J Sci Comput (2010) 45: 90-117
DOI 10.1007/s10915-010-9358-1

Numerical Analysis of Nonlinear Eigenvalue Problems

Eric Cances - Rachida Chakir - Yvon Maday

Received: 15 February 2010 / Accepted: 19 February 2010 / Published online: 19 March 2010
© Springer Science+Business Media, LLC 2010

Abstract We provide a priori error estimates for variational approximations of the ground
state energy, eigenvalue and eigenvector of nonlinear elliptic eigenvalue problems of the
form —div(AVu) + Vu + fu*)u = Au, ||u| ;2 = 1. We focus in particular on the Fourier
spectral approximation (for periodic problems) and on the P, and PP, finite-element dis-
cretizations. Denoting by (us, As) a variational approximation of the ground state eigenpair
(u, ), we are interested in the convergence rates of ||us —u|| g1, ||us —u||;2, |Ls — A|, and the
ground state energy, when the discretization parameter § goes to zero. We prove in particular
thatif A, V and f satisfy certain conditions, |15 —X| goes to zero as ||us —u IIiIl +|lus —ull 2.
We also show that under more restrictive assumptions on A, V and f, |[As; — A| converges
to zero as |lus —u ||§171 , thus recovering a standard result for /inear elliptic eigenvalue prob-
lems. For the latter analysis, we make use of estimates of the error us — u in negative Sobolev
norms.

Keywords Non linear eigenvalue problem - Spectral and pseudo spectral approximations -
Finite element approximation - Ground state computations - Numerical analysis

1 Introduction

Many mathematical models in science and engineering give rise to nonlinear eigenvalue
problems. Let us mention for instance the calculation of the vibration modes of a mechanical
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structure in the framework of nonlinear elasticity, the Gross-Pitaevskii equation describing
the steady states of Bose-Einstein condensates [10], or the Hartree-Fock and Kohn-Sham
equations used to calculate ground state electronic structures of molecular systems in quan-
tum chemistry and materials science (see [3] for a mathematical introduction).

The numerical analysis of linear eigenvalue problems has been thoroughly studied in the
past decades (see e.g. [1]). On the other hand, only a few results on nonlinear eigenvalue
problems have been published so far [14, 15].

In this article, we focus on a particular class of nonlinear eigenvalue problems arising in
the study of variational models of the form

I=inf{E(v), veX,/v2=1} )
Q

where

Q is a regular bounded domain or a rectangular brick of R¢ and X = HO1 (2) or
Q is the unit cell of a periodic lattice R of RY and X = H,}(Q)

with d =1, 2 or 3, and where the energy functional E is of the form

1 1
E(v) = za(v,v) + —/ F(v*(x))dx
2 2 Jq
with
a(u,v) = / (AVu) - Vv +/ Vuv.
Q Q
Recall that if  is the unit cell of a periodic lattice R of R?, then for all s € R and k € N,

H;(Q) = {vla. v e H]

loc

(R?) | v R-periodic}
Cy(Q) = {vlg, ve C*RY) | v R-periodic} .

We assume in addition that

A e (L™(2))9*? and A(x) is symmetric for almost all x € € )
Jo > 0s.t. ETA(x)E > a]€|? for all £ € R? and almost all x € Q; 3)
V e LP(RQ) for some p > max(1,d/2); “)
F e C'([0, +00), R) N C%((0, 00), R) and F” > 0 on (0, +00); 5)
0<g <2, ICeR, st.VE>0, |F'(t)|<C(1+19); 6)
F”(¢)t locally bounded in [0, 4+00). @)

To establish some of our results, we will also need to make the additional assumption that
there exist 1 <r <2 and 0 <s <5 — r such that

VR>0,3CreR, st. VO<t <R, VHeR,
|F'(t)t, — F'(tHht, — 2F" (1)t (b, — 1) | < Cr A+ |0|) |12 — 11" ®)
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Note that for all 1 <m < 3 and all ¢ > 0, the function F(t) = ct™ satisfies (5)—(7) and
(8), for some 1 < r < 2. It satisfies (8) with r =2 if 3/2 < m < 3. This allows us to han-
dle the repulsive interaction in Bose-Einstein condensates (m = 2). These assumptions are
also satisfied by the Thomas-Fermi kinetic energy functional (with m = 5/3). Although the
results contained in this article cannot be straightforwardly applied to electronic structure
models (due to the nonlocality of the Coulomb interaction), our arguments can be extended
to the case of the Thomas-Fermi-von Weizsidcker model (see [5]).

Remark 1 Assumption (6) is sharp for d = 3, but is useless for d = 1 and can be replaced
with the weaker assumption that there exist ¢ < oo and C € R, such that |F'(r)| < C(1+19)
for all r € R, for d = 2. Likewise, the condition 0 <s <5 — r in assumption (8) is sharp
for d = 3 but can be replaced with 0 <s <ocoifd=1ord =2.

In order to simplify the notation, we denote by f(t) = F'(¢).
Making the change of variable p = v? and noticing that a(|v|, |v]) = a(v, v) forallv € X,
it is easy to check that

1=inf{<‘5(p),/)20,\/EGX,/p=1}, 9
Q
where

1 1
E(p) = 5a(/P./P) + 5 /Q F(p).

We will see that under assumptions (2)—(6), (9) has a unique solution py and (1) has
exactly two solutions: u = ,/py and —u. Moreover, E is Gateaux differentiable on X and
forallv e X, E'(v) = A,v where

Ay = —div(AV) + V + f(v).

Note that A, defines a self-adjoint operator on L?(2), with form domain X (see e.g. [11]).
The function u therefore is solution to the Euler equation

Yve X, (Au—Au,v)xy x=0 (10)

for some A € R (the Lagrange multiplier of the constraint ||u||i2 = 1) and equation (10),

complemented with the constraint ||u|/;2 = 1, takes the form of the nonlinear eigenvalue
problem

{Auu =AU
flull 2 = 1.

(In

In addition, u € C°(Q2), u > 0in Q and A is the ground state eigenvalue of the linear operator
A,. An important result is that A is a simple eigenvalue of A, . It is interesting to note that A
is also the ground state eigenvalue of the nonlinear eigenvalue problem

search (u, v) € R x X such that
A, = v (12)
vl =1,

in the following sense: if (i, v) is solution to (12) then either ;& > X or u = A and v = Fu.
All these properties, except maybe the last one, are classical. For the sake of completeness,
their proofs are however given in the Appendix.
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Let us now turn to the main topic of this article, namely the derivation of a priori error
estimates for variational approximations of the ground state eigenpair (A, #). We denote by
(Xs)s>0 a family of finite-dimensional subspaces of X such that

min {[lu — vsll 1, v5 € X5} —> 0 (13)
§—>0t

and consider the variational approximation of (1) consisting in solving

Iszinf{E(vs), vs € Xs, /vf:l}. (14)
Q

Problem (14) has at least one minimizer us, which satisfies
Vs € X5,  (Augis — Asits, vs)xrx =0 (15)

for some As; € R. Obviously, —u; also is a minimizer associated with the same eigenvalue
As. On the other hand, it is not known whether us and —u; are the only minimizers of (14).
One of the reasons why the argument used in the infinite-dimensional setting cannot be
transposed to the discrete case is that the set

