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Abstract Three Maxwell eigensolvers are discussed in this paper. Two of them use clas-
sical nonconforming finite element approximations, and the other is an interior penalty
type discontinuous Galerkin method. A main feature of these solvers is that they are based
on the formulation of the Maxwell eigenproblem on the space H0(curl;�) ∩ H(div0;�).
These solvers are free of spurious eigenmodes and they do not require choosing penalty
parameters. Furthermore, they satisfy optimal order error estimates on properly graded
meshes, and their analysis is greatly simplified by the underlying compact embedding of
H0(curl;�)∩H(div0;�) in L2(�). The performance and the relative merits of these eigen-
solvers are demonstrated through numerical experiments.
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1 Introduction

The computation of Maxwell eigenvalues is of fundamental importance in computational
electromagnetism. In this paper, we consider the following Maxwell eigenproblem with the
perfectly conducting boundary condition:

Find (
◦
u, λ) ∈ H0(curl;�) ∩ H(div0;�) × R such that

◦
u�= 0 and

(∇× ◦
u,∇ × v) = λ(

◦
u,v) ∀v ∈ H0(curl;�) ∩ H(div0;�). (1.1)

Here � ⊂ R
2 is a bounded polygonal domain, (·, ·) denotes the L2 inner product, and

H(curl;�) =
{
v =

[
v1

v2

]
∈ [L2(�)]2 : ∇ × v = ∂v2

∂x1
− ∂v1

∂x2
∈ L2(�)

}
,

H(div;�) =
{
v =

[
v1

v2

]
∈ [L2(�)]2 : ∇ · v = ∂v1

∂x1
+ ∂v2

∂x2
∈ L2(�)

}
,

H0(curl;�) = {v ∈ H(curl;�) : n × v = 0 on ∂�} ,

H(div0;�) = {v ∈ H(div;�) : ∇ · v = 0} ,

where n is the unit outer normal on ∂�.
Note that the eigenfunction

◦
u is subject to a divergence-free constraint, a property dif-

ficult to satisfy in numerical approximations. A common practice [4–6, 13–15, 23, 27] in
designing numerical schemes for (1.1) is to neglect the divergence-free condition and in-
stead work with the following problem:

Find (u, λ) ∈ H0(curl;�) × R such that u �= 0 and

(∇ × u,∇ × v) = λ(u,v) ∀v ∈ H0(curl;�). (1.2)

By doing so, a non-physical zero eigenvalue, whose eigenspace is of infinite dimension,
is introduced into the spectrum. This in return requires that a successful numerical Maxwell
eigensolver based on (1.2), in addition to being able to approximate the physical spectrum
of (1.1), must also be able to separate the numerical approximations to the non-physical
zero eigenvalue from those to the physical eigenvalues. Moreover, the non-compactness
of the Maxwell operator based on (1.2) poses additional complexity in the analysis of the
eigensolvers.

In this paper we work directly with (1.1). The eigensolvers we will present are closely
related to the numerical schemes for the following curl-curl problem:

Given f ∈ [L2(�)]2, find
◦
u∈ H0(curl;�) ∩ H(div0;�) such that

(∇× ◦
u,∇ × v) + α(

◦
u,v) = (f ,v) ∀v ∈ H0(curl;�) ∩ H(div0;�), (1.3)

where α ∈ R.
When α = −κ2 with real wave number κ , the curl-curl problem (1.3) becomes the time-

harmonic (frequency-domain) Maxwell equations formulated on H0(curl;�)∩H(div0;�),
and it was solved in [8] by a locally divergence-free nonconforming finite element method.
The extension of the results in [8] to the case where α > 0 is straight-forward.

In [9, 10], two other schemes were proposed for solving the curl-curl problem (1.3). One
is a locally divergence-free interior penalty method [9], and the other is a nonconforming
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finite element method that penalizes the divergence of the discrete solution [10]. Optimal
order error estimates in both the L2 norm and the energy norm have been established for all
three schemes in [8–10]. These schemes naturally define three numerical eigensolvers for
(1.1), and the main goal of this paper is to study these eigensolvers analytically and numer-
ically. A main feature of these solvers is that they are based on the formulation (1.1) instead
of the formulation (1.2), and hence they are free of zero and nonzero spurious eigenmodes.
The compactness of the underlying operator also greatly simplifies the analysis of these
eigensolvers. Moreover these eigensolvers do not involve choosing any penalty parameters.

