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Abstract We present iterative and preconditioning techniques for the solution of the lin-
ear systems resulting from several discontinuous Galerkin (DG) Interior Penalty (IP) dis-
cretizations of elliptic problems. We analyze the convergence properties of these algorithms
for both symmetric and non-symmetric IP schemes. The iterative methods are based on a
“natural” decomposition of the first order DG finite element space as a direct sum of the
Crouzeix-Raviart non-conforming finite element space and a subspace that contains func-
tions discontinuous at interior faces. We also present numerical examples confirming the
theoretical results.

Keywords Discontinuous Galerkin finite element methods · Subspace correction
methods · Interior Penalty methods · Iterative methods for non-symmetric problems

1 Introduction

The problem for efficient solution of the systems of equations arising from discontinuous
(DG) discretizations has drawn a lot of attention, in the last years. Discontinuous Galerkin
methods have many advantages over other types of finite element methods (e.g., flexibil-
ity in handling non-matching grids and in designing hp-refinement strategies, conservation
properties and wide range of applicability). However, the fact that they result in a larger
number of degrees of freedom as compared to a conforming method has been regarded as
one main obstacle in their efficient implementation. Indeed, the computationally extensive
part when using DG discretizations is the solution of the resulting ill-conditioned linear sys-
tems, which are of much larger size than the ones obtained via conforming method. As a
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result, efficient implementation of a DG discretization requires the use of advanced iterative
methods for the solution of the resulting systems.

In the recent years, the efforts in the development of efficient iterative methods and
solvers for the linear systems arising from DG discretizations of elliptic problems have
been centered around the design of optimal multilevel solution methods, such as: domain
decomposition and Schwarz methods (see [3–5, 27]); two-level and two grid techniques
(see [23]); multigrid methods (see [16, 28]). Most of these works provide solution techniques
and convergence analysis applicable to symmetric DG methods for second and fourth order
elliptic problems. However, the attempts to construct and analyze preconditioners and itera-
tive methods for the corresponding non-symmetric DG schemes encounters several barriers,
which seem to be not easy to circumvent. Some of the difficulties originate from the fact
that for the non-symmetric DG approximation of elliptic problems, the non-symmetric part
of the bilinear form is not a compact, lower order perturbation of the symmetric part. For ex-
ample, in [3] it was numerically demonstrated that commonly used sufficient conditions for
the convergence of the Generalized Minimal Residual (GMRES) method [25] are not sat-
isfied for the preconditioned system (with Schwarz method) arising from a non-symmetric
DG discretization of an elliptic problem. Such negative results also show that the analysis
of convergence of preconditioned GMRES for non-symmetric DG discretizations could be,
to say the least, hard to do and non-standard to a great extend.

In this paper we propose and analyze uniformly convergent iterative methods and pre-
conditioners for both symmetric and non-symmetric DG schemes. The construction of the
preconditioners and the iterative algorithms is done using the framework of space decompo-
sition and subspace correction methods (see [39, 40]). As underlying class of DG discretiza-
tions we use symmetric or non-symmetric Interior Penalty (IP) DG finite element methods
(see [6, 7, 22, 32, 33, 37, 38], and [24]), in which the inter-element continuity is weakly en-
forced by penalizing discontinuities of the function or of its derivatives across inter-element
boundaries. We restrict our considerations here to discretizations with piece-wise linear ele-
ments. In addition to the classical family of IP methods, which we call of Type-1: symmet-
ric (SIPG), non-symmetric (NIPG) and incomplete (IIPG); we also consider the family of
IP methods that result by evaluating the integrals in the bilinear forms numerically. These
methods, which we call of Type-0, are similar to those introduced in [13, 14].

A key ingredient in our construction of uniform preconditioners is a decomposition of the
underlying DG linear finite element space into two non-conforming subspaces. One of them
is the well-known Crouzeix-Raviart finite element space, originally introduced by Strang in
[35, 36, p. 178] and later successfully used for the Stokes problem [21]. Its complemen-
tary space contains functions that have non-zero jump at each internal face. In a different
context, such decomposition has been proposed and used recently in [19] for obtaining a
priori error bounds. We prove that for the Type-0 IP methods, this decomposition is orthog-
onal in an appropriate energy inner-product, thus leading to much simpler linear systems
with block lower triangular structure. We further explore this orthogonal decomposition to
design uniform preconditioners and uniformly convergent iterative methods for the classi-
cal Type-1 IP methods, as well as for the over-penalized IP methods recently introduced in
[13] and [14]. In fact, we show that for symmetric interior penalty methods (SIPG, [6]), the
Type-0 methods provide uniform preconditioners for the classical SIPG (Type-1) method.
For non-symmetric NIPG and IIPG methods we propose an iterative method which uses as
iterator the symmetric part of the underlying stiffness matrix. We prove that under a mild
restriction on the penalty parameter such method is uniformly convergent in energy norm.
To our knowledge, results on uniformly convergent iterative methods for the non-symmetric
IIPG and NIPG were not available in the literature, and the convergence analysis presented
here provides the first such results.
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The rest of the paper is organized as follows. In Sect. 2 we introduce notation and present
the IP methods of Type-0 and Type-1 that we consider. In Sect. 3 we introduce a decompo-
sition of the DG finite element space and discuss its properties. A solver for the IP methods
of Type-0 is introduced and analyzed in Sect. 4. In Sect. 5 we propose iterative methods
and preconditioners for the IP methods of Type-1, and we present their analysis. Finally, in
Sect. 6 we present some numerical examples that validate and confirm the presented theory.
The paper is closed with an Appendix containing the proof of two auxiliary results.

2 Interior Penalty Discontinuous Galerkin Methods

In this section, we introduce the model problem and the basic notation. We also present
the two families of Interior Penalty (IP) discontinuous Galerkin methods considered in this
work, Type-1 and Type-0. The former type is the classical IP family [6, 22, 32]. The latter
type (Type-0) is what results by computing numerically the integrals that appear in the clas-
sic IP family. In the last part of the section, we show that these two families of methods are
spectrally equivalent.

2.1 Preliminaries

Let � be a bounded connected domain in R
d with Lipschitz boundary ∂� and let f ∈ L2(�).

For the sake of simplicity and easy presentation of the main ideas, we restrict ourselves to
the model problem (see Remark 2.1):

−�u = f in �, u = 0 on ∂�. (2.1)

Remark 2.1 All the results presented here remain also valid for more general second order
elliptic problems—in divergence form and with piecewise constant coefficient.

Throughout this paper, we use the standard notation for Sobolev spaces (see [1]). For a
bounded domain D ⊂ R

d , d = 1,2,3, we denote by Hm(D) the standard Sobolev space of
order m ≥ 0, and by ‖ · ‖m,D and | · |m,D the usual Sobolev norm and semi norm, respec-
tively. We also use the notation x1 � y1 (x2 � y2) whenever there exist constants C1 and
C2 independent of the mesh size, but possibly dependent on the mesh regularity and such
that x1 ≤ C1y1 (x2 ≥ C2y2). If two sided inequalities hold, then we write x1 ≈ x2. In most
places, when we use such notation, we will indicate the explicit dependence on the penalty
parameter.

Domain Partitioning Let Th be a shape-regular family of partitions of � into d-
dimensional simplices T (triangles if d = 2 and tetrahedrons if d = 3). We denote by hT

the diameter of T and we set h = maxT ∈Th
hT . We also assume that Th is conforming in

the sense it does not contain hanging nodes. A face (shared by two neighboring elements
or being part of the boundary) is denoted in general by E. Clearly, such face is a (d − 1)

dimensional simplex, that is, an edge in two dimensions and a triangular face in three di-
mensions. We denote by E o

h and E ∂
h the collection of all interior faces and boundary faces,

respectively. The set of all faces (the skeleton of the triangulation) is denoted by Eh.
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Trace Operators Following [7], we recall the definition of the average and jump trace
operators for scalar and for vector-valued functions. Let T + and T − be two neighboring
elements, and n+, n− be their outward normal unit vectors, respectively (n± = nT ± ). Let ζ±

and τ± be the restriction of ζ and τ to T ±. We set:

{ζ } = 1

2
(ζ+ + ζ−), [[ ζ ]] = ζ+n+ + ζ−n− on E ∈ E o

h,

(2.2)

{τ } = 1

2
(τ+ + τ−), [[τ ]] = τ+ · n+ + τ− · n− on E ∈ E o

h .

For E ∈ E ∂
h , we set

[[ ζ ]] = ζn, {τ } = τ on E ∈ E ∂
h . (2.3)

We will also use the notation

(u,w)Th
=

∑

T ∈Th

∫

T

uwdx ∀u,w ∈ L2(�), 〈u,w〉Eh
=

∑

E∈Eh

∫

E

uw ∀u,w,∈ L2(Eh).

Finite Element Spaces We restrict our attention to piecewise linear approximation. Let
V DG denote the discontinuous finite element space defined by:

V DG = {
u ∈ L2(�) : u|T ∈ P

1(T ) ∀T ∈ Th

}
, (2.4)

where P
1(T ) denotes the space of linear polynomials on T .

2.2 Interior Penalty Methods

In what follows (unless it is explicitly specified), since we will only be concerned with
discrete functions we denote also by u the DG finite element approximation to (2.1). All the
methods we consider, can be recast in the following form: Find u ∈ V DG such that

ADG(u,w) = (f,w)Th
, ∀w ∈ V DG. (2.5)

Here ADG looks different for different IP methods. We focus on two types of ADG(·, ·)–
Type-0 IP methods and Type-1 IP methods. The Type-1 methods are the classical Interior
Penalty methods. To each Type-1 method there corresponds a Type-0 method obtained by
evaluating the penalty term in the bilinear form approximately.