{p13us € X5 s.t. llusll 2 =1, p=uj}

is not convex in general. We will see however (cf. Theorem 1) that for any family (u;5)s-0 of
global minimizers of (14) such that (u, us) > 0 for all § > 0, the following holds true

lus —ullgr —> 0.
§—071
In addition, a simple calculation leads to

A = = ((Au = M) (uts — ), (tt5 — )y x + / Wy (5 — 10) (16)
Q

where

2 2

Wy,ug = Ug
s Us —u

The first term of the right-hand side of (16) is nonnegative and goes to zero as |[us — u ||i[ L
We will prove in Theorem 1 that the second term goes to zero at least as ||us — u||  6/5-29) -
Therefore, |As; — A| converges to zero with § at least as |lus — M||i,1 + lus — ull Lo/65-29) -

The purpose of this article is to provide more precise a priori error bounds on |As — A|,
as well as on |lus — u|| g1, |lus — ul|;2 and E(us) — E(u). In Sect. 2, we prove a series
of estimates valid in the general framework described above. We then turn to more spe-
cific examples, where the analysis can be pushed further. In Sect. 3, we concentrate on the
discretization of problem (1) with

Q =(0,27)7,
X = H}(0,2m),

E®) l/|V|2+1/V2+1/F(2)
V) = — v — v — Vo),
2 Ja 2 Jo 2 Ja
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in Fourier modes. In Sect. 4, we deal with the P, and PP, finite element discretizations of
problem (1) with

Q rectangular brick of R?,
X = Hy(Q),

E()—1/|V|2+]/V2+1/F(2)
v—zgv 2QU 29 V7).

Our results improve those obtained by Zhou in [14], in that we are able to obtain conver-
gence rates for |As — A, [|us —ull g1, llus —ull;2 and E(us) — E (u). Moreover, the reported
numerical test cases tend to show that our error bounds for both Fourier and finite element
discretizations, are optimal.

Lastly, we discuss the issue of numerical integration in Sect. 5.

2 Basic Error Analysis

The aim of this section is to establish error bounds on |lus — u|| g1, llus — ullz2, |As — Al
and E(us) — E(u), in a general framework. In the whole section, we make the assumptions
(2)—(7) and (13), and we denote by u the unique positive solution of (1) and by us a mini-
mizer of the discretized problem (14) such that (us, u);2 > 0. We also introduce the bilinear
form E”(u) defined on X x X by

(E”(u)v,w)xaxZ(Auv,w)xax+2/f’(uz)usz-
Q

When F € C?([0, +00), R), then E is twice differentiable at u and E”(u) is the second
derivative of E at u.

Lemma 1 There exist § > 0 and M € R, such that for all v € X,
0 < ((Ay — Mv, v)y x < MVl (17)
Bllvl: < ((E"(w) — Vv, v)x.x < Mvll3,. (18)
There exists y > 0 such that for all § > 0,
Ylus —ullf < ((Aw = M) (us — ), (us — u))xr x. 19
Proof We have for all v € X,

(A = D, V)xx < Al IV, + 1V e 012, 4+ 1Lf @ellvl?s

L2p
where p' = (1 — p~")~! and
((E"(u) = M, v)xx < (A — Vv, vy x + 20 f @ || e v]]3 .

Hence the upper bounds in (17) and (18). We now use the fact that X, the lowest eigenvalue
of A,, is simple (see Lemma 2 in the Appendix). This implies that there exists n > 0 such
that

YoeX, ((Au—nv,vxx = n(vl2s — |, v)2%) = 0. (20)

@ Springer



J Sci Comput (2010) 45: 90-117 95

This provides on the one hand the lower bound (17), and leads on the other hand to the
inequality

Voe X, ((E"w - nv w22 [ i
As f'=F" > 0in (0, 400) and u > 0 in 2, we therefore have
Voe X\ {0}, ((E"(u)—M)v,v)x x >0.

Reasoning by contradiction, we deduce from the above inequality and the first inequality in
(20) that there exists 7 > 0 such that

YoeX, ((E'w)—nv,v)xx=Tlvl.. (2D
Besides, there exists a constant C € R such that
o
YveX, ((Ay—Mv,v)xx= EIIVvlliz —Clvll7. (22)

Let us establish this inequality for d = 3 (the case when d = 1 is straightforward and the
case when d = 2 can be dealt with in the same way). For all v € X,

((Ay — Vv, v)x x
:/(AVU)~Vv+f(V+f(v2)—k)v2
Q Q
> a[Voll2, = VI [v]2,, + (£0) = M) vl
> alvl2 = IV e w15 P + (F0) — 2 — ) |vli2,

3 2-3 3
> alvl2 — G IV I I IR + (£ (0) = & — a)llv]l%,

> E o + (£ == 222P SCVIETY T 3 v
2 v Hl 2p po 2 Vil

where Cg is the Sobolev constant such that Vv € X, ||v||z6 < Cg|lv||z1. The coercivity of
E”(u) — A (i.e. the lower bound in (18)) is a straightforward consequence of (21) and (22).
To prove (19), we notice that

2 2 > 1 _ 1 2
Nuslly2 — G, us) 2| = 1 — (u, us) 2 = Ellus —ull72-
It therefore readily follows from (20) that
n
(A = 2)ats = 1), (s = ) x = 5 s = ull?,.
Combining with (22), we finally obtain (19). O

For w € X', we denote by 1, the unique solution to the adjoint problem

{ find v/,, € u™ such that

Voeut, ((E"() — W) v)xx = (. v)xr.xs 23)
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uL={veX‘/uv=O}.
Q

The existence and uniqueness of the solution to (23) is a straightforward consequence of
(18) and the Lax-Milgram lemma. Besides,

where

Ywe LX(Q), [Wulm <B ' Mlwlx <7 Mlwl|.. (24)
We can now state the main result of this section.
Theorem 1 Under assumptions (2)—(6) and (13), it holds

llus —ullyr — 0. (25)
§—0t
If in addition, (7) is satisfied, then there exists C € R, such that for all § > 0,
Y 2 <E E < M 2 C 26
EHMS_L‘HHI < E(us) — (u)_Ellus—ull,L,mL llus — ullLo/s-20, (26)

and
ks — A < C (s — ullZys + lus — ull pors—20) - @7

Besides, if assumption (8) is satisfied for some 1 <r <2 and 0 <s <5 —r, then there exist
8o > 0 and C € R, such that for all 0 < § < &,

lus — ullgr < C min [Jvs — ullg1, (28)
vseXs

llus —ully, < C(IIM —ull2llus — ull o5 + llus — ullg wlglelg(la Wus—u — %IIH1>~ (29)
Lastly, if F” is bounded, there exists C € R, such that for all § > 0,

Y
Enua—uu;l < E(us) — E(u) < Cllus — ull3,:. (30)

The result (25) was first established in [14], as well as an inequality similar to (27). On
the other hand, the other results seem to be new.

