dual volumes and let a be piecewise
constant on Dh. Let us define ã by

ã|K =
(

(a−1,1)K

|K|
)−1

∀K ∈ Th. (3.5)

Then we can define a finite element method with harmonic averaging for problem (1.1a)–
(1.1b) as: find ph ∈ X0

h such that

(ã∇ph,∇ψV )TV
= (f,ψV )TV

∀V ∈ V int
h . (3.6)

Remark 3.7 (Arithmetic/Harmonic Averaging in the Finite Element Method) We remark
that the difference between the matrices of (3.4) and (3.6) corresponds to the difference be-
tween the matrices of the piecewise affine nonconforming finite element method and that of
the hybridization of the lowest-order Raviart–Thomas–Nédélec mixed finite element method
in that the first ones use the arithmetic and the second ones use the harmonic averaging of the
diffusion coefficient a, cf. [6] or [30, Lemma 8.1]. In particular, by Definitions 3.5 and 3.6,
one has in the finite element method the choice between the arithmetic and the harmonic
averaging as in the finite volume ones.
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3.2 Equivalences

We are now ready to recall several equivalence results between the above methods.

Lemma 3.8 (Equivalence between Matrices of Finite Elements and Vertex-Centered Finite
Volumes) Let D ∈ Dh, as described in Sect. 2.1, have Lipschitz-continuous boundaries and
let |σ ∩ D| = |σ |/d for each side σ ∈ E int

h with the vertex VD ∈ V int
h and the associated

dual volume D ∈ Dint
h . Let, moreover, the diffusion coefficient a be piecewise constant on Th.

Then, for all ph ∈ X0
h,

(a∇ph,∇ψVD
)TVD

= −〈a∇ph · nD,1〉∂D ∀D ∈ Dint
h . (3.7)

Proof Employing the Green theorem and the finite elements basis functions form, see [9,
Lemma 3] for d = 2. �

Lemma 3.9 (Equivalence between Matrices of Finite Elements and Cell-Centered Finite
Volumes) Let d = 2, let Th be Delaunay, that is let the circumcircle of each triangle does not
contain any vertex in its interior, and let, moreover, no circumcenters of boundary triangles
lie outside the domain �. Let Dh be the Voronoï grid given by the vertices from Vh and let
a = 1. Then, for all ph ∈ X0

h,

(∇ph,∇ψVD
)TVD

= −
∑

E∈N (D)

|σD,E |
dD,E

(pE − pD) ∀D ∈ Dint
h .

Proof See [29, Sect. III.12]. �

Remark 3.10 (Relation between Finite Elements and Cell-Centered Finite Volumes if d = 3)
We remark that the above lemma does not generalize to three space dimensions, see, e.g.,
Letniowski [38] or Putti and Cordes [45].

Lemma 3.11 (Equivalence between Right-Hand Sides of Finite Elements and Finite Vol-
umes) Let Dh be as described in Sect. 2.1 and let |D ∩ K| = |K|/(d + 1) for each dual
volume D ∈ Dint

h and each element K ∈ TVD
. Let, moreover, f be piecewise constant on Th.

Then

(f,ψVD
)TVD

= (f,1)D ∀D ∈ Dint
h . (3.8)

Proof Straightforward using the condition |D∩K| = |K|/(d +1) for D ∈ Dint
h and K ∈ TVD

and a quadrature formula for affine functions on simplices. �

3.3 Consequences

The following corollaries are obvious consequences of the previous lemmas.

Corollary 3.12 (Equivalence between Finite Elements and Vertex-Centered Finite Volumes)
Let the assumptions of Lemmas 3.8 and 3.11 be verified. Then the finite element method given
by Definition 3.5 and the vertex-centered finite volume methods given by Definitions 3.2
and 3.3 produce the same discrete problems/linear systems.
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Corollary 3.13 (Local Conservativity of the Finite Element Method on Dual Grids) Let the
assumptions of Lemmas 3.8 and 3.11 be verified. Then the finite element method given by
Definition 3.5 is locally conservative over the dual grid Dint

h .

Corollary 3.14 (Equivalence between Weighted Cell- and Vertex-Centered Finite Volumes)
Let d = 2, let Th be Delaunay, let no circumcenters of boundary triangles lie outside the
domain �, and let Dh be the Voronoï grid given by the vertices from Vh. Let next a be
piecewise constant on Dh. Then the weighted cell-centered finite volume method given by
Definition 3.1 and the weighted vertex-centered finite volume method given by Definition 3.3
produce the same discrete problems/linear systems.

3.4 Remarks

We finish this section by some additional remarks.

Remark 3.15 (Local Conservativity of the Finite Element Method) Corollary 3.13 should
be understood in the following sense: First of all, (3.2) states that the sum of fluxes enter-
ing/leaving the given dual volume D ∈ Dint

h equals the sources on this element. Secondly,
rewriting −〈a∇ph · nD,1〉∂D as −∑

E∈N (D)〈a∇ph · nD,1〉σD,E
and noticing that the quan-

tity a∇ph · nD is single-valued on the side σD,E under the given assumptions, local mass
balance, in the sense that the mass leaving from one element (D) enters its neighbor (E), is
likewise satisfied. Consequently, the finite element method is well locally mass conservative
on the dual mesh Dint

h , even if it is not locally mass conservative on the primal simplicial
mesh Th. Remark finally that the above assertions are only valid exactly if a and f are piece-
wise constant on Th. For general coefficients a and f , the local mass conservativity on Dint

h

only holds up to a numerical quadrature/data oscillation.

Remark 3.16 (Choice of the Dual Grids) In the above developments, a large freedom is
left in what concerns the actual choice of the dual grids Dh. The basic and most frequently
used grid satisfying both the assumptions of Lemmas 3.8 and 3.11 is given by straight lines
connecting the triangle barycentres through the midpoints of the edges of Th if d = 2, see
Fig. 1, and similarly if d = 3.

Remark 3.17 (Finite Difference Method) Let Dh consist of squares if d = 2 and cubes if
d = 3. Then the finite difference method for problem (1.1a)–(1.1b) coincides with cell-
centered finite volume one given by Definition 3.1, cf. Eymard et al. [29].

Remark 3.18 (Tensor-Valued Diffusion Coefficients) In problem (1.1a)–(1.1b), we could
also consider a tensor-valued diffusion coefficient A in place of the scalar-valued diffusion
coefficient a. Definitions 3.5 and 3.6 would in this case contain A in place of a and similarly
for Definitions 3.2 and 3.3. Then, for A piecewise constant on Th, Lemma 3.8 still holds true
and similarly for Corollaries 3.12 and 3.13.

4 Guaranteed a posteriori Error Estimates

We present our main upper bound results in this section. We first give an abstract framework
related to the Prager–Synge theorem, then state and prove our a posteriori error estimates,
discuss several different ways of construction of an equilibrated flux, and finally give a series
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of remarks. Note that the results of this section are presented generally, without a notion of
any numerical scheme. For our a posteriori error estimates of Theorem 4.5 or Corollary 4.6,
we only need Assumption 4.4. The different constructions of the equilibrated flux th are then
presented under Assumption 4.9 solely.

4.1 A Simple Abstract Framework and Its Relation to the Prager–Synge Theorem

We present here a simple abstract a posteriori error estimate for problem (1.1a)–(1.1b). The
basic ideas can be traced back to the Prager–Synge equality [44], the hypercircle method, cf.
Synge [51], Ladevèze [36], Haslinger and Hlaváček [33], Vacek [52], Hlaváček et al. [34],
or Repin [46].

Theorem 4.1 (Abstract Energy Norm a posteriori Error Estimate) Let p be the weak solu-
tion of problem (1.1a)–(1.1b) and let ph ∈ H 1

0 (�) be arbitrary. Then

|||p − ph||| = inf
t∈H(div,�)

sup
ϕ∈H 1

0 (�),|||ϕ|||=1

{|(f − ∇ · t, ϕ)| + |(a∇ph + t,∇ϕ)|}. (4.1)

Proof We first notice that

|||p − ph||| = B
(

p − ph,
p − ph

|||p − ph|||
)

by (2.10). Clearly, as ϕ := (p − ph)/|||p − ph||| ∈ H 1
0 (�), we immediately have B(p,ϕ) =

(f,ϕ) by (2.9). Using this we obtain, for an arbitrary t ∈ H(div,�) and employing (2.8) and
the Green theorem,

B(p − ph,ϕ) = (f,ϕ) − (a∇ph,∇ϕ) = (f,ϕ) − (a∇ph + t,∇ϕ) + (t,∇ϕ)

≤ |(f − ∇ · t, ϕ)| + |(a∇ph + t,∇ϕ)|.
From here, it is enough to note that |||ϕ||| = 1 and that t ∈ H(div,�) was chosen arbitrary to
conclude that the right-hand side term of (4.1) is an upper bound on the left-hand side one.
For the converse estimate, it suffices to set t = −a∇p and to use (2.9), the Cauchy–Schwarz
inequality, and the fact that |||ϕ||| = 1. �

Similar arguments lead to the following corollary:

Corollary 4.2 (Abstract Dual Norm a posteriori Error Estimate) Let the assumptions of
Theorem 4.1 be verified. Then

|||p − ph|||# = inf
t∈H(div,�)

sup
ϕ∈H 1

0 (�),‖∇ϕ‖=1

{|(f − ∇ · t, ϕ)| + |(a∇ph + t,∇ϕ)|}.

Remark 4.3 (Relation to the Prager–Synge Equality) The Prager–Synge equality [44] states,
with the assumptions of Theorem 4.1, that

|||p − ph|||2 + ‖a 1
2 ∇p + a− 1

2 t‖2 = ‖a 1
2 ∇ph + a− 1

2 t‖2

for any t ∈ H(div,�) such that ∇ · t = f . This result leads to

|||p − ph||| ≤ inf
t∈H(div,�);∇·t=f

‖a 1
2 ∇ph + a− 1

2 t‖,
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which is similar to (4.1). The important difference, however, is that the minimization set is
here constrained to such t ∈ H(div,�) that satisfy ∇ · t = f , which is a rather restrictive
condition, whereas in (4.1), the minimization set is unconstrained.

4.2 A posteriori Error Estimate

Starting from Theorem 4.1, we now give a fully computable a posteriori error estimate.
Essential is Assumption 4.4 below which enables to easily estimate the first term on the
right-hand side of (4.1), related to a negative norm. Remark that this assumption is very
general and does not need neither the definition of a particular numerical method, nor any
specific form of the equilibrated flux th. Examples of the construction of convenient fluxes
th are given in Sect. 4.3 below.

