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Abstract A general interface procedure is presented for multi-domain collocation meth-
ods satisfying the summation-by-parts (SBP) spatial discretization convention. Unlike more
traditional operators (e.g. FEM) applied to the advection-diffusion equation, the new pro-
cedure penalizes the solution and the first p derivatives across the interface. The combined
interior/interface operators are proven to be pointwise stable, and conservative, although
accuracy deteriorates for p ≥ 2. Penalties between two different sets of variables are com-
pared (motivated by FEM primal and flux formulations), and are shown to be equivalent for
certain choices of penalty parameters. Extensive validation studies are presented using two
classes of high-order SBP operators: (1) central finite difference, and (2) Legendre spectral
collocation.
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1 Introduction

High order finite difference methods (HOFDM) are ideally suited for simulations of complex
physics requiring high fidelity solutions, and for a simple reason: efficiency. The extension
of HOFDM to complex domains has proven difficult to accomplish, however. Multi-domain
HOFDM are natural candidates for extension, but are fraught with the complexity of inter-
face coupling procedures. Specifically, they must address the interface accuracy constraints,
as well as contend with coupled stability conditions and interface conservation issues. Many
ad hoc procedures have been developed to accommodate multi-domain methods, includ-
ing conforming, nonconforming, and overset/overlapping procedures, (e.g. see Chesshire
and Henshaw [10]). To enhance robustness, however, such techniques frequently require re-
duction in the order of accuracy at the interface and/or inclusion of specialized dissipation
terms.

A simple solution to the multi-domain problem for HOFDM appears in the work of Car-
penter, Nordström, Gottlieb [8] (henceforth referred to as CNG). Motivated by the recent
popularity/success of Discontinuous Galerkin Finite Element methods (DGFEM), and the
internal penalty approaches, CNG combine summation-by-parts (SBP) operators [1, 6, 7,
12, 13, 15, 16, 22, 23, 28, 29] within each domain, with a penalty technique at the inter-
face. The formulation requires only weak grid continuity at the interface (C0: matching but
not necessarily smooth), and is applicable to any operator that satisfies a SBP property. It
maintains formal accuracy through the interface, is conservative and maintains a bounded
semi-discrete energy estimate consistent with the underlying SBP operators. Similar de-
velopments within the nodal spectral element community are reported by Hesthaven et al.
[17–19].

Although the CNG formulation is a powerful technique for coupling subdomains, it is not
a general approach. Indeed, penalties could have been introduced in the original work using
any smooth, collocated interface variable. A general methodology is advantageous because
it allows greater flexibility in the construction of stable, accurate and conservative interface
operators. (For example, one target application is the construction of block interface cou-
pling operators needed for the newly developed energy stable WENO (ESWENO) schemes
[31].) Thus, our objective is to derive general penalties between adjoining subdomains each
discretized by a SBP operator. Herein, we present the framework for imposing penalties on
the solution and first p interface derivatives. The new penalties are constructed by first pa-
rameterizing all possible combinations of difference terms available at the interface. Energy
methods are then used to constrain the parameters such that L2 and pointwise stability, and
conservation are achieved at the interface.

The newly derived penalties are formulated in two sets of variables, reminiscent of the
primal and flux formulations commonly used in DGFEM for elliptic and parabolic equa-
tions.1 Both formulations are shown to be consistent, stable and conservative for the linear,
constant coefficient, scalar advection diffusion equation. Furthermore, they are shown to be
related; i.e. the flux formulation can be implemented using the primal variables if the inter-
face penalties coefficients are allowed to vary with grid density. Numerous free parameters

1The flux formulation is implemented on a transformed set of equations obtained by expressing the second-
order elliptic (parabolic) scalar equation as a system of first-order equations. The resulting interface variables
differ from those used in the conventional “primal” approach. See Arnold et al. [3] for a detailed description
and comparison of the two approaches. Note that both weak-form FEM approaches differ from the strong-
form collocation approach commonly used by HOFDM. See Carpenter et al. [9] for a comparison of weak-
and strong-form approaches.
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remain in both formulations even after stability and conservation constraints are imposed,
and judicious choices for these parameters yield formulations analogous to popular schemes
found in the FEM literature.

The construction of penalties from higher order derivatives is not without drawbacks.
Indeed, it is shown that the formal accuracy suffers if terms involving second derivatives
are included in the penalties. Nevertheless, these terms are retained because they allow the
construction of richer penalties, and because empirical evidence suggests that the theoretical
accuracy estimates may not always be sharp.

This paper is organized as follows. In Sect. 2, the “general” approach for coupling ad-
joining SBP operators is presented, that includes penalties constructed from the solution and
the first p derivatives. Next, it is shown that the penalties can be formulated in two distinct
sets of variables, although the resulting formulations are closely related. Section 3 presents
a derivation of the theoretical accuracy of the new penalties, in the context of HOFDM.
Section 4 identifies specific values for the penalty parameters that produce schemes analo-
gous to several commonly used schemes. In Sect. 5, numerical examples are presented for
a variety of SBP operators. A discussion and conclusions are presented in Sects. 6 and 7,
respectively.

2 The Semi-discrete Problem

2.1 Definition of Stability

Consider the continuous linear initial boundary value problem

wt = Ew + F(x, t), x ∈ Ω, t ≥ 0,

w = f (x), x ∈ Ω, t = 0,

LCw = g(t), x ∈ Γ, t ≥ 0,

(1)

where E is the differential operator and LC is the continuous boundary operator. The initial
function f , the forcing function F , and the boundary term g are the data for the problem.

Next, consider the semi-discrete counterpart of (1)

(wj )t = E wj + Fj (t), xj ∈ Ω, t ≥ 0,

wj = fj , xj ∈ Ω, t = 0,

LDwj = g(t), xj ∈ Γ, t ≥ 0,

(2)

where E is the difference operator approximating the differential operator E, LD is the dis-
crete boundary operator, and fj , Fj and g are the discrete initial function, forcing function,
and boundary data, respectively.

Definition 1 The problem (2) is stable, for Fj (t) = g = 0 and a sufficiently fine mesh, if the
solution wj satisfies

d

dt
‖w‖2

P ≤ 0 (3)

where ‖ · ‖P is a suitably defined discrete norm, such as a weighted L2

‖w‖2
P = wT Pw.
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Note that this restrictive definition of stability does not allow for temporal solution
growth, as would be necessary to bound arbitrary source terms Fj or boundary data g(t). It
is, however, well suited for establishing the stability of a numerical interface: our primary
goal.

2.2 Discrete SBP Operators

Define the P weighted inner product (v,w)P between two vectors, and let U and DU be
the discrete approximations of the scalar quantities u and ux . The approximation DU of the
first derivative

DU = P −1 QU, P ux − Qu = PTe1, |Te1| = O
(
�xi,�xb

)
(4)

satisfies the SBP rule

(U, DV)P = UnVn − U0V0 − (DU,V)P (5)

(U,V)P = UT P V, P = P T , Q + QT = B, B = diag[−1,0, . . . ,0,1], (6)

0 < pmin�x‖I‖ ≤ ‖P‖ ≤ pmax�x‖I‖.2 The matrix P is symmetric positive definite, the
matrix Q is skew-symmetric with the exception of boundary points.

A second derivative operator can be obtained by applying any two first derivative op-
erators, or by constructing the operator directly. Both techniques are suitable for spectral
collocation. In HOFDM, using two consecutive non-dissipative first derivatives, results in
a second derivative operator that is unnecessarily wide and inaccurate and can lead to odd-
even mode decoupling. The operator, however, often leads to stability if varying coefficients
are considered. Forming the HOFDM second derivative directly requires an operator with
the following properties,

D2U = P −1 R2U, P uxx − R2u = P Te2, Te2 = O
(
�xi,�xb

)
, (7)

R2 = (−S T M + B
)

S, (8)

as suggested in reference [8] (see also [24]). The matrix B is given in (6), while the matrix
M must be positive definite.

The matrix S is nearly diagonal with a discrete representation of the first derivative on
the first and last rows,

{Su}0 = {Du}0 = ux(x0, t) + Te3, {Su}n = {Du}n = ux(xn, t) + Te3,

where |Te3| = O(�xr) and

S = 1

�x

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

s00 s01 s02 s03 · · ·
0 1 0

0 1 0
. . .

. . .
. . .

0 1 0

0 1 0

· · · snn−3 snn−2 snn−1 snn

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

.

2Not to be confused with the vector norm, the nomenclature ‖P ‖ here refers to a suitable matrix norm such
as Frobenius.
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The second derivative defined in (7) and (8) satisfies a modified SBP rule. We have

(
U, D2V

)
P = Un{DV}n − U0{DV}0 − (S U)T M(S V).

The derivatives on the boundaries of S coincide with those found at the boundaries of the
discrete operator D = P −1 Q. [See (4)].

The notation |Te1|, |Te2| = O(�xi,�xb) and |Te3| = O(�xr) denotes that the approx-
imation of the differential operator is accurate to order i in the interior of the domain, to
order b at the boundary and that the approximation of the boundary conditions is accurate
to order r . The relation between the different orders of accuracy, i.e., i, b, r is discussed in
Sect. 4 below, where formal proofs of accuracy are given for HOFDM.

2.3 “General” Primal-Form Interface Penalties

Consider the constant coefficient, linear Burgers’ equation

ut + aux = εuxx + F(x, t), t ≥ 0, −1 ≤ x ≤ 1,

u(x,0) = f (x), t = 0, −1 ≤ x ≤ 1,

γ u(−1, t) − εux(−1, t) = g−1(t) = L−1(u), t ≥ 0, x = −1,

ζu(+1, t) + εux(+1, t) = g+1(t) = L+1(u), t ≥ 0, x = +1,

(9)

0 ≤ a + 2ζ ; 0 ≤ −a + 2γ (10)

with constants a and ε (0 < ε). A detailed description of the wellposedness of this equation
is omitted, but can be found in Carpenter et al. [9].

We are interested in the stability, conservation and accuracy of new interface treatments.
For clarity of presentation (and without loss of generality), we shall neglect the source terms,
and the treatment of the physical boundary conditions in the subsequent derivations. This
means that we will consider stability of (9) and (10). Strong stability can easily be obtained
by a proper treatment of the outer boundary conditions, but is not the focus of this paper. We
are mainly interested in the interface treatment.