We have carried out numerical experiments that demonstrate the performance and the
relative merits of these eigensolvers. Furthermore, we have conducted numerical tests to
illustrate the roles played by various terms in the formulation of the solvers.

It turns out that some variants of the proposed eigensolvers generate spurious eigen-
modes, and we have been able to detect them by certain numerical techniques. The related
numerical tests, which may be of interest for other eigensolvers that generate spurious eigen-
modes, are also reported.

The rest of the paper is organized as follows. The three eigensolvers are introduced in
Sect. 2, and the optimal order convergence of these eigensolvers is established in Sect. 3.
Results of a series of numerical experiments on the eigensolvers are reported in Sect. 4, and
we discuss in Sect. 5 some numerical tests for the detection of spurious eigenmodes. We end
with some concluding remarks in Sect. 6.

2 Numerical Schemes

We formulate three Maxwell eigensolvers for (1.1) in this section.
Let Th be a simplicial triangulation of �. We denote a triangular element by T , the

diameter of T by hT , an edge by e, and the midpoint and length of e by me and |e|. The
set of the edges of the triangles in Th is denoted by Eh, and the set of the interior edges is
denoted by E i

h. In order for the schemes to achieve optimal convergence for approximating
the eigenvalues and eigenspaces, the triangulation Th must be properly graded around the
corners of �. We assume the following condition is satisfied by Th:

hT ≈ h�μ(T ) ∀T ∈ Th. (2.1)

Here h is the characteristic mesh size (one can take h to be the largest diameter of T ∈ Th,
and some other choices of h can be found in Sect. 4) and the weight �μ(T ) is defined by

�μ(T ) =
L∏

l=1

|cl − cT |1−μl , (2.2)

where cT is the center of T , and μl is the grading parameter chosen for each corner cl of �

with interior angle ωl according to the following rules:

μl = 1 if ωl ≤ π

2
, (2.3a)

μl <
π

2ωl

if ωl >
π

2
. (2.3b)
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For any e ⊂ ∂T , the following weight is equivalent to �μ(T ):

�μ(e) =
L∏

l=1

|cl − me|1−μl .

Remark 2.1 The choices for the grading parameters are dictated by the singularities of the

solution
◦
u of (1.1) and (1.3) around the corner cl of � [2, 19, 20]. According to (2.3) grading

is needed at any corner cl where the interior angle ωl is larger than π
2 . This is different from

problems involving the Laplace operator where grading is only needed at re-entrant corners,
and it is due to the fact that the singularities of the curl-curl operator are one order worse
than the singularities of the Laplace operator.

Since the jumps of vector fields across the edges of Th play an important role in the
numerical schemes, we introduce the following notation: given a piecewise defined vector
field v, for any e ∈ E i

h shared by two triangles T1 and T2 with unit normals n1 and n2 of e

pointing towards the outside of T1 and T2 respectively, we define

[[v]]t = [[n × v]] = (n1 × vT1)|e + (n2 × vT2)|e,
[[v]]n = [[n · v]] = (n1 · vT1)|e + (n2 · vT2)|e.

Here vT = v|T , and we will refer to [[v]]t and [[v]]n as the tangential jump and the normal
jump respectively.

For an edge e along ∂�, we take ne to be the unit normal of e pointing towards the
outside of � and define

[[v]]t = [[n × v]] = (ne × v)|e.
We also denote the piecewise defined curl operator and div operator by ∇h× and ∇h·

respectively, i.e.,

(∇h × v)|T = ∇ × (v|T ), (∇h · v)|T = ∇ · (v|T ).

We will use the following finite element spaces for the Maxwell eigensolvers. The first
is the space Wh of Crouzeix-Raviart [21] non-conforming P1 vector fields:

Wh = {v ∈ [L2(�)]2 : vT ∈ [P1(T )]2 ∀T ∈ Th,v is continuous at

the midpoints of the interior edges of Th, and n × v = 0

at the midpoints of the edges of Th along ∂�}.
The second is the space Vh of locally divergence-free Crouzeix-Raviart non-conforming P1

vector fields:

Vh = {v ∈ Wh : ∇ · vT = 0 ∀T ∈ Th}.
The third is the space Uh of locally divergence-free piecewise (discontinuous) P1 vector
fields:

