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Abstract In this paper we will present the stability in L2-norm and the optimal a priori
error estimate for the Runge-Kutta discontinuous Galerkin method to solve linear conserva-
tion law with inflow boundary condition. Semi-discrete version and fully-discrete version of
this method are considered respectively, where time is advanced by the explicit third order
total variation diminishing Runge-Kutta algorithm. To avoid the reduction of accuracy, two
correction techniques are given for the intermediate boundary condition. Numerical experi-
ments are also given to verify the above results.

Keywords Discontinuous Galerkin finite element · Runge-Kutta · Inflow boundary
condition · Stability · Error estimate

1 Introduction

The first Discontinuous Galerkin (DG) method was introduced in 1973 by Reed and Hill [8],
in the framework of linear neutron transport. Then it was developed into the Runge-Kutta
discontinuous Galerkin (RKDG) scheme by Cockburn and his collaborators for nonlinear
hyperbolic systems. Recently this method has been used widely for the simulation of con-
servation laws, even for the other problems with high order derivatives. For a fairly complete
set of references on RKDG methods as well as their implementation and applications, see
the review paper by Cockburn and Shu [4, 5].

The DG method uses a completely discontinuous piecewise polynomial space for the
numerical solution and the test functions, so it possesses several properties to make it very
attractive for practical computations, such as parallelization, adaptivity, and simple treatment
of boundary conditions. The most important properties of DG method is its strong stability
and high-order accuracy; as a result, it is very good at capturing discontinuous jumps.
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Many error analysis for the semidiscrete version of the DG method have been carried
out for linear conservation law, for example, [5, 6]. Recently, Zhang and Shu have analyzed
the fully discrete version coupled with the explicit total variation diminishing Runge-Kutta
(TVDRK) algorithm, given by Shu [9]. The explicit second order TVDRK time-marching is
studied for scalar nonlinear conservation law in [10], and for symmetrizable system of non-
linear conservation laws in [11]. The explicit third order TVDRK (TVDRK3) time-marching
is also considered in [12].

However, most of the above analysis are given for the periodic boundary conditions. In
this paper we will continue our work and study the RKDG method for conservation law
with inflow boundary condition. As a model, we would like to consider the following one
dimensional linear problem

⎧
⎪⎨

⎪⎩

ut + βux = 0, x ∈ I = (a, b), t ∈ (0, T ];
u(x,0) = f (x), x ∈ I ;
u(a, t) = g(t), t ∈ (0, T ],

(1)

where, for simplicity, we assume the convection speed β is a positive constant, and conse-
quently x = a is the inflow boundary. In contract with the periodic boundary condition, we
will pay more attention to the treatment of inflow boundary condition, especially, for the
fully discrete version of this method with the explicit TVDRK3 time-marching. By virtue
of theoretical analysis, two correction techniques for avoiding the reduction of accuracy are
presented for this type of higher order algorithm.

The content of this paper is organized as follows. In Sect. 2 we give the discontinuous
finite element space as well as its properties. In Sect. 3 we present the semi-discrete version
of DG method, and then the stability result and an optimal a priori error estimate. Section 4
is the main body of this paper, where the fully discrete version of DG method coupled with
the explicit TVDRK3 time-marching is discussed in detail. To do that, we first abstract each
step of the considered algorithm into a black box, and then set up an elemental estimate. As
a direct application, we then obtain the stability result and an optimal error estimate for this
algorithm. During this process, some treatments on the inflow boundary are given to avoid
the reduction of accuracy. Finally, numerical experiments and concluding remarks are given
respectively in Sects. 5 and 6.

2 Preliminaries

2.1 Finite Element Space and Projections

Let {xj }N
j=0 be a partition of the interval I = (a, b), where x0 = a and xN = b. Denote

each cell by Ij = (xj−1, xj ) with the length hj = xj − xj−1, for j = 1,2, . . . ,N . Then we
define the mesh Th = {Ij : j = 1, . . . ,N}, with the mesh parameter h = max1≤j≤N hj . For
simplicity of analysis, the mesh is assumed to be regular, namely, the ratio of h over hj , for
j = 1,2, . . . ,N , is upper bounded by a fixed positive constant.

Associated the mesh Th, we define the so-called broken Sobolev space

H 1,h(Th) = {v ∈ L2(I ) : v|Ij ∈ H 1(Ij ), j = 1,2, . . . ,N}, (2)

since the functions in H 1,h(Th) are allowed to have discontinuities across element interfaces.
For any p ∈ H 1,h(Th), at each element boundary point there are two limits from different
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directions, namely, the left-side value p− and the right-side value p+. The jump and the
mean at the element boundary point, respectively, are denoted by [[p]] = p+ − p−, and
{{p}} = 1

2 (p+ + p−).
By P

k(�) we denote the space of polynomials in � of degree at most k. The discontinu-
ous finite element space is defined as

Vh = {v ∈ L2(0,1) : v|Ij ∈ P
k(Ij ), j = 1, . . . ,N}. (3)

Note that Vh ⊂ H 1,h(Th). As a standard trick in DG analysis, two types of projections are
used in this paper. Due to the discontinuity property of the finite element space, these pro-
jections are locally defined on each element Ij .

The first one is the standard L2-projection, denoted by Ph. For any function p ∈ L2(0,1),
the projection Php is defined as the unique function in Vh such that

∫

Ij

(Php(x) − p(x))vh(x)dx = 0, ∀vh ∈ P
k(Ij ), 1 ≤ j ≤ N. (4)

This projection is often used to approximate the initial solution, and also used to obtain the
quasi-optimal error estimate.

The other is the so-called Castillo’s projection [2], denoted by Rh, in order to obtain the
optimal error estimate. For any function p ∈ L2(0,1), the projection Rhp is defined as the
unique function in Vh such that

∫

Ij

(Rhp(x) − p(x))vh(x)dx = 0, ∀vh(x) ∈ P
k−1(Ij ), 1 ≤ j ≤ N, (5a)

with the exact collocation at the downwind endpoint xj , namely

(Rhp)−
j = p−

j , (5b)

since the convection speed is assumed to be β > 0. If β < 0, the definition for this projection
is similar. Note that the projection Rh is defined well only for k ≥ 1.

If k = 0, the considered DG scheme is equivalent to the finite volume method. For the
error estimate for finite volume method, please see [7]. Throughout this paper we assume
k ≥ 1.

2.2 The Properties of Finite Element Space

To present the properties of the finite element space, we will use some traditional notations
of Sobolev space. For any integer s ≥ 0, let Hs(�) represent the well-known Sobolev space
equipped with the norm ‖ · ‖s,�, which consists of functions with (distributional) derivatives
of order not greater than s in L2(�). Next, let L∞(0, T ;Hs(�)) represent the space-time
space with the norm ‖ · ‖L∞(Hs (�)), which consists of functions with ‖u(x, t)‖s,� bounded
uniformly for any time t ∈ [0, T ]. Further, let the scalar inner product on L2(�) be denoted
by (·, ·)�, and the associated norm be denoted by ‖ · ‖�. If the subscript � = I , we omit it.

