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Abstract In this paper, we study a time discrete scheme for the initial value problem of
the ES-BGK kinetic equation. Numerically solving these equations are challenging due to
the nonlinear stiff collision (source) terms induced by small mean free or relaxation time.
We study an implicit-explicit (IMEX) time discretization in which the convection is ex-
plicit while the relaxation term is implicit to overcome the stiffness. We first show how the
implicit relaxation can be solved explicitly, and then prove asymptotically that this time
discretization drives the density distribution toward the local Maxwellian when the mean
free time goes to zero while the numerical time step is held fixed. This naturally imposes
an asymptotic-preserving scheme in the Euler limit. The scheme so designed does not need
any nonlinear iterative solver for the implicit relaxation term. Moreover, it can capture the
macroscopic fluid dynamic (Euler) limit even if the small scale determined by the Knudsen
number is not numerically resolved. We also show that it is consistent to the compress-
ible Navier-Stokes equations if the viscosity and heat conductivity are numerically resolved.
Several numerical examples, in both one and two space dimensions, are used to demonstrate
the desired behavior of this scheme.
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1 Introduction

When gas is in thermal non-equilibrium, which are encountered frequently in hypersonic
flows, vehicles at high altitudes and flows expanding into vacuum, the macroscopic con-
stitutive laws based on the continuum hypothesis tend to breakdown. A critical parameter
that characterizes when the gas is rarefied is the Knudsen number (ε = λ/L), where λ is the
average distance traveled by the molecules between collisions, or the mean free path, and
L is the characteristic length scale. When the flow gradients are large, such as in shock or
boundary layers, continuum fluid dynamics equations are not adequate, and one needs to
use a kinetic equation. The fundamental kinetic equation for rarefied gas is the Boltzmann
equation,

∂f

∂t
+ v · ∇xf = 1

ε
Q(f ), (1.1)

which governs the evolution of the density f (t, x, v) of monoatomic particles in the phase,
where (x, v) ∈ R

dx × R
dv . Boltzmann’s collision operator has the fundamental properties of

conserving mass, momentum and energy: at the formal level

∫
Rd

Q(f,f )φ(v)dv = 0, φ(v) = 1, v, |v|2.

Moreover, the equilibrium is the local Maxwellian distribution

M[f ](v) = ρ

(2πT )dv/2
exp

(
−|u − v|2

2T

)
, (1.2)

where ρ,u,T are the density, macroscopic velocity and temperature of the gas, defined by

ρ =
∫

Rdv

f (v)dv =
∫

Rdv

M[f ](v)dv,

u = 1

ρ

∫
Rdv

vf (v)dv = 1

ρ

∫
Rdv

vM[f ](v)dv,

(1.3)

and

T = 1

dvρ

∫
Rdv

|u − v|2f (v)dv = 1

dvρ

∫
Rdv

|u − v|2 M[f ](v)dv. (1.4)

The Boltzmann equation is closely related to the Navier-Stokes system which governs
the evolution of macroscopic density, momentum and energy in the continuum regime:

⎧⎪⎪⎨
⎪⎪⎩

∂ρ

∂t
+ divx(ρu) = 0,

∂ρu

∂t
+ divx(ρu ⊗ u + pI) = ε divx[μσ(u)],

∂E
∂t

+ divx((E + p)u) = ε divx(μσ(u)u + κ∇xT ),

(1.5)

where p is the pressure, E represents the total energy

E = 1

2
ρu2 + dv

2
ρT ,
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and I is the identity matrix. Moreover, the tensor σ(u) denotes the strain rate tensor given
by

σ(u) = (∇xu + (∇xu)t
) − 2

dv

divx uI.

These equations constitute a system of 2 + dv equations in 3 + dv unknowns. The pressure
is related to the internal energy by the constitutive relation for a polytropic gas

p = (γ − 1)

(
E − 1

2
ρu2

)
,

where the polytropic constant γ = (dv + 2)/dv represents the ratio between specific heat
at constant pressure and at constant volume, thus yielding p = ρT while the viscosity
μ = μ(T ) and the thermal conductivity κ = κ(T ) are defined according to the linearized
Boltzmann operator with respect to the local Maxwellian [2].

Since the quadratic collision operator Q(f ) has a rather complex form, simpler models
have been introduced. The main requirement is to build models that have the right conser-
vations, entropy condition described by the H -theorem, and have the fluid dynamics (Euler
and Navier-Stokes) limits with the correct transport coefficients. The simplest model is the
so-called BGK model introduced by Bhatnagar, Gross and Krook [4]. It is based on relax-
ation towards the local Maxwellian

Q(f ) = τ

ε
(M[f ] − f ), (1.6)

where τ depends on macroscopic quantities ρ and T .
This model conserves mass, momentum and total energy, and has the correct Euler limit

when ε → 0. But in the Chapman-Enskog expansion, the transport coefficients, that is μ and
κ obtained at the Navier-Stokes level are not satisfactory. In particular, the Prandtl number
defined by

Pr = γ

γ − 1

μ

κ
,

which relates the viscosity to the heat conductivity, is equal to 1, whereas for most gases,
we have Pr < 1. For instance, the hard-sphere model for a monoatomic gas (γ = 5/3) in the
Boltzmann equation leads to a Prandtl number very close to 2/3.

