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Abstract We are interested in the numerical approximation of non-linear hyperbolic prob-
lems. The particular class of schemes we are interested in are the so-called Residual Distri-
bution (RD) schemes. In their current form, they rely on the Lagrange interpolation of the
point values of the approximated functions. This interpretation of the degrees of freedom as
point values plays a fundamental role in the derivation of the schemes. The purpose of the
present paper is to show that some non-Lagrange elements can also do the job, and maybe
better. This opens the door to isogeometric analysis in the framework of RDS schemes.

Keywords Residual distribution schemes · Unstructured meshes · High order scheme ·
Steady and unsteady hyperbolic problems

1 Introduction

We are interested in the numerical approximation of linear and non-linear hyperbolic prob-
lems. The particular class of schemes we are interested in are the so-called Residual Distri-
bution (RD) schemes. They can be traced back to the early work of P.L. Roe [1] and Ni [2],
but also to the stabilized finite element schemes such as the Hughes’ SUPG scheme [3–5].
Their main characteristics are the following: (i) they have a natural formulation on unstruc-
tured meshes, (ii) their stencil is the most possible compact one to reach a given order of
accuracy, (iii) their parallelization is straightforward. These three properties are shared in
common with the Discontinuous Galerkin scheme, but here, thanks to the conformal nature
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Table 1 Number of degrees of freedom for third and fourth order approximation in the case of a triangular/tet
mesh. DG stands for Discontinuous Galerkin, RD for Residual Distribution. ns is the number of vertices

Order 2D 3D

DG RD DG RD

2 6ns ns 24ns ns

3 12ns 4ns 40ns 8ns

4 20ns 9ns 80ns 27ns

of the approximation, the number of degrees of freedom is reduced by a large factor, as this
can be seen on Table 1.

In previous papers, we, and others [6–13], have shown how to combine monotonicity
preserving properties and very high accuracy (≥ 2) on general conformal meshes, or non-
conformal meshes [14, 15]. One of the key ingredient in the construction is that the degrees
of freedom can be interpreted as point values. The purpose of the present paper is to show
that some non-Lagrange elements can also do the job. This opens the door to isogeometric
analysis [16] in the framework of RD schemes.

The format of the paper is as follows. In a first part, we recall what are these Residual
Distribution schemes, and show the construction of high order schemes. A monotonicity
principle, or variation diminishing one, plays a key role. In the second part, we provide
examples for scalar steady non-linear hyperbolic equations. The third part discuss the exten-
sion to the unsteady case for a wave model. Conclusion follows.

2 The Residual Distribution Schemes

2.1 Introduction

Let us consider the following scalar model equation,

div f (u) = S(x), x ∈ � ⊂ R
d ,

u = g weakly on the inflow boundary �−
(1)

where �− = {x ∈ ∂�,∇uf (u) · �n(x) < 0}, �n(x) is the outward unit normal of ∂� at x.
In (1), u and g belong to R, and the flux f has d components, namely f = (f1, . . . , fd).
We assume that f is C1 and g belongs to L∞(�). The discussion will be developed using
that scalar model, with d = 2, however extensions to systems and the case d = 3 are rather
straightforward.

We consider a triangulation of � denoted by Th. The triangles are {Tj }j=1,...,ne . We denote
by �h = ⋃

j=1,...,ne
Tj . The vertices of the mesh are denoted by {Mi}i=1,nv . Besides the usual

regularity assumptions we need, we also make the standard assumption that if an element T

has a part of an edge on �h := ∂�h, this full edge is included in �h.
In each element T , we need an approximation of the solution, say uh, and we assume the

following form

uh
|T =

∑

σ�∈T

uσ�

(
ψh

σ�

)
|T . (2)
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In (2), the sum is indexed by degrees of freedom that are seen as points in T . We will assume
that the function uh is continuous across edges, i.e. the ψσ�

are continuous across the edges
of Th, so that we write

uh =
∑

σ�

uσ�
ψh

σ�
. (3a)

We also assume that

max
�h

|ψh
σ | ≤ C (3b)

where C is independent of h and σ . More precisely, given k ∈ N, we assume that for any
function smooth enough u ∈ Ck+1(�), we can define uh = πh(u) of this type, such that if
u is a polynomial of degree k, we have u = uh. To make things clear, πh is, in this paper,
the L2 best fit, but this assumption is not essential. Standard approximation results, see for
example [17], show that in the L2 norm, we have ‖u−πh(u)‖ ≤ C(u)hk+1. These properties
are true for example using Lagrange polynomials, Bezier, spline representations [18]. We
assume that degrees of freedom also live on the boundary of T , this is true for any of these
examples. Note that this assumption is consistent with the continuity assumption.