In what follows we will use C to denote a general positive constant independent of n,h

and τ , which may have a different value in each occurrence.
For any function p(x) ∈ Hk+1(I ), there hold the following approximation properties.

Denote by η = p(x) − Qhp(x) the approximation error, where Qh is one of projections
mentioned above. By a standard scaling argument, it is easy to obtain that

‖η‖ + h‖ηx‖ + h1/2‖η‖�h
≤ Chk+1, (6)
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where C > 0 is a constant independent of h and solely depends on ‖p‖k+1; see [2, 3]. Here
�h is the union of all element interface points, and the L2-norm on �h is defined as

‖v‖�h
=

[ ∑

1≤j≤N

(v+
j−1)

2 + (v−
j )2

]1/2

, v ∈ H 1,h(Th). (7)

It is worthy to point out that the exact collocation at element boundary point, say, η−
j = 0

for j = 1,2, . . . ,N , holds only for the projection Rh but not for the projection Ph.
We will also use the following inverse properties [3]. For any vh ∈ Vh, there exist two

positive constants μ1 and μ2, independent of vh and h, such that

(i) ‖vh,x‖ ≤ μ1h
−1‖vh‖; (ii) ‖vh‖�h

≤ μ2h
−1/2‖vh‖. (8)

Here vh,x denotes the spatial derivative of vh. For simplicity, we will denote μ =
max{μ1, (μ2)

2} as the uniform inverse constant.

3 Semi-discrete DG Method

First we multiply an arbitrary test function vh on both sides of the first equation in (1),
and integrate by parts in each element Ij . By defining the suitable numerical flux at the
element boundary point, we will get the semi-discrete version of DG method: fine the map
uh(t) : [0, T ] → Vh such that

∫

Ij

duh(t)

dt
vh dx = Hj (uh(t), vh), ∀vh ∈ Vh, ∀t ∈ (0, T ], (9)

where the initial value is taken as the approximation of f (x), for example, uh(0) = Phf (x).
Here the compact notation Hj (·, ·) describes the DG spatial discretization in the element Ij .
For any function w and v ∈ H 1,h(Th), it reads

Hj (w, v) =
∫

Ij

βwvx dx − ĥj v
−
j + ĥj−1v

+
j−1, (10)

where ĥj = ĥ(w−
j ,w+

j ) is the monotone numerical flux depending on two values at the
element boundary point xj . In practice, for the considered problem (1) the numerical flux
is often taken as the classical upwind type, namely, ĥj = βw−

j for j = 0,1, . . . ,N , since
β > 0.

The general treatment in the DG framework is that we introduce the boundary condition
into the numerical flux at the boundary points. For the periodic boundary condition the
numerical flux ĥ is defined clearly at the left and the right boundary. However, for the inflow
boundary condition, there is a little trouble. We have to define the numerical flux according
to the position of the element boundary point. Namely, we take the numerical flux ĥj = βw−

j

for j = 1,2, . . . ,N , and take

ĥ0(t) = βg(t), t ∈ [0, T ], (11)

for j = 0, according to the inflow boundary condition at x = a. Now the definition for the
semi-discrete DG scheme is completed.
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For notation’s simplicity, we would like to write the above scheme into a compact form

(
d

dt
uh(t), vh

)

= H(g(t);uh(t), vh), ∀vh ∈ Vh, (12)

where H(g(t);uh(t), v) is the DG spatial discretization over all elements. We divide this
term into two parts, such as

H(g(t);uh(t), vh) = Hc(uh(t), vh) + Hb(g(t);vh), (13)

where the bilinear form Hc and the linear form Hb are respectively defined by

Hc(w,v) = (βw,vx) +
∑

1≤j≤N−1

ĥ(w)j [[v]]j − ĥ(w)Nv−
N, ∀w,v ∈ H 1,h(Th); (14a)

Hb(g;v) = βg(t)v+
0 , ∀v ∈ H 1,h(Th). (14b)

Here the abbreviations “c” and “b” stand for “core” and “boundary” of the elements respec-
tively. Further, for any function w, we denote the jump at boundary of computation domain
as [[w]]0 = w+ and [[w]]N = w−

N , and denote the square of all jumps at every interface points
by

[[[w]]]2 =
∑

0≤j≤N

[[w]]2
j . (15)

Similar as those properties [12] for periodic boundary condition, the bilinear form
Hc(·, ·) are also approximating skew-symmetrical, negative semi-definite, and continuous
in the finite element space. These properties are given one by one in the next lemma. Since
the proof is trivial and almost same as that in [12], we omit it here.

Lemma 3.1 The bilinear form Hc(·, ·) has the following properties:

Hc(w,v) + Hc(v,w) = −
∑

0≤j≤N

|β|[[w]]j [[v]]j , ∀w,v ∈ H 1,h(Th); (16a)

Hc(v, v) = −|β|
2

[[[v]]]2, ∀v ∈ H 1,h(Th); (16b)

|Hc(w,v)| ≤ γ0μ|β|h−1‖w‖‖v‖, ∀w,v ∈ Vh, (16c)

where γ0 is a positive constant independent of h and μ.

Remark 3.1 In [12] we have defined this constant as γ0 = √
2 + 1, by using the inverse

properties (i) and (ii), and a simple application of Cauchy-Schwarz inequality.

Based on this lemma, we are easy to obtain the stability result and error estimate for the
semi-discrete version of the DG method.

Theorem 3.1 For the semi-discrete DG method, we have, for any t ∈ [0, T ], that

‖uh‖2(t) ≤ ‖uh‖2(0) +
∫ t

0
|β|g2(s)ds. (17)
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Proof Below we drop the time argument t for simplicity. Taking the test function vh = uh

in algorithm (12), then we can use identity (16b) in Lemma 3.1 to get

(
d

dt
uh, uh

)

= Hc(uh,uh) + Hb(g;uh) = −|β|
2

[[[uh]]]2 + βgu+
h,0. (18)

Since |u+
h,0| ≤ [[[uh]]], an application of Young’s inequality to the last term yields that

1

2

d

dt
‖uh‖2 + 1

2
|β|[[[uh]]]2 ≤ 1

2
|β|g2 + 1

2
|β|[[[uh]]]2. (19)

So we complete the proof of this theorem by an integration in time. �

Theorem 3.2 Let u and uh be the solution of model problem (1) and the semi-discrete
version of DG method (12), respectively. Assume that u and ut are both in L∞(0, T ;Hk+1),
then there exists a positive constant C independent of h such that

‖u − uh‖L∞(L2) ≤ Chk+1. (20)

Proof As the usual treatment in the analysis for finite element method, we divide the error
into two parts, namely u−uh = ξ −η, where ξ = Qhu−uh and η = Qhu−u. Here and be-
low we drop the time arguments x and t , for simplicity. To obtain the optimal error estimate,
we take the projection as Qh = Rh.