In order to present the result of this section as generally as possible, let us suppose that
the domain � is partitioned by a mesh D∗

h, consisting in general of elements in the interior
of the domain, Dint,∗

h , and of elements near the boundary, Dext,∗
h (|∂� ∩ ∂D| �= 0 for all

D ∈ Dext,∗
h ). The meshes D∗

h will differ in different types of construction of the equilibrated
flux th. Three main possibilities exist. Either D∗

h is given by the dual mesh Dh of Sect. 2.1,
i.e., Dint,∗

h = Dint
h and Dext,∗

h = Dext
h ; or Dint,∗

h = Sh and Dext,∗
h = ∅, where Sh is given in

Sect. 2.1; or Dint,∗
h = Th and Dext,∗

h = ∅.
Let us now make the essential assumption:

Assumption 4.4 (Equilibrated Flux) Suppose that there is a flux th ∈ H(div,�), arbitrary
but such that

(∇ · th,1)D = (f,1)D ∀D ∈ Dint,∗
h .

With these notations and assumptions, we can now state our main results:

Theorem 4.5 (A guaranteed Energy Norm a posteriori Error Estimate) Let p be the weak
solution of problem (1.1a)–(1.1b) and let ph ∈ H 1

0 (�) be arbitrary. Let Assumption 4.4 hold.
Then

|||p − ph||| ≤
{

∑

D∈D∗
h

(ηR,D + ηDF,D)2

} 1
2

,

where the diffusive flux estimator ηDF,D is given by

ηDF,D := ‖a 1
2 ∇ph + a− 1

2 th‖D, D ∈ D∗
h, (4.2)

and the residual estimator ηR,D is given by

ηR,D := mD,a‖f − ∇ · th‖D, D ∈ D∗
h, (4.3)

where

m2
D,a := CP,D

h2
D

ca,D

, D ∈ Dint,∗
h , m2

D,a := CF,D,∂�

h2
D

ca,D

, D ∈ Dext,∗
h , (4.4)

with CP,D the constant from the Poincaré inequality (2.6) and CF,D,∂� the constant from the
Friedrichs inequality (2.7).
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Proof Set t = th in Theorem 4.1. Note that, for each D ∈ Dint,∗
h ,

|(f − ∇ · th, ϕ)D| = |(f − ∇ · th, ϕ − ϕD)D| ≤ ηR,D|||ϕ|||D,

using Assumption 4.4, the Poincaré inequality (2.6), the Cauchy–Schwarz inequality, and
the definition (2.10) of the energy norm. We cannot use a similar approach also for
D ∈ Dext,∗

h since there is no local conservativity assumed on these volumes (recall that As-
sumption 4.4 is only supposed to hold for D ∈ Dint,∗

h ). On the other hand, however, ϕ = 0 on
∂D ∩ ∂�, whence

|(f − ∇ · th, ϕ)D| ≤ ηR,D|||ϕ|||D
for each D ∈ Dext,∗

h , using the Friedrichs inequality (2.7), the Cauchy–Schwarz inequality,
and the definition (2.10) of the energy norm. Finally, |(a∇ph + th,∇ϕ)D| ≤ ηDF,D|||ϕ|||D is
immediate using the fact that a is positive and scalar and the Cauchy–Schwarz inequality.
Hence it now suffices to use the Cauchy–Schwarz inequality and to notice that |||ϕ||| = 1 in
order to conclude the proof. �

The proof of the following corollary is completely similar:

Corollary 4.6 (A Guaranteed Dual Norm a posteriori Error Estimate) Let the assumptions
of Theorem 4.5 be verified. Then

|||p − ph|||# ≤
{

∑

D∈D∗
h

(ηR,D + ηDF,D)2

} 1
2

,

with the diffusive flux estimator ηDF,D given by

ηDF,D := ‖a∇ph + th‖D, D ∈ D∗
h, (4.5)

and the residual estimator ηR,D given by

ηR,D := mD‖f − ∇ · th‖D, D ∈ D∗
h, (4.6)

where

m2
D := CP,Dh2

D, D ∈ Dint,∗
h , m2

D := CF,D,∂�h2
D, D ∈ Dext,∗

h . (4.7)

Remark 4.7 (Assumptions of Theorem 4.5 and of Corollary 4.6) Note that for Theorem 4.5
and Corollary 4.6, no additional assumptions like a polynomial form of the data a or f , a
polynomial form of the approximate solution ph, or a shape regularity of the mesh D∗

h are
needed.

Remark 4.8 (Comparison of the estimators of Theorem 4.5 and of Corollary 4.6) The esti-
mators of Theorem 4.5 and of Corollary 4.6 coincide when a = 1. We find the estimators
of Corollary 4.6 more physical as they measure the misfit between the true fluxes a∇ph

and th and not their energy counterparts a
1
2 ∇ph and a− 1

2 th in the diffusive flux estimators
ηDF,D . The estimators of Corollary 4.6 also do not involve the constant ca,D in the residual
estimators ηR,D .
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In order to use Theorem 4.5 and Corollary 4.6 in practice, we need to construct a (finite-
dimensional) equilibrated flux th satisfying Assumption 4.4. We will look for a suitable th in
the lowest-order Raviart–Thomas–Nédélec space RTN(Sh) defined over the fine simplicial
mesh Sh of Sect. 2.1. The space RTN(Sh) is a finite-dimensional subspace of H(div,�). It
is a space of vector functions having on each K ∈ Sh the form (aK + dKx, bK + dKy)t if
d = 2 and (aK +dKx, bK +dKy, cK +dKz)t if d = 3. Note that the requirement RTN(Sh) ⊂
H(div,�) imposes the continuity of the normal trace across all interior sides σ of Sh, σ ∈
G int

h , and recall that vh · nσ is a constant for all σ ∈ Gh for any function vh ∈ RTN(Sh).
The side fluxes 〈vh · nσ ,1〉σ also represent the degrees of freedom of RTN(Sh). For more
details, we refer to [16, 49]. Raviart–Thomas–Nédélec spaces have been used previously in
a posteriori error estimation in a similar concept in [15, 24, 35, 39, 46].

4.3 Constructions of the Equilibrated flux th

We show here four different ways of constructing an equilibrated flux th satisfying As-
sumption 4.4. Let Dh be as defined in Sect. 2.1. In order to make the presentation general,
independent of a particular numerical method, we will henceforth assume:

Assumption 4.9 (General Local Conservativity of the Numerical Scheme) Assume that
ph ∈ X0

h and that, for Dh defined in Sect. 2.1, there holds

−〈{{a∇ph · nD}}ω,1〉∂D = (f,1)D, ∀D ∈ Dint
h .

4.3.1 Construction of th by Direct Prescription

We define th ∈ RTN(Sh) by

th · nσ := −{{a∇ph · nσ }}ω ∀σ ∈ Gh, (4.8)

where the weights ω are the same as those in Assumption 4.9. Thus a simple (weighted)
average of the normal components of the approximate flux −a∇ph over the sides of fine
simplicial mesh Sh is used to define the equilibrated flux th. Note that by this construc-
tion, 〈th · nD,1〉∂D = (f,1)D for all D ∈ Dint

h is immediate from Assumption 4.9, whence
the validity of Assumption 4.4 follows by the Green theorem; we take here D∗

h = Dh, i.e.,
Dint,∗

h = Dint
h and Dext,∗

h = Dext
h .

This construction, however, may suffer from two inconveniences. Firstly, whenever
D ∈ Dint

h is nonconvex, the Poincaré constant CP,D from (2.6) is no longer equal to 1/π2

and its evaluation is much more difficult leading to less sharp estimates. The second in-
convenience was pointed out in [21]: Assumption 4.4 in this case only holds on the dual
volumes D ∈ Dint

h , i.e., on patches SD of simplices K ∈ Sh, and not on each K ∈ Sh. Con-
sequently, the residual estimators ηR,D are not higher-order terms as in [27, 57] and may
dominate the diffusive flux ones ηDF,D . As a consequence, in multiple space dimensions,
the effectivity index does not approach the optimal value of one (cf. the numerical exper-
iments of Sect. 7.2.1 below). This conclusion does not hold true in one space dimension,
see Sect. 7.1.1 below. The approaches of the three following sections improve on these two
points (we present them in the energy norm setting, similar results in the dual norm setting
are rather straightforward).
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4.3.2 Construction of th by Local Minimization Involving Local Linear Systems Solution

The equilibrated flux th of this section should be used in Theorem 4.5 or Corollary 4.6 with
D∗

h = Dh.
In [21], th · nσ is given by (4.8) only on such sides σ ∈ G int

h which are at the boundary
of some dual volume D ∈ Dh. By the Green theorem, this is sufficient for Assumption 4.4
to hold, with Dint,∗

h = Dint
h . The remaining sides of the mesh Sh lie in the interior of some

dual volume D ∈ Dh (or at the boundary of �), so that th · nσ can be chosen locally and
independently by local minimization of η2

R,D + η2
DF,D for each D ∈ Dh, in function of these

remaining degrees of freedom. This leads to a solution of a small linear system for each
D ∈ Dh and helps the improve the effectivity index to a value close to one.

4.3.3 Construction of th by Local Minimization without Local Linear Systems Solution

We suggest here an improvement of the previous approach which avoids the solution of any
local linear system. In this section as well, we set D∗

h = Dh.
The first step is to construct t1,h ∈ RTN(Sh) given by (4.8). Let next a dual volume

D ∈ Dh be fixed and let t1,D be given by t1,h|D . In the second step, we then construct t2,D ∈
RTN(SD) given by (4.8) only for such sides σ ∈ G int

h that are contained in ∂D. We require
that t2,D was such that (∇ · t2,D,1)K = (f,1)K for all K ∈ SD , i.e., such that the local mass
conservation is satisfied for every element K of the fine simplicial submesh SD of the dual
volume D and not only for the dual volume D. Let D ∈ Dint

h . The crucial point is that it
follows from the fact that we have the local conservation on D ∈ Dint

h , (∇ · t2,D,1)D = 〈t2,D ·
nD,1〉∂D = (f,1)D , this can be done without any (local) linear system solution by choosing
the flux over one interior side by, e.g., (4.8), and a sequential construction (the mass balance
on the last element K ∈ SD that we come to will be satisfied as

∑
K∈SD

(f,1)K = (f,1)D).
If D ∈ Dext

h , this argument is replaced by the fact that we are free to choose the fluxes over
the boundary sides.