Uh = {v ∈ [L2(�)]2 : vT ∈ [P1(T )]2 and ∇ · vT = 0 ∀T ∈ Th}.
We are now ready to define the three numerical eigensolvers for (1.1).
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Eigensolver 1 Find (
◦
uh, λh) ∈ Vh × R such that

◦
uh �= 0 and

ah,0(
◦
uh,v) = λh(

◦
uh,v), ∀v ∈ Vh, (2.4)

where the bilinear form ah,0(w,v) is defined by

ah,0(w,v) = (∇h × w,∇h × v) +
∑
e∈Eh

[�μ(e)]2

|e|
∫

e

[[w]]t [[v]]t ds

+
∑
e∈E i

h

[�μ(e)]2

|e|
∫

e

[[w]]n[[v]]n ds. (2.5)

Eigensolver 2 Find (
◦
uh, λh) ∈ Wh × R such that

◦
uh �= 0 and

bh,0(
◦
uh,v) = λh(

◦
uh,v), ∀v ∈ Wh, (2.6)

where the bilinear form bh,0(w,v) is defined by

bh,0(w,v) = (∇h × w,∇h × v) + 1

h2
(∇h · w,∇h · v)

+
∑
e∈Eh

[�μ(e)]2

|e|
∫

e

[[w]]t [[v]]t ds

+
∑
e∈E i

h

[�μ(e)]2

|e|
∫

e

[[w]]n[[v]]n ds. (2.7)

Eigensolver 3 Find (
◦
uh, λh) ∈ Uh × R such that

◦
uh �= 0 and

ch,0(
◦
uh,v) = λh(

◦
uh,v), ∀v ∈ Uh, (2.8)

where the bilinear form ch,0(w,v) is defined by

ch,0(w,v) = (∇h × w,∇h × v) +
∑
e∈Eh

[�μ(e)]2

|e|
∫

e

[[w]]t [[v]]t ds

+
∑
e∈E i

h

[�μ(e)]2

|e|
∫

e

[[w]]n[[v]]n ds

+ h−2
∑
e∈Eh

1

|e|
∫

e

(
0
e[[w]]t )(
0

e[[v]]t ) ds

+ h−2
∑
e∈E i

h

1

|e|
∫

e

(
0
e[[w]]n)(
0

e[[v]]n) ds, (2.9)

and 
0
e is the L2 orthogonal projection from L2(e) onto the space P0(e) of constant func-

tions on e.
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Remark 2.2 The following comments provide some intuitive motivations for the three
Maxwell eigensolvers. More insights on various components of these schemes are provided
by the numerical examples in Sect. 4.

1. Both Eigensolver 1 and Eigensolver 2 use classical nonconforming vector fields that have
certain weak continuity. Eigensolver 3 is an interior penalty type discontinuous Galerkin
method that uses completely discontinuous piecewise smooth vector fields. The last two
terms in (2.9) compensate for the lack of any continuity in the discrete vector fields and
they turn out to be necessary.

2. The divergence-free constraint in the eigenfunctions is imposed in Eigensolver 1 and
Eigensolver 3 through the locally divergence-free condition in the definitions of Vh and
Uh, and the same constraint is imposed in Eigensolver 2 through penalizing the diver-
gence term in the bilinear form bh,0. In all three solvers, certain consistency terms in-
volving the jumps of both the normal and tangential components of the numerical so-
lutions across element interfaces are also needed. These terms ensure that the inherent
constraints for the space H0(curl;�) ∩ H(div0;�) are satisfied by the discrete vector
fields in a weak sense.

3. Each numerical eigensolver has its merits.

– In terms of the computational domain: the finite element space Vh for Eigensolver 1
does not have a completely local basis when the domain is multiply connected (see
Fig. 3, right); but the finite element spaces Wh and Uh for Eigensolver 2 and Eigen-
solver 3 have completely local bases for general domains.

– In terms of the mesh: the weak continuity condition in the finite element spaces Vh

and Wh for Eigensolver 1 and Eigensolver 2 require the meshes to be conforming; but
the Eigensolver 3 can be applied to both conforming and n-irregular nonconforming
meshes (see Fig. 1 and Remark 3.4).

– In terms of the dimensions of the finite element spaces: the ratio of dimVh : dimWh :
dimUh is approximately 2 : 3 : 5.