Assume that two adjoining SBP spatial operators support the first p derivatives on their
respective domains. A collocation approximation of (9), motivated by the FEM proposed by
Baumann and Oden [4], that includes penalties on the solution and the first p derivatives is
given by

PlUt + aPl DlU = εPl Dl DlU +
p∑

m=0

p∑

k=0

lmk

[(
Dk

l U
)
i
− (

Dk
r V

)
i

][
Dm

l

]T
ei− ,

U(x,0) = 0,

PrVt + aPr DrV = εPr Dr DrV +
p∑

m=0

p∑

k=0

rmk

[(
Dk

r U
)
i
− (

Dk
r V

)
i

][
Dm

r

]T
ei+ ,

V(x,0) = 0.

(11)

The variables in the left (subscript l) [xl(0) = −1, xl(nl) = 0] and right (subscript r)
[xr(0) = 0, xr(nr) = +1] domains are Ū and V̄ , respectively, [see Fig. 1]. Definitions of the
nl(nr) dimensional operators Dl (Dr ) are given by

Dl = P −1
l Ql; −1 ≤ x ≤ 0; Dr = P −1

r Qr ; 0 ≤ x ≤ 1
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Fig. 1 The mesh close to the interface at x = 0

and ei− and ei+ are given by ei− = [0,0, . . . ,0,1]T and ei+ = [1,0, . . . ,0,0]T . Note that
any two SBP operators Dl , and Dr would suffice in (11). In fact, grid discontinuities
(�xl �= �xr ), nonuniform grids, or even operators of different order or type could be used.3

What remains is to determine the values of the interface parameters l00, . . . , lpp,

r00, . . . , rpp that lead to stability, conservation and accuracy.

2.3.1 Stability

To facilitate the derivation of precise stability bounds for the interface parameters, we con-
fine our discussion to the cases p ≤ 2; i.e. only the solution and the first two derivatives are
penalized at the interface. In this case, (11) simplifies to

PlUt + aPl DlU

= εPl Dl DlU

+ {l00[Ui − Vi] + l01[(D1
l U)i − (D1

r V )i] + l02[(D2
l U)i − (D2

r V )i]}[Il]T ei−
+ {l10[Ui − Vi] + l11[(D1

l U)i − (D1
r V )i] + l12[(D2

l U)i − (D2
r V )i]}[Dl]T ei−

+ {l20[Ui − Vi] + l21[(D1
l U)i − (D1

r V )i] + l22[(D2
l U)i − (D2

r V )i]}[D2
l ]T ei− ,

PrVt + aPr DrV

= εPr Dr DrV

+ {r00[Vi − Ui] + r01[(D1
r V )i − (D1

l U)i] + r02[(D2
r V )i − (D2

l U)i]}[Ir ]T ei+
+ {r10[Vi − Ui] + r11[(D1

r V )i − (D1
l U)i] + r12[(D2

r V )i − (D2
l U)i]}[Dr ]T ei+

+ {r20[Vi − Ui] + r21[(D1
r V )i − (D1

l U)i] + r22[(D2
r V )i − (D2

l U)i]}[D2
r ]T ei+ .

(12)

The values of the interface parameters l00, l01, l02, l10, l11, l12, l20, l21, l22, and r00, r01, r02,
r10, r11, r12, r20, r21, r22, that result in a stable interface are given in the following theorem.

Theorem 1 The approximation (12) of the problem (9) is stable if the eighteen parameters
are related by the six equalities

l00 = r00 + a; l01 = r01 − ε,

r02 = l02; r20 = l20; r21 = l21; r22 = l22
(13)

and constrained by the following inequalities

2[r11 + l11] ≤ [(α + β)ε], (14)

[ε(−α + β) − (r11 − l11)]2

ε(α + β) − 2(r11 + l11)
≤ [(α + β)ε] (15)

3Even material interfaces between adjoining media are allowed (see Nordström and Gustafsson [26]).
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l22 ≤ − (+2r21 + r12 + l12)
2

4[ε(α + β) − 2(r11 + l11)]

− {(l12 − r12) + [ε(−α+β)−(r11−l11)](+2r21+r12+l12)

[ε(α+β)−2(r11+l11)] }2

4{[(α + β)ε] − [ε(−α+β)−(r11−l11)]2
[ε(α+β)−2(r11+l11)] }

, (16)

l00 ≤ a

2
− [t1 + t2]2

8[(α + β)ε][s1 + s2] − [t1 − t2 + [s1−s2][t1+t2]
2(s1+s2)

]2

4(α + β)ε[1 − [s1−s2]2
2[s1+s2] ]

−
{2x1 + (t1+t2)(y1+y2)

2(α+β)ε(s1+s2)
+ [t1−t2+ (s1−s2)(t1+t2)

2(s1+s2)
][y1−y2+ (s1−s2)(y1+y2)

2(s1+s2)
]

4(α+β)ε[1− [s1−s2]2
2[s1+s2] ]

}
2

−4{l22 + [y1+y2]2
8[(α+β)ε][s1+s2] + [y1−y2+ [s1−s2][y1+y2]

2(s1+s2)
]2

4(α+β)ε[1− [s1−s2]2
2[s1+s2] ]

}
(17)

with

t1 = (ε + l01 + l10); t2 = (l01 + r10),

r11 = ε[(−α + 3β)/4 − s1(α + β)];
l11 = ε[(3α − β)/4 − s2(α + β)],
x1 = (r20 + l02); y1 = (l12 + r21); y2 = (r12 + r21)

(18)

and

α = 1

ei−
T P −1

l ei−
; β = 1

ei+
T P −1

r ei+
. (19)

Proof Stability of (12) follows if the interface treatment at x = xi is of a dissipative nature.
The energy method applied to (12) (multiplying the discrete equations in the left and right
subdomains by UT and VT respectively, and adding the result to its transpose), and using
the relation Q + QT = B from the SBP rule (6), yields

d

dt
[‖U‖2

Pl
+ ‖V‖2

Pr
] + 2ε[‖DlU‖2

Pl
+ ‖DrV‖2

Pr
]

= [2εU DlU − aU 2]i− + [2εV DrV − aV 2]i+
+ 2Ui{l00[Ui − Vi] + l01[(DlU)i − (DrV )i] + l02[(D2

l U)i − (D2
r V )i]}

+ 2(D1
l U)i{l10[Ui − Vi] + l11[(DlU)i − (DrV )i] + l12[(D2

l U)i − (D2
r V )i]}

+ 2(D2
l U)i{l20[Ui − Vi] + l21[(DlU)i − (DrV )i] + l22[(D2

l U)i − (D2
r V )i]}

+ 2Vi{r00[Vi − Ui] + r01[(DrV )i − (DlU)i] + r02[(D2
r V )i − (D2

l U)i]}
+ 2(D1

r V )i{r10[Vi − Ui] + r11[(DrV )i − (DlU)i] + r12[(D2
r V )i − (D2

l U)i]}
+ 2(D2

r V )i{r20[Vi − Ui] + r21[(DrV )i − (DlU)i] + r22[(D2
r V )i − (D2

l U)i]}. (20)

Note again that we have neglected the outer boundary terms.
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A small portion of the diffusion terms ‖DlU‖Pl
and ‖DrV‖Pr

arising at the interface can
be moved to the (RHS) to help in the proof of stability. Defining

P̄l = Pl − αei−ei−
T ; P̄r = Pr − βei+ei+

T (21)

with α and β as defined in (19) and collecting all the interface terms, (20) becomes

d

dt

[‖U‖2
Pl

+ ‖V‖2
Pr

] + 2ε
[‖DlU‖2

P̄l
+ ‖DrV‖2

P̄r

] = ϒ̄i (22)

with the interface term ϒ̄i = [Ji]T M̄i Ji defined by

Ji = [Ui,Vi, (DlU)i, (DrV )i, (D2
l U)

i
, (D2

r V )i]T , (23)

M̄i =

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎢
⎣

(−a + 2l00) −(l00 + r00) (ε + l01 + l10) −(l01 + r10) (l02 + l20) −(l02 + r20)

−(l00 + r00) (+a + 2r00) −(r01 + l10) (−ε + r01 + r10) −(l20 + r02) (r02 + r20)

(ε + l01 + l10) −(r01 + l10) 2(l11 − αε) −(l11 + r11) (l12 + l21) −(l12 + r21)

−(l01 + r10) (−ε + r01 + r10) −(l11 + r11) 2(r11 − βε) −(l21 + r12) (r21 + r12)

(l02 + l20) −(l20 + r02) (l12 + l21) −(l21 + r12) 2l22 −(l22 + r22)

−(l02 + r20) (r02 + r20) −(l12 + r21) (r21 + r12) −(l22 + r22) 2r22

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎥
⎦

.

(24)

The origins of (19) are derived in reference [9] including a proof of the definiteness of P̄l

and P̄r .
Stability of the interface is guaranteed if the matrix M̄i is negative semi-definite; i.e.

ϒ̄i = [Ji]T M̄i Ji ≤ 0. The definiteness of a symmetric matrix is governed by the sign of its
eigenvalues. Thus, Sylvester’s Theorem is used to systematically rotate M̄i into diagonal
form while maintaining the signs of its eigenvalues.

The first rotation of M̄i is the following similarity transformation. Define the new vector
Ĵi = S Ji such that:

Ĵi = 1√
2

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

Ui + Vi

Ui − Vi

(DlU)i + (DrV )i

(DlU)i − (DrV )i

(D2
l U)i + (D2

r V )i

(D2
l U)i − (D2

r V )i

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

= 1√
2

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

1 1 0 0 0 0

1 −1 0 0 0 0

0 0 1 1 0 0

0 0 1 −1 0 0

0 0 0 0 1 1

0 0 0 0 1 −1

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

Ui

Vi

(DlU)i

(DrV )i

(D2
l U)i

(D2
r V )i

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

. (25)

The rotation matrix S replaces the stability condition given in (24) with the following
equivalent condition:

J T
i Mi Ji = J T

i S T SM̄i S T S Ji = Ĵ T
i M̂i Ĵi ≤ 0. (26)

The rotated matrix M̂i has zeros on the main diagonal. (See reference [9] for details.) Thus,
definiteness of M̂i requires all off-diagonal terms in the respective rows be zero, and pro-
duces the generalized conservation conditions

l00 = r00 + a; l01 = r01 − ε,

r02 = l02; r20 = l20; r21 = l21; r22 = l22.
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The necessary algebra is greatly simplified through a change of variables. Defining

t1 = (ε + l01 + l10); t2 = (l01 + r10),

r11 = ε[(−α + 3β)/4 − s1(α + β)]; l11 = ε[(3α − β)/4 − s2(α + β)],
x1 = (r20 + l02); y1 = (l12 + r21);y2 = (r12 + r21)

(27)

yields the reduced matrix

M̄i =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

0 0 0 0 0 0

0 −2a + 4l00 t1 − t2 t1 + t2 0 2x1

0 t1 − t2 −((α + β)ε) (α + β)ε(s1 − s2) 0 y1 − y2

0 t1 + t2 (α + β)ε(s1 − s2) −2(α + β)ε(s1 + s2) 0 y1 + y2

0 0 0 0 0 0

0 2x1 y1 − y2 y1 + y2 0 4l22

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

.