For every D ∈ Dh, we now have two equilibrated fluxes t1,D and t2,D . Any tD := αt1,D +
(1 − α)t2,D , with a real parameter α, obviously obeys Assumption 4.4 with D∗

h = Dh and
we can minimize ηD := ηR,D + ηDF,D as a function of the parameter α. It turns out that it is
much easier to minimize η2

R,D + η2
DF,D , as this is a quadratic function of α, and the optimal

value is easily found to be given by the equation

α
(‖a− 1

2 (t1,D − t2,D)‖2
D + m2

D,a‖∇ · (t1,D − t2,D)‖2
D

)

= −(a
1
2 ∇ph + a− 1

2 t2,D, a− 1
2 (t1,D − t2,D))D

+ m2
D,a(f − ∇ · t2,D,∇ · (t1,D − t2,D))D.

Remark, however, that this value does not necessarily minimize ηD but η2
R,D + η2

DF,D . For
this reason, we finally propose as an estimator improving on those from the two previous
sections

ηD := min{ηD(t1,D), ηD(t2,D), ηD(αt1,D + (1 − α)t2,D)}. (4.9)

Such an estimator will be locally efficient (and robust) whenever it is the case for ηD(t1,D),
which we recall only relies on the construction (4.8). The numerical experiments for this
estimator are presented in Sect. 7.1.2.

The above recipe necessitates the construction of the two equilibrated fluxes t1,D and t2,D

and the calculation of the parameter α. In practice, it is often enough to construct t2,D only
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and to take th|D = t2,D , i.e., ηD = ηD(t2,D) instead of evaluating the minimum in (4.9). This
simplifies considerably the implementation and leads to computationally indistinguishable
results.

4.3.4 Construction of th by Mixed Finite Element Approximations of Local
Neumann/Dirichlet Problems

We adapt here to the present setting the approach of [28]. In context of a posteriori error
estimation, solution of local Neumann problems can be traced back at least to [10].

For a given dual volume D ∈ Dh, let

RTNN(SD) := {vh ∈ RTN(SD);vh · nσ = −{{a∇ph · nσ }}ω ∀σ ∈ G int
h ∩ ∂D}.

This is a space of Raviart–Thomas–Nédélec vector functions over the simplicial submesh
SD of the dual volume D which are such that their normal components over that part of the
boundary of D which is inside � is given by the piecewise constant function −{{a∇ph ·nσ }}ω.
Note that it follows for any function in this space, by Assumption 4.9 and by the Green
theorem, that Assumption (4.4) holds with Dint,∗

h = Dint
h . As we will see below, one of the

properties of the approach of this section is that we will eventually come to such th that
Assumption (4.4) will hold more specifically with Dint,∗

h = Sh and Dext,∗
h = ∅.

Let fh be given by (f,1)K/|K| for all K ∈ Sh. We then define th ∈ RTN(Sh) by solving
on each D ∈ Dh the following minimization problem:

th|D := arg inf
vh∈RTNN(SD),∇·vh=fh

‖a 1
2 ∇ph + a− 1

2 vh‖D. (4.10)

Note that (a) we impose by a constraint that the residual estimators (4.3) will be very small,
as f − ∇ · th = f − fh; they will eventually disappear when f = fh; (b) the equilibrated
flux th that we find by (4.10) minimizes the diffusive flux estimator (4.2).

Define RTNN,0(SD) as RTNN(SD) but with the normal flux condition vh · nσ = 0 for all
the functions vh from this space. Let P

∗
0(SD) be spanned by piecewise constants on SD with

zero mean on D when D ∈ Dint
h ; when D ∈ Dext

h , the mean value condition is not imposed.
Then it is easy to show that (4.10) is equivalent to finding th ∈ RTNN(SD) and qh ∈ P

∗
0(SD)

such that

(a−1th + ∇ph,vh)D − (qh,∇ · vh)D = 0 ∀vh ∈ RTNN,0(SD), (4.11a)

(∇ · th,φh)D = (f,φh)D ∀φh ∈ P
∗
0(SD). (4.11b)

Note that (4.11a)–(4.11b) is the lowest-order Raviart–Thomas–Nédélec mixed finite ele-
ment approximation of a local Neumann problem on the interior dual volumes D ∈ Dint

h ; the
Neumann boundary condition is given by −{{a∇ph · nσ }}ω. On the boundary dual volumes
D ∈ Dext

h , (4.11a)–(4.11b) is the lowest-order Raviart–Thomas–Nédélec mixed finite ele-
ment approximation of a local problem where the same Neumann boundary condition is im-
posed on that part of the boundary of D which lies inside � and the homogeneous Dirichlet
boundary condition is imposed on the remaining part of the boundary of D. Note in partic-
ular that the function −{{a∇ph · nσ }}ω on the boundary of each D ∈ Dint

h by Assumption 4.9
satisfies the Neumann compatibility condition, whence the existence and uniqueness of a
solution of (4.11a)–(4.11b) follow. Theorem 4.5 and Corollary 4.6 can be used here with
Dint,∗

h = Sh and Dext,∗
h = ∅. A solution of the local linear system (4.11a)–(4.11b) on each
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D ∈ Dh is necessary in this approach but the numerical results of Sects. 7.2.2–7.2.3 below
reveal excellent.

The above presentation is done in the energy norm (2.10) setting. For the dual
norm (2.11), we merely need to replace (a−1th +∇ph,vh)D by (th +a∇ph,vh)D in (4.11a).

4.4 Remarks and Generalizations

Remark 4.10 (Comparison with Standard Residual Estimators) The estimates of Theo-
rem 4.5 or Corollary 4.6 have three basic advantages in comparison with standard residual
estimators, cf. Verfürth [54]. First of all, they feature no undetermined constant and deliver
a guaranteed upper bound. Next, the classical residual estimator hK‖f + ∇ · (a∇ph)‖K =
hK‖f ‖K is replaced by its improved version (4.3). Lastly, as it will be seen in Sect. 5 be-
low, our estimates represent local lower bounds for the classical residual estimators. The
improved behavior of our estimators over the classical one for the finite element method is
numerically studied in [21].

Remark 4.11 (Comparison with the Equilibrated Residual Method) In the equilibrated resid-
ual method, cf. [3], one searches equilibrated side fluxes expressing local conservativity over
each K ∈ Th, by means of solution of local linear systems. Contrarily to this approach, our
estimators are based on the immediately available conservativity of the finite element (and
other) method(s) over the dual grids Dh (see Remark 3.15). On the other hand, we sug-
gest herein the present approach only for lowest-order finite elements, whereas the approach
of [3] works for any order. For the extension of the present approach to any order schemes
(in the Stokes setting), we refer to [32]. Remark that a guaranteed and locally computable
upper bound can also be obtained in the equilibrated residual method if the data oscillation
term is separated as in [2].

Remark 4.12 (Comparison with the Zienkiewicz–Zhu Averaging) Similarly as in the
Zienkiewicz–Zhu [62] estimator, we look here for a smoothened (averaged) flux th and
introduce the diffusive flux estimator ηR,D of the form (4.2) or (4.5). We, however, only
impose th ∈ H(div,�), i.e., only the normal component continuity and not the continuity of
the whole vector field th. Also, our residual estimators ηR,D , not present in the Zienkiewicz–
Zhu setting, can become crucial on rough meshes or in the presence of the (discontinuous)
material coefficient a (recall that contrarily to the Zienkiewicz–Zhu setting, our estimates
are guaranteed). We refer to other remarks to [31].

Remark 4.13 (Comparison with Functional a posteriori Estimates) Repin [46] or Koro-
tov [35] use instead of Theorem 4.5 the estimate

|||p − ph||| ≤ C
1/2
F,�h�

c
1/2
a,�

‖f − ∇ · th‖ + ‖a 1
2 ∇ph + a− 1

2 th‖, (4.12)

which follows readily from Theorem 4.1 using the Cauchy–Schwarz inequality, the
Friedrichs inequality, and the definition of the energy norm. Here p is the weak solution
given by (2.9), ph ∈ H 1

0 (�) and th ∈ H(div,�) are arbitrary, CF,� is the constant from the
Friedrichs inequality (2.7) with D = �, and h� is the diameter of �. The advantage of
such an approach is that no particular construction of th ∈ H(div,�) has to be done and the
estimate is fully scheme-independent. However, as no information from the computation is
used, the first term on the right-hand side of (4.12) is in general too large by the presence



414 J Sci Comput (2011) 46: 397–438

of h� instead of hD which we find in Theorem 4.5. Additionally, the term 1/c
1/2
a,� is also

unfavorable in comparison with 1/c
1/2
a,D found in our estimates. Thus, a rather expensive

global minimization is usually employed in the type of estimates of [46] or [35]. We present
in Sects. 7.1.1 and 7.2.1 below a comparison of the estimates of Theorem 4.5 and of the
estimate of the form (4.12), when used without any minimization.

Remark 4.14 (Comparison with the Estimator of Luce and Wohlmuth [39]) Our estimators
are close to those of Luce and Wohlmuth [39], in particular in that we construct the dual
mesh Dh and the second simplicial triangulation Sh and an equilibrated flux th ∈ RTN(Sh).
One particular difference is that the construction of th by (4.8) with harmonic averaging, as
shown in Sect. 5.1.1 below, leads to full robustness of our estimates with respect to discon-
tinuous coefficients in the energy norm.

Remark 4.15 (Residual Estimators and Data Oscillation) Note that whenever f ∈ H 1(K)

for all K ∈ Sh, the residual estimators ηR,D in Sect. 4.3.4 (or those of Sect. 4.3.3 with
t2,D only) represent a contribution of higher order, as ‖f − fh‖K ≤ 1/πhK‖∇f ‖K by the
Poincaré inequality (2.6) (using the convexity of simplices). Moreover, if f is piecewise
constant on Sh, they disappear completely.