3 Error Analysis

In this section we give a unified error analysis for the three Maxwell eigensolvers. First we
relate the Maxwell eigenproblem to the eigenproblem of a compact operator.

Given any f ∈ [L2(�)]2, we define T f ∈ H0(curl;�) ∩ H(div0;�) by the condition
that

(∇ × (T f ),∇ × v) + (T f ,v) = (f ,v) (3.1)

for all v ∈ H0(curl;�) ∩ H(div0;�), i.e., T f is the solution of (1.3) with α = 1.
Clearly T is a bounded linear operator from [L2(�)]2 into H0(curl;�) ∩ H(div0;�).
Since H0(curl;�) ∩ H(div0;�) is a compact subspace of [L2(�)]2 (cf. [17]), the opera-

tor T : [L2(�)]2 −→ [L2(�)]2 is symmetric, positive and compact. Moreover, (
◦
u, λ) satisfy

(1.1) if and only if

T
◦
u= 1

1 + λ

◦
u . (3.2)

The eigenfunctions of T are precisely the Maxwell eigenfunctions.
Next we consider nonconforming approximations of T corresponding to the three

schemes (2.4), (2.6) and (2.8).
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Let Zh be the finite element space Vh, Uh or Wh, and Nh,0(·, ·) be the corresponding bi-
linear form ah,0(·, ·), bh,0(·, ·) or ch,0(·, ·). The equations defining the three Maxwell eigen-
solvers can then be written as

Nh,0(
◦
uh,v) = λh(

◦
uh,v) ∀v ∈ Zh. (3.3)

The discrete analog of T is the operator Th : [L2(�)]2 −→ Zh ⊂ [L2(�)]2 defined by

Nh,1(Thf ,v) = (f ,v) ∀v ∈ Zh, (3.4)

where

Nh,1(w,v) = Nh,0(w,v) + (w,v).

In other words Thf ∈ Zh is the nonconforming finite element approximation of the solution
T f of the Maxwell source problem. Note that

Th

◦
uh= 1

1 + λh

◦
uh (3.5)

is equivalent to (3.3). The eigenfunctions of Th are precisely the discrete Maxwell eigen-
functions.

The following discretization error estimates for the Maxwell source problem have been
derived in [8–10]:

‖(T − Th)f ‖L2(�) ≤ Cεh
2−ε‖f ‖L2(�) (3.6)

for all f ∈ [L2(�)]2, and

‖(T − Th)f ‖h ≤ Cεh
1−ε‖f ‖L2(�) ≤ Cεh

1−ε‖f ‖h (3.7)

for all f ∈ H0(curl;�) ∩ H(div0;�) + Zh, where ε is an arbitrary positive constant and the
mesh-dependent energy norm ‖ · ‖h is defined by

‖v‖2
h = Nh,1(v,v).

The uniform estimates (3.6) and (3.7) imply that the classical theory of spectral approxi-
mation [3, 16, 24] can be applied to the nonconforming Maxwell eigensolvers.

Theorem 3.1 Let 0 ≤ λ1 ≤ λ2 ≤ · · · be the eigenvalues of (1.1), λ = λj = λj+1 = · · · =
λj+m−1 be an eigenvalue with multiplicity m, and Zλ ⊂ H0(curl;�) ∩ H(div0;�) be the
corresponding m dimensional eigenspace. Let 0 ≤ λh,1 ≤ λh,2 ≤ · · · be the eigenvalues ob-
tained by one of the three eigensolvers. Then as h ↓ 0, we have

|λh,l − λ| ≤ Cλ,dλ,εh
2−ε, l = j, j + 1, . . . , j + m − 1, (3.8)

where dλ is the distance from λ to the other Maxwell eigenvalues and ε is an arbitrary
positive number.

Furthermore, if Zh,λ is the space spanned by the discrete Maxwell eigenfunctions corre-
sponding to λh,j , . . . , λh,j+m−1, then the gap between Zλ and Zh,λ goes to zero at the rate of
Cλ,dλ,εh

2−ε in the L2 norm and at the rate of Cλ,dλ,εh
1−ε in the energy norm ‖ · ‖h.
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Proof Let 1 ≥ μ1 ≥ μ2 ≥ · · · be the eigenvalues of T and 1 ≥ μh,1 ≥ μh,2 ≥ · · · be the
eigenvalues of Th. In view of the relations (3.2) and (3.5), it is equivalent to establish the
convergence of μh,j to μj .