One model, proposed by Holway [16], has the desired property of having the correct
conservation laws, yields the Navier-Stokes approximation via the Chapman-Enskog ex-
pansion with a Prandtl number less than one, and yet is endowed with the entropy condition
[1]. See also [6, 7]. This model is referred to as the ellipsoidal statistical model (ES-BGK),
where the Maxwellian M[f ] in the relaxation term of (1.6) is replaced by an anisotropic
Gaussian G[f ]. In order to introduce the Gaussian model, we need further notations. Define
the opposite of the stress tensor

�(t, x) = 1

ρ

∫
Rdv

(v − u) ⊗ (v − u)f (t, x, v)dv. (1.7)

Therefore the translational temperature is related to the T = tr(�)/dv . We finally introduce
the corrected tensor

T (t, x) = [(1 − ν)T I + ν�] (t, x), (1.8)
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which can be viewed as a linear combination of the initial stress tensor � and of the isotropic
stress tensor T I developed by a Maxwellian distribution. The parameter −∞ < ν < 1 is used
to modify the value of the Prandtl number through the formula [1]

0 ≤ Pr = 1

1 − ν
≤ +∞ for ν ∈ (−∞,1).

The Gaussian model introduces a corrected BGK collision operator by replacing the local
equilibrium Maxwellian by the Gaussian G[f ] defined by

G[f ] = ρ√
det(2π T )

exp

(
− (v − u)T −1(v − u)

2

)
.

Thus, the corresponding collision operator is now

Q(f ) = τ

ε
(G[f ] − f ), (1.9)

where τ depends on ρ, u and T . It first follows from the above definitions that

⎧⎪⎪⎨
⎪⎪⎩

∫
Rdv f (v)dv = ∫

Rdv G[f ](v)dv = ρ,∫
Rdv vf (v)dv = ∫

Rdv vG[f ](v)dv = ρu,

∫
Rdv

|v|2
2 f (v)dv = ∫

Rdv

|v|2
2 G[f ](v)dv = E

and {∫
Rdv (v − u) ⊗ (v − u)f (v)dv = ρ�,∫
Rdv (v − u) ⊗ (v − u)G[f ]dv = ρT .

This implies that this collision operator does indeed conserve mass, momentum and energy
as imposed.

Note that the collision frequency, ν, involves the Prandtl number Pr as a free parameter.
This allows the ES-BGK collision model to reproduce transport coefficients, viscosity and
thermal conductivity, in the Chapman-Enslog expansion [2, 5], recovering the Navier-Stokes
equations density ρ, momentum ρu and temperature T , with the correct Prandtl number, for
instance Pr = 2/3 in dimension 3 for hard spheres.

In this paper we study a temporally implicit-explicit (IMEX) discretization of the ES-
BGK model. The advantage of such a time discretization is that it is uniformly stable with
respect to the small Knudsen number, thus removing the stiffness of the relaxation term, yet
the implicit relaxation term can be solved explicitly, thanks to the special structure of the
relaxation term. Although such a property was realized for the classical BGK operator [9],
the ES-BGK operator is different, and we realized that one has to compute to the higher
moment in order to evaluate the implicit Gaussian distribution explicitly. Furthermore, we
show that this time discretization is asymptotic-preserving [17], an important property for
the scheme to be robust in the fluid dynamic regime, allowing it to capture the fluid dynamic
behavior without resolving numerically the small Knudsen number. We further show that
this discretization is consistent to the compressible Navier-Stokes equations with the correct
Prandtl number, if the viscosity and heat flux terms are suitably resolved numerically. We
then validate this numerical method by presenting numerical results based on this scheme,
and compare them with the solutions of the Boltzmann equation and the corresponding
Navier-Stokes equations, in both one and two space dimensions.
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2 An Asymptotic Preserving Scheme to the ES-BGK Equation

Past progress on developing robust numerical schemes for kinetic equations that also work in
the fluid regimes has been guided by the fluid dynamic limit, in the framework of asymptotic-
preserving (AP) scheme. As summarized by Jin [17], a scheme for the kinetic equation is
AP if

• it preserves the discrete analogy of the Chapman-Enskog expansion, namely, it is a suit-
able scheme for the kinetic equation, yet, when holding the mesh size and time step fixed
and letting the Knudsen number go to zero, the scheme becomes a suitable scheme for
the limiting Euler equations

• implicit collision terms can be implemented explicitly, or at least more efficiently than
using the Newton type solvers for nonlinear algebraic systems.