(28)

Repeated application of Sylvester’s Theorem produces the stability inequalities

0 ≤ [s1 + s2],

0 ≤ 1 − [s1 − s2]2

2[s1 + s2] ,

l22 ≤ − [y1 + y2]2

8[(α + β)ε][s1 + s2] − [y1 − y2 + [s1−s2][y1+y2]
2(s1+s2)

]2

4(α + β)ε[1 − [s1−s2]2
2[s1+s2] ]

,

l00 ≤ a

2
− [t1 + t2]2

8[(α + β)ε][s1 + s2] − [t1 − t2 + [s1−s2][t1+t2]
2(s1+s2)

]2

4(α + β)ε[1 − [s1−s2]2
2[s1+s2] ]

,

−
{2x1 + (t1+t2)(y1+y2)

2(α+β)ε(s1+s2)
+ [t1−t2+ (s1−s2)(t1+t2)

2(s1+s2)
][y1−y2+ (s1−s2)(y1+y2)

2(s1+s2)
]

4(α+β)ε[1− [s1−s2]2
2[s1+s2] ]

}
2

−4{l22 + [y1+y2]2
8[(α+β)ε][s1+s2] + [y1−y2+ [s1−s2][y1+y2]

2(s1+s2)
]2

4(α+β)ε[1− [s1−s2]2
2[s1+s2] ]

}

(29)

which are the desired result. �

Remark As mentioned earlier we can easily extend this result to strong stability by including
the outer boundary conditions.

Remark A general interface procedure including derivative terms up to pth-order and satis-
fying an L2 stability condition, would require similar inequalities for all interface parame-
ters l00 → lpp , and r00 → rpp . Such inequalities could in principle be derived using a similar
approach, but are not presented herein.
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2.3.2 Pointwise Stability

Three distinct groups of terms appear in (22). The groups include the solution terms ‖U‖2
Pl

and ‖V‖2
Pr

, the derivative terms ‖DlU‖2
P̄l

and ‖DrV‖2
P̄r

, and the interface term ϒi . The
solution and derivative terms are weakly bounded in P -norms for finite times, while the
interface term is locally pointwise bounded.

Note that (22) does not establish the pointwise stability of the solution at interior grid-
points. To establish interior pointwise boundedness, a discrete Sobolev inequality is re-
quired. A proof of the discrete Sobolev inequality,

(Ui)
2 ≤ c1‖U‖2

P + c2‖DU‖2
P

derived specifically for single-domain, SBP operators, is presented in reference [9]. This
inequality, combined with (22), provides the link between P -boundedness of U and DU,
and pointwise boundedness of the solution over the entire domain, and lead to the following
theorem.

Theorem 2 For any grid function U on (0 ≤ xj ≤ l); j = 0,1, . . . , n, and a consistent deriv-
ative operator D of rank n − 1, then P -boundedness of ‖U‖2

P and ‖DU‖2
P , implies a point-

wise estimate of the form

‖U‖2
∞ ≤ (cmpm + l−1)‖U‖2 + cmpm

−1‖DU‖2 (30)

Proof Refer to Ref. [20] for the proof of Theorem 2. Extension to two domains is straight-
forward. �

Remark In addition to providing a stronger measure of stability, a pointwise stability esti-
mate can be a necessary condition used in proofs of global accuracy. Indeed, a pointwise
estimate is the critical condition used in the work of Svärd and Nordström [30], and in
Sect. 4 of this work, to establish a sharp estimate of global solution accuracy.

Remark A consistent derivative operator D of rank n − 1, is needed to extend the classi-
cal proofs [20], developed using first-order difference operators, to those using high-order
differences.

2.3.3 Primal Conservation

We are interested in numerical solutions to the 1-D equation in divergence form

ut + fx = 0, |x| ≤ 1, t ≥ 0; f = a u − εux (31)

where f involves convective and diffusive terms arising from for example the linear Burg-
ers’ equation. Consider the special case for which f is discontinuous (i.e. fx is undefined).
Then (31) must be replaced by the related weak statement

∫ 1

−1
�(x, t)u(x)|T0 dx +

∫ T

0
�(x, t)f (t)|+1

−1dt

=
∫ T

0

∫ 1

−1
[�t(x, t)u(x, t) + �x(x, t)f (u(x, t))]dxdt (32)

where �(x, t) is an arbitrary smooth function.
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Semi-discrete operators must satisfy an additional constraint: conservation, if they are to
accurately resolve discontinuous data. Discrete conservation can be defined in many ways,
but herein it is defined as follows:

Definition 2 Assume that the discrete solution converges to a function u(x, t). If this con-
vergent limit function u(x, t) is a weak solution to (31) that satisfies (32), then the semi-
discretization is said to be “conservative”.

In practical terms, semi-discretize operators used for (31) must allow for discrete manipula-
tion to a form that is discretely equivalent to (32): i.e. spatial integrals replaced with discrete
quadratures, and must converge to (32) in the limit of infinite resolution. As will be shown,
this is a delicate process at internal boundaries between subdomains.

A variant of the classical Lax-Wendroff Theorem [21] is now presented in the context of
the SBP formulation defined in (12). Special attention is given to the interface conditions,
and the diffusive terms. For ease of presentation, we shall confine our attention to the case
p ≤ 1, i.e. only the solution and the first derivative are penalized across the interface.

Theorem 3 Two conditions are necessary if approximation (12) is to be conservative (in the
P norm) across the interface. They are

l00 = r00 + a, l01 = r01 − ε. (33)

Proof Multiplying (12) with �T
l Pl and �T

r Pr , (neglecting the farfield boundary terms and
assuming for clarity that p ≤ 1) leads to

�T
l PlUt + �T

r PrVt + a[�T
l Pl DlU + �T

r Pr DrV] − ε[�T
l Pl Dl DlU + �T

r Pr Dr DrV]
= l00�i[Ui − Vi] + l01�i[(DlU)i − (DrV )i]

+ l10(�
′)i[Ui − Vi] + l11(�

′)i[(DlU)i − (DrV )i]
+ r00�i[Vi − Ui] + r01�i[(DrV )i − (DlU)i]
+ r10(�

′)i[Vi − Ui] + r11(�
′)i[(DrV )i − (DlU)i] (34)

where �i and (�′)i are the values of the test function and its derivative at the interface
location xi . Both are sufficiently continuous across the interface.

Note the ambiguity in the meaning of conservation for the diffusive terms. For example,
using the SBP rules (5)–(6) once on the diffusion terms yields,

�T
l Pl Dl DlU + �T

r Pr Dr DrV

= −(�′
l )

T Pl DlU) − (�′
r )

T Pr DrV ) + [�l(DlU)]|i−−1 + [�r(DrU)]|+1
i+ . (35)

Rearranging the time terms, and using the SBP rules (5)–(6) on the convection terms in (34),
then simplifying using (35) produces the conservation equation

d

dt
(�T

l PlU + �T
r PrV) + [�l(a − εDl )U ]|−1 + [�r(a − εDr )V ]|+1

= [(�l)
T
t PlU + (�r)

T
t PrV]

+ (�′
l )

T Pl (aIl − εDl )U + (�′
r )

T Pr (aIr − εDr )V
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+ �i(l00 − r00 − a)(Ui − Vi) + �i(l01 − r01 + ε)(DUi − DVi)

+ (�′)i(l10 − r10)(Ui − Vi) + (�′)i(l11 − r11)(DUi − DVi). (36)

Integrating (36) with respect to time, applying the conservation conditions given by (33) and
the additional conditions l10 = r10 and l11 = r11 produces the equation

(�T
l PlU + �T

r PrV)|T0 +
∫ T

0
{[�l(a − εDl )U ]|−1 + [�r(a − εDr )V ]|+1}dt

=
∫ T

0
[(�l)

T
t PlU + (�r)

T
t PrV]dt

+
∫ T

0
{(�′

l )
T Pl (aIl − εDl )U + (�′

r )
T Pr (aIr − εDr )V}dt (37)

which matches the weak solution given by (32) term by term, in the limit of infinite spatial
resolution.

Using the SBP rules (5)–(6) twice on the diffusion terms yields,

�T
l Pl Dl DlU + �T

r Pr Dr DrV

= (�′′
l )

T PlU) + (�′′
r )

T PrV )

+ [�l(DlU) − (�′
l )U ]|i−−1 + [�r(DrU) − (�′

r )V ]|+1
i+ (38)

which leads to the resulting conservation equation

d

dt
(�T

l PlU + �T
r PrV) + [�l(a − εDl )U ]|−1 + [�r(a − εDr )V ]|+1

= [(�l)
T
t PlU + (�r)

T
t PrV] + (�′

l )
T Pl (aIl )U + (�′

r )
T Pr (aIr )V

+ ε(�′′
l )

T PlU + ε(�′′
r )

T PrV − ε[�′
lU |−1 + �′

rV |+1]
+ �i(l00 − r00 − a)(Ui − Vi) + �i(l01 − r01 + ε)(DUi − DVi)

+ (�′)i(l10 − r10 − ε)(Ui − Vi) + (�′)i(l11 − r11)(DUi − DVi). (39)

Integrating (39) with respect to time, applying the conservation conditions given by (33)
and the additional conditions l10 = r10 + ε and l11 = r11, yields an expression similar to (37)
(see Ref. [9]) that matches the weak form of the advection diffusion equation in the limit of
infinite spatial resolution. �

Remark Note that the diffusive constraint conditions for the variable �′ in (36) and (39)
depend on the choice of definition for conservation. Still another definition (perhaps a linear
combination of the two) would yield a third set of constraints. This arbitrariness probably
means that diffusive conservation is not as important as convective conservation.
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2.4 A Flux-Form Interface Penalty

An SBP interface penalty (restricted for clarity to p ≤ 1) that approximates (9), motivated
by the Local Discontinuous Galerkin (LDG) FEM proposed by Cockburn and Shu [11] is

PlUt + aPl DlU − εPl Dlφ = L00[Ui − Vi]ei− + L01[(φ)i − (ψ)i]ei− ,

εPl (φ − DlU) = L10[Ui − Vi]ei− + L01[(φ)i − (ψ)i]ei− ,

U(x,0) = 0,

PrVt + aPr DrV − εPr Drψ = R00[Vi − Ui]ei+ + R01[(ψ)i − (φ)i]ei+ ,

εPr (ψ − DrV) = R10[Vi − Ui]ei+ + R11[(ψ)i − (φ)i]ei+ ,

V(x,0) = 0.