Let μ be an eigenvalue of T of multiplicity m corresponding to the Maxwell eigen-
value λ. The L2 orthogonal projection Eμ onto the eigenspace Zμ = Zλ is given by the
contour integral [22]

Eμ = 1

2πi

∫
Cμ,δμ

(ζ I − T )−1dζ, (3.9)

where I is the identity operator on [L2(�)]2, Cμ,δμ is the counterclockwise oriented circle
centered at μ with radius δμ, and δμ is small enough so that μ is the only eigenvalue of T

inside and on Cμ,δμ .
For h sufficiently small, the operator ζ I −Th is invertible on Cμ,δμ and we can define the

L2 orthogonal projection Eh,μ by

Eh,μ = 1

2πi

∫
Cμ,δμ

(ζ I − Th)
−1dζ. (3.10)

The space Zh,μ = Zh,λ = Eh,μ[L2(�)]2 is spanned by the eigenfunctions of Th correspond-
ing to eigenvalues of Th inside Cμ,δμ .

It follows from (3.6), (3.9) and (3.10) that

‖(Eλ − Eh,λ)w‖L2(�) ≤ Cδμ,εh
2−ε‖w‖L2(�) (3.11)

for all w ∈ [L2(�)]2 and

‖(Eλ − Eh,λ)w‖h ≤ Cδμ,εh
1−ε‖w‖h (3.12)

for all w ∈ H0(curl;�) ∩ H(div0;�) + Zh.
Hence, for h sufficiently small, the rank of Eh,μ is m and there are exactly m eigenvalues

(counting multiplicity) of Th inside the circle Cμ,δμ . To complete the proof of the first part
of the theorem, it only remains to estimate |μ−μh|, where μh is any one of the eigenvalues
of Th inside Cμ,δμ .

Let x ∈ Zh,λ be a unit eigenfunction of μh. Then we have

(Thx,x) = μh and ‖x‖L2(�) = 1. (3.13)

Let x̂ = Eλx and ŷ = x − x̂. Then x̂ and ŷ are orthogonal with respect to both the L2

inner product and the inner product (T ·, ·), and the estimate (3.11) implies that

‖ŷ‖L2(�) = ‖(Eλ − Eh,λ)x‖L2(�) ≤ Cδμ,εh
2−ε . (3.14)

Hence it follows from Pythagoras’ theorem with respect to the L2 inner product that

1 − ‖x̂‖2
L2(�) = ‖x‖2

L2(�) − ‖x̂‖2
L2(�) = ‖ŷ‖2

L2(�) ≤ Cδμ,εh
4−ε . (3.15)

In particular we have x̂ �= 0 for h sufficiently small.
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Let ê = x̂/‖x̂‖L2(�). Then ê is a unit eigenfunction of T for the eigenvalue μ, and we
have, by (3.13),

|μ − μh| =
∣∣(T ê, ê) − (Thx,x)

∣∣
≤ ∣∣((T − Th)x,x)

∣∣ + ∣∣(T ê, ê) − (T x,x)
∣∣. (3.16)

From (3.6) we have ∣∣((T − Th)x,x)
∣∣ ≤ Cεh

2−ε, (3.17)

and it follows from Pythagoras’ theorem with respect to the inner product (T ·, ·) that

∣∣(T ê, ê) − (T x,x)
∣∣ = ∣∣(T ê, ê) − (T x̂, x̂) − (T ŷ, ŷ)

∣∣
≤ (1 − ‖x̂‖2

L2(�))(T ê, ê) + (T ŷ, ŷ). (3.18)

Combining (3.14), (3.15) and (3.18), we find

∣∣(T ê, ê) − (T x,x)
∣∣ ≤ Cδμ,εh

4−ε,

which together with (3.16) and (3.17) implies

|μ − μh| ≤ Cδμ,εh
2−ε . (3.19)

The estimate (3.8) follows from (3.19) and the relations

μj = 1/(1 + λj ) and μh,j = 1/(1 + λh,j ).

Finally, we recall that the gap δ̂(M,N) between two subspaces M and N of a normed
linear space (X,‖ · ‖X) is defined by (cf. [24])

δ̂(M,N) = max(δ(M,N), δ(N,M)),

where

δ(M,N) = sup
x∈M‖x‖X=1

inf
y∈N

‖x − y‖X.