1. For the IP methods of Type-1, we set ADG(·, ·) = A(·, ·) and define

A(u,w) = (∇u,∇w)Th
− 〈{∇u}, [[w ]]〉Eh

+ θ〈[[u ]], {∇w}〉Eh

+ 〈SE[[u ]], [[w ]]〉Eh
∀u,w ∈ V DG. (2.6)

2. For the IP methods of Type-0, we set ADG(·, ·) = A0(·, ·) and define

A0(u,w) = (∇u,∇w)Th
− 〈{∇u}, [[w ]]〉Eh

+ θ〈[[u ]], {∇w}〉Eh

+ 〈SE P 0
E([[u ]]), P 0

E([[w ]])〉Eh
∀u,w ∈ V DG, (2.7)
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where P 0
E : L2(E) → P

0(E) is for each E ∈ Eh, the L2-orthogonal projection onto the con-
stants, defined by:

P 0
E(u) := 1

|E|
∫

E

u ∀u ∈ L2(E). (2.8)

Clearly, P 0
E satisfies

‖P 0
E(u)‖0,E ≤ ‖u‖0,E ∀u ∈ L2(E), ∀E ∈ Eh. (2.9)

Furthermore, notice that, denoting by mE the mass center of E, numerical integration gives

P 0
E(u) = u(mE) whenever u is a linear polynomial on E. (2.10)

Therefore, in view of (2.10), the approximation of Type-0 defined in (2.7) can also be
regarded as using the lowest order Gaussian quadrature rule (or the midpoint integration
rule) for the evaluation of the integrals over Eh in the classical IP family methods. Since
u,w ∈ V DG are piecewise linear polynomials, A and A0 differ only in the computation of
the 〈SE[[u ]], [[w ]]〉Eh

term (the other integrals over Eh are reproduced exactly).
For both Type-0 and Type-1 methods, θ = −1 gives the symmetric (SIPG) (see [6]);

θ = 1 and θ = 0 lead to the non-symmetric NIPG (see [32]) and IIPG (see [37]) schemes,
respectively. The symmetric and skew-symmetric parts of A(·, ·) are given by

Ã(u,w) = (∇u,∇w)Th
+ θ − 1

2

[〈{∇u}, [[w ]]〉Eh
+ 〈[[u ]], {∇w}〉Eh

]

+ 〈SE[[u ]], [[w ]]〉Eh
∀u,w ∈ V DG, (2.11)

S(u,w) = θ + 1

2

[〈[[u ]], {∇w}〉Eh
− 〈{∇u}, [[w ]]〉Eh

] ∀u,w ∈ V DG,

so that A(u,w) = Ã(u,w) + S(u,w) and obviously for SIPG S(u,w) = 0 ∀u,w ∈ V DG.
The symmetric and skew-symmetric parts of A0(·, ·) are defined in an analogous way.

Notice that, while Ã0(·, ·) differs from Ã(·, ·) in the last term, we always have that
S0(u,w) = S(u,w) for all u,w ∈ V DG (the quadrature is exact for the integrals involved in
the definition of the skew-symmetric part S(·, ·)).

In the definitions (2.6) and (2.7) we take

SE = α |E| −1
d−1 ≈ αh−1

E ∀E ∈ Eh, α > 0, (2.12)

where hE denotes the length of the edge E in d = 2 and the diameter of the face in d = 3
and α is the penalty parameter on each face E ∈ Eh.

For all methods of Type-1 (2.6), and for sufficiently large value of the penalty parame-
ter α, continuity and coercivity can be shown in the following energy norm (see [7] for
details),

|||u|||2 :=
∑

T ∈Th

‖∇u‖2
0,T +

∑

E∈Eh

h−1
E ‖[[u ]]‖2

0,E where ∀u ∈ V DG. (2.13)

For Type-0 methods (2.7), similar properties can also be easily shown to hold, following
standard arguments (see [7]), albeit in a different energy norm, defined as:

|||u|||2N :=
∑

T ∈Th

‖∇u‖2
0,T +

∑

E∈Eh

h−1
E ‖P 0

E([[u ]])‖2
0,T . (2.14)
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In summary, the following estimates hold, with constants depending on the shape regularity
of the mesh, the domain � and α:

A(u,w) � |||u||| |||w||| , A0(u,w) � |||u|||N |||w|||N , ∀u,w ∈ V DG, (2.15)

A(u,u) � |||u|||2 , A0(u,u) � |||u|||2N , ∀u ∈ V DG. (2.16)

On the Choice of Penalty Parameter Since the penalty parameter α enters many of the
estimates that we prove or use in our proofs, we would like to comment some more on the
choice of its value. First, to simplify the notation, we take the same value of the penalty
parameter for all edges/faces E ∈ Eh in most of the considerations that follow. Thus, the
value of the penalty parameter α will be independent of the mesh size. Only two exceptions
to this convention are found in Remarks 2.2 and 4.5, when we comment on the application of
our results to the weakly over-penalized IP methods introduced in [13] and [14]. The penalty
parameter in these methods depends on the mesh size and we specify this dependence and
outline the changes then.

We always set α ≥ α∗ where α∗ is a fixed value of the penalty parameter that gives posi-
tive definite symmetric part ÃDG(·, ·) of the bilinear form ADG(·, ·); i.e., ensures coercivity
of ADG(·, ·). The results that we prove below hold for any value of α∗ such that ÃDG(·, ·) is
positive definite. To avoid confusion, we point out here, that we have in mind the non-trivial
cases when α∗ is “small”. In another word, α∗ is close to (but strictly larger than) the value
of the penalty parameter for which the symmetric part of the method in hand ÃDG(·, ·) is
only positive semi-definite. One may certainly take different values of α∗ for Type-0 meth-
ods and Type-1 methods. However, such distinction is not essential at all (as Lemma 2.3
shows), and we will refer to one and the same minimal value α∗ for both Type-0 and Type-1
methods.

In accordance with the discussion above and for easier reference later on we shall call α∗,
the minimal value of the penalty parameter for which ADG(·, ·) is coercive.

It follows then that, for α ≥ α∗ the bilinear forms corresponding to the symmetric parts
of A(·, ·) and A0(·, ·) induce norms equivalent to |||·||| and |||·|||N ,

‖u‖2
Ã := Ã(u,u) ≈ |||u|||2 , ‖u‖2

Ã0
:= Ã0(u,u) ≈ |||u|||2N .

Finally, whenever we will need to distinguish between the different IP methods, we shall
use superscripts to denote the bilinear forms corresponding to SIPG, NIPG and IIPG Type-1
methods, i.e., As,α(·, ·) for SIPG, An,α(·, ·) for NIPG, and AI,α(·, ·) for IIPG. The superscript
α indicates the actual value of the penalty parameter taken in the definition of the method.

Weighted Residual Form In several proofs, we will also use an equivalent form of the DG
methods obtained via the weighted residual approach introduced in [17] (see also [9]). Using
this approach the Type-0 and Type-1 methods are as follows:

A(u,w) = (−�u,w)Th
+ 〈[[∇u ]], {w}〉E o

h
+ 〈[[u ]], B1(w)〉Eh

∀u,w ∈ V DG, (2.17)

A0(u,w) = (−�u,w)Th
+ 〈[[∇u ]], {w}〉E o

h
+ 〈[[u ]], P 0

E(B1(w))〉Eh
∀u,w ∈ V DG.

(2.18)

Here B1(w) is defined as

B1(w) = θ{∇w} + αE |E| −1
(d−1) [[w ]] ∀E ∈ Eh. (2.19)
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Throughout the paper, both the weighted residual and classical forms will be used inter-
changeably.

Remark 2.2 By allowing the penalty parameter to depend on hE (and so to vary from one
face to another, i.e.; α �→ αE) and by setting αE ≈ h−2

E , we recover the methods proposed
in [13] and [14] as a particular case of the Type-0 methods. Most of the results that we
present for the Type-0 methods, with the exception of Lemma 2.3, apply almost verbatim
to the weakly over penalized non-symmetric (WOPNIP) and symmetric (WOPSIP) interior
penalty methods. One difference, that we need to note here, is that the systems of equa-
tions arising from WOPNIP and WOPSIP discretizations have condition number of order
O(h−4) (in contrast to condition numbers of order h−2 for the standard Type-0 IP meth-
ods). Nevertheless, the solution techniques that we propose in section 4 can be applied in a
straightforward way to solve such systems.

2.3 Equivalence Relations between Type-0 and Type-1 Interior Penalty Methods

Next result shows that the symmetric parts of the bilinear forms associated with Type-0 and
Type-1 methods are equivalent.

Lemma 2.3 Let A(·, ·) be a bilinear form corresponding to a Type-1 method and let A0

be the corresponding Type-0 bilinear form. Then, there exist a positive constant c0 = c0(α),
depending only on the shape regularity of the mesh and the penalty parameter α, such that,

A0(u,u) ≤ A(u,u) ≤ c0(α)A0(u,u) ∀u ∈ V DG. (2.20)

Proof The lower bound follows immediately from the fact that the projection operator P 0
E

is bounded in L2(E) and has norm 1 (see (2.9)). We only need to show the upper bound.
Comparing the terms in the definitions of A0 and A it is easy to see that to get the upper
bound in (2.20) it will be enough to show that

∑

E

SE‖[[u ]]‖2
0,E ≤ C

(
‖∇v‖2

0,Th
+

∑

E

SE‖P 0
E[[u ]]‖2

0,E

)
.

Adding and subtracting P 0
E[[u ]] in the term on the left side above and using that P 0

E is
L2(E)-orthogonal projection we have for each face E,

‖[[u ]]‖2
0,E = ‖P 0

E([[u ]])‖2
0,E + ‖[[u ]] − P 0

E([[u ]])‖2
0,E. (2.21)

Hence, we only need to estimate the last term on the right side of the above inequality.
Observe, that on each E ∈ E , E = ∂T + ∩ ∂T −,

‖[[u ]] − P 0
E([[u ]])‖2

0,E � ‖u+ − P 0
E(u+)‖2

0,E + ‖u− − P 0
E(u−)‖2

0,E.

We will estimate the first term on the right side. The second one is estimated in an analogous
way. By a standard scaling argument, mapping T + to the reference simplex T̂ , and denoting
the function on T̂ corresponding to u+ with û, we have

h−1
E ‖u+ − P 0

E(u+)‖2
0,E � hd−1h−1

E ‖[û − P 0
Ê
(û)]‖2

0,Ê
.
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We fix û and define a linear functional F : H 1(T̂ ) �→ R by

F(v̂) :=
∫

Ê

[û − P 0
Ê
(û)][v̂ − P 0

Ê
(v̂)].

By Cauchy-Schwarz inequality and the Trace Theorem on T̂ ,

|F(v̂)| � ‖û − P 0
Ê
(û)‖0,Ê‖v̂‖1,T̂ ,

and hence F(v̂) is bounded. Moreover F(v̂) = 0, ∀ v ∈ P
0(T̂ ). By Bramble-Hilbert Lemma

it follows that we can replace the full norm ‖v‖1,T̂ on the right side with a semi-norm to get
that

|F(v̂)| � ‖û − P 0
Ê
(û)‖0,Ê|v̂|1,T̂ .

Taking v̂ = û and using the definition of F(·) then leads to

|F(û)| = ‖û − P 0
Ê
(û)‖2

0,Ê
� ‖û − P 0

Ê
(û)‖0,Ê |û|1,T̂ .