(40)

Theorem 4 The approximation (40) of the problem (9) is stable if the eight parameters are
related by the two equalities

L00 = R00 + a; L01 = R01 − ε (41)

and constrained by the following inequalities

2[R11 + L11] ≤ [(α + β)ε], (42)

[ε(−α + β) − (R11 − L11)]2

ε(α + β) − 2(R11 + L11)
≤ [(α + β)ε], (43)

L00 ≤ a

2
− (ε + 2L01 + L10 + R10)

2

4[ε(α + β) − 2(R11 + L11)]

− {ε + L10 − R10 + [ε(−α+β)−(R11−L11)](ε+2L01+L10+R10)

[ε(α+β)−2(R11+L11)] }2

4{(α + β)ε − [ε(−α+β)−(R11−L11)]2
[ε(α+β)−2(R11+L11)] }

(44)

where (as with the primal form)

α = 1

ei−
T P −1

l ei−
; β = 1

ei+
T P −1

r ei+
.

Proof The stability proof for the LDG scheme is omitted, as it is equivalent to that used for
the primal scheme. �

Remark Although the stability boundaries for the eight interface parameters are identical
for the primal and LDG schemes, as are the norms used in both cases, the two methods are
stable in different combinations of terms: DU vs. φ.

Remark A general primal interface penalty that includes derivatives up to pth-order, would
require constraints on the interface parameters L00 → Lpp , and R00 → Rpp . A stability
analysis could be used to identify conservation conditions, as well as the parameter space
that guarantees L2 stability.
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Interior pointwise boundedness is established using a discrete Sobolev inequality. This
inequality, (see Ref. [9] or [20]) combined with Theorem 4, provides the link between

P -boundedness of U and φ, and pointwise boundedness of the solution over the entire do-
main, and lead to the following theorem.

Theorem 5 For any grid function U on (0 ≤ xj ≤ l); j = 0,1, . . . , n, a consistent derivative
operator D of rank n − 1, and ‖φ‖2 as defined in (40), then P -boundedness of ‖U‖2

P and
‖φ‖2

P , implies a pointwise estimate of the form

‖U‖2
∞ ≤ (cmpm + l−1)‖U‖2 + cmpm

−1‖φ‖2 (45)

Proof Refer to Ref. [20] for a proof of Theorem 5. �

2.5 Relating the Primal and Flux Formulations

One might imagine that the primal and flux formulations are equivalent (as shown in FEM by
Arnold et al. [2, 3]) with an appropriate change of interface variables. We begin by showing
that the LDG formulation can be implemented in terms of the primal scheme if specific
values of the interface parameters are used. For ease of presentation, we assume that only
the solution and first derivatives are penalized across the interface.

Theorem 6 The LDG interface parameters L00–R11 are related to the primal interface
parameters l00–r11 by the following relations:

l00 = L00 + L01c1 + L10

α
+ L11c1

α
,

l01 = 0 + L01c2 + 0 + L11c2

α
,

l10 = 0 + 0 − L10 − L11c1,

l11 = 0 + 0 + 0 − L11c2,

r00 = R00 + R01c1 − R10

β
− R11c1

β
,

r01 = 0 + R01c2 + 0 − R11c2

β
,

r10 = 0 + 0 − R10 − R11c1,

r11 = 0 + 0 + 0 − R11c2

(46)

with

c1 =
1
ε
(

L10
α

+ R10
β

)

1 − 1
ε
(

L11
α

+ R11
β

)
; c2 = 1

1 − 1
ε
(

L11
α

+ R11
β

)
. (47)

Proof The LDG two-domain formulation is given in (40). Solving (40) for φ and ψ yields
the expressions

φ = DlU + 1

ε
P −1

l {L10[Ui − Vi]ei− + L11[(φ)i − (ψ)i]ei−},

ψ = DrV + 1

ε
P −1

r {R10[Vi − Ui]ei+ + R11[(ψ)i − (φ)i]ei+}
(48)
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while, solving (48) for the interface values yields the expressions

φi = ei−
T φ = (DlU)|i + 1

εα
{L10[Ui − Vi] + L11[(φ)i − (ψ)i]},

ψi = ei+
T ψ = (DrV)|i + 1

εβ
{R10[Vi − Ui] + R11[(ψ)i − (φ)i]}

(49)

with the difference being

φi − ψi = (DlU)|i − (DrV)|i + 1

ε

(
L10

α
+ R10

β

)
[Ui − Vi]

+ 1

ε

(
L11

α
+ R11

β

)
[φi − ψi]. (50)

Rewriting (50) in terms of the difference φi − ψi yields

φi − ψi = c1[Ui − Vi] + c2[(DlU)|i − (DrV)|i],

c1 =
1
ε
(

L10
α

+ R10
β

)

1 − 1
ε
(

L11
α

+ R11
β

)
; c2 = 1

1 − 1
ε
(

L11
α

+ R11
β

)
.

(51)

Substituting (48), (49) and (51) back into the original LDG formulation (40) yields the
expression

PlUt + aPl DlU

= εPl Dl DlU

+ {L00[Ui − Vi] + L01(c1[Ui − Vi] + c2[(DlU)|i − (DrV)|i])}Ilei−

+ {L10[Ui − Vi] + L11(c1[Ui − Vi] + c2[(DlU)|i − (DrV)|i])}Pl Dl P −1
l ei− ,

PrVt + aPr DrV

= εPr Dr DrV

+ {R00[Vi − Ui] + R01(c1[Vi − Ui] + c2[(DrV)|i − (DrU)|i])}Irei+

+ {R10[Vi − Ui] + R11(c1[Vi − Ui] + c2[(DrV)|i − (DrU)|i])}Pr Dr P −1
r ei+ .

(52)

Simplifying (52) using the relations

Pl Dl P −1
l ei− = −DT

l ei− + 1

α
ei− ,

Pr Dr P −1
r ei+ = −DT

r ei− − 1

β
ei+
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yields

PlUt + aPl DlU − εPl Dl DlU

=
[

L00 + L01c1

L10
α

+ L11c1
α

]

[Ui − Vi]Ilei− +
[

0 + L01c2

0 + L11c2
α

]

[(DlU)|i − (DrV)|i]Ilei−

+
[

0 + 0

−L10 − L11c1

]

[Ui − Vi]DT
l ei− +

[
0 + 0

0 − L11c2

]

[(DlU)|i − (DrV)|i]DT
l ei−

PrVt + aPr DrV − εPr Dr DrV

=
[

R00 + R01c1

−R10
β

− R11c1
β

]

[Vi − Ui]Irei+ +
[

0 + R01c2

0 − R11c2
β

]

[(DrV)|i − (DrU)|i]Irei+

+
[

0 + 0

−R10 − R11c1

]

[Vi − Ui]DT
r ei+ +

[
0 + 0

0 − R11c2

]

[(DrV)|i − (DrU)|i]DT
r ei+ .

(53)

Comparing (53) with the original primal scheme given in (12) gives the desired result. �

Remark Note that the primal coefficients are not constants, but rather change with grid
resolution. For example, the new parameter

l00 = L00 + L01c1 + L10

α
+ L11c1

α

given in (46) is inversely proportional to the grid spacing �x since α ∝ �x, and becomes
larger as the grid is refined.

It is reasonable to ask whether the stability constraints (29) for the primal method are
preserved for methods satisfying the LDG stability constraints (42) and (43).

Theorem 7 Stability (in the P -norm) in the LDG variables is a sufficient condition for
stability (in the P -norm) in the primal variables.

Proof We begin by assuming that the LDG variables L00 → R11 are chosen such that the
conservation conditions

L00 = R00 + a, L01 = R01 − ε,

are satisfied, and that values of the parameters S1 and S2 satisfy the constraint equations

0 ≤ [S1 + S2]; [S1 − S2]2

2[S1 + S2] ≤ 1
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and

L00 ≤ a

2
− [T1 + T2]2

8[(α + β)ε][S1 + S2] − [T1 − T2 + [S1−S2][T1+T2]
2(S1+S2)

]2

4(α + β)ε[1 − [S1−S2]2
2[S1+S2] ]

Substitution of the transformation relations given by (46) into the primal conservations con-
ditions l00 = r00 + a; and l01 = r01 − ε, yields the conservation equations based on the LDG
variables;

l00 − r00 − a = 0 → (L00 − R00 − a) + 4(αR10 + βL10)(L01 − R01 + ε)

ε[(α − β)2 + 4(α + β)(αS1 + βS2)] = 0,

l01 − r01 + ε = 0 → 4(αβ)(L01 − R01 + ε)

[(α − β)2 + 4(α + β)(αS1 + βS2)] = 0,

(54)

while substitution of the transformation relations given by (46) into the primal and the sta-
bility constraints given by (29) yields the stability equations based on the LDG variables;

0 ≤ [s1 + s2] →

0 ≤ 2[α2(1 + 4S1) − β2(1 + 4S2)]2 + 64α2β2[S1 + S2][1 − (S1−S2)2

2(S1+S2)
]

[2((α − β)2 + 4(α + β)(αS1 + βS2))]2 ,

0 ≤
[

1 − (s1 − s2)
2

2(s1 + s2)

]
→ 0 ≤ 32α2β2[S1 + S2][1 − (S1−S2)2

2(S1+S2)
]

[α2(1 + 4S1) − β2(1 + 4S2)]2

(55)

and

l00 ≤ a

2
− [t1 + t2]2

8[(α + β)ε][s1 + s2] − [t1 − t2 + [s1−s2][t1+t2]
2(s1+s2)

]2

4(α + β)ε[1 − [s1−s2]2
2[s1+s2] ]

→

L00 ≤ a

2
− [T1 + T2]2

8[(α + β)ε][S1 + S2] − [T1 − T2 + [S1−S2][T1+T2]
2(S1+S2)

]2

4(α + β)ε[1 − [S1−S2]2
2[S1+S2] ]

. (56)

Thus, if the original scheme written in the LDG variables satisfies the required conservation
and stability constraints, then it also satisfies the corresponding conservation and stability
constraints written in the primal variables. �

Remark It has not been established whether stability (in the P -norm) in the LDG variables
is a necessary condition for stability (in the P -norm) in the primal variables.