5 Efficiency and Robustness of the a posteriori Error Estimates

We prove here the (local) efficiency and, under appropriate conditions, robustness of our
estimates. We first focus on the construction of the equilibrated flux by the direct prescription
of Sect. 4.3.1 and present a robustness energy norm (2.10) result in case of discontinuities
aligned with the dual meshes and use of harmonic averaging. Then robustness in the dual
norm (2.11) without any special requirement is proven. Subsequently, similar results are
given for the construction of th by the local Neumann/Dirichlet problems of Sect. 4.3.4.
Finally, some generalizations are discussed. We once again proceed as generally as possible,
without the definition of a particular numerical scheme. Note that, however, in contrast to
Sect. 4, we need more properties of the equilibrated flux th than merely Assumption 4.4 or
Assumption 4.9 to proceed. We will either assume (4.8) or (4.11a)–(4.11b).

5.1 Construction of th by the Direct Prescription of Sect. 4.3.1

We focus here on the equilibrated flux th defined in Sect. 4.3.1 by (4.8). More generally,
th can also be given by the approaches of Sect. 4.3.2 or 4.3.3, as these estimators are by
construction smaller or equal as that of Sect. 4.3.1. We first focus on the energy norm (2.10)
setting and then pass to the dual norm (2.11) setting.

5.1.1 Local Efficiency and Robustness of the Energy Norm Estimate for Harmonic
Weighting and Dual Mesh-Aligned Discontinuities

The result of this section is given in the energy norm (2.10) and only applies to the
case where a is piecewise constant on Dh and ω in Assumption 4.9 represents harmonic
weights (2.5).

Theorem 5.1 (Local Efficiency and Robustness of the Energy Norm Estimate for Harmonic
Weighting and Dual Mesh-Aligned Discontinuities) Let a be piecewise constant on Dh, let
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f be a piecewise polynomial of degree m on Sh, let p be the weak solution of problem (1.1a)–
(1.1b), and let ph ∈ X0

h satisfy Assumption 4.9 with the harmonic averaging weights (2.5).
Let Sh be shape-regular with the constant κS . Let finally th be given by (4.8), ηDF,D by (4.2),
ηR,D by (4.3), and D∗

h = Dh in Theorem 4.5. Then, for each D ∈ Dh, there holds

ηDF,D ≤ C|||p − ph|||TVD
, (5.1a)

ηR,D ≤ C̃|||p − ph|||TVD
, (5.1b)

where the constant C depends only on d , κS , and m and C̃ in addition depends on CP,D if
D ∈ Dint

h or CF,D,∂� if D ∈ Dext
h .

Recall that TVD
in (5.1a) and (5.1b) stand for all the elements of the original simpli-

cial mesh Th sharing the vertex VD associated with the dual volume D ∈ Dh. The proof of
Theorem 5.1 is decomposed into two parts. For ηDF,D , Lemma 5.2 shows that the construc-
tion (4.8) implies that the normal components of th differ from those of a∇ph by the jumps
of a∇ph · nσ . The latter are a part of residual estimators and are therefore known to be
bounded by the error. The second estimator, ηR,D , is then efficient due to a complementarity
argument as shown in Lemma 5.3.

Lemma 5.2 (Local Efficiency of the Diffusive Flux Estimator) Let the assumptions of The-
orem 5.1 be verified. Then (5.1a) holds true.

Proof The proof follows the techniques of [54] and [27]. Recall first the standard estimate

‖vh‖2
K ≤ ChK

∑

σ∈EK

‖vh · nσ ‖2
σ (5.2)

valid for each vh ∈ RTN(K) and any simplex K . Here, and similarly in the rest of the proof,
the constant C, not necessarily the same at each occurrence, depends only on d , κS , and m.

Let now K be an arbitrary element in the simplicial mesh SD of a given D ∈ Dh and let
us set vh = a∇ph + th. Recall that we suppose that th is given by (4.8), with the harmonic
averaging weights (2.5). Let σ ∈ EK ∩ G ext

h . Then (a∇ph + th)|K · nσ = 0 by (2.2c). Let
σ ∈ EK ∩ G int

h . Then

(a∇ph + th)|K · nσ = (a∇ph · nσ )|K − {{a∇ph · nσ }}ω

= nσ · nK ωL,σ [[a∇ph · nσ ]], (5.3)

where L denotes the neighboring element to K across the side σ . Here nσ · nK = ±1 is only
used as a sign determination. Using these developments, we come to

‖a 1
2 ∇ph + a− 1

2 th‖2
K = a−1

K ‖vh‖2
K ≤ Ca−1

K hK

∑

σ∈EK∩Gint
h

‖ωL,σ [[a∇ph · nσ ]]‖2
σ . (5.4)

Let us now consider a fixed σ = σK,L ∈ EK ∩ G int
h . The estimate

h
1
2
K‖[[a∇ph · nσ ]]‖σ ≤ C

∑

M∈{K,L}
a

1
2
M |||p − ph|||M
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is standard, see [54]. Recall from [54] that the proof uses the side and element bubble func-
tions, which enable to discard the boundary terms in the application of the Green theorem,
the inverse inequality, and the equivalence of norms on finite-dimensional spaces (the as-
sumption that f is a piecewise polynomial and the fact that the side and element bubble
functions are piecewise polynomials are crucial). It then follows that

ωL,σ a
− 1

2
K h

1
2
K‖[[a∇ph · nσ ]]‖σ ≤ C

∑

M∈{K,L}
ωL,σ a

− 1
2

K a
1
2
M |||p − ph|||M.

Thanks to the definition (2.2) of ωL,σ , ωL,σ a
− 1

2
K a

1
2
M = ωL,σ ≤ 1 if M = K and by (2.5),

ωL,σ a
− 1

2
K a

1
2
M = aK(aK + aL)−1a

− 1
2

K a
1
2
L ≤ 1

2 if M = L, using the inequality 2ab ≤ a2 + b2.
Thus, using the above results,

η2
DF,D =

∑

K∈SD

‖a 1
2 ∇ph + a− 1

2 th‖2
K

≤ C
∑

K∈SD

∑

σK,L∈EK∩Gint
h

a−1
K hKω2

L,σK,L
‖[[a∇ph · nσK,L

]]‖2
σK,L

≤ C
∑

K∈SD

∑

σK,L∈EK∩Gint
h

∑

M∈{K,L}
|||p − ph|||2M ≤ C|||p − ph|||2TVD

,

which was to be proved. �

Lemma 5.3 (Local Efficiency of the Residual Estimator) Let the assumptions of Theo-
rem 5.1 be verified. Then (5.1b) holds true.

Proof Let us consider a fixed dual volume D ∈ Dh. First,

‖f − ∇ · th‖K ≤ Ca
1
2
Kh−1

K ‖a 1
2 ∇p + a− 1

2 th‖K

for each K ∈ SD , with C depending only on d , κS , and m, follows standardly by using
the element bubble function, the equivalence of norms on finite-dimensional spaces, defi-
nition (2.9) of the weak solution, the Green theorem, the Cauchy–Schwarz inequality, def-
inition (2.10) of the energy norm, and the inverse inequality, cf. [54] or [57, Lemma 7.6].
Hence

‖f − ∇ · th‖D ≤ CC
1
2
a,Dh−1

D ‖a 1
2 ∇p + a− 1

2 th‖D

holds true, using the fact that hD/minK∈SD
hK is bounded by the shape-regularity of Sh.

Thus

hDc
− 1

2
a,D‖f − ∇ · th‖D ≤ Cc

− 1
2

a,DC
1
2
a,D‖a 1

2 ∇p + a− 1
2 th‖D.

Next note that c
− 1

2
a,DC

1
2
a,D = 1 for a piecewise constant on Dh. Finally,

‖a 1
2 ∇p + a− 1

2 th‖D ≤ |||p − ph|||D + ‖a 1
2 ∇ph + a− 1

2 th‖D

using the triangle inequality, which concludes the proof by virtue of the previously proved
estimate (5.1a). �



J Sci Comput (2011) 46: 397–438 417

5.1.2 Global Efficiency and Robustness of the Dual Norm Estimate

The result of this section is given in the dual norm (2.11) and applies without any restriction
on the distribution of the discontinuities (they can be piecewise constant on Th or on Dh) or
type of averaging (both arithmetic and harmonic averaging is allowed) in Assumption 4.9.

Theorem 5.4 (Global Efficiency and Robustness of the Dual Norm a Posteriori Error Es-
timates) Let f be a piecewise polynomial of degree m on Sh, let p be the weak solution
of problem (1.1a)–(1.1b), and let ph ∈ X0

h satisfy Assumption 4.9 with any weights satis-
fying (2.2). Let Sh be shape-regular with the constant κS . Let finally th be given by (4.8),
ηDF,D by (4.5), ηR,D by (4.6), and D∗

h = Dh in Corollary 4.6. Then, there holds

{
∑

D∈Dh

(ηDF,D + ηR,D)2

} 1
2

≤ C|||p − ph|||#,

where the constant C depends only on d , κS , m, and CP,D for D ∈ Dint
h and CF,D,∂� for

D ∈ Dext
h .

Proof Throughout this proof, C denotes a generic constant with the dependencies indicated
in the announcement of the theorem, possibly different at different occurrences. Let K ∈ SD ,
D ∈ Dh be given. Adding and subtracting ∇ · (a∇ph), using the triangle inequality, the fact
that hD ≤ ChK by the shape-regularity of Sh, and the inverse inequality, we have

C
1
2

P,DhD‖f − ∇ · th‖K ≤ C
1
2

P,DhD(‖f + ∇ · (a∇ph)‖K + ‖∇ · (a∇ph + th)‖K)

≤ ChK‖f + ∇ · (a∇ph)‖K + C‖a∇ph + th‖K.

Using (5.2), (4.8), (5.3), and (2.2), we obtain

‖a∇ph + th‖2
K ≤ ChK

∑

σ∈EK∩Gint
h

‖[[a∇ph · nσ ]]‖2
σ

(note that in both cases that a is piecewise constant on Th or that a is piecewise constant on
Dh, a is piecewise constant on Sh). Combining the two above estimates,

∑

D∈Dh

(ηDF,D + ηR,D)2

≤ C

(
∑

K∈Sh

h2
K‖f + ∇ · (a∇ph)‖2

K +
∑

σ∈Gint
h

hσ ‖[[a∇ph · nσ ]]‖2
σ

)

.

Note that this means that the present estimates represent a lower bound for the standard
residual ones (cf. [54]). The rest of the proof is based on the tools from [55].