We now introduce the time discretization for the ES-BGK equation (1.1), (1.9)

{
∂f

∂t
+ v∇xf = τ

ε
(G[f ] − f ), x ∈ � ⊂ R

dx , v ∈ R
dv ,

f (0, x, v) = f0(x, v), x ∈ �,v ∈ R
dv ,

(2.1)

where τ depends on ρ, u and T .
The time discretization is an implicit-explicit (IMEX) scheme. Since the convection term

in (2.1) is not stiff, we will treat it explicitly. The source terms on the right hand side of
(2.1) will be handled using an implicit solver. We simply apply a first order implicit-explicit
(IMEX) scheme,

{
f n+1−f n

�t
+ v · ∇xf

n = τn+1

ε
(G[f n+1] − f n+1),

f 0(x, v) = f0(x, v).
(2.2)

This can be written as

f n+1 = ε

ε + τn+1�t

[
f n − �tv · ∇xf

n
] + τn+1�t

ε + τn+1�t
G[f n+1], (2.3)

where G(f n+1) is the anisotropic Maxwellian distribution computed from f n+1. Although
(2.3) appears nonlinearly implicit, since the computation of f n+1 requires the knowledge of
G[f n+1], it can be solved explicitly. Specifically, upon multiplying (2.3) by φ(v) defined by

φ(v) :=
(

1, v,
|v|2
2

)

and use the conservation properties of Q and the definition of G[f ] in (1.3), (1.4), we define
the macroscopic quantity U by U := (ρ,ρu,E) computed from f and get [9, 18]

Un+1 = ε

ε + τn+1�t

∫
Rdv

φ(v)(f n −�tv ·∇xf
n)dv+ τn+1�t

ε + τn+1�t

∫
Rdv

φ(v)G[f n+1](v)dv,

or simply

Un+1 =
∫

Rdv

φ(v)(f n − �tv · ∇xf
n)dv. (2.4)
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Thus Un+1 can be obtained explicitly. This gives ρn+1, un+1 and T n+1. Unfortunately, it is
not enough to define G[f n+1] for which we need ρn+1�n+1. Therefore, we define the tensor
� by

�n+1 :=
∫

Rdv

v ⊗ vf n+1dv = ρn+1
(
�n+1 + un+1 ⊗ un+1

)
(2.5)

and multiply the scheme (2.3) by v ⊗ v. Using the fact that

∫
Rdv

v ⊗ vG[f ](v)dv = ρ(T + u ⊗ u),

and (2.5), we get that

�n+1 = ε

ε + (1 − ν)τ n+1�t

(
�n − �t

∫
Rdv

v ⊗ vv · ∇xf
ndv

)

+ (1 − ν)τ n+1�t

ε + (1 − ν)τ n+1�t
ρn+1

(
T n+1I + un+1 ⊗ un+1

)
. (2.6)

Now G[f n+1] can be obtained explicitly from Un+1 and �n+1 and then f n+1 from (2.3).
Finally the scheme reads

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Un+1 = ∫
Rdv φ(v)(f n − �tv · ∇xf

n)dv,

�n+1 = ε

ε+(1−ν)τn+1�t
(�n − �t

∫
Rdv v ⊗ vv · ∇xf

ndv)

+ (1−ν)τn+1�t

ε+(1−ν)τn+1�t
ρn+1(T n+1I + un+1 ⊗ un+1),

f n+1 = ε

ε+τn+1�t
[f n − �tv · ∇xf

n] + τn+1�t

ε+τn+1�t
G[f n+1].

(2.7)

In summary, although (2.2) is nonlinearly implicit, it can be solved explicitly, thus satis-
fies the second condition of an AP scheme.

Now let us prove that the scheme (2.7) preserves the correct asymptotic.

Remark 2.1 When the IMEX scheme (2.2) is applied to the classical BGK equation (1.6),
Un+1 in (2.4) will completely defines M[f n+1] given by (1.2) [9, 11]). The steps after
equation (2.4) are new ideas introduced in this paper for the ES-BGK model.

Proposition 2.2 Consider the numerical solution given by (2.7). Then,

(i) For all ε → 0 and �t > 0, the distribution function f n+1 satisfies

0 ≤ f n+1(x, v) ≤ max
(‖f n‖∞,‖G[f n+1]‖∞

)
.

(ii) For all �t > 0 and f 0, the distribution function f n converges to M[f n], that is,

lim
ε→0

f n = M[f n]

and the scheme gives a first order approximation in time of the compressible Euler
system.
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(iii) Moreover, if we assume that ‖f n − Mn‖ = O(ε), for n ≥ 2 and

∥∥∥∥Un+1 − Un

�t

∥∥∥∥ ≤ C, (2.8)

the scheme (2.3) asymptotically becomes a first order in time approximation of the
compressible Navier-Stokes (1.5) given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρn+1−ρn

�t
+ divx(ρ

nun) = 0,

ρn+1un+1−ρnun

�t
+ divx(ρ

nun ⊗ un + ρT I) = ε divx(μσ(un−1)),

En+1−En

�t
+ divx([En + ρnT n]un) = ε divx(μσ(un−1)un−1 + κ∇xT

n−1),

where τnμ = pn−1/(1 − ν) and τnκ = (dv + 2)pn−1/2.