Using this inequality and mapping back to T + then gives

h−1
E ‖u+ − P 0

E(u+)‖2
0,E � hd−1h−1

E ‖û − P 0
Ê
(û)‖2

0,Ê

� hd−1h−1
E |û|21,T̂

� |u+|21,T + .

Hence, substituting into (2.21) and summing over all the faces, we finally have

∑

E

αh−1
E ‖[[u ]]‖2

0,E ≤
∑

E

αh−1
E ‖P 0

E([[u ]])‖2
0,E + C(α)

∑

T ∈Th

‖∇u‖2
0,T

≤ c0(α)A0(u,u) ∀u ∈ V DG

and the proof is complete. �

We now focus on the description of the decomposition of the DG space into subspaces,
needed later in the construction of iterative methods.

3 A Subspace Decomposition of V DG

In this section we show a subspace decomposition for the V DG space. In a different con-
text, such decomposition has been also obtained recently in [19]. Although there are slight
differences in the allocation of the boundary degrees of freedom, the main idea on how to
decompose the DG finite element space is essentially the same. Since it is essential to our
subsequent analysis, we have included the derivation of the space decomposition in Propo-
sition 3.1.

We start by reviewing first the definition of the well known Crouzeix-Raviart non-
conforming finite element space V CR [21] (see also [15, 18]) and also introduce another
subspace of V DG, denoted here by Z . As we shall see later, these form a non-overlapping
decomposition of V DG. These spaces are defined via the local (on each face) L2-orthogonal
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projections onto the constant function, P 0
E (see (2.8)). The Crouzeix-Raviart finite element

space is

V CR = {
v ∈ L2(�) : v|T ∈ P

1(T ) ∀T ∈ Th and P 0
E[[v ]] = 0 ∀E ∈ E o

h

}
. (3.1)

Note that v(mE) = 0 at all boundary faces E ∈ ∂�. We also define the space

Z = {
z ∈ L2(�) : z|T ∈ P

1(T ) ∀T ∈ Th and P 0
E{v} = 0 ∀E ∈ E o

h

}
. (3.2)

Observe that any function from the space Z has the property that if it is nonzero on an
internal face, then it also has a nonzero jump on this face. In another word, these functions
are highly oscillatory.

We denote by nT ,nE and nV the number of elements, faces (edges in d = 2) and vertices
of the partition and by nBE the number of boundary faces. Since the restriction of a function
in V DG on every element T ∈ Th is a linear polynomial, its representation on T depends on
the basis chosen for the linear polynomials on a simplex. A canonical choice will be a basis
dual to degrees of freedom located at the vertices of the simplex. For our analysis, more
convenient choice is a basis dual to degrees of freedom located at the mass centers of the
faces of T . Let ϕE,T denote the canonical Crouzeix-Raviart (CR) basis function on T , dual
to the degree of freedom at the mass center of the face E, and extended as zero outside T .
Hence, ϕE,T satisfies

ϕE,T ∈ P
1(T ) : ϕE,T (x) = 0 ∀x /∈ T , ϕE,T (mE′) =

{
1 if E = E′,
0 otherwise.

For all u ∈ V DG we then have

u(x) =
∑

T ∈Th

∑

E∈∂T

uT (mE)ϕE,T (x) =
∑

E∈Eh

u+(mE)ϕ+
E (x) +

∑

E∈E o
h

u−(xE)ϕ−
E (x), (3.3)

where in the last identity we have just changed the order of summation and used the short
hand notation ϕ±

E (x) := ϕE,T ±(x) together with

u±(mE) := uT ±(mE) = 1

|E|
∫

E

u±ds ∀E ∈ E o
h, : E = ∂T + ∩ ∂T −,

u(mE) := uT (mE) = 1

|E|
∫

E

uT ds ∀E ∈ E ∂
h , : E = ∂T ∩ ∂�.

Clearly, (d + 1)nT = 2nE − nBE and hence, a basis for the DG space is given by the set of
functions {ϕ+

E ,ϕ−
E }E∈E o

h
∪ {ϕE}E∈E ∂

h
. We now show that this considerations lead naturally

to a splitting of V DG as a direct sum of the spaces V CR and Z defined in (3.1) and (3.2),
respectively.

Proposition 3.1 For any u ∈ V DG there exists a unique v ∈ V CR and a unique z ∈ Z such
that u = v + z , that is

V DG = V CR ⊕ Z. (3.4)

Proof From the definition of the jump and average operators (2.2), it follows that ∀u,w ∈
V DG and ∀x, y ∈ E ∈ E o

h ,
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u+(y)w+(x) + u−(y)w−(x) = 2{u(y)w(x)}

= 2{u}(y){w}(x) + 1

2
[[u ]](y)[[w ]](x)

= 2
(u+(y) + u−(y))

2

(w+(x) + w−(x))

2
+ (u+(y) − u−(y))

2
(w+(x) − w−(x)).

Then, using the above expression and taking into account the definition of the jump oper-
ator on boundary faces (2.3) we can re-arrange the representation (3.3) of u ∈ V DG. More
precisely, we find that any u ∈ V DG can be expressed as

u(x) =
∑

E∈E o
h

u+(mE)ϕ+
E (x) +

∑

E∈E o
h

u−(mE)ϕ−
E (x) +

∑

E∈E ∂
h

u(mE)ϕE(x) =
∑

E∈E ∂
h

u(mE)ϕE(x)

+
∑

E∈E o
h

(u+(mE) + u−(mE))

2
(ϕ+

E (x) + ϕ−
E (x))

+
∑

E∈E o
h

(u+(mE) − u−(mE))

2
(ϕ+

E (x) − ϕ−
E (x))

=
∑

E∈E o
h

(
1

|E|
∫

E

{u}ds

)
(ϕ+

E (x) + ϕ−
E (x))

+
∑

E∈E o
h

(
1

|E|
∫

E

[[u ]]n+

2
ds

)
(ϕ+

E (x) − ϕ−
E (x)) +

∑

E∈E ∂
h

(
1

|E|
∫

E

uds

)
n[[ϕE ]](x)

= vCR(x) + z(x).

By defining now

ϕCR
E = ϕE,T + + ϕE,T − = 2{ϕE,T ±} ∀E ∈ E o

h, E = T + ∩ T −, (3.5)

and
⎧
⎪⎨

⎪⎩

ψz

E,T + = ϕE,T + − ϕE,T − = [[ϕE,T ± ]]n+ ∀E ∈ E o
h,E = T + ∩ T −,

ψz

E,T − = ϕE,T − − ϕE,T + = [[ϕE,T ± ]]n− ∀E ∈ E o
h,E = T + ∩ T −,

ψz
E,T = ϕE,T = [[ϕE,T ]]n ∀E ∈ E ∂

h ,E = T ∩ ∂�,

(3.6)

we have two set of basis functions; {ϕCR
E }E∈E o

h
which is just the set of canonical Crouzeix-

Raviart basis functions for non-conforming linear finite elements and so, it is continuous at
mE for all E; and, {ψz

E,T }E∈E o
h

∪ {ψz
E,T }E∈E ∂

h
which are discontinuous across each E ∈ E o

h .

Therefore, for all u ∈ V DG there exist

vCR =
∑

E∈E o
h

(
1

|E|
∫

E

{u}ds

)
ϕCR

E (x) ∈ V CR,

z =
∑

E∈Eh

(
1

|E|
∫

E

[[u ]]n+

2
ds

)
ψz

E,T +(x) ∈ Z,

such that u = vCR + z and so (3.4) is shown and the proof is complete. �
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Note that from the proof one can easily see that the set
{
ψz

E,T

}
E∈Eh

∪ {
ϕCR

E,T

}
E∈E o

h

, (3.7)

provides a natural basis for the DG finite element space V DG.
Next result is simple but crucial for the subsequent analysis and shows that the splitting

of Proposition 3.1 is orthogonal in the energy norm defined by A0(·, ·).

Lemma 3.2 Let u ∈ V DG be such that u = v + z with v ∈ V CR and z ∈ Z . Let A0(·, ·) be
the bilinear form defined in (2.7). Then,

A0(v, z) = 0 ∀v ∈ V CR, ∀z ∈ Z. (3.8)

Furthermore if A0(·, ·) is symmetric, then A0(v, z) = A0(z, v) = 0 ∀v ∈ V CR, ∀z ∈ Z and
the decomposition (3.4) is A0-orthogonal; V CR ⊥A0 Z .

Proof Here, we use the equivalent weighted residual definition of A0(·, ·) given in (2.18).
We have

A0(v, z) = (−�v,z)Th
+ 〈[[∇v ]], {z}〉E o

h
+ 〈[[v ]], P 0

E(B1(z))〉Eh

= 0 ∀v ∈ V CR, ∀z ∈ Z,

where the first term is zero since v is linear in each T ; the second vanishes from the de-
finition of the space Z and last term also vanishes independently of the choice of θ (and
hence B1(v)), from the definition of the CR space. Moreover if A0(·, ·) is symmetric, then
A0(v, z) = A0(z, v) ∀v ∈ V CR, ∀z ∈ Z and so V CR ⊥A0 Z and the proof is complete. �

Comments on the Boundary Conditions We note here that unlike in [19], the degrees of
freedom corresponding to the boundary faces correspond to functions in Z . This choice may
now seem somewhat arbitrary, since the basis functions in Z corresponding to boundary
faces could equally be considered as elements of a Crouzeix-Raviart finite element space.
However, there are several reasons for this selection. First of all, in the DG solution u ∈ V DG

of (2.5), the boundary conditions are weakly imposed. Therefore it seems natural to seek
for a decomposition u = z + v in which this is reflected appropriately. Noting that for the
approximation of (2.1) with Crouzeix-Raviart finite elements, the Dirichlet boundary condi-
tions are imposed strongly, within the space, it follows that for v ∈ V CR there are no degrees
of freedom (v is already prescribed there) on the boundary. Thus, the way to weakly impose
the boundary conditions is to have the boundary degrees of freedom of u in its component in
the Z space. Yet another reason is that (as we shall see later in Sect. 4), this choice together
with Lemma 3.2 leads to space decomposition with nice properties. For example, for Type-0
methods the stiffness matrix is block diagonal (or block lower triangular). In addition, again
for Type-0 methods the restriction of the bilinear form A0(·, ·) to the Crouzeix-Raviart space
is exactly the bilinear form corresponding to the Dirichlet problem on V CR (see e.g. [15]).