We multiply the test function on the first equation of model problem (1), and make an
integration by parts to yield the variation form of model problem (1). Noticing the inflow
boundary condition and the continuity of u, this variation form is as same as semi-discrete
algorithm (12), which reads

(
du

dt
, v

)

= H(g;u,v), ∀v ∈ H 1,h(Th). (21)

Then we subtract semi-discrete algorithm (12) from variation formula (21), with the same
test function v = vh = ξ in both equations. This gives the identity

(ξt , ξ) = Hc(ξ, ξ) − Hc(η, ξ) + (ηt , ξ). (22)

By using again identity (16b) in Lemma 3.1, we get Hc(ξ, ξ) = − 1
2 |β|[[[ξ ]]]2. By the virtue

of the definition of projection Rh, (5a) and (5b), the expression of (14a) implies that

Hc(η, ξ) =
∑

1≤j≤N

[∫

Ij

βηξx dx + βη−
j [[ξ ]]j

]

= 0, (23)

since [[ξ ]]N = ξ−
N . Using Cauchy-Schwarz inequality to get |(ηt , ξ)| ≤ (‖ηt‖2 + ‖ξ‖2)/2,

then from (22) we have that

1

2

d

dt
‖ξ‖2 + 1

2
|β|[[[ξ ]]]2 ≤ 1

2
‖ηt‖2 + 1

2
‖ξ‖2, ∀t ∈ [0, T ]. (24)

Since (6) holds for both projections, it follows from the initial setting uh(0) = Phf (x)

that ‖ξ(0)‖ ≤ Chk+1. Also we have ‖η‖L∞(L2) ≤ Chk+1 form (6), since we assume u ∈
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L∞(0, T ;Hk+1). An application of Gronwall’s inequality to (24) yields that

‖ξ(t)‖2 +
∫ t

0
|β|[[[ξ(s)]]]2 ds ≤ C

∫ t

0
‖ηt (s)‖2 ds + C‖ξ(0)‖2

≤ Ch2k+2, ∀t ∈ [0, T ]. (25)

Finally, we use (6) again and obtain ‖u(t) − uh(t)‖2 ≤ Ch2k+2 for any t ∈ [0, T ]. It com-
pletes the proof of this theorem. �

4 RKDG Scheme with TVDRK3 Time-Marching

In this section we would like to obtain the stability result and an optimal error estimate
for the fully discrete version of RKDG method, coupled with the explicit TVDRK3 time
marching. In this paper we refer to this algorithm under consideration as RKDG3.

4.1 RKDG3

Let τ be the time step. In general, it maybe changes for different n; however, for simplicity
we take it as a constant in this paper.

The RKDG3 algorithm is defined as follows. First, we set the initial value u0
h = Phf (x).

Then for each n ≥ 0, the approximate solution from the time nτ to the next time (n + 1)τ is
obtained by finding successively u

n,1
h , u

n,2
h and un+1

h in the finite element space Vh, such that
for any vh ≡ vh(x) ∈ Vh, there hold three variation forms

(u
n,1
h , vh) = (un

h, vh) + τ H(gn;un
h, vh), (26a)

(u
n,2
h , vh) = 3

4
(un

h, vh) + 1

4
(u

n,1
h , vh) + τ

4
H(gn,1;un,1

h , vh), (26b)

(un+1
h , vh) = 1

3
(un

h, vh) + 2

3
(u

n,2
h , vh) + 2τ

3
H(gn,2;un,2

h , vh), (26c)

where the last term in each equation is the DG spatial discretization H(	; ·, ·), which has
been defined in (14). The including values gn, gn,1 and gn,2 are the approximations of the
boundary condition g(t) at different time stages. We postpone the detailed setting of these
values here, and will discuss them in the error analysis.

In order to obtain the stability and error estimate for the above fully discrete version in a
uniform framework, we would like to abstract each time-marching of the RKDG3 algorithm
into the following black box: given an input function wn

h ∈ Vh, find successively the solution
w

n,1
h ,w

n,2
h and wn+1

h in the finite element space Vh, such that the variation forms

(w
n,1
h , vh) = (wn

h, vh) + τ Hc(wn
h, vh) + τ Ln(vh), (27a)

(w
n,2
h , vh) = 3

4
(wn

h, vh) + 1

4
(w

n,1
h , vh) + τ

4
Hc(w

n,1
h , vh) + τ

4
Ln,1(vh), (27b)

(wn+1
h , vh) = 1

3
(wn

h, vh) + 2

3
(w

n,2
h , vh) + 2τ

3
Hc(w

n,2
h , vh) + 2τ

3
Ln,2(vh), (27c)

hold for any test function vh ∈ Vh. For this black box, wn+1
h is the output function, w

n,1
h

and w
n,2
h are the so-called intermediate solution. For convenience, we also denote Ln,0(·) =

Ln(·).
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In (27), the bilinear form Hc(·, ·) is defined as same as (14a) throughout this paper, while
the linear forms Ln,
(·) maybe have different definition for different purposes. For example,
in the implementation of RKDG3 scheme and its stability analysis these linear forms are
given by Ln,
(v) = Hb(gn,
;v) = βgn,
v+

0 , due to (26) and (13). In the error estimate, these
linear forms will be redefined again; see (53).

4.2 Abstract Analysis

For linear evolution equation, the explicit TVDRK3 time-marching is equal to the Taylor
expansion up to the third order time derivatives, which have a strong relationship with some
certain linear combinations of the intermediate solution at each time stage of the RKDG3
algorithm. Thus we follow [12] and define for black box (27) the quantities

D1w
n
h = w

n,1
h − wn

h, D2w
n
h = 2w

n,2
h − w

n,1
h − wn

h,
(28)

D3w
n
h = wn+1

h − 2w
n,2
h + wn

h.

By virtue of some linear combinations of each variation form in the black box, it is easy
to see that the above quantities have a nice relation. We proclaim only these results in the
following lemma. For more details about its proof, see [12].