Remark 2 If 0 <r 4+ s <3, then

(5—r—5)/2

(Br—5+s)/2
lets — wlly g5y < lluts — )"~ s — ) 5>

< llus — ullg2llus — ullyy:'
so that (29) implies the simpler inequality

llus — ull7s < Cllus = ull g1 min [[Wi;— — Psll 1 €1y}
VseXs
Proof of Theorem 1 We have

1 1
E(us) — E(u) = §<Auua, us)x,x — = {Auu, u)x x

2
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1
+ E/QF(L@) ~F ()= £ () 6 — i)

1
= E((Au = M) (us —u), (us —u))x' x
+ %/ F(u3) = F (u®) — f (u?) (uj — ). (32)
Q

Using (19) and the convexity of F, we get
E(us) = Eo) = - lus =l
Let ITsu € X5 be such that
llu — Msull 1 = min {[lu — vsll g1, vs € X5}

We deduce from (13) that (ITsu)s-¢ converges to u in X when § goes to zero. Denoting by
s = || Tsu ||22I [Tsu (which is well defined, at least for § small enough), we also have

lim || — ull ;1 =0.
§—071
The functional E being strongly continuous on X, we obtain

2 2 ~
lus — ull < = (E(us) — E)) < = (E(iy) — E(u)) —> 0.
V4 V4 §—071

It follows that there exists §; > 0 such that
1
VO <8 <61, lusllg <2lullg, ||u5—u||H1§§.

We then easily deduce from (32) the upper bounds in (26) and (30).
Next, we remark that

As — A= (E"(us), us)x x — (E"(w), u)x' x

s, us) — au, 1) + / Fadud - / Fuu?
Q Q

:a(u(g—u,u(g—u)—l—Za(u,u,;—u)—i—/f(ug)ug—/f(uz)uz
Q Q
:a(u(g—u,u(g—u)—l—ZA/u(u,g—u)—Z/ f(uz)u(u,g—u)

Q Q

4 / Fal — / Fa?
Q Q

= aus —u,us —u) — Mllus — ull, — 2/9 F@ulus —u)

4 / Fad — / Fu?
Q Q

= ((Au =) (us —u), (us —u))x x +/ Wyus (s — 1) (33)
Q

@ Springer



98 J Sci Comput (2010) 45: 90-117

where
2 fug) = fu?)
Wy = Uy ————————.
Us —u
As u € L*(Q2), we have
| | 12u SUP; (0,41l ] F” (1)t if Jus| < 2u
u,u, < .
’ 2(|f(u§)| +maxte[0,|\u\|ix] [fODNus|  if |us| > 2u,

and we deduce from assumptions (6)—(7) that
Wi ] < CCLA+ [T,
for some constant C independent of §. Using (17), we therefore obtain that forall 0 < § < §,

2
[As — Al < Mllus — ullgn + 1w s | Lorearn lus — wll po/s-20)
2 2g+1
< Mlus —ully +CA A+ llusll ) s — ull ors—20
2
< C(lus —ull3 + llus — ull ors-20) 5 (34)

where C denotes constants independent of §.
In order to evaluate the H'-norm of the error us — u, we first notice that

VYus € X5,  llus —ully <llus —vsllyr + llvs — ull 41, (35)
and that

llus — vsll3; < B~ ((E" () — M) (us — vs), (us — vs))xr x
=B (((E"(u) — 1) (us — u), (us — vs))x' x
+ ((E"(u) — M) (u — v5), (s — ) x',x).- (36)

For all ws € X;
((E"(u) = M) (us —u), ws)x'. x

=— / (fWus — f@Pus —2f @ us — u)) ws + (ks — 1) / usws. (37
Q Q

On the other hand, we have for all vs € X; such that ||vs||;2 =1,

1
/ua(us—vs)=1—/uava=—||ua—vs||iz-
Q Q 2

Using (8) and (34), we therefore obtain that for all 0 < § < §; and all vs € X5 such that
lvsllz2 =1,

[((E" () — M) (us — ), (s — v5))x x|

2 2
= C(““B - u||26r/(57x) lus — vsll g1 + (“”8 - ””Hl + llus — u||L6/(5—24)) llus — U6||L2)- (38)
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It then follows from (18), (36) and (38) that for all 0 < § < §; and all vs € X; such that
lvsll 2 =1,

llus = vsll g < € (llus — ully + llus — ull g llus = vsll g+ lvs — ullg) -

Combining with (35) we obtain that there exist 0 < §, < §; and C € R, such that for all
0 < § <8, and all vs € X; such that ||vs||;2 =1,

lus — ullyr < Cllvs — ull 1.
Hence, forall 0 <48 <6,

lus —ullgn < CJs where J; = min lvs — ull 1.
vs€Xslllvsll 2=1

We now denote by
Js = min [[vs — ull 4,
vsEXs

and by u) a minimizer of the above minimization problem. We know from (13) that u
converges to u in H' when § goes to zero. Besides,

0 /1,0
Js < Nug/llugll2 — ull g

0
0 [P 0
< lluf = ull g+ = [T = gl |
el 2
0
0 [P 0
< luy —ullgn + g = lu — w2
el 2

0
< (1 + ”u%“H1>‘76.
lluesl 2
For 0 < 6§ < 8, < §;, we have ||ug —ullg < |lus — ull gz §~1/2, and therefore ||ug||H1 <
llat]| g1 + 1/2 and ||ug||Lz > 1/2, yielding Js <2(|lu|| g1 + 1)Js. Thus (28) is proved.
Let u} be the orthogonal projection, for the L? inner product, of us on the affine space

{ve L*(Q) | [,uv =1}. One has
1
ujeX, uj—ucut, u}‘—ua=§||ua—ullizu»
from which we infer that
llus — ull?, Z[(Ms—M)(u§—u)+/(us—u)(145—u§)
Q Q
* 1 2
= | (us —w)(us —u) — —|lus —ull;> | (s —u)u
Q 2 Q
* 1 2
= | (us—w)(us —u)+ —llus —ullja | 1 — [ usu
Q 2 Q

_ * 1 4
= Q(Ms —u)(uy —u) + leua —ull;2
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1
= (us —u,uy —u)x x + ZHM(S - M||iz
" * 1 4
= ((E"(u) — M Vys—u, us —u)x' x + Z”Ma —ull}2
= ((E"(u) = 2)(us — u), Yus—u)x'.x
1 2 (E//( ) )\) 1 4
+§||M5—M||L2( u) —ru, Wng—u)X’,X‘i_Z”uB_u”l}
= ((E"(u) — M) (us — u), Yus—u)x'.x
, 1
s = [ 7 GO s+ sl
Q
For all 5 € X, it therefore holds

llus — ull?> = ((E"(u) — M) (us — u), ¥s)xr x
+ ((E" () — 1) (s — ), Yug—u — Vs)xr x