3 Formal Accuracy

We derive error estimates for the semi-discrete discretization method given by (12), under
the assumption that p ≤ 1. Extensive analysis of the accuracy of FEM is available in the
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literature (see for example the work of Arnold et al. [3]). Thus, the focus of attention herein
is high-order finite difference methods.

Define the vectors u = [u(x0, t), . . . , u(xn, t)]T , ux = [ux(x0, t), . . . , ux(xn, t)]T , and
uxx = [uxx(x0, t), . . . , uxx(xn, t)]T , to be the projected values of the exact solution and deriv-
atives, defined in the left domain at gridpoints x. Similarly, define the vectors v, vx and vxx

in the right domain. With these definitions, the continuous problem (9) can be represented
in vector nomenclature as

ut + aux − εuxx = l00[ui − vi]P −1
l Ilei− + l01[ux − vx]i P −1

l Ilei−

+ l10[ui − vi]P −1
l DT

l ei− + l11[ux − vx]i P −1
l DT

l ei− ,

u(x,0) = 0,

vt + avx − εvxx = r00[vi − ui]P −1
r Irei+ + r01[vx − ux]i P −1

r Irei+

+ r10[vi − ui]P −1
r DT

r ei+ + r11[vx − ux]i P −1
r DT

r ei+ ,

v(x,0) = 0.

(57)

with zero initial data, neglected outer boundary conditions and source term F(x, t). Note
that the interface terms [ui − vi] and [ux − vx]i are identically zero for the exact solu-
tion, but have been added to the right hand side of (57) to facilitate subsequent manipula-
tions.

Substituting the discrete accuracy relations ux = Dlu+Te1l and uxx = Dl Dlu+Te2l [see
definitions (4) and (7)], into (57) yields

ut + aDlu − εDl Dlu

= l00[ui − vi]P −1
l Ilei− + l01[(Dlu)i − (Drv)i]P −1

l Ilei−

+ l10[ui − vi]P −1
l DT

l ei− + l11[(Drv)i − (Dlu)i]P −1
l DT

l ei−

− aTe1l + l01[(Te1l )i − (Te1r )i]P −1
l Ilei−

+ εTe2l + l11[(Te1l )i − (Te1r )i]P −1
l DT

l ei−

u(x,0) = 0,

vt + aDrv − εDr Drv

= r00[vi − ui]P −1
r Irei+ + r01[(Drv)i − (Dlu)i]P −1

r Ilei−

+ r10[vi − ui]P −1
r DT

r ei+ + r11[(Dlu)i − (Drv)i]P −1
r DT

l ei−

− aTe1r + r01[(Te1r )i − (Te1l )i]P −1
r Irei−

+ εTe2r + r11[(Te1r )i − (Te1l )i]P −1
r DT

r ei− ,

v(x,0) = 0.

(58)

Next, define the semi-discrete error vectors �l = U − u and �r = V − v in the left and
right domains, respectively. Pre-multiplying by P −1 and subtracting equations (57) and (58)
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produces an evolution equation for the error vectors. Specifically, the collocation error of (9)
written in primal form is

∂�l

∂t
+ aDl�l − εDl Dl�l

= l00[�li − �ri]P −1
l Ilei− + l01[(Dl�l)i − (Dr�r)i]P −1

l Ilei−
+ l10[�li − �ri]P −1

l DT
l ei− + l11[(Dl�l)i − (Dr�r)i]P −1

l DT
l ei−

+ aTe1l − l01[(Te1l )i − (Te1r )i]P −1
l Ilei−

− εTe2l − l11[(Te1l )i − (Te1r )i]P −1
l DT

l ei− ,

�l(x,0) = 0,

∂�r

∂t
+ aDr�r − εDr Dr�r

= r00[�ri − �li]P −1
r Irei+ + r01[(Dr�r)i − (Dr�l)i]P −1

r Irei+
+ r10[�ri − �li]P −1

r DT
r ei+ + r11[(Dr�r)i − (Dr�l)i]P −1

r DT
r ei+

+ aTe1r − r01[(Te1r )i − (Te1l )i]P −1
r Irei−

− εTe2r − r11[(Te1r )i − (Te1l )i]P −1
r DT

r ei− ,

�r(x,0) = 0.

(59)

Four distinct types of discretization errors appear in (59). The first two truncation error
vectors: Te1 and Te2, arise from errors associated with the approximation of the first and
second derivative terms, respectively. Like conventional HOFDM operators, they are sel-
dom uniformly accurate throughout the domain. Points near boundaries are commonly dis-
cretized less accurately than those in the interior. Furthermore, the boundary stencils used
in first and second difference operators are frequently of different orders.

The last two error vectors result from the interface penalty terms and have the forms:
[(Te1)i − (Te1)i]P −1 I ei and [(Te1)i − (Te1)i]P −1 DT ei. Note that the accuracy of these vec-
tors is influenced both by the truncation error of the interface derivative operators, (Te1r )i ,
and by the size of the penalty scaling terms. To assess the size of the scaling terms, first
note that the differentiation operator and its transpose, [D and DT ] scale as O(�x)−1. Fur-
ther, since Q is unitless, and D = P −1 Q, the inverse norm operator P −1 scales as O(�x)−1.
Thus, the last two error vectors scale as O(�x)r−1 and O(�x)r−2, respectively, where r is
the local accuracy of the interface derivative operator.

In summary, if interface penalties satisfy p ≤ 1 then the error vectors in both domains
have leading order truncation terms that scale as

Te1 = [O(�xr1), . . . , O(�xr1), O(�x2p), . . . , O(�x2p),

O(�xr1), . . . , O(�xr1)]T ,

Te2 = [O(�xr2), . . . , O(�xr2), O(�x2p), . . . , O(�x2p),

O(�xr2), . . . , O(�xr2)]T ,

(Te1)i P −1 I T ei = [O(�xr1−1), . . . , O(�xr1−1),0, . . . ,0,

O(�xr1−1), . . . , O(�xr1−1)]T ,

(Te1)i P −1 DT ei = [O(�xr1−2), . . . , O(�xr1−2),0, . . . ,0,

O(�xr1−2), . . . , O(�xr1−2)]T

(60)
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where the r1 and r2 exponents denote the boundary stencil order of accuracy in the first-
and second-derivative operators, respectively. (Here, we assume the interior stencils to be
the same order of accuracy for both the first- and second-derivative operators.)

An error equation derived for the general penalty technique presented in equation (11)
would involve considerably more error terms. For example, extending (59) to the case p ≤ 2
would produce the following additional terms

l02(Te2)i P −1 Il
T ei = O(�xr2−1),

l12(Te2)i P −1 D1
l

T ei = O(�xr2−2),

l22(Te2)i P −1 D2
l

T ei = O(�xr2−3),

l21(Te1)i P −1 D2
l

T ei = O(�xr1−3),

l20 P −1 D2
l

T ei = O(�x2p−3)

(61)

as well as similar expressions for r02, r12, r22, r21, r20.
Local lower order error terms do not necessarily decrease the global formal accuracy.

The impact of lower-order terms on global discretization accuracy is a long-standing area of
research that dates back to the pioneering work of Gustafsson [14]. There it was established
that hyperbolic operators could accommodate local terms one order lower than design order,
while still maintaining formal accuracy. Recent work of Svärd and Nordström [30] has ex-
tended this result to include the impact of low-order stencils for parabolic problems. Their
work on global accuracy is encapsulated in the following theorem.

Theorem 8 If (12) is a pointwise stable discretization of the continuous problem (9) for
�x ≤ �x0, then with interior operators D and D D satisfying discretization orders of
2p − 2 ≤ r1, r2 ≤ 2p at the boundary, and interface penalty terms satisfying discretiza-
tion orders of 2p − 2 ≤ r1 − 2 ≤ 2p, then the global order of accuracy of approximation
(12) is 2p.

Proof See Svärd and Nordström [30], Theorems 2.6 and 2.8, pp. 335–337 for the original
theorems and proofs.

Now consider the discretization of (9) using a realistic combination of operators to deter-
mine the effects of each error term on global accuracy. Assume that the derivative operator
D is defined as in (60) with r1 = 2p − 1. Furthermore, assume that the second derivative
operator is formed as the action of two first derivative operators D D so that r2 = 2p − 2.
Finally, assume that the derivative used in the penalty (obtained from the derivative operator
D) is O(�x2p−1), and is used in all penalty terms where necessary. In this scenario, the
derivative operators D and D D maintain the design accuracy 2p of the method, as well as
do the penalty terms producing errors of the form (Te1)i P −1. The remaining penalty terms
producing errors of the form DT ei decrease the formal accuracy to 2p − 1, at least in prin-
ciple. �

Remark Adding penalty terms of the form (Te1)i P −1 DT ei is ill advised on a theoretical
basis, although experiments presented later show that these estimates are not always sharp.
Furthermore, these experiments will show these terms to be computationally impractical.

Remark Assume that j th-derivative operator Dj , 2 ≤ j ≤ p is rj -order accurate at the in-
terface, and has interface truncation error Tej)i . Interface penalties using these derivative
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operators produce terms in the error equation of the form

ljk(Tej)i P −1 DkT
ei = O(�xrj −(k+1))

Remark The reduction in accuracy is more severe for a hyperbolic equation [e.g. ε = 0
in (9)]. Specifically, the boundary / penalty discretization orders required to achieve for-
mal accuracy satisfies 2p − 1 ≤ r1, r2 ≤ 2p. Thus, penalties of the form (Te1)i P −1ei and
(Te1)i P −1 DT ei decrease the formal accuracy to 2p − 1 and 2p − 2, respectively.