Lemma 4.1 For any vh ∈ Vh, we have the following identities

(D1w
n
h, vh) = τ Hc(wn

h, vh) + τ Ln(vh), (29a)

(D2w
n
h, vh) = τ

2
Hc(D1w

n
h, vh) + τ

2
D1 Ln(vh), (29b)

(D3w
n
h, vh) = τ

3
Hc(D2w

n
h, vh) + τ

3
D2 Ln(vh), (29c)

where D1 Ln(·) and D2 Ln(·) are linear combinations of the linear forms Ln(·), Ln,1(·) and
Ln,2(·). In detail, they read

D1 Ln(vh) = Ln,1(vh) − Ln(vh), (29d)

D2 Ln(vh) = 2Ln,2(vh) − Ln,1(vh) − Ln(vh). (29e)

Although at this time the linear forms in black box (27) are not given explicitly, they
are assumed to have the following continuity properties: there exist positive constants
ρn,
, σn,
, πn,
 and θn,
 independent of vh, such that

|Ln,
(vh)| ≤ ρn,
[[[vh]]] + σn,
‖vh‖, 
 = 0,1,2; (30a)

|D
Ln(vh)| ≤ πn,
[[[vh]]] + θn,
‖vh‖, 
 = 1,2. (30b)

These bounded constants will be determined later, which are not same for different purpose.
Now we are going to build up a basic estimate for black box (27). To do that, we first

take the test function vh as wn
h , 4w

n,1
h and 6w

n,2
h in (27a), (27b) and (27c), respectively, and

then sum them up to obtain the following energy equality

3‖wn+1
h ‖2 − 3‖wn

h‖2 = �1 + �2 + �3, (31)

where
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�1 = τ
[

Hc(wn
h,w

n
h) + Hc(w

n,1
h ,w

n,1
h ) + 4Hc(w

n,2
h ,w

n,2
h )

]
, (32a)

�2 = τ
[

Ln(wn
h) + Ln,1(w

n,1
h ) + 4Ln,2(w

n,2
h )

]
, (32b)

�3 = ‖2w
n,2
h − w

n,1
h − wn

h‖2 + 3(wn+1
h − wn

h,w
n+1
h − 2w

n,2
h + wn

h). (32c)

Below we will estimate each above term separately.
It is easy to estimate the first two terms �1 and �2. By using identity (16b) in Lemma 3.1,

it is easy to see that

�1 = −τ |β|
2

[
[[[wn

h]]]2 + [[[wn,1
h ]]]2 + 4[[[wn,2

h ]]]2
]
. (33)

Noticing the assumption (30) for the linear forms Ln,
(·), 
 = 0,1,2, after some simple
applications of Young’s inequality for those terms including the boundary jump, we have
that

�2 ≤ τ
[
ρn,0[[[wn

h]]] + ρn,1[[[wn,1
h ]]] + 4ρn,2[[[wn,2

h ]]] + σn,0‖wn
h‖ + σn,1‖wn,1

h ‖ + 4σn,2‖wn,2
h ‖]

≤ |β|τ
4

[
[[[wn

h]]]2 + [[[wn,1
h ]]]2 + 4[[[wn,2

h ]]]2
]
+ τ�n

1, (34)

where �n
1 depends on those constants in assumption (30), and is defined as

�n
1 = 1

|β|
[
ρ2

n,0 + ρ2
n,1 + 4ρ2

n,2

] + σn,0‖wn
h‖ + σn,1‖wn,1

h ‖ + 4σn,2‖wn,2
h ‖. (35)

For the third term �3, we would like to express it in term of D1w
n
h,D2w

n
h and D3w

n
h .

Noticing the identity wn+1
h −wn

h = D1w
n
h +D2w

n
h +D3w

n
h , we have the equivalent represen-

tation

�3 = (D2w
n
h,D2w

n
h) + 3(D3w

n
h,D1w

n
h) + 3(D3w

n
h,D2w

n
h) + 3(D3w

n
h,D3w

n
h). (36)

Each above term on the right-hand side is denoted respectively by �i, (i = 1,2,3,4), which
will be estimated separately below.

First we estimate the sum of �1 and �2. To do that, we use identities (29b) and (29c) in
Lemma 4.1, with the test functions vh = D2w

n
h and vh = D1w

n
h , respectively. Then it follows

from a direct application of (16a) in Lemma 3.1, that

�1 + �2 = −(D2w
n
h,D2w

n
h) + 2(D2w

n
h,D2w

n
h) + 3(D3w

n
h,D1w

n
h)

= −‖D2w
n
h‖2 + τ Hc(D1w

n
h,D2w

n
h) + τD1 Ln(D2w

n
h) + τ Hc(D2w

n
h,D1w

n
h)

+ τD2 Ln(D1w
n
h)

= −‖D2w
n
h‖2 − τ

∑

0≤j≤N

|β|[[D1w
n
h]]j [[D2w

n
h]]j + τD1 Ln(D2w

n
h) + τD2 Ln(D1w

n
h).

We first use assumption (30) to bound the last two terms, and then use Cauchy inequality
and Young’s inequality to estimate those terms including the boundary jump. Finally it yields
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that

�1 + �2 ≤ −‖D2w
n
h‖2 + τ

[ |β|
16

[[[D1w
n
h]]]2 + 4|β|[[[D2w

n
h]]]2

]

+ τ

[ |β|
16

[[[D1w
n
h]]]2 + 4

|β|π
2
n,2

]

+ τ

[
1

4
|β|[[[D2w

n
h]]]2 + 1

|β|π
2
n,1

]

+ τ
[
θn,2‖D1w

n
h‖ + θn,1‖D2w

n
h‖

]
.

Next we turn to estimate the term �3. To do that, we take the test function vh = D2w
n
h in

identity (29c) in Lemma 4.1, and then use identity (16b) in Lemma 3.1. It yields

�3 = 3(D3w
n
h,D2w

n
h) = τ Hc(D2w

n
h,D2w

n
h) + τD2 Ln(D2w

n
h)

= −|β|τ
2

[[[D2w
n
h]]]2 + τD2 Ln(D2w

n
h)

≤ −|β|τ
4

[[[D2w
n
h]]]2 + τ

|β|π
2
n,2 + τθn,2‖D2w

n
h‖,

where in the last step we have used assumption (30) and used Young’s inequality to control
the jump term.

Now we estimate the term �4, which need a more analysis than the formers. We first take
the test function vh = D3w

n
h in identity (29c) in Lemma 4.1. Denote by λ = μ|β|τh−1 the so-

called CFL number. By virtue of assumption (30) for the linear forms, a simple manipulation
yields that

‖D3w
n
h‖2 = (D3w

n
h,D3w

n
h) = τ

3
Hc(D2w

n
h,D3w

n
h) + τ

3
D2 Ln(D3w

n
h)

≤ 1

3
γ0λ‖D2w

n
h‖‖D3w

n
h‖ + 1

3
τ
[
πn,2[[[D3w

n
h]]] + θn,2‖D3w

n
h‖

]

≤ 1

3

[
γ0λ‖D2w

n
h‖ + τ [πn,2μ2h

−1/2 + θn,2]
]‖D3w

n
h‖,

where in the second step we have used the continuity property (16c) in Lemma 3.1, and in
the last step we have used the inverse inequality (ii). Consequently, by the simple inequality
(a + b)2 ≤ 2(a2 + b2) we get

�4 = 3‖D3w
n
h‖2 ≤ 2

3
γ 2

0 λ2‖D2w
n
h‖2 + 2

3
τ 2[πn,2μ2h

−1/2 + θn,2]2.