The case of Neumann conditions on a part or the whole of ∂� is different and requires a
more subtle approach and we will not consider it here. We would like to point out, however,
that the extension to the case of Neumann boundary conditions and systems of partial differ-
ential equations, such as linear elasticity, of the preconditioning techniques and the iterative
algorithms that we analyze here, is also possible (see [8] for details).

In the following two sections, we shall show how this decomposition can be used for the
design and analysis of uniformly convergent DG solvers.
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4 Solvers for the Type-0 Interior Penalty Methods

In this section, we show how the space decomposition (3.4) can be used for the construction
of solvers for the solution of (2.5). We consider first the algebraic formulation of the DG
methods when represented in the new basis (3.7) and propose an exact solver. Then, we
study the main features related with the proposed algorithm; in particular the solution steps
in the V CR and Z spaces.

4.1 Matrix Notation and the Block form of the Stiffness Matrix

We consider the discretized problem (2.5) with ADG(·, ·) = A0(·, ·). In view of the splitting
(3.4), let ∀u,w ∈ V DG be such that u = z + v, w = ψ + ϕ with z,ψ ∈ Z, v,ϕ ∈ V CR .
Then,

A0(u,w) = A0((z, v); (ψ,ϕ)) = A0(z + v,ψ + ϕ) = A0(z,ψ) + A0(z,ϕ) + A0(v,ϕ),

(4.1)
where in the last identity we have also used that the term A0(v,ψ) vanishes by virtue of
Lemma 3.2. Furthermore, for the SIPG method A0(z,ϕ) is also zero and therefore, we have
as a direct consequence of Proposition 3.1 and Lemma 3.2 that the decomposition (3.4) is
stable (with constant 1) in the energy norm defined by the Type-0 SIPG method; i.e.,

As
0(u,u) = As

0(z, z) + As
0(v, v) ∀u ∈ V DG, u = z + v.

Next, we denote by A0 the discrete operators defined by A0(u,w) = (A0u,w). Let A0 be
the matrix representation of the operator A0 in the new basis (3.7) and let u = [z,v]T , f =
[fz, fv]T be the vector representation of the unknown function u and of the right hand side f ,
respectively, in this new basis. From (4.1) it follows immediately that A0 has the following
block structure:

A0 =
[

A
zz
0 0

A
vz
0 A

vv
0

]
, (4.2)

where we have denoted by A
zz
0 ,A

vv
0 the matrix representation of the operator A0 restricted to

the subspaces Z and V CR , respectively, and by A
vz
0 the matrix representation of the term that

accounts for the coupling (or non-symmetry) A0(ψ
z,ϕCR). Therefore, the Type-0 methods

lead in all cases (θ = 0,±1) to operators that admit block lower triangular matrix represen-
tation. Furthermore, the stiffness matrix A0 associated with Type-0 SIPG method turns out
to be block-diagonal (see Remark 4.1). To confirm these observations, we have represented
in Fig. 2, the sparsity patterns (non-zero patterns) of A0 for SIPG, NIPG and IIPG methods,
respectively. Notice that for the IIPG method the A

zz
0 -block is diagonal, as we shall prove in

Lemma 4.7 at the end of this section.
An important feature of this splitting is that matrix representations of the bilinear forms in

the basis (3.7) are much sparser. The number of non-zeros in the stiffness matrix in this basis
is approximately half the number of non-zeros in the matrix representation in the standard
nodal basis (see Figs. 1 and 2).

Remark 4.1 As we have already mentioned, the fact that the decomposition is done in a way
that the boundary degrees of freedom of u ∈ V DG correspond to the functions in the space Z
(see the comments after the proof of Proposition 3.1) made possible this reduction to block
lower triangular (or even block diagonal for SIPG) structure of the matrices A0.
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Exact Solver Since we have 2×2 block lower triangular form of the stiffness matrix, a sim-
ple block forward substitution will give the solution of (2.5). Denote F(w) = (f,w)Th

∀w ∈
V DG, then the algorithm is as follows:

Algorithm 4.2

1. Find z ∈ Z such that A0(z,ψ) = F(ψ) for all ψ ∈ Z .
2. Find v ∈ V CR such that A0(v,ϕ) = F(ϕ) − A0(z,ϕ) for all ϕ ∈ V CR .
3. Set u = z + v.

A simple argument shows that the u defined via the above algorithm solves (2.5) of
Type-0 (in both symmetric or non-symmetric case). Indeed, Proposition 3.1 and Lemma 3.2
guarantee that for any η ∈ V DG there exist unique ϕ ∈ V CR and ψ ∈ Z such that η = ϕ + ψ

and A(ϕ,ψ) = 0. Hence:

F(η) = F(ϕ) + F(ψ) [by linearity of F ]

= A0(z,ϕ) + A0(v,ϕ) + F(ψ) [from step 2 of algorithm]

= A0(u,ϕ) + A0(z,ψ) [because u = v + z]

= A0(u,ϕ) + A0(v + z,ψ) = A0(u, η). [from (3.8)]

Since η ∈ V DG was arbitrary, this proves that u = v + z is a solution to (2.5).
In matrix notation this algorithm is:

1. Solve for uz: A
zz
0 uz = fz.

2. Solve for uv: A
vv
0 uv = fv − A

vz
0 uz.

3. Set u = [uz,uv]T .

What we discuss next are efficient algorithms for the solution of problems with A
vv
0 and

A
zz
0 (step 1 and step 2 of the Algorithm 4.2). This amounts to the solution of a problem in

V CR and the solution of a problem in Z and we consider the relevant techniques next.

4.2 Solution in V CR

As we mentioned already, restricting any of the Type-0 IP methods to the V CR space gives
the standard non-conforming CR finite element method for the solution of the model prob-
lem (2.1) (see [15]).

A0(v,ϕ) = (∇v,∇ϕ)Th
=

∑

T ∈Th

(∇v,∇ϕ)T ∀v,ϕ ∈ V CR. (4.3)

There are many works devoted to the optimal solution and preconditioning for the alge-
braic system resulting from discretizations of second order elliptic problems with Crouzeix-
Raviart elements. We will not delve into the details about such algorithms here, since the
results related to their convergence are well known. For instance, the Schwarz method pro-
posed and analyzed in [10] or the Multigrid algorithms studied in [11, 12] and [30] are all
proved to be uniformly convergent (with respect to the mesh size) for the problems corre-
sponding to the bilinear form given in (4.3). Thus, the solution in the step 2 of the Algo-
rithm 4.2 can be obtained by these techniques in optimal computational time.
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4.3 Solution in Z

In this section we study in more detail the restriction of A0(·, ·) on the space Z . Most of the
properties (with the only exception of Lemma 4.7) that we prove in this section, such as the
symmetry of A

zz
0 and the uniform bounds on the condition number of A

zz
0 hold also for the

corresponding restriction of Type-1 bilinear form to Z .
We begin by showing that the restrictions of the bilinear forms (of both Type-0 and

Type-1) on Z are symmetric.

Lemma 4.3 Let A(·, ·) be the bilinear form of a non-symmetric Type-1 IP method as defined
in (2.6) (θ = 0 or θ = 1) and let A0(·, ·) be the corresponding Type-0 bilinear form. Then
both A0(·, ·) and A(·, ·) restricted to Z are symmetric:

A0(z,φ) = A0(φ, z) ∀z,φ ∈ Z, θ = 0,1,

A(z,φ) = A(φ, z) ∀z, φ ∈ Z, θ = 0,1.

Proof From the definition (3.2) of the Z space, it follows that

(∇ψ,∇z)Th
= 〈{∇ψ}, [[ z ]]〉Eh

= 〈{∇z}, [[ψ ]]〉Eh
∀z,ψ ∈ Z. (4.4)

Substituting the above identity in the definition of the methods (2.7) gives

A0(z,ψ) = θ〈[[ z ]], {∇ψ}〉Eh
+ 〈[[ z ]], P 0

E([[ψ ]])〉Eh

= θ(∇ψ,∇z)Th
+ 〈[[ψ ]], P 0

E([[ z ]])〉Eh
= A0(ψ, z),

which shows the symmetry of A0(·, ·). Finally, the symmetry for A(·, ·) follows from that
of A0(·, ·), since the difference between these bilinear forms is obviously symmetric. �

We now prove bounds on the eigenvalues of A0(·, ·) and A(·, ·), when restricted to Z .
Since these restrictions are symmetric, the Lemma below gives such bounds.

Lemma 4.4 Let Z be the space defined in (3.2). Then for all z ∈ Z , the following estimates
hold

αh−2‖z‖2
0 � A0(z, z) � αh−2‖z‖2

0, (4.5)

and also,

αh−2‖z‖2
0 � A(z, z) � αh−2‖z‖2

0, (4.6)

where α denotes as usual the value of the penalty parameter of the method.

Proof In both cases, the upper bounds follow in a straightforward fashion from a trace
inequality [2]

h−1
E ‖P 0

E[[ z ]]‖2
0,E ≤ h−1

E ‖[[ z ]]‖2
0,E � h−1

E ‖z‖2
0,E � h−2

E ‖z‖2
0,T + ‖∇z‖2

0,T ∀z ∈ H 1(T ),

together with the standard inverse inequality (see, for example, [20, Theorem 17.2, p. 135]):

‖∇w‖2
0,T � h−2

T ‖w‖2
0,T ∀w ∈ P

k(T ), k ≥ 1 ∀T ∈ Th.
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We now prove the lower bounds. From the definition of the basis functions for the space Z
(3.6), we have

∀z ∈ Z, z =
∑

E∈Eh

zE =
∑

E∈Eh

zE(mE)ψE.

Using this expression we have

‖z‖2
0 =

∑

T ∈Th

∫

T

|z|2dx =
∑

T ∈Th

∑

E⊂∂T

∫

T

|zE |2dx.