Proof (i) Let us first observe that f n+1 is a linear combination of f n (defined along charac-
teristics) and G[f n+1], thus we get the first assertion.

To prove (ii), for any initial distribution function, we consider f n for n ≥ 1 and compute
the asymptotic limit of �n when ε goes to zero in (2.7), it yields

�n = ρn(T nI + un ⊗ un)

and using (2.5), we also get

�n = T nI,

thus

T n = T nI.

Hence in the asymptotic limit ε → 0, the distribution function G[f n] becomes isotropic,
which means that G[f n] converges to the classical Maxwellian M[f n].

Therefore, the solution at zeroth order is obtained by taking f n = M[f n] in the conser-
vation laws (2.4), namely,

Un+1 =
∫

Rdv

φ(v)(M[f n] − �tv · ∇x M[f n])dv,

and the scheme for the macroscopic quantities reduces to the well-known approximation to
the Euler equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρn+1−ρn

�t
+ divx(ρ

nun) = 0,

ρn+1un+1−ρnun

�t
+ divx(ρ

nun ⊗ un + ρnT nI) = 0,

En+1−En

�t
+ divx([En + ρnT n]un) = 0.

(2.9)

Moreover, the temperature T n+1 satisfies the following

dv

2

T n+1 − T n

�t
+ dv

2
un · ∇xT

n + ρnT n divx un = O(�t).
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Now let us prove (iii). The preservation of the asymptotic, that is the compressible
Navier-Stokes equation, is based on the Chapman-Enskog method. It simply consists of
expanding the distribution function f n into

f n = M[f n] + εf n
1 ,

which implies that

∫
Rdv

f n
1 (x, v)dv = 0,

∫
Rdv

f n
1 (x, v)vdv = 0,

∫
Rdv

f n
1 (x, v)|v|2dv = 0. (2.10)

These conditions are known as the compatibility conditions. Moreover, we also expand the
stress tensor

�n = T nI + ε�n
1 (2.11)

and the heat flux

Q
n(x) :=

∫
Rdv

|v − un|2
2

(v − un)f n(x, v)dv = 0 + εQ
n
1(x), (2.12)

where

�n
1 = 1

ρn

∫
Rdv

f n
1 (x, v)(v −un)⊗ (v −un)dv, Q

n
1 =

∫
Rdv

f n
1 (x, v)

|v − un|2
2

(v −un)dv

and tr(�n
1) = 0. Inserting this latter expansion into the discrete conservation laws (2.4), it

gives
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρn+1−ρn

�t
+ divx(ρ

nun) = 0,

ρn+1un+1−ρnun

�t
+ divx(ρ

nun ⊗ un + ρnT nI) = −ε divx(ρ
n�n

1),

En+1−En

�t
+ divx([En + ρnT n]un) = −ε divx(Q

n
1 + ρn�n

1u).

For the application of the Chapman-Enskog method, the anisotropic Gaussian G(f ) must be
expanded with respect to ε as well,

G[f n] = M[f n] + εgn
1 .

The next step is to insert these expansions into the scheme (2.3) for the ES-BGK equation
and use the compatibility conditions, and it yields for n ≥ 1

M[f n] − M[f n−1]
�t

+ v · ∇x M[f n−1]

= τn(gn
1 − f n

1 ) − ε

[
f n

1 − f n−1
1

�t
+ v · ∇xf

n−1
1

]
. (2.13)

One the one hand, the term gn
1 is computed from G[f n] as follows. First, the distribution

function G[f n] contains the inverse matrix T n for which insertion of (2.11) yields

T n = T nI + νε�n
1.
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Therefore, a Taylor expansion within terms of second order and using the fact that tr(�n
1) =

0, gives on the one hand

det(T n) = (T n)dv + O(ε2)

and on the other hand

[T n]−1 = 1

T n

[
I − νε

T n
�n

1

]
+ O(ε2)

and therefore

gn
1 = G[f n] − M[f n]

ε
= ν

M[f n]
2(T n)2

(v − un)t�n
1(v − un).

On the other hand, to obtain the first order expression for the distribution function f n
1 , we

need to consider the terms of order zero in (2.13), which we write for convenience as

f n
1 = gn

1 − M[f n] − M[f n−1]
τn�t

+ v

τn
· ∇x M[f n−1] + O(ε).

The differential dM[f ] of the Maxwellian is given by

dM[f ] = M[f ]d log(M[f ]) = M[f ]
[

dρ

ρ
+

( |v − u|2
2T

− dv

2

)
dT

T
− u − v

T
du

]

and with the assumption (2.8), we obtain

M[f n] − M[f n−1]
�t

= M[f n−1]
[

1

ρn−1

ρn − ρn−1

�t

+ 1

T n−1

( |v − un−1|2
2T n−1

− dv

2

)
T n − T n−1

�t

− un−1 − v

T n−1
· un − un−1

�t

]
+ O(�t)

and

v · ∇x M[f n−1] = M[f n−1]
[

v · ∇xρ
n−1

ρn−1
+

( |v − un−1|2
2T n−1

− dv

2

)
v · ∇xT

n−1

T n−1

− un−1 − v

T n−1
v · ∇xu

n−1

]
.