Now we substitute the above estimates about terms �1,�2,�3 and �4, into formula (36).
Since λ = μ|β|τh−1 and (μ2)

2 ≤ μ, it yields that

�3 ≤ |β|τ
8

[[[D1w
n
h]]]2 + 4|β|τ [[[D2w

n
h]]]2 +

(
2

3
γ 2

0 λ2 − 1

)

‖D2w
n
h‖2 + τ�n

2

≤ |β|τ
4

[[[[wn
h]]]2 + [[[wn,1

h ]]]2
] + 8|β|τ‖D2w

n
h‖2

�h
+

(
2

3
γ 2

0 λ2 − 1

)

‖D2w
n
h‖2 + τ�n

2

≤ |β|τ
2

[[[[wn
h]]]2 + [[[wn,1

h ]]]2
] +

(
2

3
γ 2

0 λ2 + 8λ − 1

)

‖D2w
n
h‖2 + τ�n

2, (37)
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where in the second step we have used the simple inequality [[[v]]]2 ≤ 2‖v‖2
�h

, and in the
last step we have used the inverse inequality (ii). Here �n

2 = �n
21 + �n

22 is resulted from
assumption (30) for the linear forms D
Ln(·), in which each term is given as

�n
21 = 1

|β|
[
π2

n,1 + 5π2
n,2

] + 2

3
τ [πn,2μ2h

−1/2 + θn,2]2, (38a)

�n
22 = [

θn,2‖D1w
n
h‖ + θn,1‖D2w

n
h‖ + τθn,2‖D2w

n
h‖

]
. (38b)

Finally we insert the above estimates about �1,�2 and �3 into energy identity (31), and
get the following estimate

3‖wn+1
h ‖2 − 3‖wn

h‖2 + 2|β|[[[wn,2
h ]]]2τ ≤ P (λ)‖D2w

n
h‖2 + τ�n

1 + τ�n
2, (39)

where

P (λ) = 2

3
γ 2

0 λ2 + 8λ − 1. (40)

This implies the following lemma for black box (27).

Lemma 4.2 Assume wn+1
h ∈ Vh is the output function by the black box (27), with the input

function wn
h ∈ Vh. If the CFL number λ is small enough such that P (λ) ≤ 0, then we have

3‖wn+1
h ‖2 − 3‖wn

h‖2 + 2|β|[[[wn,2
h ]]]2τ ≤ τ�n

1 + τ�n
2, (41)

where �n
1 and �n

2 have been defined in (35) and (38), respectively.

In the next two subsections we will present the stability result and a priori error estimate
by mean of this lemma. To do that, we only define the corresponding linear forms in black
box (27) and the corresponding estimates for �n

1 and �n
2 .

4.3 Stability Analysis

To obtain the stability result, we have to give the explicit definition of linear forms Ln,
,
and the corresponding bounded constants in assumption (30). The nth time-marching in the
RKDG3 algorithm is to get un+1

h from un
h by black box (27), with three linear forms

Ln,
(vh) = βgn,
v+
h,0, 
 = 0,1,2. (42)

It is easy to see that

|Ln,
(vh)| ≤ |βgn,
||v+
h,0| ≤ |βgn,
|[[[vh]]], 
 = 0,1,2, (43a)

|D
Ln(vh)| ≤ |βD
g
n||v+

h,0| ≤ |βD
g
n|[[[vh]]], 
 = 1,2. (43b)

So the bounded constants in assumption (30) are determined as

ρn,
 = |βgn,
|, σn,
 = 0, 
 = 0,1,2; (44a)

πn,
 = |D
g
n|, θn,
 = 0, 
 = 1,2. (44b)

Consequently, from (35) and (38) we have
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�n
1 + �n

2 = |β|[(gn)2 + (gn,1)2 + 4(gn,2)2 + (D1g
n)2 + (D2g

n)2
]

≤ C|β|[(gn)2 + (gn,1)2 + (gn,2)2
]
. (45)

Now we can obtain the L2-norm stability for the RKDG3 algorithm by directly using the
elemental lemma 4.2 and inequality (45).

Theorem 4.1 Let un
h be the solution of the fully discrete version (26) of the DG method. For

any time level n satisfying (n + 1)τ ≤ T , we have the following stability result

‖un+1
h ‖2 + 2

3

n∑

m=0

|β|[[[um,2
h ]]]2τ ≤ ‖u0

h‖2 + C

n∑

m=0

[
(gm)2 + (gm,1)2 + (gm,2)2

]
τ, (46)

if the CFL number λ is small enough such that P (λ) < 0, where λ = μ|β|τh−1. In the above
estimate the bounded constant C > 0 is independent of h, τ and uh.

4.4 A Priori Error Estimate

In this subsection we would like to use Lemma 4.2 again and obtain the optimal a priori
error estimate for the RKDG3 algorithm, under the careful treatment for the inflow boundary
condition.

4.4.1 Error Equations

First we define the errors corresponding to different stages of the RKDG3 algorithm. To
do that, we introduce the reference functions paralleled to the Runge-Kutta time discrete,
following [12]. In detail, let u(0)(x, t) = u(x, t) be the exact solution of conservation law (1),
and

u(1)(x, t) = u(0)(x, t) + τu
(0)
t (x, t), (47a)

u(2)(x, t) = 3

4
u(0)(x, t) + 1

4
u(1)(x, t) + 1

4
τu

(1)
t (x, t). (47b)

Associated the construction of the explicit TVDRK3 time-marching, the local truncation
error in time direction can be bounded by the following lemma.

Lemma 4.3 If utttt ∈ L∞(0, T ;L2), there exists the local truncation error in time direction
E (x, t) ∈ L∞(0, T ;L2) such that

u(x, t + τ) = 1

3
u(0)(x, t) + 2

3
u(2)(x, t) + 2

3
τu

(2)
t (x, t) + E (x, t), x ∈ I, t + τ ∈ (0, T ],

(48)
where ‖E (x, t)‖L∞(L2) ≤ Cτ 4 and the bounded constant C > 0 is independent of τ .
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Proof Noticing definition (47), a simple manipulation yields that

1

3
u(0) + 2

3
u(2) + 2

3
τu

(2)
t = 5

6
u(0) + 1

6
u(1) + 1

6
τu

(1)
t + 2

3
τ

∂

∂t

[
3

4
u(0) + 1

4
u(1) + 1

4
τu

(1)
t

]

= 5

6
u(0) + 1

6
u(1) + 1

2
τu

(0)
t + 1

3
τu

(1)
t + 1

6
τ 2u

(1)
tt

= u(0) + τu
(0)
t + 1

2
τ 2u

(0)
tt + 1

6
τ 3u

(0)
tt t ,

where we have dropped the arguments (x, t) for notation’s simplicity. Consequently, from
Taylor’s expansion in time direction we have

u(x, t + τ) = 1

3
u(0)(x, t)+ 2

3
u(2)(x, t)+ 2

3
τu

(2)
t (x, t)+

∫ t+τ

t

utttt (s)

6
(t + τ − s)3 ds, (49)

where the last integration in (49) is the local truncation error, denoted by E (x, t). Hence,
under the assumption of this lemma we have ‖E (x, t)‖L∞(L2) ≤ Cτ 4, where the bounded
constant C > 0 is independent of τ . It completes the proof of this lemma. �

Denote, respectively, the error of the fully discrete algorithm at each time stage by

en,0 = u(0)(x, tn) − un
h, en,1 = u(1)(x, tn) − u

n,1
h , en,2 = u(2)(x, tn) − u

n,2
h . (50)

Similar as the analysis for semidiscrete version, we also take the projection Qh = Rh, and
divide each above stage error into the form en,
 = ηn,
 − ξn,
, where

ξn,
 = u
n,

h − Qhu

(
)(x, tn), ηn,
 = u(
)(x, tn) − Qhu
(
)(x, tn), 
 = 0,1,2. (51)

For notation’s simplicity, below we will omit the argument x and denote u(
)(x, t) = u(
)(t).
We also omit the index of time stage for the above notations if 
 = 0.