Thanks to this, we define, in each element T , the total residual 	T as

	T =
∫

∂T

f h(uh) · �ndl −
∫

T

S(x)dx (4)

where f h is some approximation of the flux f . We precise the assumptions on f h a bit later
in the text. Once this has been done, we consider split-residuals, 	T

σ , for σ ∈ T , so that they
satisfy the conservation property:

∑

σ∈T

	T
σ = 	T . (5)

In order to handle boundary conditions, we need to consider boundary residuals. Let �

be an edge of some triangle T which is on �h, we consider the boundary residual

	� =
∫

�

(
F (uh,u−, �n) − g(x) · �n)

dl (6)

where (F (uh,u−, �n) is a numerical flux that depends on the trace of uh on �, the boundary
condition u− = g. Then, we consider split-residuals 	�

σ , for σ ∈ �, so that they satisfy the
conservation property:

∑

σ∈�

	�
σ = 	�. (7)

Once this has been done, the scheme writes: find uh such that for any degree of free-
dom σ ,

• If σ 
∈ ∂�h,


(uh) :=
∑

T �σ

	T
σ = 0. (8a)

• If σ ∈ ∂�h


(uh) :=
∑

T �σ

	T
σ +

∑

�⊂∂�−,��σ

	�
σ = 0. (8b)
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Fig. 1 Sketch of the scheme when the degrees of freedom are not on the boundary (the situation is similar in
that case, with “flat” elements, see (7) and (8b))

We can summarize (8a) and (8b) by


(uh) =
∑

E�σ

	T
σ = 0 (8c)

where E stands either for any triangle T or edge � that shares σ .
Figure 1 sketches graphically the steps (5) and (8a).

2.2 Design Principles

2.2.1 Consistency with (1)

What are the design principles on the scheme (8) with (5) so that we have a convergent
scheme? The answer to this problem has been provided in [13], and we reproduce the result
with some adaptation to the non-Lagrange case.

Proposition 2.1 Assume that the mesh is regular, that the flux approximation f h(uh) is
continuous across edges and defines a convergent approximation in L1 of the C1 flux f .
Assume that the residuals satisfy the conservation relations (5) and (7). Assume that the
scheme (8) defines a unique uh such that

1. there exist a constant C(g) independent of h such that ‖uh‖L2 ≤ C(g),
2. there exists v ∈ L2(�) such that a subsequence of uh converges to v in L2,

then v is a weak solution of (1)
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The result of [13] was about a first order in time approximation of

∂u

∂t
+ divf (u) = 0

with initial condition. The adaptation to the steady case (1) with boundary conditions and
source term is straightforward, and uses exactly the same arguments: Lemma 2.2 above and
the relations (12) and (13) that we have postponed to the next paragraph because a part of
the algebra is similar. Let us introduce Lemma 2.2.

We first introduce some notations in order to define the functional spaces needed in the
result. We denote by Vh the vector space generated by the basis functions ψσ as in (3a).
Recall they satisfy (3b). Any element of vh ∈ Vh writes

vh =
∑

σ�

uσ�
ψh

σ�
.

Then we have

Lemma 2.2 Let Q ⊂ R
2, any bounded domain. Let (uhk )k∈N be a sequence such that for any

k ∈ N, uhk ∈ Vhk
. We assume there exists a constant C independent of k and u ∈ L2

loc(Q)

such that

sup
k

sup
x∈Q

|uhk (x)| ≤ C, lim
k

‖uhk − u‖L2(Q) = 0.

Then

lim
h

( ∑

T ⊂Q

|T |
∑

σ,σ ′∈T

‖uhk
σ − u

hk

σ ′ ‖
)

= 0. (9a)

Proof The proof repeats words to words the proof of [13], Theorem 2.2, with the necessary
adaptions, in particular that (3b) holds true. This is true for Lagrange interpolation, Bézier
approximation, etc. �

2.2.2 Accuracy

Again, we recall previous results, see [13]. The key remark is to see that if one can solve (8)
accurately, the scheme is formally r order accurate if the split-residual satisfy

	T
σ = O(hr+d), 	�

σ = O(hr+d−1).

The reason follows from a simple error analysis. If ϕ is a compactly supported test function,
let us denote ϕh = πh(ϕ) its L2 projection on Vh, and we have the development

ϕh =
∑

σ

ϕh
σ ψσ .