We next prove that

{
∑

K∈Sh

h2
K‖f + ∇ · (a∇ph)‖2

K

} 1
2

≤ C|||p − ph|||#. (5.5)
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Let K ∈ Sh. Denote by ψK the element bubble function (cf. [54]). Recall that this function
is given as the product of the d + 1 affine functions which take the value 1 in one vertex and
value 0 in the other vertices of the element K , scaled in such a way that ‖ψK‖∞,K = 1. Set
vK := (f + ∇ · (a∇ph))|K . By the equivalence of norms on finite-dimensional spaces, the
above definition of the bubble function, and definition (2.9) of the weak solution, we have,
see [54],

‖vK‖2
K ≤ C(a∇(p − ph),∇(ψKvK))K.

Next, by the inverse inequality and the fact that ‖ψK‖∞,K = 1,

h2
K‖∇(ψKvK)‖K ≤ ChK‖vK‖K.

Set λ|K = h2
KψKvK and note that λ ∈ H 1

0 (�). Using the two above inequalities,

∑

K∈Sh

h2
K‖vK‖2

K ≤ C
∑

K∈Sh

h2
K(a∇(p − ph),∇(ψKvK))K

= C
B(p − ph,λ)

‖∇λ‖ ‖∇λ‖

≤ C|||p − ph|||#
{

∑

K∈Sh

h4
K‖∇(ψKvK)‖2

K

} 1
2

≤ C|||p − ph|||#
{

∑

K∈Sh

h2
K‖vK‖2

K

} 1
2

employing also the definition (2.11) of the dual norm and the Cauchy–Schwarz inequality.
Thus (5.5) is proved.

The final point of the proof is to show that

{
∑

σ∈Gint
h

hσ ‖[[a∇ph · nσ ]]‖2
σ

} 1
2

≤ C|||p − ph|||#. (5.6)

For σ ∈ G int
h , set v|σ := [[a∇ph · nσ ]]; we keep the same notation for the lifting of v|σ to

the two simplices K and L sharing the side σ . Let ψσ be the side bubble function (cf. once
again [54]). Then there holds

‖vσ ‖2
σ ≤ C〈vσ ,ψσ vσ 〉σ ,

‖ψσ vσ ‖K ≤ Ch
1
2
σ ‖vσ ‖σ .

Set λ := ∑
σ∈Gint

h
hσ ψσ vσ . Note that λ ∈ H 1

0 (�), as only the interior sides appear in the sum.
Finally, note that by the second of the above inequalities,

‖λ‖K ≤
∑

σ∈EK∩Gint
h

hσ ‖ψσ vσ ‖K ≤ C
∑

σ∈EK∩Gint
h

h
3
2
σ ‖vσ ‖σ .
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Using the above inequalities and the Green theorem,
∑

σ∈Gint
h

hσ ‖vσ ‖2
σ

≤ C
∑

σ∈Gint
h

〈[[a∇ph · nσ ]], λ〉σ

= C
∑

K∈Sh

{(f + ∇ · (a∇ph),λ)K − (a∇(p − ph),∇λ)K}

≤ C|||p − ph|||#‖∇λ‖

+ C

{
∑

K∈Sh

h2
K‖f + ∇ · (a∇ph)‖2

K

} 1
2
{

∑

K∈Sh

h−2
K ‖λ‖2

K

} 1
2

≤ C|||p − ph|||#
{

∑

K∈Sh

h−2
K ‖λ‖2

K

} 1
2

≤ C|||p − ph|||#
{

∑

σ∈Gint
h

hσ ‖vσ ‖2
σ

} 1
2

,

where we have also employed (5.5), the inverse inequality, and the Cauchy–Schwarz in-
equality. Thus (5.6) is proved. �

5.2 Construction of th by the Local Neumann/Dirichlet Problems of Sect. 4.3.4

We focus here on the equilibrated flux th defined in Sect. 4.3.4 by (4.11a)–(4.11b). As in
the previous section, we first treat the energy norm (2.10) setting and then pass to the dual
norm (2.11) setting.

5.2.1 Local Efficiency of the Energy Norm Estimate

The following result is given in the energy norm (2.10) and applies without any restriction
on the distribution of discontinuities or type of averaging in Assumption 4.9.

Theorem 5.5 (Efficiency of the Energy Estimates by the Local Neumann/Dirichlet Prob-
lems) Let f be a piecewise polynomial of degree m on Sh, let p be the weak solution of
problem (1.1a)–(1.1b), and let ph ∈ X0

h satisfy Assumption 4.9 with any weights satisfy-
ing (2.2). Let Sh be shape-regular with the constant κS . Let finally th be given by (4.11a)–
(4.11b), ηDF,D by (4.2), ηR,D by (4.3), and Dint,∗

h = Sh and Dext,∗
h = ∅ in Theorem 4.5. Then,

for each D ∈ Dh, there holds

ηR,K = C
1
2

P,K

hK

c
1
2
a,K

‖f − fh‖K ∀K ∈ SD, (5.7)

{
∑

K∈SD

η2
DF,K

} 1
2

≤ Cc
− 1

2
a,D

({
∑

K∈SD

h2
K‖fh + ∇ · (a∇ph)‖2

K

} 1
2
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+
{

∑

K∈SD

∑

σ∈EK∩Gint
h

hσ ‖[[a∇ph · nσ ]]‖2
σ

} 1
2
)

≤ Cc
− 1

2
a,DC

1
2
a,TVD

|||p − ph|||TVD
, (5.8)

where the constant C depends only on d , κS , and m.

Proof The result (5.7) is an immediate consequence of (4.11b). It thus remains to show (5.8).
Let D ∈ Dh be fixed. We need a hybridized version of (4.11a)–(4.11b), cf. [16, 49].

Therein, equation (4.11a) is replaced by

(a−1th + ∇ph,vh)D − (qh,∇ · vh)D +
∑

K∈SD

〈vh · nK,λh〉∂K = 0

∀vh ∈ RTN∗
N,0(SD);

RTN∗
N,0(SD) is the same space as RTNN,0(SD) of Sect. 4.3.4 with, however, no normal

trace continuity constraint; λh is the Lagrange multiplier, a piecewise constant function on
the sides GD of the simplicial patch SD (we set λh = 0 on ∂�). We have introduced this
hybridized version so as to be able to set vh = th + a∇ph therein. This leads to

‖a 1
2 ∇ph + a− 1

2 th‖2
D = (qh, fh + ∇ · (a∇ph))D −

∑

σ∈Gint
D

〈[[a∇ph · nσ ]], λh〉σ

−
∑

σ∈Gext
D

∩Gint
h

〈(a∇ph · nD)|D − {{a∇ph · nD}}ω,λh〉σ , (5.9)

using that ∇ · th = fh by (4.11b), that the normal trace of th is continuous across σ ∈ G int
D ,

the interior sides of the patch SD , and the fact that th ∈ RTNN(SD), which fixes its normal
component on σ ∈ G ext

D ∩ G int
h , the boundary sides of the patch SD inside �.

We next employ the approach of [57, Sect. 4.1] (cf. also [5, 6]): there exists a postprocess-
ing q̃h ∈ M(SD) of qh such that

−a∇q̃h = th + a∇ph ∀K ∈ SD, (5.10a)

(q̃h,1)K

|K| = qh|K ∀K ∈ SD, (5.10b)

〈q̃h,1〉σ
|σ | = λh|σ ∀σ ∈ GD. (5.10c)

Here, M(SD) is a space of particular piecewise polynomials on SD of total degree ≤ 2.
Let hereafter C be a generic constant only dependent on d and κS , possibly different at
different occurrences. Let D ∈ Dint

h . Then (qh,1)D = 0, as qh ∈ P
∗
0(SD), see (4.11a)–(4.11b).

Thus, by (5.10b), (q̃h,1)D/|D| = 0, i.e., the mean value of q̃h over D is also zero. Let
D ∈ Dext

h . Then λh = 0 on ∂D ∩ ∂�. Consequently, by (5.10c), 〈q̃h,1〉σ /|σ | = 0, i.e., the
mean values of q̃h over the sides lying in ∂� are zero when D ∈ Dext

h . Thus, for both D ∈ Dint
h

and D ∈ Dext
h , we have the Poincaré/Friedrichs inequality ‖q̃h‖ ≤ ChD‖∇q̃h‖D , cf. [56].

Employing also the inverse inequality ‖q̃h‖σ ≤ Ch
− 1

2
σ ‖q̃h‖K for any K sharing a side σ ∈

GD , the Cauchy–Schwarz inequality, and the facts that hD/minK∈SD
hK and the number of
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elements K in SD are bounded by the shape-regularity of Sh, we infer from (5.9), (5.10),
(5.3), and (2.2)

‖a 1
2 ∇ph + a− 1

2 th‖2
D

= (q̃h, fh + ∇ · (a∇ph))D −
∑

σ∈Gint
D

〈[[a∇ph · nσ ]], q̃h〉σ

−
∑

σ∈Gext
D

∩Gint
h

〈(a∇ph · nD)|D − {{a∇ph · nD}}ω, q̃h〉σ ,

≤ ‖q̃h‖D‖fh + ∇ · (a∇ph)‖D

+ C

{
∑

K∈SD

∑

σ∈EK∩Gint
h

h−1
σ ‖[[a∇ph · nσ ]]‖2

σ

} 1
2

‖q̃h‖D

≤ C‖∇q̃h‖D

({
∑

K∈SD

h2
K‖fh + ∇ · (a∇ph)‖2

K

} 1
2

+
{

∑

K∈SD

∑

σ∈EK∩Gint
h

hσ ‖[[a∇ph · nσ ]]‖2
σ

} 1
2
)

.

The assertion follows from (5.10a) while scaling by c
− 1

2
a,D and dividing by ‖a 1

2 ∇ph +
a− 1

2 th‖D and using the results of the proofs of Theorems 5.1 and 5.4. �

5.2.2 Global Efficiency and Robustness of the Dual Norm Estimate

For completeness, we also include the following result, given in the dual norm (2.11). This
result applies without any restriction on the distribution of discontinuities or type of averag-
ing in Assumption 4.9. The proof is an easy consequence of the previous results.

Corollary 5.6 (Efficiency of the Dual Estimates by the Local Neumann/Dirichlet Problems)
Let f be a piecewise polynomial of degree m on Sh, let p be the weak solution of prob-
lem (1.1a)–(1.1b), and let ph ∈ X0

h satisfy Assumption 4.9 with any weights satisfying (2.2).
Let Sh be shape-regular with the constant κS . Let finally th be given by (4.11a)–(4.11b),
ηDF,D by (4.5), ηR,D by (4.6), and Dint,∗

h = Sh and Dext,∗
h = ∅ in Corollary 4.6. Then, there

holds
{

∑

D∈D∗
h

(ηDF,D + ηR,D)2

} 1
2

≤ C|||p − ph|||#,

where the constant C depends only on d , κS , and m.