Therefore the statements about the gap between Zλ = Zμ and Zh,λ = Zh,μ follow immedi-
ately from (3.11) and (3.12). �

Remark 3.2 Because of the graded mesh, the error estimates in Theorem 3.1 are optimal
even when the Maxwell eigenfunctions do not have full regularity, which may happen when
one of the interior angles of the computational domain is larger than π

2 .

Remark 3.3 The compactness of the solution operator T and the existence of the uniform
estimates (3.6) and (3.7) greatly simplify the analysis of the three nonconforming Maxwell
eigensolvers. In comparison the analysis of Maxwell eigensolvers [4–6, 13–15] based on
(1.2) is much more involved.
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Remark 3.4 The error estimates in Theorem 3.1 hold for Eigensolver 3 when it is applied
to both conforming meshes and n-irregular nonconforming meshes (see Fig. 1 for an ex-
ample of 1-irregular mesh, or [12] for an example of a 3-irregular mesh). For more general
nonconforming meshes, our solvers can not ensure a spurious-free spectrum. A similar phe-
nomenon was discussed in [12] when the standard symmetric interior penalty method [1]
based on (1.2) is used to approximate the Maxwell eigenvalues.

4 Numerical Results

In this section we report the results of a series of numerical experiments on the three non-
conforming Maxwell eigensolvers. They confirm the theoretical results, demonstrate the
relative merits of each eigensolver, and illustrate the roles played by various terms in the
formulations of the eigensolvers.

The following examples are considered throughout this section:

Example 1 We take the computational domain to be the square

� = (0,π)2.

The exact Maxwell eigenvalues on this domain are given by r2 + s2, where r, s =
0,1,2,3,4, . . . and r2 + s2 > 0. For instance, the first 10 eigenvalues are 1, 1, 2, 4, 4, 5,
5, 8, 9, 9. The eigenfunctions are H 2 functions.

Example 2 We take the computational domain to be the L-shaped domain (Fig. 3, left)

� = (−0.5,0.5)2 \ [0,0.5]2.

Based on Dauge’s benchmark examples for the Maxwell eigenproblem (http://perso.
univ-rennes1.fr/monique.dauge/core/index.html), the values of the first 5 eigenvalues are
5.90248729632, 14.13612546712, 39.47841760436, 39.47841760436 and 45.5579175916.
It is also known from the same source that the 1st and 5th Maxwell eigenfunctions have a
strong unbounded singularity, the 2nd one belongs to H 1(�), and the 3rd and the 4th ones
are analytic.

Example 3 We take the computational domain to be the doubly connected domain (Fig. 3,
right)

� = (0,4)2 \ [1,3]2.

The smallest Maxwell eigenvalue on this domain is 0 with multiplicity 1. The corresponding

eigenfunction is defined by
◦
u= ∇φ, where φ ∈ H 1(�) satisfies

−�φ = 0 in �,

φ|�int = 0, φ|�ext = 1,

and �int (resp. �ext) is the boundary of [1,3]2 (resp. [0,4]2).

The characteristic mesh size h for the numerical experiments is chosen as follows.
For Example 1, we take h = π/n, where n is the number of the subintervals along

http://perso.univ-rennes1.fr/monique.dauge/core/index.html
http://perso.univ-rennes1.fr/monique.dauge/core/index.html
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Fig. 1 Conforming uniform
mesh (left) and 1-irregular
nonconforming mesh (right) on
the square domain (0,π)2

[0,π] × {y = 0}, for the conforming and nonconforming meshes in Fig. 1. For Example 2,
we take h = 1/(2n), where n is the number of the subintervals along [−0.5,0] × {y = 0.5},
for the mesh in Fig. 3 (left). For Example 3, we take h = 4/n, where n is the number of the
subintervals along [0,4] × {y = 0}, for the mesh in Fig. 3 (right).

In all the plots, the symbol “o” denotes the exact eigenvalue, and “(2)” indicates that the
multiplicity of the eigenvalue is 2. When more than one numerical eigenvalue on different
mesh resolutions is reported in the same plot, we use different color and/or symbol codings
to represent the results based on the nondecreasing ordering of the numerical eigenvalues.
Some extra care would be needed when one reads these plots especially when there is the
occurrence of eigenvalue crossing, for instance in Figs. 8, 10, and 13–16.