Gathering the two latter equalities, it yields up to the order �t

M[f n] − M[f n−1]
�t

+ v · ∇x M[f n−1]

= M[f n−1]
T n−1

[
(un−1 − v)∇xu

n−1(un−1 − v)

+ (un−1 − v)

( |v − un−1|2
2T n−1

− dv + 2

2

)
∇xT

n−1

]
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+ M[f n−1]
ρn−1

[
ρn − ρn−1

�t
+ divx(ρ

n−1un−1)

]

+ M[f n−1](v − un−1)

T n−1

[
un − un−1

�t
+ un−1 · ∇xu

n−1 + 1

ρn−1
∇x(ρ

n−1T n−1)

]

+ M[f n−1]
( |v − un−1|2

2T n−1
− dv

2

)

×
[

1

T n−1

(
T n − T n−1

�t
+ un−1 · ∇xT

n−1

)
+ 2

dv

divx un−1

]
.

The last three lines may vanish due to the conservation laws (2.9) up to the order of ε and
�t . Thus, the result for the first order contribution to the distribution function is

f n
1 = − M[f n−1]

τnT n−1

[
(un−1 − v)∇xu

n−1(un−1 − v)

+ (un−1 − v)

( |v − un−1|2
2T n−1

− dv + 2

2

)
∇xT

n−1

]

+ ν
M[f n]
2|T n|2 (v − un)�n

1(v − un) + O(�t) + O(ε).

It is straightforward to show that f1 satisfies the compatibility relations (2.10). Hence, we
get for the stress tensor �n

1

ρn�n
1 =

∫
Rdv

f n
1 (v − un) ⊗ (v − un)dv = −ρn−1T n−1

τn
σ (un−1) + νρn�n

1 + O(�t) + O(ε),

that is,

ρn�n
1 = − pn−1

(1 − ν)τ n
σ (un−1) + O(�t) + O(ε).

Then the heat flux Q
n
1 is given by

Q
n
1 =

∫
Rdv

|v − un|2
2

(v − un)f n
1 dv = −dv + 2

2

pn−1

τn
∇xT

n−1 + O(�t) + O(ε).

The constitutive relations are laws of Navier-Stokes and Fourier where

μ = 1

1 − ν

pn−1

τn
and κ = dv + 2

2

pn−1

τn

are viscosity and thermal conductivity, respectively. Thus, a first order approximation with
respect to �t and ε is given by

ρn�n
1 = −μσ(un−1) and Q

n
1 = −κ∇xT

n−1.

The Prandtl number is related to the coefficient ν of the ES-BGK model by

Pr = dv + 2

2

μ

κ
= 1

1 − ν
. �
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3 Numerical Simulations

In this section, we give three numerical examples for the ES-BGK equation in different
asymptotic regimes in order to check the performance (in stability and accuracy) of our
methods. We have implemented the first order scheme (2.7) for the approximation of the
ES-BGK equation. A classical second order finite volume scheme with slope limiters is
applied for the transport operator. We present two numerical tests for a 1dx × 2dv model and
finally a non stationary 2dx × 2dv model.

We will compare the numerical solution to the ES-BGK equations with the one obtained
for the full Boltzmann equation with Maxwellian molecules using a spectral approximation
[11, 14] and the one obtained for the compressible Navier-Stokes system using a second
order finite volume scheme.

To this aim, we need to choose the right value for τ such that the viscosity and heat
conductivity computed from the asymptotic limit of the ES-BGK model is the same as the
ones corresponding to the full Boltzmann equation. According to [8], the viscosity computed
for the full Boltzmann equation is given by

μB(T ) =
√

2

3π

T

A2(5)
,

where A2(5) � 0.436. On the other hand, the viscosity computed from the ES-BGK model
is

μ = 1

1 − ν

p

τ
,

where ν = −1. Thus, we choose τ such that both viscosity are equal, which leads to

τ = 1

2

p

μB(T )
= 3π

2
√

2
A2(5)ρ � 0.925

π

2
ρ.

3.1 Approximation of Smooth Solutions

For this numerical test, we consider the ES-BGK equation in dimension 1dx × 2dv on the
torus {

∂f

∂t
+ v · ∇xf = 1

ε
Q(f,f ), x ∈ [−1,1], v ∈ R

2,

f (t = 0) = f0,

with periodic boundary conditions in x. The operator Q(f ) is given by Q(f ) = τ [G[f ]−f ]
where the parameter τ is chosen in order that the viscosity μ matches perfectly with one
obtained to the full Boltzmann operator for Maxwellian molecules, that is τ = 0.9πρ/2.