We shall estimate first ‖z‖2
0,T for a fixed T , say T = T +. Denoting by z+

E the trace of zE on
E = T + ∩ T −, from the interior of T + and using standard scaling arguments we find

‖z‖2
0,T =

∫

T

|z|2dx =
∑

E⊂∂T

∫

T

|zE |2dx �
∑

Ê⊂∂T̂

hd
T

∫

T̂

|ẑÊ |2dx

≈ hd
T

∑

Ê⊂∂T̂

[ẑÊ(mÊ)]2 ≈ hd
T

∑

E⊂∂T

[zE(mE)]2 = hd
T

∑

E⊂∂T

[z+
E(mE)]2,

where we have also used the fact that in finite dimension all norms are equivalent (we have
used that on T̂ the mass matrix for the basis {ψ̂Ê} is spectrally equivalent to its diagonal).
Then, from the definition of the space Z (3.2) we have

∫

E

{zE} = 0 =⇒ z+
E(mE) = 1

|E|
∫

E

z+
E = − 1

|E|
∫

E

z−
E = −z−

E(mE) ∀E ∈ E o
h,

which also implies,

[P 0
E([[ zE ]])]2 = [[[ zE ]](mE)]2 =

{ [z+
E(mE) − z−

E(mE)]2 = 4[z+
E(mE)]2 ∀E ∈ E o

h,

[z+
E(mE)]2 ∀E ∈ E ∂

h .
(4.7)

Thus, defining cE = 1/4 for E ∈ E o
h and cE = 1 for E ∈ E ∂

h , these observations yield to,

‖z‖2
0,T ≈ hd

T

∑

E⊂∂T

[z+
E(mE)]2 = hd

T

∑

E⊂∂T

cE[P 0
E([[ zE ]])]2

= hd
T

∑

E⊂∂T

cE

|E|
∫

E

[P 0
E([[ zE ]])]2 =

∑

E⊂∂T

cEhd
T hE

|E|
1

hE

∫

E

[P 0
E([[ zE ]])]2,

and so, noting that
cEhd

T
hE

|E| ≈ Ch2 and summing over all triangles we finally have,

‖z‖2
0 � h2

∑

T ∈Th

∑

E⊂∂T

1

hE

∫

E

[P 0
E([[ zE ]])]2 � h2

∑

E∈Eh

α

αhE

∫

E

[P 0
E([[ zE ]])]2

� α−1h2 A0(z, z),

which proves (4.5).
Following an argument analogous to the proof of Lemma 2.3, the inequality (4.6) follows

as well. �
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This Lemma guarantees that the A
zz
0 -block, and correspondingly the A

zz-block, are well-
conditioned. More precisely, denoting by κ2 the condition number w.r.t. the 2-norm for
a quasi-uniform mesh we have κ2(A

zz
0 ) = O(1) and correspondingly κ2(A

zz) = O(1), in-
dependently of mesh size. Therefore, Lemma 4.4 guarantees that systems with A

zz
0 (resp.

A
zz) can be solved to any precision by the method of Conjugate Gradients (CG) and the

number of CG iterations needed is independent of the size of the problem. This is a simple
consequence of the well known estimate on the convergence of CG (see, e.g., [29, 34]).

Remark 4.5 A result similar to the one in Lemma 4.4 can be easily shown to hold for the
WOPNIP or WOPSIP methods of [13] and [14]. For these methods,

αh−4‖z‖2
0 � AWO

0 (z, z) � αh−4‖z‖2
0, ∀z ∈ Z. (4.8)

Hence, for such discretizations the solver proposed and described in Algorithm 4.2 can be
applied without any change to the solution of linear systems resulting from WOPNIP and
WOPSIP discretizations.

Remark 4.6 Notice that restricted to Z , the semi-norm

|||z|||2∗ =
∑

E∈Eh

‖h−1/2
E P 0

E([[ z ]])‖2
0,E ∀z ∈ Z, (4.9)

is actually a norm. This follows from the fact that if (4.9) is zero for some z ∈ Z , then each
term in the sum has to be zero and so reasoning as in the proof of Lemma 4.4 it is easy to
see that such a z must be an element of the space V CR . Since V CR ∩ Z = {0}, we conclude
that z ≡ 0 and therefore the only element in Z for which the norm |||·|||∗ vanishes is the 0
function. That is,

Let z ∈ Z : |||z|||2∗ = 0 ⇔ P 0
E([[ z ]]) = 0 ∀E ∈ Eh

⇔ z+
E(mE) = z−

E(mE) ∀E ∈ Eh ⇔ z ∈ V CR ⇔ z ≡ 0.

We conclude this section by showing that for the IIPG Type-0 method the block A
zz
0 turns

out to be diagonal.

Lemma 4.7 Let AI
0(·, ·) be the bilinear form of the non-symmetric IIPG Type-0 method.

Let {ψz
E,T }E∈Eh

be the basis for the space Z as defined in (3.6). Let A
zz
0 be the matrix

representation in this basis of the restriction to the subspace Z of the operator associated
to AI

0(·, ·). Then, A
zz
0 is diagonal.

Proof Note that from the definition (2.7) of the method (θ = 0) together with (4.4) we have

AI
0(z,ψ) = (∇z,∇ψ)Th

− 〈{∇z}, [[ψ ]]〉Eh
+ 〈SE P 0

E([[ z ]]), P 0
E([[ψ ]])〉Eh

= 〈SE P 0
E([[ z ]]), P 0

E([[ψ ]])〉Eh
∀z,ψ ∈ Z.

Let {ψz
E,T } be the basis functions (3.6). To show that A

zz
0 is diagonal it is enough to show

that for the basis functions (3.6), the following relation holds

AI
0(ψ

z
E,ψz

E′) = cEδE,E′ , cE �= 0, ∀E ∈ Eh, (4.10)
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where δE,E′ is the delta function associated with the edge/face E. Observe that the above
relation readily implies that the off-diagonal terms of A

zz
0 are zero.

We next show (4.10). Note that the supports of ψz
E and ψz

E′ are disjoint unless E,E′ ⊂ T

for some T ∈ Th. We first prove the result when T ∩ ∂� = ∅. From (4.7) we readily get

AI
0(ψ

z
E,ψz

E′) = SE

∫

E

P 0
E([[ψz

E ]])P 0
E([[ψz

E′ ]]) = SE[2ψz
E(mE)][2ψz

E′(mE)]

= SE2 · 2δE,E′ , E,E′ ⊂ ∂T , E,E′ ∈ E o
h ,

which gives (4.10) with cE = 4SE .
For boundary edges/faces (4.10) also follows (with cE = SE) in a straightforward and

similar fashion and the details are omitted here. �

5 Preconditioning and Iterative Methods for the Type-1 Interior Penalty Methods

In this section we focus on the iterative methods for the solution of problem (2.5) with
ADG(·, ·) = A(·, ·). We first introduce the needed matrix notation and propose a general
iterative algorithm for the non-symmetric methods, commenting briefly on the difference
between preconditioners for the symmetric (SIPG) methods and convergent iterations for the
non-symmetric methods. We then discuss and analyze two preconditioners for the symmetric
SIPG method. The section is closed with the analysis for the case of the iterative algorithm
for non-symmetric methods.

5.1 Matrix Representations

We rewrite the problem (2.5) in the new basis (3.7). From the splitting (3.4) we have
that ∀u, w ∈ V DG, u = z + v, w = ψ + ϕ with z,ψ ∈ Z and v,ϕ ∈ V CR so that
A(u,w) = A( (z, v); (ψ,ϕ) ). We denote by A and Ã the discrete operators defined by
A(u,w) = (Au,w) and their symmetric parts Ã(u,w) = (Ãu,w). Let A and Ã be the ma-
trix representations of the operators A and Ã respectively in the basis (3.7). Then A has the
following block-structure

A =
[

A
zz

A
zv

A
vz

A
vv

]
, (5.1)

where the blocks A
vz and A

zv are the matrix representations of the action of the operator A,
associated to the bilinear forms

A
zv → A(v,ψ) = 〈SE[[v ]], [[ψ ]]〉E o

h
,

(5.2)
A

vz → A(z,ϕ) = (θ + 1)(∇z,∇ϕ)Th
+ 〈SE[[ z ]], [[ϕ ]]〉E o

h
,

with θ and SE defined in the usual way. In view of Lemma 4.3, it follows that the block
A

zz is symmetric (and positive definite, provided α ≥ α∗). Notice also that it is easy to
verify that A

vv is also symmetric and positive definite. In fact, by setting u = v ∈ V CR and
w = ϕ ∈ V CR in (2.6) and using the definition (3.1) of the V CR-space we have

A(v,ϕ) = (∇v,∇ϕ)Th
+ 〈SE[[v ]], [[ϕ ]]〉E o

h
∀v,ϕ ∈ V CR,
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which is obviously symmetric. We next deal with the symmetric part Ã(·, ·). Its matrix form
Ã = (A + A

T )/2 is

Ã =
[

A
zz

Ã
zv

Ã
vz

A
vv

]
=

[
A

zz 1
2 (Azv + A

vz)

1
2 (Azv + A

vz) A
vv

]
, (5.3)

where we have used that A
zz and A

vv are symmetric. Note that the off-diagonal blocks
represent

Ã
zv → Ã(v,ψ) = (θ + 1)

2
(∇v,∇ψ)Th

+ 〈SE[[v ]], [[ψ ]]〉E o
h

∀v ∈ V CR, ψ ∈ Z,

Ã
vz → Ã(z,ϕ) = (θ + 1)

2
(∇z,∇ϕ)Th

+ 〈SE[[ z ]], [[ϕ ]]〉E o
h

∀z ∈ Z, ϕ ∈ V CR.

As noted earlier (see (2.11))

S(u,w) = S0(u,w) ∀u, w ∈ V DG. (5.4)

This identity will play a key role in our analysis of non-symmetric methods. Consider the
following decomposition of elements of V DG (3.4); u = z + v, w = ψ + ϕ with z,ψ ∈ Z
and v,ϕ ∈ V CR . Integration by parts and the definition of the spaces V CR and Z , then give
another useful identity:

(∇z,∇ϕ)Th
= 〈[[ z ]], {∇ϕ}〉Eh

∀z ∈ Z, ϕ ∈ V CR.

Thus, we have that

S(u,w) = S((z, v); (ϕ,ψ)) = (θ + 1)

2

[
(∇z,∇ϕ)Th

− (∇v,∇ψ)Th

] ∀u, w ∈ V DG.

5.2 Preconditioners and Iterators

We now briefly discuss the general settings related to the solution of the systems obtained
from symmetric or non-symmetric Type-1 IP DG discretizations. In both cases (symmetric
or non-symmetric) we design the solvers using a bilinear form B(·, ·) that is an approxima-
tion to A(·, ·).

For the symmetric methods (SIPG Type-1 methods), B(·, ·) is a preconditioner and is
used in conjunction with Conjugate Gradient Method. The analysis of the convergence of
the resulting Preconditioned Conjugate Gradient Method (PCG) boils down to showing that
B(·, ·) is spectrally equivalent to A(·, ·) with constants independent of the problem size.

For the non-symmetric Type-1 IP methods B(·, ·) is an iterator, and is used in a linear
iterative method (see Algorithm 5.3 below). The convergence analysis in this case amounts
to proving that, in a suitable norm, the error is reduced uniformly on each iteration.