, 1
s =l [ G s s =l
From (37), we obtain that for all s € X5 Nu™,

((E"(u) = A (us —u), ¥s)xr x
= —/ (f@dus — f@Pus — 2 f @ s — ) s + (s — 1) / (us —u)s
Q Q
and therefore that for all ¥5 € X5 Nut,
[((E" (u) — 1) (us — u), ¥s) xr.x|
< C(llus — ulls orsis-s + s — wll gors (llues — w30 + s — wll Loss—20)) sl . (39)

Let ¥ € X5 Nut be such that

0 .
[Vus—u = Ysllgr = min A, — Ysll g
v ut

s€XsN

Noticing that ||1/f(§)||H1 < Wug—ullg < B~ 'M||lus — ul|;2, we obtain from (18) and (39) that
there exists C € R, such that for all 0 <6 < é,

2
llus — ull7, < C(llus —ull2
2
X (llus — wlly6rjis—) + s — ullposs (llus — el 4 llus — ull pors—2))

0 3 4
+ llus — wull gt | Wus—u — Y3 Lt + s — ull} 2 + llus — ully2).
Therefore, there exist 0 < §y < 8, and C € R, such that for all 0 < § < §y,
2 . 0
lus — ull?> < C (llus — ull 2 llus — ull)6ss-s) + les — wll g1 1Wus—u — ¥ 1)

@ Springer



J Sci Comput (2010) 45: 90-117 101

Lastly, denoting by l'I;LS the orthogonal projector on X; for the H' inner product, a simple
calculation leads to

1T, el 1
Yoeut, min vy —vfy < (1 + Xﬁi”) min [lvs — vz, (40)
vseXsNut (u, HXBM)LZ v5EXs
which completes the proof of Theorem 1. ]

Remark 3 In the proof of Theorem 1, we have obtained bounds on |A; — A| from (33),
using L” estimates on w, ,, and (us — u) to control the second term of the right hand side.
Remarking that

; F®u — f@iu—2f (ug)ui(u —us) Vus
(us —u)?
F@us — f@Hus — 2 f @Hu?(us — u)
—Us Vu
(us —u)?

Vw, us = —

2y _ 2
s Sfuz)— fu )Vu

+ 2uug (f/(ug) Vs —l—f’(uz)Vu) +2 P
s —

8

we can see that if us is uniformly bounded in L*°(2) and if F satisfies (8) for r =2 and is
such that F”(¢)t'/? is locally bounded [0, +00), then w, ,, is uniformly bounded in X. It
then follows from (33) that

2
s = A1 = C(lls — ullys + ey — ully),
an estimate which is an improvement of (27). In the next two sections, we will see that this
approach (or analogous strategies making use of negative Sobolev norms of higher orders),
can be used in certain cases to obtain optimal estimates on [A; — A| of the form
A5 — 4l < Cllus —ull;

HL

similar to what is obtained for the linear eigenvalue problem —Au 4+ Vu = Au.

3 Fourier Expansion

In this section, we consider the problem
inf:E(v), veX,/v2=1}, 41)
Q

where

Q=(0,2n)?, withd=1,20r3,
X =H,(Q),

E®) 1/|V|2+1/V2+1/F(2)
V)= — v - v - V7).
2 Ja 2 Ja 2 Jo
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We assume that V € HY () for some o > d/2 and that the function F satisfies (5)—(7),
(8) forsome 1 <r <2and 0 <s <5 —r, and is in CloMHLo-lol+e((0, 4-00), R) (with the
convention that C*° = C¥ if k € N).

The positive solution u to (41), which satisfies the elliptic equation

—Au+Vu—+ f(uz)u =\u,

then is in H,/ +2(Q2) and is bounded away from 0. To obtain this result, we have used the fact
[12] thatif T > d/2, g € CFFF*"TH(R R) and v € H] (Q), then g(v) € H{ ().

A natural discretization of (41) consists in using a Fourier basis. Denoting by e (x) =
(2m)~4/?e'** | we have for all v € L*(Q),

v(x) =Y Der(x),

kezd

where 7y, is the kth Fourier coefficient of v:
Uy = / v(x)er(x)dx = (271)"’/2/ v(x) e *F dx.
Q Q

The approximation of the solution to (41) by the Fourier spectral approximation is based on
the choice

X,;=§N=[ Z crey | Vk, c,f:c_k},

keZd | k|« <N

where |k|, denotes either the >-norm or the /°°-norm of k (i.e. either |k| = (Z?:l |k;1%)1/?
or |k|o =max;<;<4 |k;|). Note that the constraints ¢j = c_; imply that the functions of X N
are real-valued. For convenience, the discretization parameter for this approximation will be
denoted as N.

Endowing H (2) with the norm defined by

1/2
Mol = D (L+ 1K) 0l |

kezd

we obtain that for all T € R, and all v € H; (), the best approximation of v in H,f (€2) for

any p <7 is
I1 NU = Z ’U\ke‘k.
keZd |kl <N
The more regular v (the regularity being measured in terms of the Sobolev norms H”), the

faster the convergence of this truncated series to v: for all real numbers p and T with p <7,
we have

Yuve Hf (), |lv—Tyv|pe <

< e Il (42)

Let uy be a solution to the variational problem
inf{E(vN), vy € )N(N, / v,z\, = 1}
Q
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such that (uy, u);2 > 0. Using (42), we obtain

lu — Tyullgp < llell o2,

- N0+l
and it therefore follows from the first assertion of Theorem 1 that

lim |luy —ullgn =0.
N—o0

We then observe that iy is solution to the elliptic equation
—Auy + Ty [Vuy + fui)uy] = ryuy. (43)
Thus u y is uniformly bounded in Hﬁ(Q), hence in L*°(£2), and
Ay —u) =Ty (V(uy —u) + fuz)uy — fu?)u)
— (I =TV (Vu+ f @) —dy@uy —u) = Gy = Du. (44)

As (un)wen is bounded in L®(S2) and converges to u in Hj (2), the right hand side of
the above equality converges to 0 in L3(£2), which implies that (uy)yey converges to u in
H#Z(Q), and therefore in Cf,f (R2). In particular, u/2 <uy <2u on Q for N large enough, so

that we can assume in our analysis, without loss of generality, that F' satisfies (6) with g =0

and (8) with r =2 and s = 0. We also deduce from (43) that u 5 converges to u in H;’”(Q).

Besides, the unique solution to (23) solves the elliptic equation
—AY + (V + f@®) + 2 @u® = 1) Y,

=2 (/ f/(uz)u31/fw> u—+w— (w,u)2u, (45)
Q
from which we infer that v, _, € Hﬁ(Q) and ||y —ull g2 < Clluny — ull;2. Hence,

1 (o
”wW\/—u - HNlpuN—u”Hl < _||1//L¢N—u||H2 =< NHMN - u||L2'

‘We therefore deduce from Theorem 1 that

C
luy —ullgr < = fort=0and t =1; (46)
Ay — Al < Noi2’ 47)

Y
5 lux = ullfyy < EGuy) = E@) < Clluy =l
From (46) and the inverse inequality
Yoy € Xy, lowllae <2°72N " loyllge,

which holds true for all 7 < p and all N > 1, we then obtain using classical arguments that

C
||uN—u||Hr§W forall0 <t <o +2. (48)
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The estimate (47) is slightly deceptive since, in the case of a linear eigenvalue problem
(i.e. for —Au + Vu = Au) the convergence of the eigenvalues goes twice as fast as the
convergence of the eigenvector in the H'-norm. We are going to prove that this is also the
case for the nonlinear eigenvalue problem under study in this section, at least under the
assumption that F € Clo+20-lol+¢((0, 4-00), R).