Define ρg and Tg with respect to the initial data f0 by

ρg = 1

2

∫ 1

−1

∫
R2

f0(x, v)dvdx and Tg = 1

2ρg

∫ 1

−1

∫
R2

f0(x, v)|v|2dvdx

and assume for simplicity that

1

2

∫ 1

−1

∫
R2

f0(x, v)vdvdx = 0.
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Whenever f (t, x, v) is a smooth solution to the Boltzmann or ES-BGK equation with pe-
riodic boundary conditions, one has the global conservation laws for mass, momentum and
energy. These conservation laws are then enough to uniquely determine the stationary state
of the model: the normalized global Maxwellian distribution

Mg(v) = ρg

2πTg

exp

(
−|v|2

2Tg

)
, v ∈ R

2. (3.1)

Our goal here is to investigate numerically the long-time behavior of the solution f and
to compare the solution with the asymptotic behavior of the solution to the compressible
Navier-Stokes equations (CNS). If f is any reasonable solution of the ES-BGK equation,
satisfying certain a priori bounds of compactness (in particular, ensuring that no kinetic
energy is allowed to leak at large velocities), then it is expected that f does indeed converge
to the global Maxwellian distribution Mg as t goes to +∞.

Recently, Desvillettes and Villani [10], Guo and Strain [15] were interested in the study
of rates of convergence for the full Boltzmann equation. Roughly speaking in [10], the au-
thors proved that if the solution to the Boltzmann equation is smooth enough then (with
constructive bounds)

‖f (t) − Mg‖ = O(t−∞),

which means that the solution converges almost exponentially fast to the global equilibrium
(namely with polynomial rate O(t−r ) with r as large as wanted). Moreover in [10], Desvil-
lettes and Villani conjectured that time oscillations should occur on the evolution of the
relative local entropy

Hl (t) =
∫

f log

(
f

Ml

)
dxdv,

where Ml is the local Maxwellian distribution in the sense that the constants ρ, u and T

appearing there depend on time t and position x

Ml (t, x, v) = ρ(t, x)

2πT (t, x)
exp

(
−|v − u(t, x)|2

2T (t, x)

)
. (3.2)

In fact their proof does not rule out the possibility that the entropy production undergoes
important oscillations in time, and actually most of the technical work is caused by this
possibility.

To estimate the speed of convergence to the global equilibrium and the possibility that
oscillations also occur on the difference between global and local equilibria (since the global
relative entropy is nonincreasing), we prefer to investigate the behavior of the following
quantity

E (t) := ‖ρ(t) − ρg‖L1 ,

which makes sense both for the solution to the Boltzmann or ES-BGK equation but also for
the compressible Navier-Stokes equation.

Here, we performed simulations to the full Boltzmann equation with a fast spectral
method [14], to the ES-BGK equation with the scheme (2.3) and to the compressible Navier-
Stokes system with a WENO solver in a simplified geometry (one dimension in space, two
dimension in velocity, periodic boundary conditions) to check numerically if such oscilla-
tions occur. Clearly this test is challenging for a numerical method due to the high accuracy
required to capture such oscillating behavior at the kinetic regime.
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Fig. 1 Influence of the Knudsen number ε: distance between the local density ρ(t) and the global density at
equilibrium ρg using 100 × 32 × 32 for (a) ε = 0.5; (b) ε = 0.1; (c) ε = 0.05 and (d) ε = 0.01

Then, we consider an initial datum as a perturbation of the global equilibrium Mg

f0(x, v) = 1 + A0 sin(πx)

2πT0

[
exp

(
−|v − u0|2

2T0

)
+ exp

(
−|v + u0|2

2T0

)]
,

x ∈ [−1,1], v ∈ R
2,

with A0 = 0.5, T0 = 0.125 and u0 = (1/2,1/2). We have chosen ν = −1 such that the
Prandtl number of the ES-BGK model corresponds to the Prandtl number of the 2dv Boltz-
mann operator, that is Pr = 0.5.

In Fig. 1, one can indeed observe oscillations on the quantity E (t) for the full Boltzmann
equation, the ES-BGK model and also for the compressible Navier-Stokes system obtained
from the asymptotic of the ES-BGK equation (1.9). The strength of the oscillations does not
depend on the Knudsen number ε. The superimposed curves yield the time evolution of the
E (t) for t ∈ [0,20]; the first plot corresponds to ε = 0.5, the second one to ε = 0.1, the third
one ε = 0.05 and the last one ε = 0.01.

On the one hand, for ε = 0.5, which corresponds to a rarefied regime, the behavior of
E (t) strongly differs between the kinetic and hydrodynamic models. The results for ES-BGK
and the full Boltzmann equations agree very well in this rarefied regime, which illustrates
perfectly the efficiency and accuracy of the ES-BGK model.
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On the other hand, for smaller values of ε, the different numerical approximations give
roughly the same results and the ES-BGK model and the compressible Navier-Stokes system
become very close. Finally for ε � 0.01, the different kinetic (Boltzmann and ES-BGK) and
hydrodynamic (Euler or Navier-Stokes) models agree very well.

Further note that the equilibration is much more rapid when the Knudsen number ε is
large, and that the convergence seems to be exponential.