5.3 Uniform Preconditioning for Type-1 Symmetric IP Methods

We first describe the preconditioners B for the Type-1 SIPG method. Note that by virtue of
Lemma 2.3, the norm defined by As(·, ·) is equivalent to the norm defined by the bilinear
form As

0(·, ·), and therefore

B(·, ·) = As
0(·, ·) (5.5)
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is a uniform preconditioner for As(·, ·). Moreover, note that the matrix representation of the
preconditioner given by As

0 is block-diagonal.
Another preconditioner can be obtained, by using the decomposition (3.4) and setting

B(u,w) = A(z,ψ) + A(v,ϕ), (5.6)

where u = z + v and w = ψ + ϕ with v, ϕ ∈ V CR and z, ψ ∈ Z . This is just the additive
(parallel) subspace correction method [39] based on the splitting V DG = Z +V CR . In matrix
representation, this will be a block-Jacobi preconditioner. To show that such preconditioner
is spectrally equivalent to A(·, ·), following [39] we need to show that the decomposition
given in (3.4) is stable in the energy norm defined by the Type-1 SIPG bilinear form.

Lemma 5.1 Let A(·, ·) be the symmetric bilinear form defined for θ = −1. Then, for every
u ∈ V DG such that u = v + z with v ∈ V CR and z ∈ Z , the following inequality holds

A(z, z) + A(v, v) ≤ c0(α)A(v + z, v + z) ∀z ∈ Z, v ∈ V CR, (5.7)

where c0(α) is the same constant as in Lemma 2.3.

Proof Set u = v + z and let A0(·, ·) be the bilinear form corresponding to the Type-0 SIPG
method (θ = −1). From Lemmas 2.3 and 3.2 we have

A(u,u) ≥ A0(u,u) = [A0(z, z) + A0(v, v)] ≥ 1

c0
[A(z, z) + A(v, v)],

which is the inequality that we need and so the proof is complete. �

According to the abstract theory given in [39], to show that the condition number of the
preconditioned system is uniformly bounded, we only needed to show the above estimate.
We then have the following theorem, whose proof we omit, since it is a direct consequence
of Fundamental Theorem I in [39].

Theorem 5.2 Let the penalty parameter α ≥ α∗ be large enough so that As,α(·, ·) and
As,α

0 (·, ·) are coercive. Let B(·, ·) be defined as in (5.5) or via (5.6). Then B gives a uni-
form preconditioner for As , namely, the following estimates hold, with positive constants c1

and c2, which depend on the penalty parameter α:

c1(α)As(u,u) ≤ B(u,u) ≤ c2(α)As(u,u) ∀u ∈ V DG.

Following the standard estimates for Preconditioned Conjugate Gradient method
[29, 31, 34], the spectral equivalence results that we proved in this section show that a
Preconditioned Conjugate Gradient (PCG) with either B(·, ·) = A0(·, ·), or B(·, ·) defined
in (5.6) will converge to the solution of (2.5) uniformly in the norm defined by A(·, ·) at
a rate bounded by

√
c2/c1−1√
c2/c1+1

. As it is well known, to apply the preconditioners we proposed
here, one needs algorithms for efficient solution of variational problems with B(·, ·). By the
construction of B(·, ·) (in both cases with block diagonal matrix representation) one may
use the methods suggested in Sects. 4.2 and 4.3.
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5.4 Iterative Methods for Type-1 Non-symmetric IP Methods

In this section we address the issue of iterative solvers for the classical (Type-1) NIPG and
IIPG methods. We use the following basic linear iterative algorithm with an iterator B(·, ·):

Algorithm 5.3 Given initial guess u0, for k = 0,1, . . . until convergence:

1. Solve B(ek,w) = (f,w)Th
− ADG(uk,w) ∀w ∈ V DG,

2. Update uk+1 = uk + ek.

For both IIPG and NIPG methods as an iterator B(·, ·) in Algorithm 5.3 we take the
corresponding symmetric part, that is

B(·, ·) = Ã(·, ·).

Below we prove uniform convergence of the iterates obtained via Algorithm 5.3 to the solu-
tion of (2.5) for both IIPG and NIPG, under a technical restriction on the penalty parameter.

To show uniform convergence of such an iterative method, it is sufficient to show that
∃�, 0 ≤ � < 1 such that

‖u − uk+1‖Ã ≤ �‖u − uk‖Ã.

For uniform convergence we also need to show that � is uniformly (with respect to the
mesh size) bounded away from 1. We would like to point out that in the convergence proof
for both Type-1 IIPG and NIPG methods, we use a strengthened CBS inequality in a norm
defined by the symmetric part of the Type-0 IIPG. As a consequence, the hypothesis on the
penalty parameter required by our results for the Type-1 NIPG method is somewhat more
restrictive than for the corresponding IIPG.

We present in detail the analysis for the iterative method for Type-1 IIPG discretizations.
Then, we state the convergence result for Type-1 NIPG discretizations, commenting on the
main changes in the proof. We begin with stating a general result on a CBS inequality given
in Lemma A.1.

Lemma A.1 Let AI,α∗
0 (·, ·) be the Type-0 non-symmetric IIPG method with penalty para-

meter α∗ and let ÃI,α∗
0 (·, ·) be its symmetric part. Let α∗ be the minimal value of the penalty

parameter for which AI,α∗
0 (·, ·) is coercive. Then, the following CBS inequality holds for all

v ∈ V CR and z ∈ Z :

∃γ ∗ < 1 :
[

1

2
(∇z,∇v)Th

]2

≤ [γ ∗]2 ÃI,α∗
0 (z, z)ÃI,α∗

0 (v, v). (A.1)

The proof of this Lemma is given in the Appendix.
Next result follows from the previous Lemma and the particular structure of AI

0(·, ·) on
the subspace Z . We state it as a Lemma since it will be used frequently in the subsequent
analysis.

Lemma 5.4 Let K > 1 be a fixed constant and let α∗ be the minimal value of the penalty
parameter for which AI,α∗

0 (·, ·) is coercive. Let AI,Kα∗
0 (·, ·) be the Type-0 non-symmetric

IIPG method with penalty parameter α = Kα∗, and let ÃI,Kα∗
0 (·, ·) be its symmetric part.
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Then, the following inequality holds for all v ∈ V CR and z ∈ Z :

|(∇z,∇v)Th
| ≤ 2γ ∗

√
K

√
ÃI,Kα∗

0 (z, z)

√
ÃI,Kα∗

0 (v, v),

where γ ∗ < 1 is the CBS constant given in (A.1) associated with the inner product defined
by ÃI,α∗

0 (·, ·).

Proof For the Type-0 IIPG method and for any value of the penalty parameter α we have
that

⎧
⎨

⎩
ÃI,α

0 (z, z) = ∑
E∈Eh

α|E|−1/(d−1)‖P 0
E([[ z ]])‖2

0,E ∀z ∈ Z,

ÃI,α
0 (v, v) = ∑

T ∈Th
‖∇v‖2

0,T ∀v ∈ V CR.
(5.8)

That is, ‖z‖2
ÃI,α depends linearly on the penalty parameter while ‖v‖2

ÃI,α is independent of
it. Therefore, by setting α = Kα∗, we have for z ∈ Z and v ∈ V CR

ÃI,Kα∗
0 (z, z) = KÃI,α∗

0 (z, z) and ÃI,Kα∗
0 (v, v) = ÃI,α∗

0 (v, v) ∀K ≥ 1.

Using now estimate (A.1) from Lemma A.1 together with the above identities we arrive at

|(∇z,∇v)| ≤ 2γ ∗
√

ÃI,α∗
0 (z, z)

√
ÃI,α∗

0 (v, v)

= 2
γ ∗
√

K

√
KÃI,α∗

0 (z, z)

√
ÃI,α∗

0 (v, v)

= 2
γ ∗
√

K

√
ÃI,Kα∗

0 (z, z)

√
ÃI,Kα∗

0 (v, v),

which concludes the proof. �

Next Lemma shows a stability estimate.

Lemma 5.5 Let K > 1 be a fixed constant and let α∗ be the minimal value of the penalty
parameter for which AI,α∗

0 (·, ·) is coercive. Let ÃI,Kα∗
0 (·, ·) be the symmetric part of the

bilinear form corresponding to Type-0 IIPG method with penalty parameter α = Kα∗. Then,
for all u ∈ V DG such that u = z + v with v ∈ V CR and z ∈ Z , we have

(
ÃI,Kα∗

0 (z, z) + ÃI,Kα∗
0 (v, v)

)
≤

[ √
K√

K − γ ∗

]
ÃI,Kα∗

0 (z + v, z + v). (5.9)

Proof Let u ∈ V DG such that u = z + v with z ∈ Z and v ∈ V CR (this can always be done
in view of Proposition 3.1). From the definition of ÃI,α

0 (·, ·) we have

ÃI,α
0 (v + z, v + z) = ÃI,α

0 (z, z) + ÃI,α
0 (v, v) + ÃI,α

0 (z, v) + ÃI,α
0 (v, z)

≥ ÃI,α
0 (z, z) + ÃI,α

0 (v, v) − |ÃI,α
0 (z, v)| − |ÃI,α

0 (v, z)|
≥ ÃI,α

0 (z, z) + ÃI,α
0 (v, v) − |(∇z,∇v)| .
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We now set α = Kα∗ and apply Lemma 5.4 followed by an obvious identity to obtain that

ÃI,Kα∗
0 (v + z, v + z) ≥ ÃI,Kα∗

0 (z, z) + ÃI,Kα∗
0 (v, v) − 2

γ ∗
√

K

√
ÃI,Kα∗

0 (z, z)

√
ÃI,Kα∗

0 (v, v)

=
(

1 − γ ∗
√

K

)
(ÃI,Kα∗

0 (z, z) + ÃI,Kα∗
0 (v, v))

+ γ ∗
√

K

(√
ÃI,Kα∗

0 (z, z) −
√

ÃI,Kα∗
0 (v, v)

)2

,

and so, noting that the second term on the right side can be dropped since it is non-negative,
we reach (5.9) and the proof is complete. �

Next result provides a bound on the skew-symmetric part of the bilinear form corre-
sponding to Type-1 IIPG method.

Lemma 5.6 Let K > 1 be a fixed constant and let AI,α(·, ·) be the bilinear form of the
IIPG method with penalty parameter α = Kα∗, where α∗ is the minimal value of the penalty
parameter for which AI,α∗

0 (·, ·) is coercive. Let ÃI,α(·, ·) and S(·, ·) denote its symmetric
and skew symmetric parts. Then, there exists �0 > 0 such that

|S(u,w)| ≤ �0[ÃI,α(u,u)]1/2[ÃI,α(w,w)]1/2 ∀u,w ∈ V DG. (5.10)

Furthermore, for K ≥ 4 it follows that �0 < 1.