Let us first come back to (33), which we rewrite as,

Jow = & = ((Aw = M)t — 1), (e — 1))y x + / Wy Gty — 1) 49)
Q

with

wu,uN -

f?) — fw? f?) — fw?
e = ey T

Asu/2 <uy <2uon 2 for N large enough, as uy converges, hence is uniformly bounded,
in Hy () and as f € Cloho-lole([1u|2 . /4, 4||u| ], R), we obtain that w,,,, is uni-
formly bounded in H (€2) (at least for N large enough). We therefore infer from (49) that
for N large enough

IAn =2l < C (luy = ullfy + luy — ullg-s) . (50)

Let us now compute the H ~"-norm of the error for 0 < p < o. Let w € HY (). Proceed-
ing as in Sect. 2, we obtain

/ ey — ) = ((E"@) = W)y — ). Ty Yu)xx
Q
+((E" ) = 2y — 1), Y — Ty W

1
Tl —uniz/ F Y — —un;/ ww, (51
Q 2 Q

where H}?N L denotes the orthogonal projector on Xy Nut for the H' inner product. We
then get from (45) that v,, is in H*>(R) and satisfies

1wl e+2 < Cllwllae, (52)
for some constant C independent of w.

Combining (18), (39), (40), (48), (49), (51) and (52), we obtain that there exists a constant
C € R, such that for all N e N and all w € H; (),

2 — 1
fw(w—u)sc(nw—unﬁw Dy — 1) ]
Q

= m”w”m’-
Therefore
w(uy —u) C
luy —ullg-»= sup o = N (53)
weHy (2)\{0} lwll e

@ Springer



J Sci Comput (2010) 45: 90-117 105

for some constant C € R, independent of N. Using (48) and (50), we end up with

v =A< TG
We can summarize the results obtained in this section in the following theorem.

Theorem 2 Assume that V € HJ (2) for some o > d /2 and that the function F satisfies
(5)~(7) and is in C'7*1o—1014€((0, 4-00), R). Then (uy)nen converges to u in HI*(Q)
and there exists C € R, such that for all N € N,

C
||uN—u||Hz§W forall —o <t <042 54)

C
[Ay — Al < W;
14 2 2
Elluw—ullﬁl < E(uy)— E@) =Clluy —ull;;- (55)
If, in addition, F € Cl?H2o-lo1+€((0, 4-00), R), then
C
Ay — Al < N2otD (56)

In order to evaluate the quality of the error bounds obtained in Theorem 2, we have
performed numerical tests with Q = (0, 27), V (x) = sin(|x — 7|/2) and F(¢?) =t?/2. The
Fourier coefficients of the potential V are given by

~ (B
Vi, 57
f T (57)

from which we deduce that V € HJ (0,2m) for all o < 3/2. It can be see on Fig. 1 that
luy —wll g1, luy — ullz2, ey — ull g1, and |Ay — A| decay respectively as N =267, N =367,
N—*7 and N3 (the reference values for u and A are those obtained for N = 65). These
results are in good agreement with the upper bounds (54) (for s = 1 and s = 0), (53)
(for » = 1) and (56), which respectively decay as N~25t¢ N733+€ N—45+¢ gpd N7+,
for € > 0O arbitrarily small.

4 Finite Element Discretization

In this section, we consider the problem

inf{E(v), ve X, / v = 1}, (58)
Q
where

Q is a rectangular brick of RY, withd =1, 2 or 3,
X = Hy(Q),

E(v) 1/IV|2+1/V2+1/F(2)
V)= — v = v = V7).
2 Jo 2 Jo 2 Jo

@ Springer



106 J Sci Comput (2010) 45: 90-117
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Fig. 1 Numerical errors luy —ullg1 (), lluy —ull2 (), luy —ullg—1 (%), and [Ay — 4| (o), as
functions of 2N + 1 (the dimension of Xy ) in log scales

We assume that V e L?(R2) and that the function F satisfies (5)—(7), as well as (8) for some
l <r <2and0<r+s <3. Throughout this section, we denote by u the unique positive
solution of (58) and by A the corresponding Lagrange multiplier.

In the non periodic case considered here, a classical variational approximation of (1) is
provided by the finite element method. We consider a family of quasi-uniform triangulations
(7)), of Q. This means, in the case when d = 3 for instance, that for each & > 0, 7, is a
collection of tetrahedra such that

1. Q is the union of all the elements of 7;,;

2. the intersection of two different elements of 7, is either empty, a vertex, a whole edge,
or a whole face of both of them;

3. the ratio of the diameter 4 x of any element K of 7, to the diameter of its inscribed sphere
is smaller than a constant independent of 4 and K;

4. there exists a constant C > 1 independent of 4 and K such that hx <h < Chg for any h
and K € 7y,.

As usual, & denotes the maximum of the diameters i, K € 7,. The parameter of the dis-
cretization then is § = & > 0. For each K in 7}, and each nonnegative integer k, we denote
by Px(K) the space of the restrictions to K of the polynomials with d variables and total
degree lower or equal to k.

The finite element space X}, ; constructed from 7;, and P (K) is the space of all contin-
uous functions on €2 vanishing on 9$2 such that their restrictions to any element K of 7,
belong to P, (K). Recall that X, ; C H(} (2) as soon as k > 1.

We denote by rr,?, « and n,;k the orthogonal projectors on X}, ; for the L? and H' inner
products respectively. The following estimates are classical (see e.g. [8]): there exists C €
R, such thatforall e Nsuchthat 1 <r <k +1,

Ve H (QNHY (), l¢—mp ol <Ch Il
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Vo e H' () NHy (), ¢ —my,llg < CH Mgl r (59

Let uj, ;. be a solution to the variational problem

inf{E(vh,k), Uik € Xnk, / v = 1}

Q
such that (uj, 4, ) 2 > 0. In this setting, we obtain the following a priori error estimates.
Theorem 3 Assume that V € L*>(Q) and that the function F satisfies (5), (6) for ¢ =1, (7),

and (8) for some 1 <r <2 and0 <r +s < 3. Then there exist hy > 0 and C € R such that
forall 0 < h < hy,

lns — ull g < Ch (60)

luny —ull2 < Ch 1)

s — Al < Ch? (62)

%nth —ull%y < Euy) — E(u) < Ch2. 63)

If in addition, V € H'(Q), F satisfies (8) for r =2 and is such that F € C3((0, +00), R)
and F"()t'% and F" (t)t3* are locally bounded in [0, +00), then there exist hy > 0 and
C € Ry such that for all 0 < h < hy,

luna — ull < Ch? (64)

luna — ull2 < Ch3 (65)

Ap2— Al < Ch* (66)

gnuh,z —ull%y < Eupn) — E(u) < Ch. 67)

Proof As Q is a rectangular brick, V satisfies (4) and F satisfies (5)—(7), we have u €
H?(Q2). We then use the fact that Yy, x—u 18 soOlution to

— AV + (V4 F@) + 2 @Hu* — M)V,
=2 ( / f/<u2>u3x/fuh,k_u> U+ (g —u) — (Upp — u,u)2u,
Q

to establish that ¥, ,_, € H*(2) N Hy () and that

”wuh_k—u “H2 = C”uh,k —u ||L2 (68)

for some constant C independent of & and k. The estimates (60)—(63) then are directly
consequences of Theorem 1, (31), (59) and (68).