Then we multiply the relations (8) by ϕh
σ and add, then using the conservation relations we

obtain

E (uh,ϕh) =
∑

σ∈�

ϕh
σ

(
∑

T �σ

	T
σ +

∑

�⊂∂�−,��σ

	�
σ

)
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=
∫

�

(

div f h(uh) − Sh(uh)

)

ϕh(x)dx

+
∑

T ⊂�

1

#{σ ∈ T }
∑

σ,σ ′∈T

(
ϕh

σ − ϕh
σ ′

)(
	T

σ − 	T,c
σ

)

+
∫

∂�

(

F (uh,u−, �n) − f h(uh) · �n
)

ϕh(x)dl

+
∑

�⊂∂�

1

#{σ ∈ �}
∑

σ,σ ′∈�

(
ϕh

σ − ϕh
σ ′

)(
	�

σ − 	�,c
σ

)

= −
∫

�

∇ϕh(x) · f h(uh) +
∫

∂�

ϕh(x)f h(uh) · �ndl +
∫

�

ϕh(x)Sh(uh)dx

+
∫

∂�

(

F (uh,u−, �n) − f h(uh) · �n
)

ϕh(x)dl

+
∑

T ⊂�

1

#{σ ∈ T }
∑

σ,σ ′∈T

(
ϕh

σ − ϕh
σ ′

)(
	T

σ − 	T,c
σ

)

+
∑

�⊂∂�

1

#{σ ∈ �}
∑

σ,σ ′∈�

(
ϕh

σ − ϕh
σ ′

)(
	�

σ − 	�,c
σ

)
, (10)

where

	T,c
σ =

∫

T

ψσ

(

divf (uh) − S(uh)

)

dx,

	�,c
σ =

∫

�

ψσ

(

F (uh,u−, �n) − f (uh) · �n
)

dx.

Following again [13], have the following result:

Proposition 2.3 If the solution u is smooth enough and the residual, applied to uh = πh(u)

satisfies

	T
σ (uh) = O(hk+d) (11a)

and

	�
σ (uh) = O(hk+d−1), (11b)

if moreover the approximation f h(uh) is k + 1-order accurate, then the truncation error
satisfies

|E (uh,ϕh)| ≤ C(ϕ,f,u)hk+1.

The constant C(ϕ,u) depends only on ϕ and u.

We start by a lemma

Lemma 2.4 For the steady problem (1), if the solution u is smooth, we have
∫

∂T

f h(uh) · �ndl −
∫

T

S(x)dx = O(hk+d)
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and
∫

∂T

(

F (uh,u−, �n) − f h(uh) · �n
)

dl = O(hk+d−1)

provided that the approximation f h(uh) is k + 1 th order accurate and the numerical flux F
is Lipschitz continuous.

Proof We have, using the fact that (1) is a steady problem,

∫

∂T

f h(uh) · �ndl −
∫

T

S(x)dx =
∫

∂T

(

f h(uh) · �n − f (u) · �n
)

dl

= O(hk+1) × |∂T | = O(hk+d).

On the boundary, we have

∫

∂T

(

F (uh,u−, �n) − g(x) · �n
)

dl =
∫

∂T

(

F (uh,u−, �n) − g(x) · �n
)

dl

+
∫

∂T

(

F (u,u−, �n) − g(x) · �n
)

dl

=
∫

∂T

(

F (uh,u−, �n) − F (u,u−, �n)

)

dl

and the result follows because of the approximation inequality and since the numerical flux
is Lipschitz continuous. �

Proof of Proposition 2.3 This inequality is a consequence of (10) because we have

−
∫

�

∇ϕh(x) · f h(uh) +
∫

∂�

ϕh(x)f h(uh) · �ndl +
∫

�

ϕh(x)Sh(uh)dx

=
(

−
∫

�

∇ϕh(x) · f (u) +
∫

∂�

ϕh(x)f (u) · �ndl +
∫

�

ϕh(x)Sh(u)dx

)

+
(

−
∫

�

∇ϕh(x) ·
(

f (u) − f h(uh)

)

+
∫

∂�

ϕh(x)
(
f (u) − f h(uh)

) · �ndl +
∫

�

ϕh(x)
(
Sh(u) − Sh(uh)

)
dx

)

(12)

where uh = πh(u). From standard interpolation results [17], we have |ϕh| ≤ C and |∇ϕh| ≤
C ′, |f h(uh) − f (u)| ≤ C(u,f )hk+1 and |Sh(uh) − S(u)| ≤ C(u,S)hk+1, so that (12) is in
norm smaller that C(u,f,S)hk+1 for a suitable constant C(u,f,S).

From Lemma 2.4, for any T and �, |	T,c
σ | ≤ C(u,f,S)hk+d and |	�,c

σ | ≤ C(u,f,S)×
hk+d−1 where d is the space dimension.

Then, for any T ,
∣
∣
∣
∣

∑

σ,σ ′∈T

(
ϕh

σ − ϕh
σ ′

)(
	T

σ − 	T,c
σ

)
∣
∣
∣
∣
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≤
∑

σ,σ ′∈T

(|ϕh
σ − ϕh

σ ′ |)(|	T
σ | + |	T,c

σ |)|

≤ # of elements × N × ‖∇ϕ‖∞h × C(ϕ,f,S)hk+d (13)

where N is the number of degree of freedom in each element. In a regular mesh for a
bounded domain, the number of elements scales like h−d so that in the end, we can find a
constant (again denoted by C) which depends on u, f , S and � such that

∣
∣
∣
∣

∑

σ,σ ′∈T

(
ϕh

σ − ϕh
σ ′

)(
	T

σ − 	T,c
σ

)
∣
∣
∣
∣ ≤ C(u,f,S,�)hk+1.