4 Identification of Schemes

Specific values are assigned for the eighteen parameters used in the primal (12) and flux
(40) formulations. Three popular schemes are identified, including two DGFEM and one
strong form HOFDM. Each is shown to satisfy their respective stability constraints. All three
scheme only penalize the solution and first derivative, so the parameters l02, l12, l22, l21, l20

and r02, r12, r22, r21, r20 are set to zero.

4.1 Carpenter, Nordström, Gottlieb [8]

We begin with the scheme proposed by Carpenter et al. (CNG) [8] which is a special case of
the primal formulation presented in (12). This scheme was originally derived in strong form
in the context of HOFDM. This scheme [see Ref. [8], (7)] can be reproduced by assigning
the following specific values to the penalty parameters;

l10 = l11 = r10 = r11 = 0; l00 = σ1; l01 = εσ2;
r00 = σ3; r01 = εσ4.

(62)

Substituting (62) into (29) yields the conditions

σ1 = σ3 + a; [σ2 = σ4 − 1], (63)

0 ≤ [(α + β)ε]; [ε(−α + β)]2 ≤ [(α + β)ε]2; σ1 ≤ a

2
− ε

[
σ2

2

4β
+ σ4

2

4α

]
. (64)

Further, the stability conditions obtained in (63) and (64) are identical to those found in the
original CNG work [e.g. (8) in Ref. [8]].

4.2 Baumann, Oden [4]

The scheme proposed by Baumann and Oden [4] is a special case of the primal formulation
presented in (12). This scheme was originally developed in the weak form in the context of
DGFEM. Shu presents in Ref. [27], an illustrative comparison between this scheme and the
LDG scheme for the strictly parabolic case. Therein the Baumann-Oden scheme is presented
in (5.1) and (5.2) and can be reproduced from (12) with the values

l00 = r00 = l11 = r11 = 0; l01 = −ε

2
; l10 = −ε

2
;

r01 = +ε

2
; r10 = +ε

2
.

(65)
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Taking the liberty to extend Shu’s definition to include the possibility of convection terms,
we define the Baumann-Oden scheme by assigning the following values to the coefficients
in (12):

l00 = r00 + a; l11 = r11 = 0; l01 = +
(

β − ε

2

)
; l10 = −

(
β + ε

2

)
;

r01 = +
(

β + ε

2

)
; r10 = −

(
β − ε

2

)
.

(66)

Substituting (66) into (29) yields the conditions

0 ≤ [(α + β)ε]; [ε(−α + β)]2 ≤ [(α + β)ε]2; l00 ≤ a

2
. (67)

4.3 Local Discontinuous Galerkin [11]

The scheme proposed by Cockburn and Shu [11] is special case of the flux formulation
presented in (40). Once again, Shu presents in Ref. [27], the LDG scheme written strictly
for the parabolic case. Therein the LDG scheme is presented in (4.1), (4.2), and (4.3) and
can be reproduced from (40) with the values

L00 = R00 = L11 = R11 = 0; L01 = −ε

2
; L10 = −ε

2
;

R01 = +ε

2
; R10 = +ε

2
.

(68)

Again, taking the liberty to extend Shu’s definition to include the possibility of convection
terms, we define the collocation LDG scheme by assigning the following values to the coef-
ficients in (40):

L00 = R00 + a; L11 = R11 = 0; L01 = +
(

β − ε

2

)
; L10 = −

(
β + ε

2

)
;

R01 = +
(

β + ε

2

)
; R10 = −

(
β − ε

2

)
.

(69)
Substituting (69) into (29) yields the conditions

0 ≤ [(α + β)ε]; [ε(−α + β)]2 ≤ [(α + β)ε]2; L00 ≤ a

2
. (70)

5 Numerical Experiments

5.1 Test Problems

5.1.1 The One-Way Wave Equation

The linear one-way wave equation is used to study the stability and accuracy of the new
formulations in the absence of diffusion terms. The functional form is

Ut + aUx = 0, |x| ≤ 1, 0 ≤ t ≤ 0.1 (71)

with the exact solution

U(x, t) = cos[2π(x − t)]. (72)

The initial and boundary data coincide with the exact solution for all time.
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The one-way wave equation is used to establish a baseline accuracy for each method,
before moving on to the parabolic equation. This step is essential to establish the effects
of the newly added terms that penalize the diffusive terms. Specifically, the new additional
terms could destroy the accuracy of the advection term, not just diffusion. Comparing the
two results allows us to determine the source of error.

This study of the first order one-way wave equation raises a subtle point regarding im-
position of discrete interface conditions; specifically, that derivative fluxes can be penalized
between elements, despite the fact that wellposedness requires only one interface condition.
Thus, the diffusive interface penalty can be thought of as an alternative discrete stencil,
one that weakly enforces first derivative continuity across the interface. An a priori stability
estimate and accurate interface data guarantee the validity of these penalties.

5.1.2 Linear Burgers’ Equations

The linear Burgers’ equation tests a combination of the advection and diffusion terms. Five
distinct values of the diffusion parameter ε are used to deduce the effects of the penalty as
the problem becomes diffusion dominated. The functional form is

Ut + aUx = εUxx |x| ≤ 1, 0 ≤ t ≤ 0.1, (73)

with the exact solution

U(x, t) = exp[−εb2t] cos[−2π(x − t)] (74)

with initial and boundary data that coincides with that of the exact solution. The equation
parameters used are a = 2 and b = 2π in all cases. Five values of the parameter ε are used:
ε = 1, 2

5 ,0.1 2
50 , and 0.01.

5.2 Test Schemes

Two finite difference and four spectral operators are tested using the linear wave and linear
Burgers’ equation. The finite difference operators are the 4th and 6th order central difference
operators using SBP closures at the boundaries. All finite difference simulations utilize a
uniform grid within each element, although the element size is allowed to vary. Block-norm
boundary closures are used that are 3rd- and 5th-order accurate [6], respectively. The bound-
ary closure formulas are those reported in Ref. [6]. The spectral operators are conventional
collocation operators defined using the Gauss-Lobatto-Chebyshev nodal points. Polynomial
orders in the range 2 ≤ p ≤ 5 are used (corresponding to elements having three to six nodal
points). The penalties are implemented such that the scheme is equivalent to a Legendre
collocation scheme (see Carpenter and Gottlieb [7]). The time advancement scheme used in
all cases is the five-stage fourth-order Runge-Kutta (RK) scheme [5]. The timestep is cho-
sen such that the temporal error estimate is independent of further timestep reduction. The
magnitude of the temporal error is approximately 10−12, and is obtained by comparing the
fourth-order solution with an embedded third-order solution. Thus, the spatial error is the
dominant component of error in the simulations.

5.3 Test Matrix

An extensive test matrix is used to distinguish different properties of the new formulations.
The matrix includes (1) four geometry definitions, and (2) multiple values of three dis-
tinct interface penalty parameters. The geometric definitions included all permutations of
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Fig. 2 Schematic depicting two periods of the recursive element pattern used in the nonuniform grid accuracy
studies

uniform and nonuniform element distributions on both periodic and nonperiodic intervals,
specifically; (1) uniform-periodic, (2) nonuniform-periodic, (3) uniform-nonperiodic, and
(4) nonuniform-nonperiodic. The nonuniform grids are generated using elements that alter-
nate in size with a ratio of 2 : 1. Figure 2 shows a schematic depicting two periods of the
2 : 1 nonuniform grid used in the study.

An a priori study is performed, comparing the accuracy of the methods on each of the
four different geometries. The results for these studies are available in Ref. [9]. The most
challenging test cases (hyperbolic or parabolic) are those that were run on the nonuniform
grid, with nonperiodic boundary conditions. Thus, the nonuniform grid with nonperiodic
boundary conditions is used almost exclusively in this work.

The interface penalties are parametrized using three independent variables as (here writ-
ten for the primal formulation),

l00 = a

2
(1 − α); r00 = a

2
(−1 − α); α ≥ 0, (75)

l01 = +
(

β − ε

2

)
; l10 = −

(
β + ε

2

)
; r01 = +

(
β + ε

2

)
; r10 = −

(
β − ε

2

)
,

(76)

l11 = r11 = γ ; γ ≥ 0. (77)

The parameter α adjusts the contribution of the Dirichlet penalty between the left and right
states. The special value α = 0 admits no dissipation at the interface, thus producing a skew-
symmetric matrix in the P -norm. The value α = 1 produces a fully upwind flux. Two values
of the parameter α are tested: α = 0 and α = 1.

The parameters β and γ adjust the penalty on the derivative fluxes. For β the relation-
ship between the values of l01, l10, r01, and r10, greatly simplifies the energy estimate by
producing the conditions t1 = t2 = 0 in the estimate. This combination of parameters adds
no dissipation to the energy estimate. Note that the value of β can be chosen independent
from ε, and can be nonzero for values of ε = 0. Two values of the parameter β are tested:
β = 0 and β = 1

4 . The parameter γ adjusts the contribution from the derivative fluxes and
produces contributions to the energy estimate that are strictly dissipative. Four values of γ

are tested: γ = 0, γ = 10−4, γ = 10−3 and γ = 10−2.
All studies include a comparison of the convergence rate of each scheme. A grid re-

finement exercise involving approximately 40 grid densities is performed for each set of
parameters. The convergence rate is determined by fitting a “least-squares” curve through
the error data.
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5.4 Results

5.4.1 Finite Difference: One-Way Wave and Linear Burgers’ Equation

Figure 3 compares the convergence behavior of the 4th- and 6th-order finite difference
schemes. The model problem used is the linear one-way wave equation. Shown are the
results obtained on a nonuniform grid with nonperiodic boundary conditions. Seven sets of
interface parameters are compared, and in all cases, design order convergence is observed
(4th- and 6th-order, respectively). Note that imposing the penalty on the derivative-transpose
terms (l11, and r11), in contrast to theoretical predictions, does not decrease the formal accu-
racy of the schemes.