Under the additional assumptions that V € H'(S2), we obtain by standard elliptic regu-
larity arguments that u € H*(2). This follows from a prolongation by reflection argument
using the fact that u, hence Au — Vu — f(u®)u, vanish on the boundary 92 of the rectan-
gular brick Q. As u € HOl () and —Au=Au — Vu — f@u € Hol (£2), the prolongation
by reflection # of u is in H; (2Q) and is such that —A# € H,}(2€). Hence i € H; (2€2), and
therefore u € H3(Q).
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The H' and L? estimates (64) and (65) immediately follows from Theorem 1, (31), (59)
and (68). We also have

|hap — Al < Ch?

for a constant C independent of 4. In order to prove (66), we proceed as in Sect. 3. We start
from the equality

Mg —A={((Ay — AN (uzy —u), (ua), —u))x x +f WM (ua,p — u)
Q

where

oo [0~ 1)

=Uy ) —.
2,h
Uryp — U

We now claim that u;, , converges to u in L*(£2) when & goes to zero. To establish this
result, we first remark that

lunz —ullLoe < llunz —ZyaullLe + 1 Zn2u — utll oo,
where 7, » is the interpolation projector on X ,. Asu € H 3(Q) — C1(Q), we have
lim ||Z, ou — ul|z =0.
h—0+
On the other hand, using the inverse inequality

ICeR, st YO<h=<hy, Yo, € Xp2, lvpalle < CoM)llvpallg,

with p(h) =1ifd=1, p(h) =1+1Inhifd =2 and p(h) =h~"/? if d =3 (see [8] for in-
stance), we obtain

lun2 — Tyoullpee < Co(h)llupno — Znoullm
< Cp(h) (llunz — ull g1 + lu — Ty oull 1)
<C'ph)h®> — 0.
h—0t

Hence the announced result. This implies in particular that %" is bounded in H'(2), uni-
formly in /. Consequently, there exists C € R, such that for all 0 < & < hy,

o = A < C (llunz —ullyy + luna —ullg1). (69)
To estimate the H ~'-norm of up 2 — u, we write that for all w € HO1 (),
/ Wy — ) = ((E"(w) = Mo — ),y )y x
o .
+ ((E"(u) — M) (up —u), Yo — ﬂ)l(“m# Yu)x'.x

, 1
+ llupa — ulliz/ @, — = llup — ulliz/ uw,
Q 2 Q
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where v, is solution to
=AYy, + (V+ f@) +2f @P)u? = M,

=2 (/ f/(uz)zﬁww) u+w— (w,u)2u, (70)
Q

1 ; 1 1
and where T arut denotes the orthogonal projector on X, », Nu~— for the H' inner product.

Using the assumptions that V € H'(Q), F € C3((0, +00),R), and F”(¢)t'/? and F" (¢)t3/?
are locally bounded in [0, +00), we deduce from (70) that ¥, is in H3(R2) and that there
exists C € R, such that for all w € HOl () and all 0 < h < hy,

[Ywllgs < Cllwl g

We therefore obtain the inequality

1w — 7y ¥l < CR2 (w1, (71)

where the constant C is independent of /.
Putting together (8) (for r = 2), (18), (39), (40), (59), (64), (65) and (71), we get

wilu —Uu
lups—ully1 = sup éL—(iz———)scm.

wEHOl(Q)\(()} ”w”H1
Combining with (64) and (69), we end up with (66). Lastly, we deduce (67) from the equality

1
E(up2) — E(u) = §<(Au — M) (upo —u), (upo —u))x x

+ %/ F (u2 + (ui2 — uz)) —F (uz) —f (uz) (ui,2 — uz),
Q

Taylor expanding the integrand and exploiting the local boundedness of the function
F"()t'? in [0, 4+-00). O

Numerical results for the case when = (0, )%, V (x1, x2) = )cl2 + x22 and F(t?) =12/2
are reported on Fig. 2. The agreement with the error estimates obtained in Theorem 3 is
good for the IP; approximation and excellent for the [P, approximation.

5 The Effect of Numerical Integration

Let us now address one further consideration that is related to the practical implementation
of the method, and more precisely to the numerical integration of the nonlinear term. For
simplicity, we focus on the case when A is the identity matrix.

From a practical viewpoint, the solution (us, As) to the nonlinear eigenvalue problem
(15) can be computed iteratively, using for instance the optimal damping algorithm [2, 4, 7].
At the pth iteration (p > 1), the ground state (u}, A}) € X5 x R of some linear, finite di-
mensional, eigenvalue problem of the form

Vus € X5, /ng’-vU5+/ (v+rarh) Evazxg’/ﬁvs, (72)
Q Q Q
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Fig. 2 Errors lupx —ull g1 (+), llup g —ull 2 (x) and [Ap g — Al (%) for the Py (k =1, top) and P (k =2,
bottom) approximations as a function of # in log scales

has to be computed. In the optimal damping algorithm, the density p; ~!is a convex linear
combination of the densities ,og = |u§ |2, for 0 < ¢ < p — 1. Solving (72) amounts to finding
the lowest eigenelement of the matrix H” with entries

Hy) :=/V_¢k-wz+/ va¢l+/f(ﬁg’*‘>a¢z, (73)
Q Q Q

where (¢) 1<k<dim(x;) stands for the canonical basis of X;.

In order to evaluate the last two terms of the right-hand side of (73), numerical integration

has to be resorted to. In the finite element approximation of (58), it is generally made use of
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a numerical quadrature formula over each triangle (2D) or tetrahedron (3D) based on Gauss
points. In the Fourier approximation of the periodic problem (41), the terms

/Vae, and /f(’ﬁg’*‘)ael,
Q Q

which are in fact, up to a multiplicative constant, the (k — [)th Fourier coefficients of V and
fy ) respectively, are evaluated by Fast Fourier Transform (FFT), using an integration
grid which may be different from the natural discretization grid

2 2T 0< i <N
2N+1J1"”’2N—|—1Jd’ sy US Ty eees Ja =

associated with X y. This raises the question of the influence of the numerical integration on
the convergence results obtained in Theorems 1, 2 and 3.