3.2 The Riemann Problem

This test deals with the numerical solution to the 1dx × 2dv ES-BGK equation. The operator
Q(f ) is given by Q(f ) = τ [G[f ] − f ] where τ = 0.9πρ/2. We present several numerical
simulations for one dimensional Riemann problem, with different Knudsen numbers, from
rarefied regime to the fluid regime.

Here, the initial data corresponding to the ES-BGK equations are given by the isotropic
Maxwellian distributions computed from the following macroscopic quantities

{
(ρl, ul, Tl) = (1,M

√
2,1), if x ≤ 0,

(ρr , ur , Tr) = (1,0,1.05), if x > 0

with the Mach number M = 2.5. We perform several computations for ε = 5 × 10−1,10−1,

. . . ,10−3.
We present a comparison between the numerical solution to the Boltzmann equation

obtained using a spectral scheme [12–14], the approximation to the compressible Navier-
Stokes system obtained using a fifth order WENO and our first order implicit method (2.3)
for the ES-BGK model with ν = 1/2, for which the Prandtl number of the ES-BGK model
is the same as the one for the 2dv Boltzmann operator. Let us note that the viscosity and
conductivity used for the numerical simulation of the compressible Navier-Stokes system
are the ones obtained from the Chapman-Enskog expansion.

In Fig. 2, we take ε = 5 × 10−1 and choose a time step �t = 0.001 satisfying the CFL
condition for the transport part (with nx = 200). For such a value of ε, the problem is not
stiff and this test is only performed to compare the accuracy of our scheme (2.3) with the
different models. We present several snapshots of the density, mean velocity, temperature
and heat flux

Q1(t, x) := 1

ε

∫
Rdv

|v − u|2
2

(v − u)f (t, x, v)dv

at different time t = 0.1, 0.25 and 0.4. We observe that, for a short time t = 0.1, the numer-
ical approximation of macroscopic quantities and heat flux given by (2.3) for the ES-BGK
model are relatively close to the numerical solution to the Boltzmann equation. The front
speed and the shape of the temperature with two bumps are very well approximated by
the ES-BGK model, and the heat flux given by the Boltzmann equation and the ES-BGK
model are different from the ones given by the compressible Navier-Stokes system. Clearly,
the compressible Navier-Stokes system is not adequate in this rarefied regime whereas the
ES-BGK model gives very satisfying results.

For a larger time t ≥ 0.25, the distribution in velocity f to the ES-BGK model and to the
Boltzmann equation agree very well and the macroscopic quantities are already well approx-
imated by the solution to the compressible Navier-Stokes system. In Fig. 3, we represent the
x − vx projection of f − M[f ] at time t = 0.25 obtained for the Boltzmann equation and
the ES-BGK model. The distribution function becomes particularly far from the equilibrium
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Fig. 2 Riemann problem (ε = 5 × 10−1): crosses (+) represent the numerical solution to the Boltzmann
equation obtained with our method (2.3), stars (×) represent the solution to the ES-BGK model and lines is
the solution corresponding to the compressible Navier-Stokes system. Evolution of (1) the density ρ, (2) mean
velocity u, (3) temperature T , and (4) heat flux Q at time t = 0.1, 0.25 and 0.4

Fig. 3 Riemann problem (ε = 5×10−1): x −vx projection of f − M[f ] at time 0.25 for the (1) Boltzmann
equation and (2) ES-BGK model

at the front of the shock in velocity and then propagates in the computational domain. As
can be observed on the macroscopic quantities, the solution to the Boltmzann equation is
very close to the one obtained from the ES-BGK model.

Finally, at the kinetic regime our method (2.3) gives the same accuracy as a standard first
order fully explicit scheme for the ES-BGK model or full Boltzmann equation without any
additional computational effort. Of course, the computational effort needed for the ES-BGK
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Fig. 4 Riemann problem (ε = 10−1): crosses (+) represent the numerical solution to the Boltzmann equa-
tion obtained with our method (2.3), stars (×) represent the solution to the ES-BGK model and lines is the
solution corresponding to the compressible Navier-Stokes system. Evolution of (1) the density ρ, (2) mean
velocity u, (3) temperature T , and (4) heat flux Q at time t = 0.1, 0.25 and 0.4

models is much smaller than the one for an accurate discretization of the full Boltzmann
operator since the Boltzmann which is nonlocal in velocity. Indeed the computational effort
for an accurate approximation of the full Boltzmann operator is either N logN or N2 where
N is the degree of freedom in velocity space whereas it is only linear for the ES-BGK.

Now, we investigate the cases of small values of ε for which an explicit scheme requires
the time step to be of order O(ε). In order to evaluate the accuracy of our method (2.3) in
the Navier-Stokes regime (for small ε 
 1 but not negligible), we compared the numerical
solution for ε = 10−1 with one obtained by the approximation of the compressible Navier-
Stokes system derived from the ES-BGK model since the viscosity and heat conductivity
are in that case explicitly known [3].