Figure 4 compares the convergence behavior of the 4th and 6th-order schemes on the
linear Burgers’ equation. Both the flux (LDG) and the primal (B-O) forms of the penalty
are presented in this study. Note that the parameter β is not scaled with the parameter ε. In
all cases, design order is achieved, implying that increased levels of interface coupling has
little impact on formal solution accuracy. Two other values of the physical viscosity ε were
also simulated (but not shown), and similar trends were observed in both cases.

An anomalous behavior is observed in the convergence of the 4th-order simulations.
While the slope remains close to 4, a deflection in convergence behavior is observed at an
error of approximately 10−8. The exact cause of this behavior is not known.

All simulations are performed with an explicit RK scheme, and the efficiency of the runs
is strongly influenced by spurious eigenvalues generated by the interface coupling terms.
For the parameters tested, little sensitivity is observed for the α parameter. A significant
decrease in the max-CFL is observed when large values of the β parameter are used. Even
small values of the γ parameter render the explicit method almost useless, a consequence
of “interface” eigenvalues that progressively extend further towards negative infinity as γ is
increased. An implicit method would certainly be needed if large values of γ are used at the
interfaces. The max-CFL never increases beyond the baseline value when using α,β or γ .

Fig. 3 Comparison of 4th- and
6th-order finite difference
schemes on one-way wave
equation
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Fig. 4 Comparison of 4th- and
6th-order finite difference
schemes on linear Burgers’
equation

Finally, both uniform and nonuniform grids are used in this study, as are periodic and
nonperiodic geometries. Neither permutation changed in any way the general convergence
behavior of the schemes presented in Figs. 3–4.

5.4.2 Spectral Collocation: One-Way Wave and Linear Burgers’ Equation

For the one-way wave equation we only use the primal (BO) formulation. The same α,β, γ

parameter studies performed for the finite difference cases are repeated using the spectral
collocation methods. Polynomial orders ranging from p = 2 to p = 5 are compared on a
nonuniform grid with nonperiodic boundaries. The convergence rate as determined by a
least-squares fit of error data, is reported in the tabular comparisons. Three different mea-
sures of error are used in the tabular comparisons: (1) the L2-norm of the solution error,
(2) the L∞-norm, and (3) the integral norm, formed using the integration matrix P .

Table 1, shows the convergence results for four permutations of α and β , and polynomial
orders p = 2,3,4,5, at values of γ in the range [0.0 ≤ γ ≤ 0.025]. Three distinct conver-
gence rates emerge in this study. We begin by comparing the cases run with γ = 0. The case
α = 1, β = 0 converges at the optimal rate of p + 1 for all polynomial orders. Changing the
value to β = 1

4 reduces the formal convergence rate to p. Next, imposing a nonzero value
of the parameter γ decreases the convergence rate of the optimal case (α = 1, β = 0) to
what appears to be p + 1

2 . Strangely enough, imposing nonzero values for γ increases the
accuracy of the suboptimal cases for which β = 1

4 .
Once again, all these studies were run with an explicit RK scheme that is subject to a

finite maximum stability condition. The interface penalties have a profound influence on
the placement of the maximum eigenvalues, and therefore the maximum allowable timestep
[(�t)max]. The parameter β decreased the (�t)max significantly for O(1) values. The pa-
rameter γ rendered the explicit time advancement scheme almost useless, by reducing the
(�t)max by several orders of magnitude.
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Table 1 Convergence Study of the Linear Wave Equation comparing the effects of γ (ε = 0). Plotted are
three norms of convergence rate, obtained using polynomials of order p for p = 2, . . . , p = 5, as functions of
interface parameter combinations

Penalty Inflow-outflow: nonuniform

parameters γ = 0.000 γ = 0.010 γ = 0.025

and norms p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

α = 0; β = 0

‖U − u‖2 −2.00 −3.01 −4.00 −5.02 −2.06 −2.96 −3.95 −6.87 −2.08 −3.02 −4.99 −7.34

‖U − u‖∞ −2.01 −2.98 −4.00 −5.09 −1.88 −3.09 −4.28 −7.33 −1.91 −3.20 −4.64 −7.54

‖U − u‖P −1.93 −3.12 −3.97 −5.15 −3.35 −2.32 −5.10 −5.98 −3.36 −2.66 −4.74 −6.04

α = 0; β = 1
4

‖U − u‖2 −1.97 −3.02 −3.97 −5.00 −2.20 −3.12 −4.11 −4.99 −2.25 −3.11 −4.20 −5.41

‖U − u‖∞ −1.88 −3.14 −3.99 −5.04 −2.09 −3.11 −4.00 −5.40 −2.30 −3.06 −4.37 −5.30

‖U − u‖P −1.84 −3.21 −3.93 −5.32 −1.98 −3.23 −4.05 −5.18 −2.31 −3.21 −4.15 −5.20

α = 1; β = 0

‖U − u‖2 −3.01 −4.00 −4.93 −6.03 −2.57 −3.58 −4.68 −5.55 −2.57 −3.60 −4.51 −5.49

‖U − u‖∞ −3.01 −3.95 −4.92 −6.01 −2.35 −3.91 −4.70 −5.45 −2.35 −4.06 −4.63 −5.22

‖U − u‖P −4.04 −4.01 −6.01 −5.95 −3.04 −4.21 −6.84 −6.36 −3.04 −4.22 −5.38 −6.43

α = 1;β = 1
4

‖U − u‖2 −1.96 −3.02 −3.98 −4.99 −2.19 −3.12 −4.10 −4.99 −2.25 −3.10 −4.20 −5.43

‖U − u‖∞ −1.90 −3.03 −3.99 −5.04 −2.08 −3.11 −3.99 −5.39 −2.18 −3.05 −4.31 −5.28

‖U − u‖P −1.84 −3.20 −3.93 −5.32 −1.97 −3.23 −4.04 −5.18 −2.20 −3.21 −4.11 −5.22

Two studies are performed on the linear Burgers’ equation: one using the primal formu-
lation (e.g. Baumann-Oden), and one using the flux formulation (e.g. LDG). We begin with
a study comparing the influence of the equation parameter ε on the convergence rate of the
Baumann-Oden scheme.

Table 2 compares the convergence of the B-O scheme for values of the physical parame-
ter, ε = 1.00,0.10,0.01. (The L2-norm of the derivative error is included in the results along
with the L2-norm, the L∞-norm, and the P integral norm.) The cases with diffusive para-
meter ε = 1.0, are dominated by the parabolic nature of the equations, while as ε becomes
smaller, the character of the equation becomes increasingly “hyperbolic”.

Suboptimal convergence is generally observed for all polynomial orders and schemes.
The exceptional cases are when the Dirichlet boundary and interface terms are fully up-
winded (α = 1) and the Neumann derivative terms are averaged (β = 0). For this set of
parameters, polynomials of odd order (p = 3,5) converge at an optimal rate of p + 1 for
the solution and p for the derivative. This result is consistent with that shown by Shu [27]
for the strictly parabolic case using DGFEM. As ε decreases from the baseline ε = 1, the
convergence rate increases (unexpectedly), for all schemes and all polynomial orders with
the exception of those that are already optimal.

The convergence behavior of the B-O formulation is unpredictable. In contrast, when
the linear Burgers’ equation is simulated with the LDG scheme, optimal convergence is
achieved for every combination of physical/numerical parameters. Table 3 shows the con-
vergence behavior of the LDG scheme for the same four parameter settings, and four poly-
nomial orders. The LDG scheme converges for the solution at a rate of p + 1, while the
derivative converges at a rate p for all polynomial orders p. Little influence is observed
when the values of the parameters α or β are adjusted. These results for the LDG scheme
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Table 2 Convergence Study: Effects of ε in the linear Burgers’ equation, using the primal (B-O) formulation.
Plotted are four norms of convergence rate, obtained using polynomials of order p for p = 2, . . . , p = 5, as
functions of interface parameter combinations

Penalty Inflow-outflow, nonuniform domain

parameters ε = 1.00 ε = 0.10 ε = 0.01 ,

and norms p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

α = 0; β = 0

‖U − u‖2 −1.98 −4.01 −4.00 −5.84 −1.96 −3.98 −4.04 −6.01 −2.39 −3.74 −4.95 −5.92

‖U − u‖∞ −1.97 −4.01 −4.01 −5.85 −2.01 −3.98 −4.09 −6.01 −2.90 −3.69 −5.20 −5.88

‖DU − ux‖2 −1.99 −3.00 −4.00 −4.99 −1.99 −3.00 −3.99 −4.99 −1.94 −3.10 −4.14 −5.15

‖U − u‖P −1.99 −4.03 −4.01 −5.91 −1.94 −3.99 −3.97 −6.00 −1.70 −3.70 −4.13 −5.80

α = 0; β = 1
4

‖U − u‖2 −2.01 −3.02 −4.02 −5.12 −2.98 −3.36 −4.85 −5.56 −3.38 −4.38 −5.20 −6.40

‖U − u‖∞ −2.01 −3.02 −4.02 −5.08 −2.75 −4.09 −4.99 −5.96 −2.95 −4.47 −4.81 −6.54

‖DU − ux‖2 −2.02 −3.00 −4.01 −4.99 −2.04 −3.02 −4.00 −5.00 −2.44 −3.33 −4.22 −5.26

‖U − u‖P −2.03 −5.01 −4.04 −6.42 −2.03 −4.36 −3.78 −6.17 −1.63 −4.27 −4.49 −6.37

α = 1; β = 0

‖U − u‖2 −1.96 −4.00 −4.00 −5.83 −1.80 −3.90 −4.00 −5.96 −2.30 −3.47 −4.70 −5.69

‖U − u‖∞ −1.96 −4.00 −4.00 −5.84 −1.85 −3.90 −4.06 −5.95 −2.74 −3.41 −4.87 −5.64

‖DU − ux‖2 −1.98 −3.00 −4.00 −4.99 −1.94 −2.98 −3.99 −4.98 −1.93 −3.07 −4.12 −5.15

‖U − u‖P −1.97 −4.02 −4.01 −5.91 −1.78 −3.92 −3.94 −5.95 −1.69 −3.61 −3.88 −5.62

α = 1;β = 1
4

‖U − u‖2 −2.00 −3.00 −4.01 −5.09 −2.97 −3.36 −4.85 −5.55 −3.37 −4.38 −5.20 −6.40

‖U − u‖∞ −2.00 −3.01 −4.00 −5.04 −2.73 −4.08 −4.99 −5.96 −2.95 −4.47 −4.81 −6.54

‖DU − ux‖2 −2.01 −3.00 −4.00 −4.99 −2.04 −3.02 −4.00 −5.00 −2.44 −3.33 −4.22 −5.26

‖U − u‖P −2.02 −5.01 −4.00 −6.41 −2.01 −4.35 −3.78 −6.17 −1.59 −4.27 −4.49 −6.37

are in slight disagreement with those presented by Shu [27] for the DGFEM and a strictly
parabolic equation. There it is shown that optimal convergence is only achieved for the spe-
cific values of the parameter β = ± 1

2 .
The formal accuracy of the LDG scheme is clearly superior to that of the B-O formula-

tion. Figures 5, and 6 compare the absolute accuracy of both formulations, all permutations
of α and β , and the physical viscosity ε = 1. The LDG formulation significantly outper-
forms the B-O scheme for even order polynomials, but is less advantageous for odd order
polynomials (for which the B-O scheme is optimally convergent). Both the B-O and LDG
classes of schemes, exhibit little sensitivity to the parameters α = 0, 1 and β = 0/4 1/4. This
result is surprising for the B-O schemes, considering that some are suboptimal for various
parameter combinations. Note, however, that absolute accuracy depends on both the order
of and size of the truncation terms. Many of the lower-order combinations have smaller
truncation terms, which results in better accuracy at coarse tolerances. Note that Fig. 6 also
shows the 4th-order finite difference result, which is more accurate than either the B-O or
LDG formulation.