Proof To estimate |S(u,w)| we first decompose u and w by means of the splitting (3.4) in
the form:

u = z + v, w = ψ + ϕ, z,ψ ∈ Z, v,ϕ ∈ V CR. (5.11)

Then, by applying Lemma 5.4 together with a Cauchy-Schwarz inequality1 and Lemma 5.5
we obtain

|(Su,w)| = 1

2
|(∇z,∇ϕ) − (∇ψ,∇v)|

≤ 1

2
(|(∇z,∇ϕ)| + |(∇ψ,∇v)|)

≤ γ ∗
√

K

(√
ÃI,Kα∗

0 (z, z)

√
ÃI,Kα∗

0 (ϕ,ϕ) +
√

ÃI,Kα∗
0 (v, v)

√
ÃI,Kα∗

0 (ψ,ψ)

)

≤ γ ∗
√

K

(
ÃI,Kα∗

0 (z, z) + ÃI,Kα∗
0 (v, v)

)1/2 (
ÃI,Kα∗

0 (ϕ,ϕ) + ÃI,Kα∗
0 (ψ,ψ)

)1/2

≤ γ ∗
√

K − γ ∗

√
ÃI,Kα∗

0 (u,u)

√
ÃI,Kα∗

0 (w,w),

1For x = [x1, x2]T , y = [y1, y2]T we use x1y1 + x2y2 ≤
√

x2
1 + x2

2

√
y2

1 + y2
2 , with x1 =

√
ÃI,Kα∗

0 (z, z),

x2 =
√

ÃI,Kα∗
0 (v, v), y1 =

√
ÃI,Kα∗

0 (ϕ,ϕ) and y2 =
√

ÃI,Kα∗
0 (ψ,ψ).
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and so by setting �0 = γ ∗√
K−γ ∗ we reach (5.10). Taking K ≥ 4 we obtain �0 < 1 since

γ ∗ < 1. �

We now have all the ingredients needed to show the main result of this section. In the
statement of the theorems for iterative methods for IIPG and NIPG discretizations, we take
u to be the exact solution to the DG problem (solution of (2.5)).

Theorem 5.1 Let α∗ be the minimal value of the penalty parameter for which ÃI,α∗
0 (·, ·)

is coercive. Let AI,α(·, ·) be the bilinear form of a Type-1 IIPG method (with θ = 0), and
penalty parameter satisfying α ≥ 4α∗. Let B(·, ·) = ÃI,α(·, ·) in Algorithm 5.3 and let uk and
uk+1 be two consecutive iterates obtained via this algorithm. Then, there exists a positive
constant � < 1 such that

‖u − uk+1‖Ã ≤ �‖u − uk‖Ã. (5.12)

Proof From step 2 in Algorithm 5.3 we have that ek = uk+1 − uk . From step 1 in Algo-
rithm 5.3, with w = u − uk+1 we have that

B(ek, u − uk+1) − (f,u − uk+1)Th
+ A(uk, u − uk+1) = 0.

Hence,

B(u − uk+1, u − uk+1) = B(u − uk+1, u − uk+1) + B(ek, u − uk+1)

− (f,u − uk+1)Th
+ A(uk, u − uk+1)

= B(u,u − uk+1) − B(uk, u − uk+1)

− A(u,u − uk+1) + A(uk, u − uk+1)

= B(u − uk,u − uk+1) − A(u − uk,u − uk+1)

= [B − A](u − uk,u − uk+1).

Taking B(·, ·) = Ã(·, ·) and recalling the definition of the skew-symmetric part S(·, ·) of
A(·, ·), we obtain

‖u − uk+1‖2
Ã = −S(u − uk,u − uk+1) = S(u − uk+1, u − uk). (5.13)

Then, by setting u = u − uk and w = u − uk+1 in (5.10) of Proposition 5.6 and substituting
in (5.13) we find that

‖u − uk+1‖2
Ã ≤ �0‖u − uk+1‖Ã‖u − uk‖Ã,

and therefore (5.12) holds with � = �0, which is obviously less than 1, since α ≥ 4α∗. �

In a similar way the following convergence result holds for the iterative method for the
solution of the linear system resulting from NIPG discretization.

Theorem 5.2 Let α∗ be the minimal value of the penalty parameter for which ÃI,α∗
0 (·, ·) is

coercive. Let An,α(·, ·) be the bilinear form of the NIPG method with α ≥ 16α∗. Let B(·, ·) =
Ãn,α(·, ·) in Algorithm 5.3 and let uk and uk+1 be two consecutive iterates obtained via this
algorithm. Then, there exists a positive constant �1 < 1 such that

‖u − uk+1‖Ã ≤ �1‖u − uk‖Ã.
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We omit the proof, since it is essentially the same as that of Theorem 5.1 provided the
relation

ÃI,α
0 (z, z) ≤ Ãn,α

0 (z, z) ∀z ∈ Z, ÃI,α
0 (v, v) = Ãn,α

0 (v, v) ∀v ∈ V CR, (5.14)

is taken into account and Proposition 5.6 and Lemma 5.5 are replaced respectively, by Propo-
sition 5.7 and Lemma 5.8 given below.

Proposition 5.7 Let K > 1 be a fixed constant and let α∗ be the minimal value of the penalty
parameter for which AI,α∗

0 (·, ·) is coercive. Let An,Kα∗
(·, ·) be the bilinear form of the Type-

1 NIPG method with penalty parameter α = Kα∗ and let Ãn,α(·, ·) and S(·, ·) denote its
symmetric and skew symmetric parts. Then, there exists �1 > 0 such that

|S(u,w)| ≤ �1[Ãn,α(u,u)]1/2[Ãn,α(w,w)]1/2 ∀v,w ∈ V DG, �1 = 2γ ∗
√

K − 2γ ∗ , (5.15)

where γ ∗ < 1 is the CBS constant given in (A.1) associated with the inner product defined
by ÃI,α∗

0 (·, ·).
Furthermore, for K ≥ 16 it follows that �1 < 1.

The proof of this Proposition follows essentially the same lines as for Proposition 5.6 and
therefore it is omitted. For its proof instead of Lemma 5.5 one has to use:

Lemma 5.8 Let K > 1 be a fixed constant and let α∗ be the minimal value of the penalty
parameter for which AI,α∗

0 (·, ·) is coercive. Let An,Kα∗
(·, ·) be the bilinear form of the Type-1

NIPG method with α = Kα∗. Then, the decomposition V DG = Z ⊕ V CR is stable in the
energy norm defined by Ãn,α

0 (·, ·). More precisely, for all u ∈ V DG such that u = z + v with
z ∈ Z v ∈ V CR ,

(
Ãn,Kα∗

0 (z, z) + Ãn,Kα∗
0 (v, v)

)
≤

[ √
K√

K − 2γ ∗

]
Ãn,α

0 (u,u) ∀u ∈ V DG, (5.16)

where γ ∗ < 1 is the CBS constant given in (A.1) associated with the inner product defined
by ÃI,α∗

0 (·, ·).

Proof The proof is similar to that of Lemma 5.5. Let z ∈ Z and v ∈ V CR , then

Ãn,α
0 (v + z, v + z) ≥ Ãn,α

0 (z, z) + Ãn,α
0 (v, v) − 2 |(∇z,∇v)| .

By setting α = Kα∗, applying Lemma 5.4 and using relation (5.14) together with the
arithmetic-geometric inequality we get

Ãn,Kα∗
0 (v + z, v + z) ≥ Ãn,Kα∗

0 (z, z) + Ãn,Kα∗
0 (v, v) − 4

γ ∗
√

K

√
ÃI,Kα∗

0 (z, z)

√
ÃI,Kα∗

0 (v, v)

≥ Ãn,Kα∗
0 (z, z) + Ãn,Kα∗

0 (v, v) − 4
γ ∗
√

K

√
Ãn,Kα∗

0 (z, z)

√
Ãn,Kα∗

0 (v, v)

≥
(

1 − 2γ ∗
√

K

)
(Ãn,Kα∗

0 (z, z) + Ãn,Kα∗
0 (v, v)),

which concludes the proof. �
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Fig. 3 (a) Plot of coarsest triangulation. (b) Computational grid (triangulation) obtained after two refine-
ments

6 Numerical Examples

In this section we present a set of numerical experiments to assess and validate the theory
developed for the proposed iterative methods and preconditioning techniques. We consider
the model problem (2.1) and its discretization with the Type-1 Interior Penalty DG methods
on the unit square in R

2. In our experiments, we use 6 computational unstructured triangula-
tions. Similar results, although not reported here, were obtained for structured partitions. In
the tables and figures below, the coarsest grid corresponds to level J = 0. Each refined tri-
angulation on level J , J = 1, . . . ,5 is obtained by subdividing each of the triangles forming
the grid on level (J − 1) into four congruent triangles (see Fig. 3). The number of degrees
of freedom on each level is denoted by nJ and satisfies that nJ = 4J n0, J = 0, . . . ,5. The
coarsest grid has 160 triangular elements and n0 = 480 degrees of freedom. The calculation
of the spectral equivalence constants, strengthened Cauchy-Schwarz constants and conver-
gence rates which we report below was done using the ARPACK sparse eigensolver routines
in MATLAB.

6.1 Preconditioning for SIPG

This first example is devoted to illustrate the conclusions of Theorem 5.2 on preconditioning
Type-1 SIPG, namely that the Type-0 SIPG method is a uniform preconditioner for the
Type-1 SIPG method. In both methods we have taken for the penalty parameter α = 10.
For each level of refinement, we have computed numerically the (2) condition number of
the stiffness matrix, κ2(A), and that of the preconditioned stiffness matrix, κ2(A

−1
0 A). The

numerical values are reported in Table 1 together with the number of degrees of freedom on
each level. From these results it can be easily seen that κ2(A) grows quadratically with nJ ,
as expected from a well known estimate κ2(A) ≈ O(h−2). Observe that for all the levels of
refinement the matrix (A−1

0 A) which defines the preconditioned system has a significantly
smaller condition number and κ2(A

−1
0 A) = O(1).