4.1 Numerical Results for Eigensolver 1

In this subsection we present numerical results on the accuracy of the Eigensolver 1 and on
the roles played by the consistency terms.

4.1.1 Accuracy of the Scheme

In the first experiment we compute the Maxwell eigenvalues on the square (0,π)2 using the
uniform meshes depicted in Fig. 1 (left).

We plot the first 20 numerical eigenvalues versus the parameter n = π/h in Fig. 2, from
which one can see that the eigenvalues are well resolved even when the meshes are still
coarse and there is no spurious eigenmode. The numerical approximations converge with
second order accuracy which confirms the error estimate (3.8). To save space, only the first
5 numerical eigenvalues and their convergence rates are included in Table 1.

In the second experiment we compute the Maxwell eigenvalues for the L-shaped domain
(−0.5,0.5)2 \ [0,0.5]2 using the graded meshes depicted in Fig. 3 (left), where the grading
parameter at the re-entrant corner is chosen to be 1

3 .
Table 2 contains the numerical results for the first 5 Maxwell eigenvalues. One can see

that our method has second order accuracy, on relatively coarse meshes and for eigenfunc-
tions with very different regularity. In Fig. 4 we plot the first 10 numerical eigenvalues versus
n = 1/(2h), which clearly demonstrates the absence of any spurious eigenmodes.

4.1.2 The Role of the Consistency Terms

In order for a numerical scheme to be successful for either the Maxwell source problem
or the Maxwell eigenproblem, the correct amount of continuity for the tangential and/or the
normal component of the discrete vector fields must be imposed across element interfaces. If
the continuity is over-imposed, the scheme may generate a sequence of approximations that
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Fig. 2 First 20 Maxwell eigenvalues computed by Eigensolver 1 on (0,π)2 with conforming uniform meshes

Table 1 First 5 Maxwell eigenvalues computed by Eigensolver 1 on (0,π)2 with conforming uniform
meshes

n = π
h

1st Order 2nd Order 3rd Order 4th Order 5th Order

4 0.943 – 1.000 – 1.800 – 3.154 – 3.238 –

8 0.988 2.19 1.000 −0.67 1.967 2.60 3.895 3.01 3.896 2.87

16 0.997 2.07 1.000 1.26 1.993 2.26 3.977 2.21 3.977 2.20

32 0.999 2.03 1.000 1.72 1.998 2.11 3.995 2.08 3.995 2.08

64 1.000 2.01 1.000 1.87 2.000 2.05 3.999 2.03 3.999 2.03

128 1.000 2.01 1.000 1.94 2.000 2.03 4.000 2.01 4.000 2.01

Exact 1 1 2 4 4

converge to a wrong solution [5, 25]. On the other hand, if the continuity is under-imposed,
the scheme may not converge [8]. In this subsection we will demonstrate numerically that
the correct amount of continuity is imposed by Eigensolver 1.

For this purpose we rewrite the bilinear form ah,0(w,v) as

ah,0(w,v) = (∇h × w,∇h × v) + Cp,t

∑
e∈Eh

[�μ(e)]2

|e|
∫

e

[[w]]t [[v]]t ds

+ Cp,n

∑
e∈E i

h

[�μ(e)]2

|e|
∫

e

[[w]]n[[v]]n ds, (4.1)
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Fig. 3 Graded meshes on the
L-shaped domain
(−0.5,0.5)2 \ [0,0.5]2 (left) and
on the doubly connected domain
(0,4)2 \ [1,3]2 (right)

Fig. 4 First 10 Maxwell eigenvalues computed by Eigensolver 1 on the L-shaped domain using graded
meshes

Table 2 First 5 Maxwell eigenvalues computed by Eigensolver 1 on the L-shaped domain using graded
meshes

n = 1
2h

1st Order 2nd Order 3rd Order 4th Order 5th Order

4 5.319 – 10.727 – 11.276 – 11.441 – 12.350 –

8 5.756 1.99 13.532 2.50 31.448 1.81 37.652 3.94 39.529 2.46

16 5.867 2.05 13.992 2.07 37.307 1.89 39.100 2.27 44.429 2.42

32 5.894 2.08 14.101 2.03 38.929 1.98 39.390 2.10 45.291 2.08

64 5.901 2.09 14.127 2.01 39.341 2.00 39.457 2.05 45.493 2.03

Exact 5.902 14.136 39.478 39.478 45.558
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where we take Cp,n = Cp,t = 1 in (2.5). Here
∑

e∈Eh

[�μ(e)]2
|e|

∫
e
[[w]]t [[v]]t ds is a consistency

term involving the tangential jumps of the discrete vector fields across element interfaces,

and
∑

e∈E i
h

[�μ(e)]2
|e|

∫
e
[[w]]n[[v]]nds is a consistency term involving the normal jumps.