5.3 Remarks and Generalizations

We conclude this section by several remarks and comments on generalizations.
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Remark 5.7 (Unconditioned Energy Norm Robustness with Respect to Discontinuous a)
When the diffusion coefficient a is piecewise constant on Dh, when the harmonic aver-
aging (2.5) has been used in Assumption 4.9, and when the flux has been reconstructed
by (4.8), Theorem 5.1 implies a full robustness of the estimators of Theorem 4.5 with respect
to the discontinuities in the diffusion coefficient a. No condition on the spatial distribution of
the discontinuities in a is necessary, whereas in the previous results [1, 12, 17, 23, 25, 43], a
“monotonicity around vertices” condition or a similar assumption on the distribution of the
diffusion coefficient was always necessary. When the diffusion coefficient a is piecewise
constant on Dh and when the harmonic averaging (2.5) has been used in Assumption 4.9,
it can similarly be shown that the final upper bound of Theorem 5.5 can be changed from

Cc
− 1

2
a,DC

1
2
a,TVD

|||p − ph|||TVD
to C|||p − ph|||TVD

. Thus the same robustness result also holds
for the construction of the equilibrated flux th by (4.11a)–(4.11b).

Remark 5.8 (Diffusion Coefficient a Piecewise Constant on Th) If a is piecewise constant
on Th (whence the choice of the weights has no influence in Assumption 4.9) but harmonic
averaging (2.5) has been used in order to define the diffusive flux th in (4.8) in the interior
sides of each D ∈ Dh, Theorem 5.1 gives

ηDF,D ≤ C|||p − ph|||D, (5.11a)

ηR,D ≤ C̃c
− 1

2
a,DC

1
2
a,D|||p − ph|||D. (5.11b)

Note in particular that one has the local efficiency directly on each dual volume D ∈ Dh

and not on the patch TVD
of the original simplicial elements sharing the vertex VD , which

is larger than D. Similarly, the final upper bound of Theorem 5.5 changes in this case from

Cc
− 1

2
a,DC

1
2
a,TVD

|||p − ph|||TVD
to c

− 1
2

a,DC
1
2
a,D|||p − ph|||D .

Remark 5.9 (Unconditioned Dual Norm Robustness) Note that Theorem 5.4 or Corol-
lary 5.6 give full robustness with respect to the discontinuities in a without any restriction on
the distribution of the discontinuities (they can be piecewise constant on Th or on Dh) or type
of averaging (both arithmetic and harmonic averaging is allowed) in Assumption 4.9. As a
matter of fact, tensor-valued A can also be considered, cf. Remark 3.18, and the estimates
are also robust with respect to the anisotropies in A. However, these results are established
in the dual norm ||| · |||# (2.11) and one only has global (and not local) efficiency.

6 Application of the Error Estimate and Efficiency Results to the Various Numerical
Methods

The a posteriori error estimates of Sect. 4 and their efficiency of Sect. 5 were presented
generally, without any notion of a particular numerical scheme. We show in this section
how the results of Sect. 4 and 5 can be applied to the different numerical methods of Sect. 3.

6.1 Finite Volume-Type Methods

The finite volume-type methods of Sect. 3 can be rewritten in the form of Assumption 4.9 as
follows: taking into account the fact that ∇ph · nD have no jump across the boundary of ∂D,
D ∈ Dint

h , the weighted vertex-centered finite volume method of Definition 3.3 writes equiv-
alently in the form of Assumption 4.9. The weights ω in Assumption 4.9 are then identical
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to those used in Definition 3.3. The weighted cell-centered finite volume method of Defini-
tion 3.1 can be written in the form of Assumption 4.9 using Corollary 3.14. Let the diffusion
coefficient a be piecewise constant on the mesh Th. Then the vertex-centered finite volume
method of Definition 3.2 immediately writes equivalently in the form of Assumption 4.9, as
in this case, both a and ∇ph · nD have no jump across the boundary of ∂D, D ∈ Dint

h (the
weights ω have no influence in this case).

6.2 The Finite Element Method

The finite element method of Definition 3.5 writes equivalently in the form of Assump-
tion 4.9 when both a and f are piecewise constant on the mesh Th, using Corollary 3.12 (in
this case once again, both a and ∇ph ·nD have no jump across the boundary of ∂D, D ∈ Dint

h ,
so the weights ω have no influence). In the case of general f , we proceed following [50].
Let fh be given by (f,1)K/|K| on all K ∈ Th. We then have:

Theorem 6.1 (Guaranteed a posteriori Error Estimate for the Finite Element Method) Let
p be the weak solution of problem (1.1a)–(1.1b), let ph be its finite element approximation
given by (3.4), let p̃ be the weak solution of problem (1.1a)–(1.1b) with f replaced by fh,
and let p̃h be its finite element approximation. Then

|||p − ph||| ≤ |||p̃ − p̃h||| + 2

{
∑

K∈Th

η2
Osc,K

} 1
2

,

where

ηOsc,K := C
1
2

P,K

hK

c
1
2
a,K

‖f − fK‖K, K ∈ Th.

Proof The triangle inequality implies

|||p − ph||| ≤ |||p − p̃||| + |||p̃ − p̃h||| + |||p̃h − ph|||.

By the same reasoning as in the proof of Theorem 4.1, using the definitions of the weak
solutions, and finally similarly as in the proof of Theorem 4.5,

|||p − p̃||| = sup
ϕ∈H 1

0 (�),|||ϕ|||=1

(a∇(p − p̃),∇ϕ) = sup
ϕ∈H 1

0 (�),|||ϕ|||=1

(f − fh,ϕ)

≤ sup
ϕ∈H 1

0 (�),|||ϕ|||=1

∑

K∈Th

(f − fK,ϕ − ϕK)K ≤
{

∑

K∈Th

η2
Osc,K

} 1
2

.

Estimating the term |||p̃h − ph||| similarly in a discrete setting concludes the proof. �

Theorem 6.1 is given in the energy norm setting; one proceeds completely similarly for
the dual norm setting.
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6.3 The Finite Element Method with Harmonic Averaging

When a is piecewise constant on Dh, the finite element method with harmonic averaging
of Definition 3.6 leads to a scheme which is very close to the harmonic-weighted vertex-
centered finite volume method of Definition 3.3. Indeed, for d = 2, as |D ∩ K| = |K|/3 for
D ∈ Dh associated with one of the vertices of K ∈ Th for the usual meshes of Sect. 2.1,
the coefficient ã|K from (3.5) is given by the harmonic averaging of the three values aD ,
aE , and aF that a takes at the three dual volumes D, E, and F associated with the three
vertices of K . Consequently, for f piecewise constant on Th, (3.6) gives (3.3) where {{a}}ω is
now the harmonic average of aD , aE , and aF . To obtain a guaranteed estimate, one defines
th ∈ RTN(Sh) by fixing th · nσ by −ã∇ph · nσ on the interior sides in ∂D, D ∈ Dh, and
by (4.8) for the other sides of Sh, while separating the oscillations in f as in Theorem 6.1.
Robustness can then be proved as in Theorem 5.1.

6.4 Summary

We summarize in Tables 1 and 2 the different theoretical results of the present paper.

Table 1 Recapitulative table of the different methods and results, energy norm estimates of Theorem 4.5

Method Def. Dif. coef. a Weights Constr. of th Dint,∗
h

Dext,∗
h

Efficiency Rob. Osc.

WCCFV/ 3.1/

WVCFV 3.3 pwc on Dh (2.5) Sec. 4.3.1–4.3.3 Dint
h

Dext
h

Thm. 5.1 Yes No

WCCFV/ 3.1/

WVCFV 3.3 pwc on Dh (2.5) Sec. 4.3.4 Sh ∅ Thm. 5.5 Yes No

VCFV 3.2 pwc on Th – Sec. 4.3.1–4.3.3 Dint
h

Dext
h

Thm. 5.1 No No

VCFV 3.2 pwc on Th – Sec. 4.3.4 Sh ∅ Thm. 5.5 No No

FE 3.5 pwc on Th – Sec. 4.3.1–4.3.3 Dint
h

Dext
h

Thm. 5.1 No Yes

FE 3.5 pwc on Th – Sec. 4.3.4 Sh ∅ Thm. 5.5 No Yes

HWFE 3.6 pwc on Dh – Sec. 4.3.1–4.3.3 Dint
h

Dext
h

Thm. 5.1 Yes Yes

HWFE 3.6 pwc on Dh – Sec. 4.3.4 Sh ∅ Thm. 5.5 Yes Yes

Table 2 Recapitulative table of the different methods and results, dual norm estimates of Corollary 4.6

Method Def. Dif. coef. a Weights Constr. of th Dint,∗
h

Dext,∗
h

Efficiency Rob. Osc.

WCCFV/ 3.1/

WVCFV 3.3 pwc on Dh any Sec. 4.3.1–4.3.3 Dint
h

Dext
h

Thm. 5.4 Yes No

WCCFV/ 3.1/

WVCFV 3.3 pwc on Dh any Sec. 4.3.4 Sh ∅ Cor. 5.6 Yes No

VCFV 3.2 pwc on Th – Sec. 4.3.1–4.3.3 Dint
h

Dext
h

Thm. 5.4 Yes No

VCFV 3.2 pwc on Th – Sec. 4.3.4 Sh ∅ Cor. 5.6 Yes No

FE 3.5 pwc on Th – Sec. 4.3.1–4.3.3 Dint
h

Dext
h

Thm. 5.4 Yes Yes

FE 3.5 pwc on Th – Sec. 4.3.4 Sh ∅ Cor. 5.6 Yes Yes

HWFE 3.6 pwc on Dh – Sec. 4.3.1–4.3.3 Dint
h

Dext
h

Thm. 5.4 Yes Yes

HWFE 3.6 pwc on Dh – Sec. 4.3.4 Sh ∅ Cor. 5.6 Yes Yes
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7 Numerical Experiments

We present in this section the results of several numerical experiments. We will consider two
different examples and present the results separately for the vertex-centered finite volume
method of Definitions 3.2 and 3.3 and for the finite element method of Definition 3.5.