The last estimation is to be done for the boundary terms. Using the consistency of the
numerical flux, we first have

∣
∣
∣
∣

∫

∂�

(

F (uh,u−, �n) − f h(uh, �n)

)

ϕh(x)dl

∣
∣
∣
∣

≤
∫

∂�

(∣
∣
∣
∣F (uh,u−, �n) − F (uh,uh, �n)

∣
∣
∣
∣

)

ϕh(x)dl

≤ L

∫

∂�

|uh − u−| ≤ C(u,f, ∂�)hk+1.

Similarly, we have, for any boundary edge, |	�,c
σ | ≤ C(u,f )hk+d . If the boundary of � is

regular, the number of boundary faces is of the order of h−(d−1).
Thus, we get, using again the same arguments,
∣
∣
∣
∣

∑

�⊂∂�

∑

σ,σ ′∈�

(
ϕh

σ − ϕh
σ ′

)(
	�

σ − 	�,c
σ

)
∣
∣
∣
∣ ≤ C(u,f, ∂�)h−d+1hk+d = C(u,f, ∂�)hk+1.

This completes the proof. �

Let us conclude this paragraph by two important remarks.

Remark 2.5 We see that the proof uses two key elements:

• The problem (1) is steady,
• One is able to compute uh. This is done in practice via an iterative algorithm because

the system (8) is in general non-linear. In all the numerical examples, we will consider a
simple Jacobi-like iteration,

uk+1
σ = uk

σ − ωk
σ 
[(uh)k] (14)

where ωk
σ is a relaxation parameter that can be thought as the ratio of a time step (con-

straint by a CFL condition) and an area, 
 is defined by (8). The sequence (uh)k is ini-
tialized to some value (say (uh)0 = 0) and marched up to convergence. The convergence
issue of the sequence is a subtle one, as it will be seen.

The accuracy result will be true, in practice, provided that one is able to construct a
convergent sequence ((uh)k)k∈N, that is, for any ε > 0, one can find Nε such that

n ≥ Nε, then |
[(uh)k]| ≤ ε.

The algorithm can be stopped provided that ε = O(hk).
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2.2.3 Monotonicity Preservation

In the previous versions of the RD scheme, the degrees of freedom were Lagrange points,
so that uh

σ is the value of uh at σ . In that case, the iterative scheme is designed in such a way
that for any k ∈ N,

max
σ

|uk
σ | ≤ max

σ
max

(
‖g‖∞,max

σ
|u0

σ |
)
.

Indeed, the scheme is designed so that for any σ ,

max
σ ′∈V (σ)

|uk
σ | ≤ max

σ ′∈V (σ)
|uk−1

σ |,

where V (σ) is the set of neighbors of σ , σ included. Note that in this case, we are not asking
for

‖(uh)k‖ ≤ C (15)

since it is well known that the Lagrange interpolation, for degree larger than 2, suffers from
the Gibbs phenomena.

Another way of thinking is precisely to try to enforce the constraint (15) globally. Assume
that we have a scheme that writes:

	E
σ =

∑

σ ′∈T

cT
σσ ′(uσ − uσ ′) (16a)

where E is either a triangle (case of an internal degree of freedom) or a boundary edge �

(case of a boundary degree of freedom), with

for any σ,σ ′, cT
σσ ′ ≥ 0. (16b)

Using the iterative scheme (14), it is clear that

|uk+1
σ | ≤ max

σ ′∈Vσ

|uk
σ ′ | (17)

provided that

ωσ ≤
(

∑

E�σ

∑

σ ′∈T

cσσ ′

)−1

where E is either a triangle or a boundary edge.
If the basis functions ψσ are positive we see that

|(uh)n+1 ≤ max
σ

max
(
‖g‖∞,max

σ
|u0

σ |
)
. (18)

An example of such a split-residual is given by the following Lax-Friedrich like residual:
we first approximate f (u) by

f h(uh) := f (uh).

	T
σ = 	T

NT

+ αT (uσ − uT ), 	T =
∫

∂T

f h(uh) · �ndl (19a)
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with

uT =
∑

σ ′∈T uσ ′

NT

, αT ≥ max
σ ′∈T

∥
∥
∥
∥

∫

T

∇uf (u) · ∇xψσ ′dx

∥
∥
∥
∥ (19b)

and NT being the number of degrees of freedom in T . This family of split residuals defines
a scheme that is only first order accurate.