Remark 4 In the case of the periodic problem considered in Sect. 3 and when F(t) = ct?
for some ¢ > 0, the last term of the right-hand side of (73) can be computed exactly (up to
round-off errors) by means of a Fast Fourier Transform (FFT) on an integration grid twice
as fine as the discretization grid. This is due to the fact that the function p} e belongs
to the space Span{e, | |n]. < 4N}. An analogous property is used in the evaluation of the
Coulomb term in the numerical simulation of the Kohn-Sham equations for periodic sys-
tems.

In the sequel, we focus on the simple case when d =1, Q = (0,27), X = H; 0,2m),

and
1 2 1 2 1 2
E(v) = - o, 1 Vol _/ 4
() 2/0 |v|+2/0 v+40 [v]

with V € H/ (0, 2r) for some o > 1/2. More difficult cases will be addressed elsewhere [5].
In view of Remark 4, we consider an integration grid

2
A0, 27) =
N

{0 2w 4w 27T(N,—1)}
g

7Fg’ﬁg»~--a Ng

with N, > 4N + 1 for which we have

~ 2 4 27 4
Yoy € Xy, / ot =2 30 ol
0

¢ e F2010,27)

and for all p € XZN,

2 - 1 o o
VIK|, |[] < N, / pae=o- >, pwe =it (74)
0

& e Fzni0.2m)

where ,O/EET is the (k — [)th coefficient of the discrete Fourier transform of p. Recall that

if ¢ = dez ag ey € Cg (0, 2m), the discrete Fourier transform of ¢ is the N,Z-periodic
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sequence (dif\FT )gez defined by

— 1 .
VeeZ, ¢ffT= A Z o(r)e s,

8 2
= ZN[0,2:
re Ng [0,2m)

‘We now 1ntr0duce the subspaces W), for M € N* such that W), = X -1y2 if M is odd and
Wy = XM/z 1 @ Clemr + e_my2) if M is even (note that dim(Wy) = M for all M € N¥).
It is then possible to define an interpolation projector Zy, from C2(0,27) onto Wy, by

2
V€ F”Zﬂ [0.27),  [Zn, (@)](x) = $(x).

8

The expansion of Zy, (¢) in the canonical basis of Wy, is given by

Q)2 Y <1y P e (N, odd),

Iy, (@) = engjate_
’ Q)2 Y oy BT €+ (2m) PG (D22 (N, even).

Under the condition that N, > 4N + 1, the following property holds: for all ¢ € Cg 0,2m),

2 o
VIKL. Il < N, / v, @) Zcer = 7
0

It is therefore possible, in the particular case considered here, to efficiently evaluate the
entries of the matrix H? using the formula

2r 2w 2w |
, _ ~p—l—
H} ::/ e,ﬁ-e,—i—/ Veke;—l—/ oN erel
0 0 0

—

~ kP28 + VI + 150 1T, (75)

and resorting to Fast Fourier Transform (FFT) algorithms to compute the discrete Fourier
transforms. Note that only the second term is computed approximatively. The third term is
computed exactly since, at each iteration, pN belongs to X2N (see (74)). Of course, this
situation is specific to the nonlinearity F(t) = #>/2 considered here.

Using the approximation formula (75) amounts to replace the original problem

2
inf{E(vN), UNGXN,/ |UN|2=1}, (76)
0

with the approximate problem

2
inf{ENg(UN)s vy € Xy, / low|* = 1} ) 7
0

where

2 2r 2
1 ’ 2 1 2 1 4
Ey,(vy) = = loyl”+ = In,(V)vy + — [uw]™
2 0 2 0 4 0
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Let us denote by uy a solution of (76) such that (uy,u);2 > 0 and by uy y, a solution
to (77) such that (uy n,,u) 2 > 0. It is easy to check that uy y, is bounded in H#1 0,2m)
uniformly in N and N,.

Besides, we know from Theorem 2 that (uy)yen converges to u in H#1 (0, 27), hence
in Lg(0,2m), when N goes to infinity. This implies that the sequence (A, — A,,)nen
converges to 0 in operator norm. Consequently, for all N large enough and all N, such that
Ny >4N +1,

Y 2
1 lunn, —unllzpn < E(unn,) — E(uy)

< En,(uyn,) — En,(un)

2
+/ (V = Zy, (V) (lun.n, 1> = lun )
0

< OZH(V = In, (V) (luw.n, I* = lun?)

< ClIMan(V = Zn, (VD2 lun v, — unllgs
where we have used the fact that (Juy,, |* — |uy|?) € X,y. Therefore,
lun v, —unllgr < CliTlan (V —Zy, (V) I 2, (78)

for a constant C independent of N and N,. Likewise,

Anng —An = ((Auy — An)(un N, —un), (NN, —UN))X X

2
— |V =Ty (V)luwn, P
0

2
+/ |uN,Ng|2(uN,Ng +un)Un N, —Un),
0
from which we deduce, using (78),
[An.v, — Anl S CliTan (V = Iy, (V) 2.

An error analysis of the interpolation operator Z, N is given in [6]: for all non-negative real
numbers 0 <r <s withs > 1/2 (ford = 1),

Vo € Hj0.2m), g = T, @)l < 19l
g
Thus,
c
Moy (V= Iy V2 < IV = Zn (V)22 = 2 (79
g
and the above inequality provides the following estimates:
i, — ull gt < C(N"7"+ N;°), (80)
lunn, —ullz < C(NT74+N;%), 81
v, — A < C(N7 24 N,°), (82)
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Fig. 3 (Color online) Numerical errors ||“N,Ng — ully1 (top left), ||“N,Ng — ully2 (top right),
HMN,Ng — ull -1 (bottom left), and |)»N,Ng — A| (bottom right), as functions of 2N + 1 (the dimension
of X ), for Ny =27 = 128 (red), Ny = 28 =256 (green), Ny =2° =512 (cyan), Ng =20 = 1,024 (g0ld),
Ng =21 =2,048 (magenta), Ny =212 = 4,096 (orange), Ng =2'3 = 8,192 (black), Ny = 2'* = 16,384
(blue), Ng =213 = 32,768 (light grey)

for a constant C independent of N and N,. The first component of the error bound (80)
corresponds to the error |luy — ul|z1 while the second component corresponds to the nu-
merical integration error ||uy y, — un| y1 (the same remark applies to the error bounds (81)
and (82)).

It is classical that the norm ||¢ — Zy, ||y for r < 0 is in general of the same order of
magnitude as [|¢ — Zy,¢ll,2. As the existence of better estimates in negative norms is a
corner stone in the derivation of the improvement of the error estimate (47) for the eigenval-
ues (doubling of the convergence rate), we expect that the eigenvalue approximation will be
dramatically polluted by the use of the numerical integration formula.