In what follows we are going to estimate ξn,
 and ηn,
 separately. The approximation
error ηn,
 are resulted from the projection, which can be estimated easily from the approxi-
mation property of finite element space. However, we have to make great efforts to estimate
ξn,
 ∈ Vh, starting from its error equations at any time stages.

The error equations are obtained in two steps. In the first step, we give the variation
forms for the reference values. To this end, we multiply the test function v ∈ H 1,h(Th) on
the both side of identities (47a), (47b) and (48). Let the time be t = tn. We transfer the time
derivatives to spatial derivatives, by virtue of the first equation in (1). Then an integration by
parts gives the variation formulas for u(0)(tn), u(1)(tn) and u(2)(tn). Noticing the continuity
of above variables and the inflow boundary condition, one can get the variation formulas
almost same as the RKDG3 algorithm. To be more specific, they are given as follows

(u(1)(tn), v) = (u(0)(tn), v) + τ H(u(0)(tn);u(0)(tn), v),

(u(2)(tn), v) = 3

4
(u(0)(tn), v) + 1

4
(u(1)(tn), v) + τ

4
H(u(1)(tn);u(1)(tn), v),

(u(0)(tn+1), v) = 1

3
(u(0)(tn), v) + 2

3
(u(2)(tn), v) + (E n, v) + 2τ

3
H(u(2)(tn);u(2)(tn), v),

where v is any function in H 1,h(Th), and E n = E (x, tn).
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In the second step, since Vh ⊂ H 1,h(Th), we subtract above variation formulas from the
RKDG3 algorithm, and obtain the following error equations under the framework of black
box (27): for any test function vh ∈ Vh, there hold

(ξn,1, vh) = (ξn, vh) + τ Hc(ξn, vh) + τ Ln(vh), (52a)

(ξn,2, vh) = 3

4
(ξn, vh) + 1

4
(ξn,1, vh) + τ

4
Hc(ξn,1, vh) + τ

4
Ln,1(vh), (52b)

(ξn+1, vh) = 1

3
(ξn, vh) + 2

3
(ξn,2, vh) + 2τ

3
Hc(ξn,2, vh) + 2τ

3
Ln,2(vh). (52c)

Here the bilinear form Hc(·, ·) is still defined same as (14a). However, the linear forms
Ln,
(·) are different with those in the stability analysis. In the process of error estimate,
Ln,
(·) are made up of the inflow boundary condition, the local truncation error in time
direction, and the linear combinations of approximation errors at different time stages.

For notation’s simplicity, we would like to write the linear form in a uniform construction

Ln,
(vh) = 1

τ
(ζ n,
, vh) − Hc(ηn,
, vh) − βϑn,
v+

h,0, 
 = 0,1,2. (53)

Each term on the right-hand side of (53) is defined with different meaning. The first term
represents the time discretization, since ζ n,
 is composed of the time-marching of approxi-
mation error and the truncation error in time, say,

ζ n,0 = ηn,1 − ηn, ζ n,1 = 4ηn,2 − 3ηn − ηn,1,
(54)

ζ n,2 = (3ηn+1 − ηn − 2ηn,2 + 3E n)/2.

The second one represents the DG spatial error without the inflow boundary condition, and
the last one represents the inflow boundary error, where

ϑn,
 = u(
)(a, tn) − gn,
, 
 = 0,1,2. (55)

Here, u(
) is the reference functions defined by (47), and gn,
 is the setting of the inflow
boundary at each time stage.

4.4.2 Estimates the Linear Forms (53)

We would like to estimate ξn,
 by using Lemma 4.2, since error equation (52) is given in
the form of black box (27). To this end, we need to determine those bounded constants in
assumption (30) for the linear form (53). This depends on the estimates for the stage errors
and their combinations.

Below we would like to assume the exact solution of model problem (1) is smooth enough
such that u,ut and utt ∈ L∞(0, T ;Hk+1). It follows from (6) that

‖ηn‖ + ‖ηn,1‖ + ‖ηn,2‖ ≤ Chk+1, ∀n : nτ ≤ T ; (56)

where the constant C > 0 is independent of n,h and τ . Next we estimate the time-marching
of stage error, by the fact that the projection Qh is linear and independent of time.

For any given constants {c
}2

=0 satisfying

∑2

=0 c
 = 0, denote Ln

	(u) ≡ ∑2

=0 c
u

(
)(tn).
From definition (47) it follows that Ln

	(u) is equal to a certain linear combination of u(0)(tn),
τu

(0)
t (tn) and τu

(1)
t (tn). Consequently Ln

	(u) ∈ Hk+1. The corresponding projection error is
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∑2

=0 c
η

n,
. Then it follows from (6) that ‖∑2

=0 c
η

n,
‖ ≤ Chk+1τ , where the constant
C > 0 solely depends on ‖ut‖L∞(Hk+1) and ‖utt‖L∞(Hk+1).

Further denote L̃n
	(u) ≡ u(x, tn+1) − u(x, tn), which satisfies ‖L̃n

	(u)‖k+1 ≤
τ‖ut‖L∞(Hk+1). Noticing the projection error is ηn+1 − ηn, it follows from (6) that
‖ηn+1 − ηn‖ ≤ Chk+1τ , where the constant C > 0 solely depends on ‖ut‖L∞(Hk+1).

It follows from Lemma 4.3 that ‖E n‖ = O(τ 4) holds uniformly. By (54), the definition
of ζ n,
, we have

‖ζ n,
‖ ≤ C(hk+1τ + δ2
τ
4), 
 = 0,1,2, (57)

where the constant C > 0 is independent of n,h, and τ . Here δ2
 is the usual Kronecker
symbol, i.e., δ2
 = 1 if 
 = 2; otherwise, δ2
 = 0.

Lemma 4.4 There exist positive constants C independent of n,h, τ and vh, such that

|Ln,
(vh)| ≤ |βϑn,
|[[[vh]]] + C
[
hk+1 + δ2
τ

3
]‖vh‖, ∀vh ∈ Vh, 
 = 0,1,2, (58a)

|D
Ln(vh)| ≤ |βD
ϑ
n|[[[vh]]] + C

[
hk+1 + δ2
τ

3
]‖vh‖, ∀vh ∈ Vh, 
 = 1,2, (58b)

where ϑn,
 = u(
)(a, tn) − gn,
.