2.3 Construction of High Order Schemes

How can we construct a scheme that is both monotonicity preserving and high order accu-
rate. Using the remark contained in Lemma 2.4, one possibility is to look for real numbers
βE

σ (uh) (E triangle or boundary edge) such that

	E
σ = βE

σ (uh)	T , (20)

that are uniformly bounded. This ensure that 	T
σ = O(hk+d) and 	�

σ = O(hk+d−1).
The question is to define the β’s such that the scheme is both high order accurate and

monotonicity preserving.
A first step is the following : using a monotonicity preserving scheme (think of the Lax

Friedrichs scheme) which residuals are denoted by 	L,T
σ which satisfies (16), we formally

write

	H,T
σ = 	H,T

σ

	
L,T
σ

	L,T
σ

=
∑

σ ′∈T

(
	H,T

σ

	
L,T
σ

)

cL
σσ ′(uσ − uσ ′)

=
∑

σ ′∈T

cH
σσ ′(uσ − uσ ′)

with cH
σσ ′ = (

	
H,T
σ

	
L,T
σ

)cL
σσ ′ . Hence, since cL

σσ ′ ≥ 0, we have cH
σσ ′ ≥ 0 provided that 	

H,T
σ

	
L,T
σ

≥ 0.

Setting

xσ = 	L,T
σ

	T
and βσ = 	H,T

σ

	T
, (21)

the conservation and monotonicity preserving condition become

∑

σ∈T

xσ = 1,
∑

σ∈T

βσ = 1 and for any σ ∈ T , xσ βσ ≥ 0. (22)

The problem is to find a mapping (xσ )σ∈T 
→ (βσ )σ∈T that satisfies the conditions (22). This
mapping cannot be linear according to Godunov’s theorem.

An extensive discussion of these relations is done in [13], in particular we provide a
geometrical interpretation of these relations. Among the many mappings that satisfy (22),
we have chosen

βσ = x+
σ∑

σ ′∈T x+
σ ′

(23)

which is always well defined because
∑

σ ′∈T x+
σ ′ ≥ 1.
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Unfortunately, as we see in the next section, the resulting scheme (i.e. (8) with (20) and
(23) using the Lax Friedrichs scheme) is over compressive. The same problem would occur
with other first order split-residuals, for example those constructed form standard first order
flux, see [10] for some examples. The fundamental reason is that the limitation is done
according to monotonicity preserving constraints only, in complete ignorance of what is the
physics of the problem, i.e. how up-winding has to be triggered into the scheme. Hence, we
need to add some dissipation mechanism without destroying the formal accuracy in order to
correct that drawback. One way of doing that is to add to (20) a dissipative term, namely

dT (ϕh,uh) = |T |
∑

xquad

ωquad

[(

∇uf (uh) · ∇ϕh
σ

)

(xquad)

(

∇uf (uh) · ∇uh − S

)

(xquad)

]

(24)

such that the quadratic form

(vh, uh) 
→
∑

σ

vh
σ

(
∑

E�σ

	E
σ +

∑

T

θT hT dT (ϕh,uh)

)

is dissipative. Again, E stands for any element or edge that shares σ . In (24), hT is a radius
of the circumscribed circle/sphere, and θT is a parameter that is of the order of 0 in discon-
tinuities and 1 elsewhere. In (24), xquad can be interpreted as quadrature points and ωquad as
weights. Saying, we interpret (24) as a discrete version of

∫

T

(

∇uf (u)ϕh
σ

)

·
(

∇uf (u)∇uh − S(x)

)

dx.

However, in [19], we have shown that, at least for linear flux f (u) = �λu, is that a neces-
sary condition is that the quadratic form

qK(vh) :=
∑

xquad

ωquad

(�λ · ∇vh(xquad)
)2

is positive definite whenever the polynomial λ · ∇vh is not identically zero. In the case of
polynomial interpolation, we need only one quadrature point (and ωquad = 1), for quadratic
polynomials, we need three non-aligned points (in practice the vertices of the element, and
we take ωquad = 1

3 , and so on. Details can be found in [19], we will use this technique in the
present paper.

There are many possible choices for the parameter θT . For example, θT is a good choice,
even in the case of discontinuous solutions where we have experimentally noticed that no
(visible) spurious oscillation occur. However, the best choice we have experimented is

θT = max
σ∈T

(

max
T �σ

max
σ ′∈T

|uσ ′ − uT |
|uσ ′ | + |uT | + ε

)

(25)

with ε ≈ 10−10. Here, uT = (
∑

σ∈T uσ )/N .

2.4 Some Comments

Let us conclude by the following remark: in the RD schemes, we add a term that is dissi-
pative. In contrast to other high order schemes, the effect of this term is not to damp the
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solution but to increase the accuracy. This is because that more than dissipating the solution,
the role of this term is to remove spurious modes. There is a very simple example where it
can be seen that spurious modes do exist, unless something is done. Consider the PDE on
[0,1]2,

∂u

∂x
= 0,

u(0, y) = u0(y).

The solution is u(x, y) = u0(y). Consider a mesh made of quadrangles, the elements are
Kij = [xi, xi+1] × [yj , yj+1] with xi = i/N and yj = j/N , 0 ≤ i, j ≤ N − 1. We can con-
struct linear preserving schemes, exactly as we have proceed above. Consider the one which
is constructed from a Q1 interpolation.