This can be checked numerically. Considering again the one-dimensional example used
in Sect. 3 (Q = (0,27), V(x) = sin(lx — m|/2), F(t) = t*>/2), we have computed for
4 <N <30 and N, =27 with 7 < p < 15, the errors ||uN,Ng —ull g1, ||uN,Ng — ul| 2,
lun.n, —ully-1, and |Ay n, — Al. On Fig. 3, these quantities are plotted as functions of
2N + 1 (the dimension of X ), for various values of N,.

The non-monotonicity of the curve N +— |iy, Ne — Al originates from the fact that
AN.n, — A can be positive or negative depending on the values of N and N,.

The numerical errors |luy y, — ull gt lun.n, — ull2, lun y, — ullg-1, and Ay y, — Al,
for N = 30, as functions of N, (in log scales) are plotted on Fig. 4. When N, goes to in-
finity, the sequences logq lluy, v, — ull g1, 1080 lun N, — ull 2, 10g)g llun v, — ]l -1, and
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Fig. 4 Numerical errors 10-4 .
lun, Ny —ull g1 (%), 0 .
luy ng —ullp2 (), s
lun ng —ull g—1 (), and 107F : 1
|)»N,Ng — | (o), for N =30, as 9
functions of Ng (in log scales) 108k * N ]
a *
9 o
= . 70 g 1
5 10 )
Llj * * * x|
108} ° 1
10 3
10710k ‘ ‘ ‘ ‘ ‘ ‘ ‘ :

2
Ng (log)

logg [An.n, — A| converge to logy, luy — ull 51, logyg lluy — ull 2, logyg luxy — ull4-1, and
log,o [An — A| respectively. For smaller values of N,, the numerical integration error dom-
inates and these functions all decay linearly with log,, N, with a slope very close to —2.
For fixed N, the upper bounds (80)—(82) also decay linearly with log,, N,, but with a slope
equal to —1.5. To obtain sharper upper bounds for the numerical integration error, we need
to replace (79) with a sharper estimate of [|[IToy(V — Zy,(V))|,2, which is possible for
the particular example under consideration here. Indeed, remarking that under the condition
Ny > 4N +1,

N 1/2

TN (V= Zn, VD lz = | Y (D Veraw, :

|g|<2N |keZ*

we can, using (57), show that

1/2

1Mo (V = Ty, (V)12 < s
8

for a constant C independent of N and N,. We deduce that for this specific example

lun.ng —ullg < C(N> 4+ N'2N?),
~12 1/2 =2
luwn, —ul2 <C(N / +N/Ng ),

-5 n12N-2
IAny, —A S C(NT+ N'2NS?).
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Appendix: Properties of the Ground State

The mathematical properties of the minimization problems (1) and (9) which are useful for
the numerical analysis reported in this article are gathered in the following lemma.
Recall thatd =1, 2 or 3.

Lemma 2 Under assumptions (2)—(6), (9) has a unique minimizer py and (1) has exactly
two minimizers u = /po and —u. The function u is solution to the nonlinear eigenvalue
problem (11) for some A € R. Besides, u € C**(Q) for some 0 <o <1, u > 0in Q, and A
is the lowest eigenvalue of A, and is non-degenerate.

Proof As A is uniformly bounded and coercive on 2 and V € L?(2) for some p >
max(1,d/2), v — a(v,v) is a quadratic form on X, bounded from below on the set
{ve X |||lvll.2 = 1}. Replacing a(v, v) with a(v, v) + C||v||§2 and F(t) with F'(t) — F(0) —
t F'(0) does not change the minimizers of (1) and (9). We can therefore assume, without loss
of generality, that

YoeX, a@,v)=|vl?, and F(0)=F'(0)=0. (83)

It then follows from (6) and (83) that 0 < F(v?) < C(v*> +v°). As X — L%(Q), E(v) is
finite for all v € X, I > —oo and the minimizing sequences of (1) are bounded in X. Let
(Vn)nen be a minimizing sequence of (1). Using the fact that X is compactly embedded
in L2(Q2), we can extract from (v,),en a subsequence (n, Jken Which converges weakly
in X, strongly in L2(£2) and almost everywhere in  to some u € X. As lvn, Iz =1 and
E(v,,) | I, weobtain |[ul|;2 =1and E(u) < I (E is convex and strongly continuous, hence
weakly L.s.c., on X). Hence u is a minimizer of (1). As |u| € X, |[lulll;2 =1 and E(|u|) =
E(u), we can assume without loss of generality that u > 0. Assumptions (2)—(6) imply
that E is Giteaux differentiable at u and that E'(u) = A,u. It follows that u is solution
to (10) for some A € R. By elliptic regularity arguments [9], we get u € C%* () for some
0 <a < 1. We also have u > 0 in €2; this is a consequence of the Harnack inequality [13].
Making the change of variable p = v, it is easily seen that if v is a minimizer of (1),
then v? is a minimizer of (9), and that, conversely, if o is a minimizer of (9), then ,/p and
—./p are minimizers of (1). Besides, the functional £ is strictly convex on the convex set
{p>=01]./p€X, [,p=1}. Therefore py = u* is the unique minimizer of (9) and u and
—u are the only minimizers of (1).

It is easy to see that A, is bounded below and has a compact resolvent. It therefore
possesses a lowest eigenvalue A, which, according to the min-max principle, satisfies

kozinf{/(AVv)-Vv+/(V+f(u2))v2, veX, / vzzl}. (84)
Q Q Q

Let vy be a normalized eigenvector of A, associated with Ay. Clearly, vy is a minimizer of
(84) and so is |vg|. Therefore, |vy| is solution to the Euler equation A, |vy| = Ao|vo|. Using
again elliptic regularity arguments and the Harnack inequality, we obtain that |vy| € C%*(Q)
for some 0 < @ < 1 and that |vy| > 0 on . This implies that either vy = |vg| > 0 in Q or
vo = —|vo| < 0 in Q. In particular (u, vy);> # 0. Consequently, L = Ao and A is a simple
eigenvalue of A,. O
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Let us finally prove that A is also the ground state eigenvalue of the nonlinear eigenvalue
problem

search (u, v) € R x X such that
Ay,v=pv (85)
lvll2=1,

in the following sense: if (u, v) is solution to (85) then either u > A or u = A and v = £u.

To see this, let us consider a solution (i, v) € R x X to (85) and denote by w = |v| — u.
As for u, we infer from elliptic regularity arguments [9] that v € C*¥(Q). We have
lvllz2 = llull;2 = 1. Therefore, if w <0 in 2, then |v| = u, which yields v = +u« and
u = XA. Otherwise, there exists xo € Q such that w(xg) > 0, and, up to replacing v with
—v, we can consider that the function w = v — u is such that w(xg) > 0. The function w is
in X N C%%(Q) and satisfies

2y _ 2
(A, — VDw wv(u—kv)w—(u Av. (86)

Letw={xeQ|wkx)>0}={xeQ|v)>ux)}and wy =max(w,0). As wy € X, we
deduce from (86) that

2N 2
(A = Mws, wy) X/x+/M (u+v)w2=(u—k)/vw

w

The left hand side of the above equality is positive and fw vw > 0. Therefore, u > A.
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