Although there is a slight growth in κ2(A
−1
0 A) for the first two refinements, from the third

refinement onward the condition number of the preconditioned system seems to stabilize to a
constant and the growth is negligible, confirming the uniform bounds given in Theorem 5.2.
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Table 1 Tabulated values of
κ2(A) and κ2(A−1

0 A) for Type-1
SIPG and preconditioned (with
Type-0 SIPG preconditioner)
Type-1 SIPG methods,
respectively

J nJ κ2(A) κ2(A−1
0 A)

0 480 6.18 × 102 10.02

1 1920 2.46 × 103 11.83

2 7680 9.86 × 103 13.70

3 30720 3.94 × 104 14.70

4 122880 1.57 × 105 15.08

5 491520 6.31 × 105 15.21

Fig. 4 Plot of κ(A−1
0 A) versus

the level number

To illustrate better the asymptotic behavior of the condition number κ2(A
−1
0 A) the graph in

Fig. 4 shows the variation of the κ2(A
−1
0 A) with the level of refinement. The slope of the

curve plotted in Fig. 4 clearly approaches zero, indicating that that the condition number of
A

−1
0 A remains uniformly bounded with respect to the degrees of freedom (equivalently the

mesh size) for a fixed value of the penalty parameter α.

6.2 Uniformly Convergent Iterative Methods for IIPG and NIPG

The next set of examples is aimed at validating the theory developed for the linear iterative
method given in Algorithm 5.3 for the non-symmetric Type-1 schemes IIPG and NIPG.
In order to verify Theorems 5.1 and 5.2 we have computed numerically the convergence
rates for both iterative methods, for different levels of refinement J = 0, . . . ,5, and for
increasing values of the penalty parameter of the form α = Kα∗ with K = 1,2,4,8,16
and 32. For each level of refinement J = 0, . . . ,5 we have set α∗ = 0.9,1.3,1.3,1.3,1.6
and 1.6, respectively. These values of α∗ are selected so that for a given method we have:
(a) the corresponding bilinear forms are coercive; (b) they are close to the critical value of the
penalty parameter, for which the method of Type-0 becomes unstable (semi-definite). Type-
1 method is stable whenever the corresponding Type-0 method is stable (by Lemma 2.3). In
Table 2 are given the computed rates of convergence for the iteration for the IIPG. Observe
that for K = 1 the iteration may diverge, as also the theory predicts. For larger values of
K it can be seen that the iteration is convergent and the convergence rate improves as K is
increased. Note also that for each fixed value of K , the rate of convergence of the proposed
iterative method is uniformly bounded with respect to the number of degrees of freedom nJ ,
as predicted by Theorem 5.1. From these results we can see that the technical hypothesis
K ≥ 4 in Theorem 5.1 is a mild restriction. The corresponding convergence rates for the
iterative method for the NIPG are given in Table 3. Notice that for K = 1,2 the iteration
diverge, in agreement with Theorem 5.2. As for the IIPG, the rate of convergence improves
as K is increased. From the results in this table we also observe that for each fixed K the
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Table 2 Convergence rate of
Algorithm 5.3 for the Incomplete
Interior Penalty method (IIPG)
for different levels and different
values of the Penalty parameter
α = Kα∗

K J

0 1 2 3 4 5

1 2.42 1.37 1.56 1.79 1.34 1.38

2 0.84 0.68 0.73 0.78 0.68 0.69

4 0.50 0.43 0.45 0.47 0.43 0.44

8 0.33 0.29 0.30 0.32 0.29 0.30

16 0.22 0.20 0.21 0.21 0.20 0.21

32 0.15 0.14 0.14 0.15 0.14 0.14

Table 3 Convergence rate of
Algorithm 5.3 for the
Non-symmetric Interior Penalty
method (NIPG) for different
levels and different values of the
Penalty parameter α = Kα∗

K J

0 1 2 3 4 5

1 1.75 1.52 1.60 1.68 1.57 1.60

2 1.23 1.08 1.13 1.19 1.11 1.13

4 0.87 0.76 0.80 0.85 0.79 0.80

8 0.61 0.54 0.57 0.60 0.56 0.57

16 0.43 0.38 0.40 0.42 0.39 0.40

32 0.30 0.27 0.28 0.30 0.28 0.28

Table 4 Values of γ ∗ for Type-0
IIPG scheme J 0 1 2 3 4 5

α∗ 0.90 1.30 1.30 1.30 1.60 1.60

γ ∗ 0.95 0.73 0.79 0.84 0.70 0.71
γ ∗√
4−γ ∗ 0.91 0.58 0.65 0.73 0.54 0.55

rate of convergence is uniform with respect the level of refinement. Furthermore, notice that
as predicted by our theory, the iteration for NIPG requires for convergence, a higher value of
the penalty parameter than that required by the iterative method for the IIPG. We also note
that the estimate in Theorem 5.2 provides an upper bound on the convergence rate, although
K ≥ 16, which is needed by our theory, may be somewhat restrictive for the numerical
examples that we consider here.

Finally, we have computed numerically the constant γ ∗ in the strengthened CBS in-
equality (A.1) from Lemma A.1, together with our estimates of the convergence rates for
the iteration of the IIPG and NIPG methods. The results are displayed in Table 4. In the sec-
ond row we present for each level of refinement the values of α∗ taken in our computations.
For each level we have used these values of the penalty parameter to compute numerically
the constant γ ∗ from Lemma A.1. In the third row we list the values of γ ∗. In the fourth row
of the table, the numerical values of the estimate of the convergence rate for the iterative
method for the IIPG (see Theorem 5.1), �0 ≤ γ ∗√

K−γ ∗ for K = 4. Comparing these values
with the computed convergence rates for IIPG from Table 2, for K = 4, verifies that the
estimate given in Theorem 5.1 is an appropriate upper bound. Notice that for the iterative
method for NIPG with K = 16, the same upper bound applies (since 2γ ∗√

16−2γ ∗ = γ ∗√
4−γ ∗ ).
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Appendix: Proof of Lemma A.1

We prove here the strengthened Cauchy-Bunyakowskii-Schwarz (CBS) inequalities for the
skew-symmetric part of the non-symmetric Type-0 IIPG method, used in the convergence
analysis of the iterative methods for Type-1 non-symmetric IP methods. For the sake of
completeness we state also in Lemma A.2 the analogous result for NIPG, although it has not
been used in our analysis

Lemma A.1 Let AI,α∗
0 (·, ·) be the Type-0 non-symmetric IIPG method with penalty para-

meter α∗ and let ÃI,α∗
0 (·, ·) be its symmetric part. Let α∗ be the minimal value of the penalty

parameter for which AI,α∗
0 (·, ·) is coercive. Then, the following CBS inequality holds for all

v ∈ V CR and z ∈ Z :

∃γ ∗ < 1 :
[

1

2
(∇z,∇v)

]2

≤ [γ ∗]2 ÃI,α∗
0 (z, z)ÃI,α∗

0 (v, v). (A.1)

Proof Let As,β

0 (·, ·) = Ãs,β

0 (·, ·) be the bilinear form of the symmetric Type-0 SIPG method,
with penalty parameter β chosen so that As,β

0 (·, ·) is coercive. Recall that the continuity
and coercivity properties of the Type-0 SIPG and IIPG methods imply that there exists two
positive constants c1, c2 possibly depending on the penalty parameters α∗ and β such that

c1(α
∗, β)As,β

0 (u,u) ≤ AI,α∗
0 (u,u) ≤ c2(α

∗, β)As,β

0 (u,u), ∀u ∈ V DG. (A.2)

It is easy to observe that we can always choose β so that the quotient c2(α∗,β)

c1(α∗,β)
> 1.

Let now Pz : V DG −→ Z be the orthogonal projection into Z be defined by:

Pz : V DG −→ Z, As,β

0 (Pz(u),ψ) = As,β

0 (u,ψ) ∀ψ ∈ Z. (A.3)

Note that by definition and the Cauchy-Schwarz inequality it follows that

As,β

0 (Pz(u),Pz(u)) = As,β

0 (u,Pz(u))

≤ [As,β

0 (u,u)]1/2[As,β

0 (Pz(u),Pz(u))]1/2, ∀u ∈ V DG,

and therefore,

As,β

0 (Pz(u),Pz(u)) ≤ As,β

0 (u,u) ∀u ∈ V DG. (A.4)

Then, by taking into account the equivalence in (A.2), we define

K0 := sup
u∈V DG

ÃI,α∗
0 (Pz(u),Pz(u))

ÃI,α∗
0 (u,u)

≤ c2

c1

As,β

0 (Pz(u),Pz(u))

As,β

0 (u,u)
≤ c2

c1
.
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Next, let z ∈ Z and v ∈ V CR be fixed and observe that by definition Pz(v) = 0 ∀v ∈ V CR .
Following [26] we define the quadratic polynomial

q0(t) := ÃI,α∗
0 (z + tv, z + tv) − 1

K0
ÃI,α∗

0 (Pz(z + tv),Pz(z + tv)) ≥ 0 ∀t ≥ 0,

where the non-negativeness of q0(t) follows from the definition of K0. Note that

q0(t) = ÃI,α∗
0 (z + tv, z + tv) − 1

K0
ÃI,α∗

0 (z, z)

=
(

1 − 1

K0

)
ÃI,α∗

0 (z, z) + t2 ÃI,α∗
0 (v, v) + t[ÃI,α∗

0 (z, v) + ÃI,α∗
0 (v, z)] ≥ 0 ∀t ≥ 0,

implies that the discriminant of this quadratic polynomial is non positive

[
ÃI,α∗

0 (z, v) + ÃI,α∗
0 (v, z)

2

]2

−
[

1 − 1

K0

]
ÃI,α∗

0 (z, z) · ÃI,α∗
0 (v, v) ≤ 0,

and therefore

[
ÃI,α∗

0 (z, v) + ÃI,α∗
0 (v, z)

2

]2

≤ [γ ∗]2 ÃI,α∗
0 (z, z)ÃI,α∗

0 (v, v),

where [γ ∗]2 = [1 − 1
K0

] < 1. Substituting the actual definition of the off-diagonal terms

ÃI,α∗
0 (z, v) and ÃI,α∗

0 (z, v) we reach (A.1). �

Lemma A.2 Let An,α∗
0 (·, ·) be the Type-0 non-symmetric NIPG method with penalty pa-

rameter α∗ and let Ãn,α∗
0 (·, ·) be its symmetric part. Let α∗ be any value of the penalty

parameter for which An,α∗
0 (·, ·) is coercive. Then,

∃γ ∗
1 < 1 : [(∇z,∇v)]2 ≤ [γ ∗

1 ]2 Ãn,α∗
0 (z, z)Ãn,α∗

0 (v, v). (A.5)

Proof The proof of this lemma follows the same lines as the previous proof just by replacing
ÃI,α∗

0 (·, ·) with Ãn,α∗
0 (·, ·). We omit the details. �
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