Therefore, in Fig. 4, we report the numerical results for ε = 10−1 and make comparison
between the numerical solution obtained with the scheme (2.3) and the one obtained with a
high order explicit method for the compressible Navier-Stokes. In this case, the behavior of
macroscopic quantities (density, mean velocity, temperature and heat flux) agree very well
even if the time step is at least ten times larger with our method (2.3).

Finally in Fig. 5, we choose ε = 1.10−3. In this problem, the density, mean velocity and
temperature are relatively close to the one obtained with the approximation of the Navier-
Stokes system. Even the qualitative behavior of the heat flux agrees well with the heat flux
corresponding to the compressible Navier-Stokes system κ∇xT , with κ = ρT (see Fig. 5),
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Fig. 5 Riemann problem (ε = 10−3): crosses (+) represent the numerical solution to the Boltzmann equa-
tion obtained with our method (2.3), stars (×) represent the solution to the ES-BGK model and lines is the
solution corresponding to the compressible Navier-Stokes system. Evolution of (1) the density ρ, (2) mean
velocity u, (3) temperature T , and (4) heat flux Q at time t = 0.1, 0.2 and 0.3

yet some differences can be observed, which means that the use of ES-BGK models to derive
macroscopic models has a strong influence on the heat flux.

3.3 Flow Around a Cylinder

This example has been considered in for instance [19]. The computational domain is set to
be [−20,20] × [−20,20]. The cylinder is centered at the origin, with a diameter of 2.

We consider an incoming flow at the boundary ‖x‖ = 8 with the following conditions:
ρi = 1, ui = (M

√
2Ti,0)T , Ti = 1 with M = 0.1 and M = 0.5. The freestream Knudsen

number ranges from ε = 0.1 to ε = 10−3.
Concerning boundary condition, the wall of cylinder is considered as a pure diffusive

boundary conditions

f (t, x, v) = ρ(t, x)

(2πTw)dv/2
exp

(
− |v|2

2Tw

)
, v · nx < 0, and ‖x‖ = 1,

where ρ is computed such that the global flux is zero at the boundary (and mass is preserved)
and Tw = 1.05.
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Fig. 6 Flow around a cylinder (M = 0.1, ε = 0.01), the numerical solution of the ES-BGK model obtained
with our method (2.3): evolution of the density contour at time (1) t = 1, (2) t = 6, (3) t = 16, (4) t = 30

To start the calculation take a uniform initial solution equal to the values defined by the
boundary conditions:

f0(x, v) = ρi

(2πTi)dv/2
exp

(
−|v − ui |2

2Ti

)
, v ∈ R

2, 1 ≤ ‖x‖ ≤ 8.
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Fig. 7 Flow around a cylinder (M = 0.1, ε = 0.01), the numerical solution of the ES-BGK model obtained
with our method (2.3): steady state (1) density ρ, (2) local Mach number M , (3) local temperature T

Fig. 8 Flow around a cylinder (M = 0.5, ε = 0.01), the numerical solution of the ES-BGK model obtained
with our method (2.3): steady state (1) density ρ, (2) local Mach number M , (3) local temperature T

Then, we solve the kinetic equations for the different grid densities considered, until a steady
state is reached.

We define the Mach number from the macroscopic quantities, computing the moments
of the distribution function with respect to v ∈ R

2, by

M2 = ‖u‖2

γ T
,

where c := √
γ T is the sound speed.

We apply our numerical scheme (2.3) to the ES-BGK equation and plot the numerical
results in the following figures (Figs. 6, 7, 8) and the solution can be compared to the nu-
merical solution of the Euler equations [19].

Figure 6 shows the density contours at different times for a free streaming Mach number
M = 0.1 whereas the Knudsen number is ε = 0.01. The reflecting shock, and the Mach
shock can all be identified. However, the reflecting shock is not identified as kinetic, since
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Fig. 9 Flow around a cylinder (M = 0.5), the numerical solution of the ES-BGK model obtained with our
method (2.3): steady state of the local Mach number for different values of Knudsen number (1) ε = 0.5,
(2) ε = 0.1, (3) ε = 0.01, (4) ε = 0.001

both density and temperature are large on the shock, which makes its distribution much
closer to the Maxwellian than the other two shocks. Also, the two separation points, where
the gas is the most rarefied, are well captured and correctly identified as kinetic. In Fig. 7,
the contour plot of the local Mach number, the density and the temperature is shown when
the steady state is reached. Finally, in Fig. 9, the contour plots of the local Mach number are
presented for different values of the Knudsen number when the steady state is reached.

4 Conclusion

In this paper we present an accurate deterministic method for the numerical approximation
of the space inhomogeneous, time dependent ES-BGK equation. The method is a tempo-
rally implicit-explicit scheme to deal with the stiffness of the collision operator. The com-
putational cost of the implicit part is close to an explicit one, without using any nonlinear
algebraic system solver, by utilizing the particular structure of the ES-BGK operator. This
effective time discretization allows the treatment of problems with a broad range of mean
free path. Moreover, the numerical results, and the comparison with other techniques, show
the effectiveness of the present method for a wide class of problems.
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