If the set the boundary condition to ui,0 = (−1)i we expect the solution to be an approx-
imation of ui,j = (−1)i . Since we have an iterative scheme, from (14), we can initialize
either by

u0
ij =

{
(−1)i if j = 0,

0 else
or

u0
ij = (−1)i+j

or something else. The second initialization is the check-board mode. The first initialization
will give some sequence. The second one is stationary because

∫

Kij

∂uh

∂x
dxdy = 0

for the check-board mode.
This is an example of a RD scheme that cannot converge. This is why we need to add

some selection mechanism, and as we show in the next section, the effect of this “damping”
is to improve a lot the accuracy or the solution.

3 Numerical Examples

We consider two type of approximations: Lagrange polynomials and Bézier approximation.
In the case of a triangle with vertices A1, A2, A3, we denote by NAi

the linear shape func-
tions at these vertices (NAi

(Aj ) = δ
j

i ). If, for k1, k2 and k3 integer such that k1 +k2 +k3 = n,
αk1k2k3 the coefficient of Xk1Y k2Zk3 in the development of (X + Y + Z)n,

(X + Y + Z)n =
∑

k1≥0,k2≥0,k3≥0,k1+k2+k3=n

k1!k2!k3!
n! Xk1Y k2Zk3 ,

the Bézier polynomials of degree n are

Bn
k1k2k3

= k1!k2!k3!
n! N k1

A1
N k2

A2
N k3

A3
.

This polynomial is associated to the degree of freedom σ defined by the barycentric coordi-
nates NAl

(σ ) = kl

n
. In the following, we drop the subscript k1, k2, k3 and set instead σ the

point of T that corresponds to (k1, k2, k3).



J Sci Comput (2010) 45: 3–25 15

Clearly Bn
σ ≥ 0 and

∑
σ∈T Bn

σ = 1. The Bézier polynomials also have other properties
such as a total variation diminishing property, see for example [20]. These two properties
are in contrast with the Lagrange interpolant. Another difference is that the coefficients uσ

in the development

uh
|T =

∑

σ∈T

uσ Bn
σ

are not equal to uh(σ ), contrarily to what happens for the Lagrange expansion of the same
uh,

uh
|T =

∑

σ∈T

uh(σ )Ln
σ .

In the numerical examples, we have chosen n = 2. The method presented above has been
tested on two examples, a steady Burger-like equation and a problem with a non-convex
flux.

3.1 Smooth Examples

On � = [0,1]2, we consider the problem (�n is the outward unit normal)

�λ · ∇u = 0 if x ∈ [0,1]2

u = g if �λ · �n < 0.
(26)

In the example �λ = (0,1)T and g(x,0) = e−100(x−1/2)2
. The Fig. 2 shows the L∞ and L2

errors for the second third order Bézier and Lagrange approximation schemes.1 The errors
are very similar, the slopes are very close to the expected −3 one, as expected. There is no
clear advantage (for linear problems) to choose one scheme over the other one.

Fig. 2 Errors (L∞ and L2) for
the convection problem

1Note that the Lagrange and Bezier approximation, with suitable control parameters, are identical.
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Fig. 3 Second order solution of (27). The solution with the term (25) is (a), (b) is the solution without this
term

3.2 Example of the Burgers Equation

The first example is

∂u

∂y
+ 1

2

∂u2

∂x
= 0 if x ∈ [0,1]2,

u(x, y) = 1.5 − 2x on the boundary.

(27)

The exact solution consists in a fan that merges into a shock which foot is located at (x, y) =
(3/4,1/2). More precisely, the exact solution is

u(x, y) =

⎧
⎪⎨

⎪⎩

if y ≥ 0.5

{−0.5 if − 2(x − 3/4) + (y − 1/2) ≥ 0,

1.5 else,

else max
(−0.5,min

(
1,5,

x−3/4
y−1/2

))

All the simulations are made using a regular mesh M1 of 3192 vertices and 6192 triangles.
In Fig. 3, we show, for comparison purpose, the results of the second order scheme on the
mesh M2 where each triangle of M1 is subdivided into four sub-triangles defined using the
vertices and the mid point edges. We show the results with (24) and (25) and those where
θT = 0.

Then, we show the results obtained on M1 using the Lagrange interpolation and the
Bézier polynomials. Figure 4 show that there is almost no difference on the solutions (a)
and (c). The solution (b) is more wiggly than (d). Let us emphasis that these wiggles are not
any manifestation of instability.
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Fig. 4 Third order solution of (27). The solution with the term (25) are (a) and (c), (b) and (d) are the
solutions without this term. The solutions (a) and (b) are obtained with the Lagrange interpolant and (c) and
(d) are obtained by the Bézier ones

To get a better view of the non oscillatory behavior of the solution, we display a 3D
view of them in Fig. 5. The solutions using the Bezier and Lagrange polynomial are undis-
guistable. The same conclusion would hold if, instead of viewing the solution, we have
provided the errors between the exact and the computed solutions.