Figure 7 combines all the polynomial orders in to one plot. For clarity, only the cases
with interface parameters α = 1 and β = 0, are presented. Recall that this parameter com-
bination results in an upwind Dirichlet flux and a centered Neumann flux at the interfaces,
and resulted in optimal convergence for odd-orders with the B-O scheme. The LDG scheme
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Table 3 Convergence Study: Effects of ε in the linear Burgers’ equation, using the flux (LDG) formulation.
Plotted are four norms of convergence rate, obtained using polynomials of order p for p = 2, . . . , p = 5, as
functions of interface parameter combinations

Penalty Inflow-outflow, nonuniform domain

parameters ε = 1.00 ε = 0.10 ε = 0.01

and norms p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5 p = 2 p = 3 p = 4 p = 5

α = 0; β = 0

‖U − u‖2 −2.97 −4.07 −4.96 −5.84 −2.88 −3.89 −4.94 −5.92 −3.42 −4.24 −5.37 −6.10

‖U − u‖∞ −2.96 −3.99 −4.99 −5.85 −2.59 −3.85 −4.75 −5.87 −3.43 −4.12 −5.22 −5.86

‖DU − ux‖2 −2.01 −3.03 −4.02 −5.08 −2.02 −3.03 −4.03 −5.08 −2.28 −3.41 −4.35 −5.45

‖U − u‖P −2.81 −3.81 −5.86 −7.28 −1.89 −3.94 −3.72 −5.91 −2.44 −3.91 −3.19 −6.00

α = 0; β = 1
4

‖U − u‖2 −2.90 −3.96 −4.91 −5.82 −3.01 −4.04 −4.98 −6.00 −3.72 −4.39 −5.56 −6.30

‖U − u‖∞ −2.91 −3.92 −5.02 −5.90 −3.43 −4.04 −4.99 −6.02 −3.41 −4.42 −5.54 −6.28

‖DU − ux‖2 −2.00 −3.00 −3.98 −5.00 −1.99 −2.99 −3.98 −5.02 −2.59 −3.39 −4.44 −5.45

‖U − u‖P −2.61 −3.84 −5.62 −6.50 −0.33 −4.21 −4.57 −6.08 −2.42 −4.25 −4.10 −6.51

α = 1; β = 0

‖U − u‖2 −2.95 −4.06 −4.95 −5.84 −2.81 −3.82 −4.91 −5.88 −3.18 −3.99 −5.10 −5.67

‖U − u‖∞ −2.93 −3.98 −4.98 −5.84 −2.46 −3.78 −4.69 −5.83 −3.33 −3.89 −4.98 −5.67

‖DU − ux‖2 −2.01 −3.03 −4.02 −5.08 −2.01 −3.02 −4.01 −5.05 −2.01 −3.12 −4.09 −5.13

‖U − u‖P −2.79 −3.79 −5.86 −7.30 −1.98 −3.88 −3.72 −5.87 −2.78 −3.70 −3.51 −5.78

α = 1;β = 1
4

‖U − u‖2 −2.90 −3.94 −4.90 −5.80 −3.00 −4.04 −4.98 −6.00 −3.72 −4.39 −5.56 −6.30

‖U − u‖∞ −2.92 −3.90 −5.02 −5.88 −3.41 −4.03 −4.98 −6.02 −3.41 −4.42 −5.54 −6.28

‖DU − ux‖2 −1.99 −2.99 −3.98 −5.00 −1.99 −2.99 −3.98 −5.02 −2.59 −3.39 −4.44 −5.45

‖U − u‖P −2.59 −3.79 −5.63 −6.52 2.18 −4.20 −4.56 −6.07 −2.41 −4.25 −4.10 −6.50

is significantly more accurate than the B-O scheme for even order polynomials, while they
are nearly indistinguishable for odd order polynomials. Note that the convergence behavior
of the LDG formulation is dual valued for even order polynomials. Specifically, the simu-
lations with an even number of elements superconverges initially, while those with an odd
number of elements converge as expected.

6 Discussion

The present work generalizes the penalty formulation proposed by the present authors (see
Ref. [8]) to couple adjoining SBP operators. The resulting formulation provides a “plethora”
of adjustable parameters that generate schemes with remarkably diverse numerical proper-
ties. Broad generalities regarding the various formulations include: (1) the accuracy of the
finite difference methods is neither sensitive to the interface parameters α,β, γ , nor sensi-
tive to the formulation type (e.g. primal or flux), (2) the accuracy of the spectral colloca-
tion methods is weakly sensitive to the interface parameters, (3) the accuracy of the LDG
flux formulation greatly exceeds that of the BO primal formulation for spectral collocation,
(4) second derivative penalty terms greatly increase the spectral radius of the semi-discrete
operator.
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Fig. 5 Comparison of
Baumann-Oden and LDG
schemes for multiple penalty
parameters on the linear Burgers’
equation: P = 2

Fig. 6 Comparison of
Baumann-Oden and LDG
schemes for multiple penalty
parameters on the linear Burgers’
equation: P = 3. Also included is
the 4th-order finite difference
result

While the model problems studied herein provide little evidence of the virtues of higher
derivative interface coupling, it seems premature to disregard them from further consider-
ation before performing more thorough testing. One needed test (suggested by a reviewer)
is to quantify the impact of second derivative penalties on the smoothness of all derivatives
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Fig. 7 Comparison of
Baumann-Oden and LDG
schemes for multiple polynomial
orders on the linear Burgers’
equation: α = 1, β = 0

across the interface, and to establish whether increased levels of smoothness is beneficial.
Another needed test is to quantify the impact of high derivative penalties on the spectral
radius of the discrete operator. Indeed, increases in the spectral radius adversely impact both
explicit and implicit time advancement techniques.

The present derivations and analysis, focus entirely on the 1D, scalar, constant coeffi-
cient, advection-diffusion equation, although generalization to 3D is conceptually “trivial”
based on tensor product formulations and algebra [25], albeit difficult in practical terms.
(Not to make light of the significant impediments encountered when building 3D software:
grid generation, solution and geometry singularities, nonlinear stability, etc.) Generalization
to systems of equations of the original CGN penalty approach appears in the work of Nord-
ström, and Carpenter [25], and extension of the new general penalties presented herein is in
principle analogous. Although it is straightforward to generalize many of the new penalty
terms, those involving DT require special consideration. As such, the generalization to sys-
tems if is a topic of current investigation. Extension to nonlinear equations has not been
attempted, although it is likely that transforming weak form (primal or flux) FEM methods
into strong form will provide valuable insight.

7 Conclusions

A new approach is presented that generalizes the original multi-domain, summation-by-parts
(SBP), penalty technique of Carpenter et al. [8] to include penalties on the solution and the
first p interface derivatives. The energy method is used to prove for p ≤ 2 that the combined
interior/interface operators are L2 stable and conservative when used to discretize the 1D,
linear Burgers equation. A discrete Sobolev inequality is then used to establish pointwise
stability. The extension to 3D is conceptually “trivial” using tensor product algebra.
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It is shown that the new interface procedure is applicable to two distinct sets of variables.
The first implementation is reminiscent of the primal form method developed by Baumann
and Oden, [4], while the second resembles the flux form LDG methods developed by Cock-
burn and Shu [11]. Although both formulations are L2 and pointwise stable, and conserv-
ative, their proofs involve different variables. There are similarities, however. Indeed, the
flux formulation can be implemented using the primal variables if the penalty parameters
are allowed to vary with grid resolution. Furthermore, all stable flux formulations are also
stable in the primal variables.

There are potential costs for elaborate penalties in either the primal or flux formulations.
Penalizing data that is of inadequate accuracy can theoretically degrade the formal global
accuracy of the method. Penalties built from second and higher derivatives are theoretically
ill advised for this reason. A further potential cost is the degree to which some penalties
increase the condition number of the resulting discretization matrix, making them unaccept-
ably expensive for explicit temporal methods.

Extensive numerical experiments on the advection and the advection diffusion (linear
Burgers’) equations are used to verify the theoretical predictions. All simulations were per-
formed using penalties limited to p ≤ 1, i.e. the solution and first derivative. Two classes
of high-order SBP operators are used in these studies: (1) central finite difference, and
(2) Legendre spectral collocation. General trends identified in these studies include the fol-
lowing: (1) The theoretical predictions are not always sharp. For example, finite difference
simulations achieve design order convergence for all permutations of penalty parameters.
Similarly, Legendre simulations using the primal formulation achieve optimal convergence
for odd polynomial orders. Both these results are in contradiction to theoretical estimates.
(2) The flux formulation is less susceptible to order reduction, particularly when using the
Legendre spectral collocation methods. Thus, it can potentially benefit from a wide variety
of penalty terms. Conversely, the suboptimal formal accuracy was observed when using the
primal formulation for Legendre simulations.
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