Example 7.1 We consider here a one-dimensional model problem

−p′′ = π2 sin(πx) in ]0,1[,
p = 0 in 0,1.

The exact solution is smooth and given by p(x) = sin(πx).

Example 7.2 We consider here (1.1a)–(1.1b) with � = (−1,1) × (−1,1), divided into four
subdomains �i along the Cartesian axes (the subregion {x > 0, y > 0} ∩ � is denoted by
�1 and the subsequent numbering is done counterclockwise) and the diffusion coefficient
a piecewise constant and equal to ai in �i . We set f = 0. We suppose that the analytical
solution writes

p(r, θ) = rα(ai sin(αθ) + bi cos(αθ))

in each �i . Here (r, θ) are the polar coordinates in �, ai and bi are constants depending on
�i , and α is a parameter. We assume Dirichlet boundary conditions given by this solution
instead of the homogeneous ones (1.1b). This solution is continuous across the interfaces
but only the normal component of its flux u = −S∇p is continuous; it exhibits a singularity
at the origin and it only belongs to H 1+α(�). We consider two sets of the coefficients. In the
first one, a1 = a3 = 5, a2 = a4 = 1, α = 0.53544095, and in the second one, a1 = a3 = 100,
a2 = a4 = 1, α = 0.12690207. The corresponding values of ai , bi can be found in, e.g., [48,
57].

Suppose a sequence of meshes Th, given by either a uniform or an adaptive refinement.
We define the experimental order of convergence (e.o.c.) by

e.o.c. := log(eN) − log(eN−1)
1
d

log |VN−1| − 1
d

log |VN | ;

here eN is the error on the last mesh, eN−1 is the error on the last but one mesh, and |VN |
and |VN−1| denote the corresponding number of vertices; (we also recall that d stands for
the space dimension).

7.1 Vertex-Centered Finite Volume Method

We first present computational results for the vertex-centered finite volume method of Defi-
nition 3.2 and the weighted vertex-centered finite volume method of Definition 3.3.

7.1.1 Energy Norm Estimates Based on Direct Prescription and Comparison with
Functional-Type a posteriori Estimates

We consider here the vertex-centered finite volume method of Definition 3.2 for the problem
of Example 7.1.
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Fig. 2 Estimated and actual energy error (left) and the corresponding effectivity index (right), ver-
tex-centered finite volume method of Definition 3.2, Example 7.1, estimates by the direct prescription (4.8)

Fig. 3 Estimated and actual energy error (left) and the corresponding effectivity index (right), ver-
tex-centered finite volume method of Definition 3.2, Example 7.1, functional-type estimates (4.12) with the
direct prescription (4.8)

We consider a series of uniformly refined meshes and construct a one-dimensional equiv-
alent of the equilibrated field th given by (4.8). The results for the estimates of Theorem 4.5
are reported in Fig. 2. It turns out that in this one-dimensional setting, there actually holds
(∇ · th,1)K = (f,1)K for all elements K of the fine mesh Sh, in place of Assumption 4.4
(where such a mass balance is only supposed to be valid on patches SD and not on each
K ∈ Sh). Consequently, the residual estimators ηR,D (4.3) represent a contribution of higher
order and are only significant on coarsest meshes. We also observe asymptotic exactness in
the right part of Fig. 2. The e.o.c. is equal to 1.001 here.

In Fig. 3, we present the results for the same model problem and the same construc-
tion of the equilibrated flux th (4.8), but with the estimate of Theorem 4.5 replaced by the
functional-type estimate (4.12). The results of Fig. 3 should be compared to those of Fig. 2.
The residual term in (4.12) features the diameter h� of the whole domain � instead of hD ,
the diameter of the dual volume D, as discussed in Remark 4.13. Consequently, this term
is no more of the higher order O(h2) but only of order O(h). In particular, the asymptotic
exactness of the a posteriori error estimate is lost, but such an estimate is still perfectly
usable.
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7.1.2 Robust Energy Norm Estimates Based on Local Minimization for Dual Mesh-Aligned
Discontinuities and Harmonic Averaging

We consider here the weighted vertex-centered finite volume method of Definition 3.3 for
the problem of Example 7.2.

In order to get robust a posteriori error estimates in the energy norm, we know from
Theorem 5.1 that the diffusion coefficient a has to be piecewise constant on Dh. If, however,
we would first construct a simplicial mesh Th of � and then a dual grid Dh as in Sect. 2.1, it
would be very difficult to keep the dual mesh aligned with the inhomogeneities, especially
for adaptive refinement. A possible solution is to first define the dual mesh Dh and only then
the primal one Th. On the resulting couple of grids Dh, Th, we then use the weighted vertex-
centered finite volume method of Definition 3.3 with the harmonic weights (2.5). Recall that
on square grids (and their uniform refinements), this method is equivalent to the weighted
cell-centered finite volume one, cf. Corollary 3.14, as well as to the finite difference one, cf.
Remark 3.17. The advantage of the scheme (3.3) is that it can be used also when the original
square grid has been locally refined (into a nonmatching grid) as in Fig. 4. Note however that
the symmetry of this scheme is then lost. We remark that the present methodology works
also for the finite element method with harmonic averaging of Definition 3.6, which stays
symmetric.

We in Fig. 5 present the predicted and actual distribution of the error for α = 0.535
and uniform mesh refinement, using the estimators of Theorem 4.5 on the dual mesh Dh

and with th given by (4.8) (the interpolation error on nonhomogeneous Dirichlet boundary
conditions is neglected). A similar comparison, this time for adaptive mesh refinement and
α = 0.127, is shown in Fig. 6. A square cell of the original dual mesh is refined into 9
identical subsquares if the estimated energy error is greater than 50% of the maximum of
the estimators. We can see that in both cases the predicted error distribution is excellent and
that in particular, the singularity at the origin is well detected. These results clearly illustrate
the robust local lower bound of Theorem 5.1. We finally in Fig. 7 give examples of the
approximate solutions on the adaptively refined meshes in both cases; the strength of the
singularity in the second case is quite obvious.

Knowing precisely the error distribution and refining adaptively the meshes, the next step
is to check whether this leads to an increased efficiency of the calculations. This is illustrated

Fig. 4 Example of a given
nonmatching dual mesh Dh and
the corresponding primal
triangular mesh Th for the
harmonic-weighted
vertex-centered finite volume
method of Definition 3.3
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Fig. 5 Estimated (left) and actual (right) energy error distribution on a uniformly refined mesh, har-
monic-weighted vertex-centered finite volume method of Definition 3.3, Example 7.2 with α = 0.535, es-
timates by the direct prescription (4.8)

Fig. 6 Estimated (left) and actual (right) energy error distribution on an adaptively refined mesh, har-
monic-weighted vertex-centered finite volume method of Definition 3.3, Example 7.2 with α = 0.127, es-
timates by the direct prescription (4.8)

Fig. 7 Approximate solutions on adaptively refined meshes, harmonic-weighted vertex-centered finite vol-
ume method of Definition 3.3, Example 7.2 with α = 0.535 (left) and α = 0.127 (right)

in Fig. 8, from which it is evident that one can achieve a given precision with much fewer
elements using adaptive mesh refinement based on our estimator. Here, the error in the
energy norm (2.10) is approximated with a 7-point quadrature formula in each subtriangle
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Fig. 8 Estimated and actual energy errors, harmonic-weighted vertex-centered finite volume method of Defi-
nition 3.3, Example 7.2 with α = 0.535 (left) and α = 0.127 (right), estimates by the local minimization (4.9)

Fig. 9 Energy error effectivity indices, harmonic-weighted vertex-centered finite volume method of Defini-
tion 3.3, Example 7.2 with α = 0.535 (left) and α = 0.127 (right), estimates by the local minimization (4.9)

K ∈ SD . In the code TALISMAN [60], which we use for numerical computations in this
section, at most 9 levels of refinement can be used. This technical limitation is the reason
why we in the adaptive case and for α = 0.127 only present results with at most 716 dual
volumes—this maximal refinement level is achieved near the origin but the maximal error
is still located there. For α = 0.535, the e.o.c. for uniform refinement was 0.449 and for
the adaptive one 1.006. For α = 0.127, these values were respectively 0.0757 and 1.024.
Following [7], the somewhat slower convergence rate for uniform refinement (compare with
the finite element case below) in the energy norm is related to the fact that the diffusion
coefficient a is not aligned with the mesh Th on which we reconstruct the approximate
solution ph.

Finally, in Fig. 9, we give the effectivity indices (recall that these are defined as the
ratio of the estimated and actual error) using the local minimization approach described
in Sect. 4.3.3. We can clearly observe a confirmation of the robustness of our estimators:
whereas the inhomogeneity ratio rises from 5 to 100, the effectivity indices stay at the level
of 1.4 for uniform refinement and improve for adaptive refinement. Moreover, the local
minimization of Sect. 4.3.3 allows for almost asymptotic exactness (the effectivity index is
close to the optimal value of 1), and this even in the case of discontinuous coefficients and
singular solutions.
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7.2 Finite Element Method

We present here computational results for the finite element method of Definition 3.5, when
applied to Example 7.2. The initial mesh consists of 24 right-angled triangles, conforming
with the 4 subdomains �i .

7.2.1 Energy Norm Estimates Based on Direct Prescription and Comparison with
Functional-Type a posteriori Estimates

Here, we consider the case α = 0.535 and the equilibrated flux th given by the direct pre-
scription (4.8); in (4.8), we take ω as the arithmetic averaging (2.4). We want to compare the
results for the estimate of Theorem 4.5, reported in Fig. 10, and the corresponding results
for the simple functional-type estimate (4.12), reported in Fig. 11.

Recall that we did a similar comparison in Sect. 7.1.1. In the present section, the resid-
ual estimate of Theorem 4.5 is of the same order as the error, O(h0.537) for the uniform
refinement, see Fig. 10, left. It is in particular not superconvergent as it was in Sect. 7.1.1.
The corresponding residual estimator of (4.12) is (1/h)-times bigger; this, however, means
that it diverges in the present case. Such an effect is even more pronounced when using an
adaptive refinement procedure, see Fig. 11. The functional estimate (4.12), as discussed the-
oretically in Remark 4.13, is here not good at all. This observation confirms the general need
to use some kind of global minimization for the functional-type estimates. Alternatively, if
the equilibrated flux th is constructed by the local Neumann/Dirichlet mixed finite element
problems (4.11a)–(4.11b), see the next section, the residual estimate gets zero. Then the
estimate of Theorem 4.5 and the functional-type estimate (4.12) coincide.