3.3 Guckenheimer Problem

The method also works on more complex scalar examples such as the Guckenheim Riemann
problem. Contrarily to the Burgers equation, the flux are no more convex, this modifies the
structure of shocks and fans. We provide this example for two reasons: the structure are
more complex, in particular a fan is ended by a shock. The second reason is that, since we
do not have any mathematical analysis, it is interesting to see that, even for these non-convex
equations, it seems that the entropy condition is properly met.
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Fig. 5 3D representation of the Bézier, lagrange and exact solution for (27). There is no oscillation and the
quality of the solutions is similar

The problem is to solve

∂u

∂t
+ 1

2

∂u2

∂x
+ 1

3

∂u3

∂y
= 0,

u(x, y,0) =

⎧
⎪⎨

⎪⎩

0 if 0 < arctan(
y

x
) < 3π

4 ,

1 if 3π
4 < arctan(

y

x
) < 3π

2 ,

−1 if 3π
2 < arctan(

y

x
) < 2π .

(28)

The solution is self similar, u(x, y, t) = v( x
t
,

y

t
), and the function v satisfies

−ξvξ − νvν + 1

2

∂u2

∂ξ
+ 1

3

∂u3

∂ν
= 0 (29a)

with the boundary conditions

lim
r→+∞v(r cos θ, r sin θ) = u(cos θ, sin θ,0). (29b)

Solving (29) amounts to solve (28) at t = 1.
This problem has been discussed in [21] and drawn to our attention by M. Ben Artzi

(Hebrew University of Jerusalem). The flux g(u) = u3

3 is non-convex and this induces sonic
shocks. The exact solution consists in
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Table 2 Quadrature points and weights. The other points are obtained by cyclic permutation of
the barycentric coordinates. We have set x0 = 0.445948490915965, ω = 0.223381589678010, x1 =
0.091576213509771, ω1 = 0.109951743655322

Multiplicity Coordinates Weight

3 (x0, x0,1 − 2x0) ω0

3 (x1, x1,1 − 2x1) ω1

• A shock coming out from the line y = 0 that moves at the speed 1/3 in the positive
direction,

• a steady shock at x = 0,
• A shock coming out from the line x +y = 0. The analysis of [21] by a self similar analysis

indicates that the location of this shock is x + y − 5/6t , with in our case, t = 1.

From the numerics, (29a) is rewritten as

∂F (u)

∂ξ
+ ∂G(u)

∂ν
+ 2u = 0 (30)

with F(u) = 1
2u2 − ξu and G(u) = 1

3 u3 − νu. The total residual on T writes

	T =
∫

∂T

(
F(u)nx + G(u)ny

)
dxdy + 2

∫

T

udxdy

that are evaluated by numerical quadratures. The integral on ∂T uses 3 point Gaussian
quadrature formula. The integral on T use the weights and points (in barycentric coordi-
nates) of Table 2. This quadrature formula, taken from [22], p. 184, is 4th order accurate
(exact for cubic polynomials).

The solution is displayed on Figs. 6 and 7. We see that even for this non-convex problem,
there is no stability problem. Again, we notice that the Bézier solution, without the addi-
tional term (25) is less wiggly that the one obtained with Lagrange interpolant. The other
interesting observation is that the correct entropy solution is recovered in that case, as in
all the other cases of this paper, without any additional feature, even without the additional
stabilization.

4 Extension to the Wave Equation

The case of the wave equation can also be set up in a similar way. The wave equation writes

∂U

∂t
+ A

∂U

∂x
+ B

∂U

∂y
= 0 in �,

U − g = 0 weakly on ∂�

(31)

with U = (u, v1, v2),

A = c

(0 1 0
1 0 0
0 0 0

)

and B = c

(0 0 1
0 0 0
1 0 0

)

and g is a given function. In the numerical examples, we take g = 0.
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Fig. 6 Second order solution of (29). The solution with the term (25) is (a), (b) is the solution without this
term

If �n = (nx, ny), the matrix K�n = nxA + nyB admits three eigenvalues, namely λ = 0,
c‖�n‖, −c‖�n‖. It is well known that the system is hyperbolic. We can now be more precise
on the boundary equation of (31). Let us consider any point of ∂� and �n the outward unit
normal. By U = g weakly, we mean that K+

�n (U − g) = 0 where K+
�n has the same eigenvec-

tors as K�n and its eigenvalues are the positive parts of that matrix, i.e. 0 with multiplicity
two and c‖�n‖.

In order to discretize the system (31) using Residual distribution schemes, it is not pos-
sible to rely on the method of lines. The key reason for that is that the accuracy of the
method: as explained in Proposition 2.3 the structure of the equation must be plugged into
the scheme. Hence, we need to preserve the coupling between the time and space operators.