Proof The estimates are almost same, so we only prove estimate (58a) for 
 = 2. Since
(57), we get | 1

τ
(ζ n,2, vh)| ≤ C(hk+1 + τ 3)‖vh‖. Same as (23), the projection Rh implies

Hc(ηn,2, vh) = 0. Further, we also have |βϑn,2v+
h,0| ≤ |βϑn,2|[[[vh]]]. Now we complete the

proof of this lemma. �

As a direct conclusion of Lemma 4.4, the bounded constants in assumption (30) for the
linear form (53) are determined as

ρn,
 = |βϑn,
|, σn,
 = C
[
hk+1 + δ2
τ

3
]
, 
 = 0,1,2; (59a)

πn,
 = |βD
ϑ
n|, θn,
 = C

[
hk+1 + δ2
τ

3
]
, 
 = 1,2. (59b)

By noticing the definitions (35) and (38), we use triangle inequality to both ‖D
ξ
n‖ and

|D
ϑ
n| for 
 = 1,2, and then have the following error estimate for the linear form (53) such

that

�n
1 + �n

2 ≤ C(h2k+2 + τ 6) + E n
b + E n

FE. (60a)

Here, E n
b and E n

FE are the boundary error and the global L2-error, respectively. They are given
as

E n
b = C

[
(ϑn)2 + (ϑn,1)2 + (ϑn,2)2

]
, E n

FE = C
[‖ξn‖2 + ‖ξn,1‖2 + ‖ξn,2‖2

]
. (60b)

Before we use Lemma 4.2 to obtain the optimal a priori error estimate, we need to esti-
mate the above two quantities in the next two subsections.

4.4.3 Estimate the Boundary Errors

The natural expectation is that the boundary error does not destroy the accurate of the
RKDG3 algorithm for periodic boundary condition, namely, the boundary error should be
bounded by the form ϑn,
 = O(hk+1 + τ 3) for 
 = 0,1,2. Below we will discuss ϑn,
 under
the different setting of boundary condition.
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Recall that, in the explicit TVDRK3 time-marching, the intermediate solutions are given
at the certain time stages. Therefore, an immediate setting is to take the intermediate bound-
ary condition gn,
 = g

n,

Exact as the exact boundary condition at these time stages, such as

gn
Exact = g(tn), g

n,1
Exact = g(tn + τ), g

n,2
Exact = g

(

tn + 1

2
τ

)

. (61)

To verify whether there holds ϑn,
 = u(
)(a, tn) − g
n,

Exact = O(hk+1 + τ 3), we express the

reference value at the inflow boundary in term of the exact boundary information g(t). Since
u(a, t) = g(t) along the inflow boundary, it is easy to see that u(0)(a, tn) = g(tn), and

u(1)(a, tn) = g(tn) + τg′(tn), (62a)

u(2)(a, tn) = g(tn) + 1

2
τg′(tn) + 1

4
τ 2g′′(tn). (62b)

Obviously ϑn = 0, and the simple Taylor expansions for g
n,1
Exact and g

n,2
Exact show that

ϑn,1 = u(1)(a, tn) − g
n,1
Exact = 1

2
τ 2g′′(tn) + O(τ 3), (63a)

ϑn,2 = u(2)(a, tn) − g
n,2
Exact = 1

8
τ 2g′′(tn) + O(τ 3). (63b)

If g′′(tn) = 0, this so-called exact treatment for the inflow boundary condition leads to a
reduction of accuracy that the third order temporal error decrease to two order.

To avoid the reduction of accuracy, in this paper we will consider two correction tech-
niques, which are referred to as strategies (I) and (II).

Strategy (I) is to take the local solution of each Runge-Kutta time-marching, namely

gn,
 = g
n,

I = u(
)(a, tn), 
 = 0,1,2, (64)

where u(
)(a, tn), 
 = 0,1,2, are given by (62). From (70), we can see that this strategy (I)
does not bring any error at the inflow boundary. However, this treatment is not easy to
implement in a uniform coding.

On contract with strategy (I), strategy (II) is to take the global solution of Runge-Kutta
time marching. That is to say, we define the following ordinary differential equation

{
wt(t) = g′(t), t > 0
w(0) = g(0),

(65)

in which the exact solution is just the given boundary condition g(t). Next we apply the
same explicit TVDRK3 algorithm to get the approximation wn,
 at every time stages. Then
we take the inflow boundary condition as gn,
 = g

n,

II = wn,
. This correction technique has

been proposed by Carpenter and Gottlieb [1].
Now we check the order of the boundary error ϑn,
 for 
 = 0,1,2. It is well known that

the explicit TVDRK3 algorithm has error estimate g(tn)−wn = O(τ 3). Consequently, ϑn =
u(0)(a, tn)− gn

II = g(tn)−wn = O(τ 3). Hence it follows from (62a) and (62b), respectively,
that

ϑn,1 = u(1)(a, tn) − g
n,1
II = u(1)(a, tn) − wn,1

= [g(tn) + τg′(tn)] − [wn + τg′(tn)] = g(tn) − wn = O(τ 3), (66a)
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ϑn,2 = u(2)(a, tn) − g
n,2
II = u(2)(a, tn) − wn,2

=
[

g(tn) + 1

2
τg′(tn) + 1

4
τ 2g′′(tn)

]

−
[

3

4
wn + 1

4
wn,1 + 1

4
τg′(tn+1)

]

=
[

g(tn) + 1

2
τg′(tn) + 1

4
τ 2g′′(tn)

]

−
[

3

4
wn + 1

4
(wn + τg′(tn)) + 1

4
τg′(tn+1)

]

= g(tn) − wn + 1

4
τ 2g′′(tn) + 1

4
τ
[
g′(tn) − g′(tn+1)

] = O(τ 3), (66b)

where in the last step in (66b) we have used Taylor’s expansion for g′(tn+1) at the point
t = tn.

The above analysis show that although the strategy (II) introduces an error at each time
stage, but this error is more or less the same as the temporal error in the interior domain.
Therefore, DG approximations near the boundary will be better than with the exact boundary
values.

4.4.4 Optimal Error Estimate

Now we would like to obtain a priori optimal error estimate if we use the strategy (I) and
(II) to cope with the inflow boundary condition to ensure

E n
b ≤ C(h2k+2 + τ 6), (67)

where the bounded constant C > 0 is dependent of n,h and τ .
Noticing Lemma 4.2 and (60a), we have to only estimate the second term E n

FE in (60b).
For this purpose, we give the following lemma.