Fig. 10 Estimated and actual energy error and the different estimators (left) and the corresponding effectivity
index (right), finite element method of Definition 3.5, Example 7.2 with α = 0.535, estimates by the direct
prescription (4.8)
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Fig. 11 Estimated and actual energy error and the different estimators (left) and the corresponding effec-
tivity index (right), finite element method of Definition 3.5, Example 7.2 with α = 0.535, functional-type
estimates (4.12) with the direct prescription (4.8)

7.2.2 Energy Norm Estimates Based on Local Neumann/Dirichlet Mixed Finite Element
Problems

We present here the results for the energy error (2.10) estimates of Theorem 4.5 based on
local Neumann/Dirichlet mixed finite element problems of Sect. 4.3.4.

Figure 12 shows the estimated and actual energy errors. For α = 0.535, the e.o.c. for
uniform refinement is 0.537 and for the adaptive one 0.999; for α = 0.127, these values are,
respectively, 0.172 and 0.946. This is fully in agreement with the smoothness of the weak
solutions (recall that p ∈ H 1+α(�)) for the uniform refinement and shows optimal behavior
of the adaptive refinement strategy. For α = 0.127, the adaptive refinement is stopped for
roughly 700 elements as the diameter of the smallest triangles near the origin reaches 10−16,
which is the computer double precision.

The corresponding effectivity indices are presented in Fig. 13. As predicted by Theo-
rem 5.5, we can observe in comparison with Fig. 9 that the estimates are no more robust
with respect to the discontinuities in a; while going from the contrast 5 in the discontinuity
of a in the left part of Fig. 13 to the contrast 100 in the right part of Fig. 13, the effectivity
indices are no more of the same order as in Fig. 9 but change (increase) abruptly. More
precisely, the effectivity index is around 1.6 for α = 0.535 and 4.7 for α = 0.127 on the
coarsest mesh, although it gets down to roughly 1.27 for adaptive mesh refinement for both
tested values of the parameter α. As seen from Fig. 14, where we plot the estimated and
actual energy error distribution, the biggest overestimation appears around the center and
the error distribution is no more predicted accurately (compare with Figs. 5 and 6). It is the
purpose of the two forthcoming sections to improve on these points.
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Fig. 12 Estimated and actual energy errors, finite element method of Definition 3.5, Example 7.2 with
α = 0.535 (left) and α = 0.127 (right), estimates by the local Neumann/Dirichlet mixed finite element prob-
lems (4.11a)–(4.11b)

Fig. 13 Energy error effectivity indices, finite element method of Definition 3.5, Example 7.2 with
α = 0.535 (left) and α = 0.127 (right), estimates by the local Neumann/Dirichlet mixed finite element prob-
lems (4.11a)–(4.11b)

Fig. 14 Estimated (left) and actual (right) energy error distribution, finite element method of Defini-
tion 3.5, Example 7.2 with α = 0.127, estimates by the local Neumann/Dirichlet mixed finite element prob-
lems (4.11a)–(4.11b)
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7.2.3 Robust Dual Norm Estimates Based on Local Neumann/Dirichlet Mixed Finite
Element Problems

We present here the results for the dual error (2.11) estimates of Corollary 4.6 based on local
Neumann/Dirichlet mixed finite element problems of Sect. 4.3.4.

Figure 15 reports the estimated and actual dual error; here “error up” means the com-
putable upper bound on the dual error from (2.12), whereas “error down” means the com-
putable lower bound from (2.12). In the dual error upper bound, for α = 0.535, the e.o.c.
for uniform refinement is 0.539 and for the adaptive one 1.017; for α = 0.127, these values
are, respectively, 0.195 and 1.109. In Fig. 16, we then report the corresponding effectivity
indices. We in particular see that the effectivity index in the dual error upper bound is inde-
pendent of the jump in a and close to the optimal value of 1. The effectivity index in the dual
error lower bound is, on the contrary, not independent of the jump in a. Remark that these
observations are not in any contradiction with the theory. Recall that Corollaries 4.6 and 5.6
state that only the dual norm effectivity index, i.e., the ratio of the estimates of and of the
dual error, is independent of the jump in the diffusion coefficient a and bigger than equal

Fig. 15 Estimated and actual dual errors, finite element method of Definition 3.5, Example 7.2 with
α = 0.535 (left) and α = 0.127 (right), estimates by the local Neumann/Dirichlet mixed finite element prob-
lems (4.11a)–(4.11b)

Fig. 16 Dual error effectivity indices, finite element method of Definition 3.5, Example 7.2 with α = 0.535
(left) and α = 0.127 (right), estimates by the local Neumann/Dirichlet mixed finite element prob-
lems (4.11a)–(4.11b)
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Fig. 17 Estimated (left) and actual (right) dual error distribution, finite element method of Definition 3.5,
Example 7.2 with α = 0.535, estimates by the local Neumann/Dirichlet mixed finite element prob-
lems (4.11a)–(4.11b)

to 1. One conclusion from Figs. 15 and 16 is that, in comparison with Figs. 12 and 13, the
nonrobustness has been shifted to the gap between the computable upper and lower bounds
for the dual error. Finally, Fig. 17 shows the predicted dual error distribution and actual dual
upper bound error distribution which reveals excellent (note in particular that there is no gap
in the scales of the figures, contrarily to the energy setting of Fig. 14).

7.2.4 Local Refinements of Individual Dual Volumes

We finally come back shortly to the energy norm framework of Sect. 7.2.2. The idea is
to solve the mixed finite element minimization problem (4.10) (or, equivalently, (4.11a)–
(4.11b)) on a local refinement of the mesh SD in individual dual volumes D ∈ Dh, with
the hope to decrease the error estimates in individual dual volumes, and, consequently, to
improve the final error estimate value and distribution. The local refinement is driven by
the quantity ‖a 1

2 ∇ph + a− 1
2 th‖K on each element K of the local refinement of SD . We

refine here only the central dual volume, as only in this dual volume the overestimation
dependent on the jumps in a occurs, see Fig. 14. Figure 18 shows that this indeed enables
to substantially decrease the effectivity indices (this figure is to be compared with Fig. 13),
although robustness is only achieved for α = 0.535; for α = 0.127, still an overestimation
by a factor of 2.1 appears. Such a procedure also allows to predict much more precisely the
error distribution, see the right part of Fig. 19, to be compared with Fig. 14.

Consider those dual volumes where the error indicator gives large values. Consider the
adaptive refinement of such dual volumes, as described above. We can also use such an in-
dependent refinement of each dual volume in other ways. We can, for example, include the
obtained local refinement into the mesh of the entire domain, in replacement of the original
elements. The results of such a procure are illustrated in the left part of Fig. 19. In the present
case, it allows to substantially improve the classical local refinement illustrated in the right
part of Fig. 13. Note that only two steps of the local refinement cycle on the global level al-
low to achieve the same precision as 49 steps in Sect. 7.2.2. Finally, the predicted and actual
error distribution in the locally refined central dual volume is shown in Fig. 20. It indicates
that with the boundary conditions on ∂D given by −{{a∇ph · nσ }}, which are embedded in
the definition of the space RTNN(SD) of Sect. 4.3.4 and thus into the minimization (4.10),
one cannot obtain a robust estimate and correct error distribution in the energy norm setting
for the finite element method of Definition 3.5, even with such a local refinement of one
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Fig. 18 Energy error effectivity indices, finite element method of Definition 3.5, Example 7.2 with α = 0.535
(left) and α = 0.127 (right), estimates by local refinements of individual dual volumes of Sect. 7.2.4

Fig. 19 Estimated and actual energy error (left) and estimated energy error distribution (right), finite element
method of Definition 3.5, Example 7.2 with α = 0.127, estimates by local refinements of individual dual
volumes of Sect. 7.2.4

Fig. 20 Estimated (left) and actual (right) energy error distribution on the locally refined central dual volume
following Sect. 7.2.4, finite element method of Definition 3.5 Example 7.2 with α = 0.127



436 J Sci Comput (2011) 46: 397–438

dual volume. This indicates the nonlocality of the error distribution. Thus, in confirmation
of the theory of Sect. 5, only the approaches of Sects. 7.1.2 and 7.2.3 seem to give robust
estimates (and correct error distribution).

8 Conclusions

We have focused in this paper on the pure diffusion model problem (1.1a)–(1.1b), with the
importance on the possible jumps in the diffusion coefficient a. We have first, in Sect. 3,
recalled some classical numerical methods for this problem and the close mutual relations
between them. We have next proposed a unified a posteriori error estimate in Theorem 4.5
for the energy norm and in Corollary 4.6 for the dual norm. Both these results only suppose
the existence of a very general equilibrated flux th (it only has to satisfy Assumption 4.4). We
have then presented different practical constructions of an equilibrated flux th, only based
on the general form of a numerical scheme of Assumption 4.9.

We have next analyzed the efficiency and robustness of the proposed estimates. It turns
out that in the setting of the energy norm (2.10), the harmonic averaging (2.5) has to be used
in both the definition of the scheme and in the construction of the equilibrated flux (4.8), in
order to obtain robustness with respect to the jumps in the diffusion coefficient a. No such a
requirement is necessary in order to obtain robustness in the setting of the dual norm (2.11).
We believe that the dual norm setting and the estimates of Corollary 4.6 are superior as more
physical, see Remark 4.8.

We have introduced different constructions of the equilibrated flux th. It is the solution
of the local Neumann/Dirichlet problems by the mixed finite element method of Sect. 4.3.4
which seems in general to lead to the sharpest estimates. In order to avoid to implement
the mixed finite element method and to solve the local problems (4.11a)–(4.11b), the ap-
proach of Sect. 4.3.3 can be used while giving similar computational results (this approach
is especially simple while taking th|D = t2,D , i.e., ηD = ηD(t2,D)) instead of (4.9).

We finally remark that tensor diffusion coefficient A may be considered in (1.1a)–(1.1b)
instead of the scalar one a. Many of the schemes of Sect. 3 apply in the same way as for
scalar a, see Remark 3.18. We are not aware of a posteriori error estimates in the energy
norm, robust with respect to the anisotropy in A. The dual norm setting and the estimates
of Corollary 4.6, however, lead to the robustness with respect to the anisotropy in A, see
Remark 5.9, in the same way as to the robustness with respect to the inhomogeneity.
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