In order to overcome this difficulty, one solution is first to discretize in time and then to
see the semi-discrete problem as a steady one with a source term.

In the examples, we approximate (31) as

3

2

Un+1 − Un

�t
− 1

2

Un − Un−1

�t
+ A

∂U

∂x

n+1

+ B
∂U

∂y

n+1

= 0 (32a)

which is seen as

αUn+1 + A
∂U

∂x

n+1

+ B
∂U

∂y

n+1

+ S = 0

with

S = −3

2

Un

�t
− 1

2

Un − Un−1

�t
.

In the specific example we consider for the numerics, the boundary condition is imposed at
tn+1

K+
n Un+1 = 0. (32b)
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Fig. 7 Third order solution of (29). The solution with the term (25) are (a) and (c), (b) and (d) are the
solutions without this term. The solutions (a) and (b) are obtained with the Lagrange interpolant and (c) and
(d) are obtained by the Bézier ones

4.1 Scheme Description

We extend the LDA scheme described for steady problems in [13]. We use Bézier polyno-
mials because B2

σ ≥ 0, hence, for any of the sub triangles of Fig. 8

∫

Tξ

(
3

2

Un+1 − Un

�t
− 1

2

Un − Un−1

�t

)

dx =
∑

σ∈T

ω
Tξ
σ

(
3

2

Un+1
σ − Un

σ

�t
− 1

2

Un
σ − Un−1

σ

�t

)

with
∫

T ξ
B2

σ dx = ω
Tξ
σ > 0. This ensure that each degree of freedom will have a contribution

in the scheme. This would have been wrong for Lagrange interpolation since the integral
over T of the basis functions at the vertices of T is zero. Indeed, a simple calculation shows
that a similar formula can be obtained, but here we would have negative weights.
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Fig. 8 Definitions of the
sub-triangles in T

We define �nTξ
σ as the scaled inwards normal vector to the edge of Tξ , ξ = I, II, III, IV ,

opposite to σ ∈ Tξ . For each sub-triangle, we define the sub-residuals,

	Tξ =
∫

Tξ

(
3

2

Un+1 − Un

�t
− 1

2

Un − Un−1

�t
+ A

∂Un+1

∂x
+ B

∂Un+1

∂y

)

dx (33)

and the split-residuals for σ ∈ Tξ

	
Tξ
σ = K+

�nTξ
σ

NTξ
	Tξ (34)

with

NTξ
=

( ∑

σ∈Tξ

K+
�nTξ
σ

)−1

. (35)

Using the arguments of [10], we can easily see that
∑

σ∈Tξ
K+

�nTξ
σ

is invertible because the

matrices A and B do not commute. The last step of the scheme definition is

∑

ξ :Tξ �σ

	
Tξ
σ = 0. (36)

The scheme (36) with the boundary conditions (32b) with (33), (34), (35) is implicit in Un+1.
In order to compute it, we use an iterative technique similar to what is done for the steady
problems, this defines a sequence Un+1,k with k ∈ N. We take Un+1,0 = Un. The boundary
condition (32b) is applied at each iteration: K+

�n Un+1,k = 0. The iterative process is stopped
once a given threshold (relative error of 10−3) for some integer k = kmax is reached and we
set Un+1 = Un+1,kmax

4.2 Some Numerical Results

We have used a regular mesh of 80 × 80 quadrangles, each triangle is cut into two triangles.
The domain � is [−4,4] × [−4,4] and the speed of sound is set to c = 1.
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Fig. 9 Two instances of the solution. In each case, 15 isolines of the solution is displayed: the scale is
different from one figure to the other

Fig. 10 Two instances of the solution. In each case, 15 isolines of the solution is displayed: the scale is
different from one figure to the other

We have plotted the u component of the solution. It is displayed in Figs. 9, 10, 11. The
results are very regular and compare well to those obtained by M. Duruflé (U. Bordeaux I
[23]) with his code Montjoie.2

5 Concluding Remarks

We have developed a general method that enables to compute steady and unsteady solu-
tions of linear and non-linear wave problems. It relies on a approximation technique that

2http://www.math.u-bordeaux1.fr/~durufle/montjoie/index.php, downloadable.

http://www.math.u-bordeaux1.fr/~durufle/montjoie/index.php
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Fig. 11 Several instance of the solution. In each case, 15 isolines of the solution is displayed: the scale is
different from one figure to the other

can use either Lagrange or non-Lagrange approximation function. An example with Bézier
polynomial has been given. The improvement with respect to previous Residual distribu-
tion schemes is that the degrees of freedom are no longer interpreted as point values. This
remark opens the way to more general approximation methods such as the isogeometric
analysis as what is currently being developed by Hughes and coworkers with schemes that
has non-oscillatory properties without tuning parameters.
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