Lemma 4.5 There exists constant C > 0 independent of h and τ , such that

‖ξn,1‖2 ≤ C
[‖ξn‖2 + τ |β|(ϑn,0)2 + τ 2h2k+2

]
, (68a)

‖ξn,2‖2 ≤ C
[‖ξn‖2 + ‖ξn,1‖2 + τ |β|(ϑn,1)2 + τ 2h2k+2

]
. (68b)

Proof The proofs for the above conclusions are same, so we only prove the first one now.
To do that, we take the test function vh = ξn in (26a). Then we use the continuity inequality
(16c) in Lemma 3.1, and the inverse property (ii), to get that

‖ξn,1‖2 ≤ ‖ξn‖‖ξn,1‖ + γ0λ‖ξn‖‖ξn,1‖ + τ
[
ρn,0[[[ξn,1]]] + σn,0‖ξn,1‖]

≤ [
(1 + γ0λ)‖ξn‖ + τμ2h

− 1
2 ρn,0 + τσn,0

]‖ξn,1‖.
By inserting (59), and dropping the term ‖ξn,1‖ on both side, we obtain conclusion (68a),
where the bounded constant C > 0 depends on λ. It completes the proof of this lemma. �

As a direct corollary of Lemma 4.5, we can bound E n
FE in form

E n
FE ≤ C

[‖ξn‖2 +τ |β|(ϑn,0)2 +τ |β|(ϑn,1)2 +τ 2h2k+2
] ≤ C

[‖ξn‖2 +τ E n
b +τ 2h2k+2

]
, (69)

which also depends on the boundary error E n
b . Applying Lemma 4.2, as well as (60a), (67)

and (69), we have for any n : nτ ≤ T that

3‖ξn+1‖2 − 3‖ξn‖2 + 2|β|[[[ξn,2]]]2τ ≤ C
[‖ξn‖2 + h2k+2 + τ 6

]
τ, (70)

since τ < 1, where the bounded constant C > 0 is independent of n,h and τ .
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As we have shown before, there holds ‖ξ 0‖ ≤ Chk+1. Then an application of discrete
Gronwall’s inequality for (70), as well as the approximation property (56), yields that

‖en‖2 ≤ C(h2k+2 + τ 6), ∀n : nτ ≤ T , (71)

where the bounded constant C > 0 is independent of n,h and τ . Now we obtain the opti-
mal error estimate for the RKDG3 algorithm with both strategies (I) and (II) for the inflow
boundary condition. We conclude these results in the following theorem.

Theorem 4.2 Let uh be the numerical solution of the fully discrete version (27) of the DG
method coupled with the explicit TVDRK3 time marching, where the inflow boundary condi-
tion is approximated by either strategy (I) or strategy (II), and the finite element space Vh is
made up of piecewise polynomials with degree k ≥ 1, defined on the regular triangulations
of I = (a, b).

Let u is the exact solution of problem (1), which is sufficiently smooth such that
u,ut , utt ∈ L∞(0, T ;Hk+1) and utttt ∈ L∞(0, T ;L2). Then there exists a positive con-
stant C independent of h and τ , such that

max
nτ≤T

‖u(tn) − un
h‖ ≤ C(hk+1 + τ 3), (72)

if the CFL number λ is small enough such that P (λ) < 0, where λ = μ|β|τh−1.

Remark 4.1 This error estimate as well as the above stability result can be extended easily to
the multidimensional problem. There are no essential difficulties since our analysis is based
on the general energy analysis, which can be applied to arbitrary mesh with varying sharp
and size.

Remark 4.2 If we take the standard L2-projection, we will lost a half order and get the
quasi-optimal error estimate, because of the approximation property (6) and the loss of exact
collocation at the downwind endpoint of each element.

5 Numerical Experiments

To illustrate the above analysis numerically, we use the fully discrete version (27) of the
DG method coupled with the explicit TVDRK3 time-marching to solve ut + ux = 0 with
the exact solution u(x, t) = sin(x − t). The spatial domain is I = (0,4π), and the initial
value is given by the exact solution at t = 0. Two types of boundary conditions will be
considered in our test. One is the periodic condition u(0, t) = u(4π, t), and the other is the
inflow boundary condition u(0, t) = sin(−t).

In our test, we always take the finite element space as the piecewise quadratic polynomi-
als, and set the final time T = 20. The time step is always taken as τ = 0.16h. In Table 1 we
list the error and the approximating error order in L2-norm and L∞-norm, respectively, for
the periodic boundary condition and for three kinds of treatments of the inflow boundary.

One can see the optimal error order for periodic boundary condition, and the reduction
of accuracy if we take the exact approximation (64) on the inflow boundary. For the strate-
gies (I) and (II) the error order is restored to be optimal in L2-norm and L∞-norm, respec-
tively, However, there are no obvious difference in numerical results for the both correction
techniques.
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Table 1 Errors and orders for different boundary conditions and different treatments for inflow boundary
condition. Here N is the number in the partition of (0,4π)

N L∞-error L∞-order L2-error L2-order

Periodic b.c. 40 5.10e−4 4.81e−4

80 6.50e−5 2.97 1.64e−5 3.03

160 8.18e−6 2.99 7.35e−6 3.01

320 1.03e−6 2.99 9.17e−7 3.00

640 1.29e−7 3.00 1.15e−7 3.00

1280 1.61e−8 3.00 1.43e−8 3.00

Exact for inflow b.c. 40 6.14e−4 4.13e−4

80 1.04e−4 2.56 5.17e−5 3.00

160 2.10e−5 2.31 6.55e−6 2.98

320 6.18e−6 1.77 8.88e−7 2.88

640 1.39e−6 2.15 1.19e−7 2.91

1280 3.00e−7 2.22 1.59e−8 2.89

Local for inflow b.c. 40 5.14e−4 4.02e−4

80 6.45e−5 3.00 5.01e−5 3.01

160 8.08e−6 3.00 6.26e−6 3.00

320 1.01e−6 3.00 7.82e−7 3.00

640 1.27e−7 3.00 9.77e−8 3.00

1280 1.59e−8 3.00 1.22e−8 3.00

Global for inflow b.c. 40 5.04e−4 4.03e−4

80 6.31e−5 3.00 5.02e−5 3.01

160 7.92e−6 3.00 6.26e−6 3.00

320 9.93e−7 3.00 7.83e−7 3.00

640 1.24e−7 3.00 9.77e−8 3.00

1280 1.55e−8 3.00 1.22e−8 3.00

6 Concluding Remarks

In this paper we discuss the detailed treatment for inflow boundary condition, under the
general RKDG framework for linear conservation law. When the explicit TVDRK3 (one
type of high order) time-marching is used, the boundary condition must been defined in a
reasonable form to avoid the reduction of accuracy. Both theoretical analysis and numerical
experiment show strategy (I) and (II) are good candidate techniques to restore the algorithm
to be optimal order error estimate. In the further work we will extend our analysis on these
correction techniques to nonlinear conservation laws, in which the approximating skew-
symmetric property (16a) does not hold again. Also we will consider the other types of
equations with high order derivatives.
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