From Fig. 5 we see that if we simply remove either the tangential consistency term
or the normal one from our solver, i.e., if we take Cp,n = 0,Cp,t = 1 (T-type variant) or
Cp,n = 1,Cp,t = 0 (N-type variant) in (4.1), then spurious eigenmodes will appear. In par-
ticular, zero spurious eigenmodes are generated by the N-type variant. Similar results are
also observed on the L-shaped domain.

We have also tested the effects of different choices of the parameters Cp,n and Cp,t on
the performance of the eigensolver on the square (0,π)2. From the plots in Fig. 6 we can
see that the performance of the eigensolver containing both consistency terms (TN-type
variant) relatively is not sensitive to the values of Cp,n and Cp,t . On the other hand the per-
formance of the T-type variant improves dramatically with a large Cp,t . The lower range of
the spectrum is well-captured (indeed with second order accuracy). However, some nonzero
spurious eigenvalues still exist for a fixed Cp,t . The performance of the N-type variant also
improves with a larger Cp,n. But many spurious eigenmodes still persist.

We have carried out similar experiments for the L-shaped domain using graded meshes.
From the plots in Fig. 7 we see that both the T-type and the N-type variants perform well for
relatively large parameters Cp,t and Cp,n, though the N-type variant still produces 3 spurious
zero eigenvalues.

From the numerical study we can conclude that Eigensolver 1 imposes the correct amount
of continuity through the two consistency terms and it does not involve any penalty parame-
ters. In addition, the tangential consistency term is necessary for removing the zero spurious
eigenmodes, and a larger Cp,t (resp. Cp,n) in (4.1) can improve the performance of the T-type
(resp. N-type) variant of Eigensolver 1.

In Sect. 5 we will present some numerical techniques that can detect the spurious eigen-
modes generated by the T-type and N-type variants.

4.2 Numerical Results for Eigensolver 2

In this subsection we present numerical results for Eigensolver 2. We will focus on the
accuracy of the scheme, the role of the weight for the divergence term in bh,0(·, ·), and
the performance of the scheme for the doubly connected domain. Results similar to those
reported in Sect. 4.1.2 for Eigensolver 1 also holds for Eigensolver 2 and will not be repeated
here.

4.2.1 Accuracy of the Scheme

In the first experiment we compute the Maxwell eigenvalues for the square (0,π)2 using
uniform meshes. In the top of Fig. 8, we plot the numerical results of the first 20 eigenvalues
versus the parameter n = π/h, from which one can see that the eigenvalues are well resolved
even for very coarse meshes and there is no spurious eigenmode. The numerical approxi-
mations converge with second order accuracy, which confirms the error estimate (3.8). To
save space, only the first 5 numerical eigenvalues and their convergence rates are reported
in Table 3.

In the second experiment, we compute the Maxwell eigenvalues for the L-shaped domain,
where the meshes are graded around the re-entrant corner with the grading parameter 1

3 . Ta-
ble 4 contains the first 5 numerical eigenvalues, from which one can see that the scheme has
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Fig. 5 Maxwell eigenvalues on (0,π)2 computed by the T-type variant (top, Cp,n = 0,Cp,t = 1) and the
N-type variant (bottom, Cp,n = 1,Cp,t = 0) of Eigensolver 1 using conforming uniform meshes

second order accuracy on relatively coarse meshes. In Fig. 9 we plot the first 10 numerical
eigenvalues versus n = 1/(2h), which shows the absence of spurious eigenmodes.

Note that Tables 1 and 3 give almost identical results, and so do Tables 2 and 4.
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Fig. 6 Maxwell eigenvalues (from top to bottom) on (0,π)2 computed by TN-type (Cp,n = Cp,t = Cp),
T-type (Cp,n = 0,Cp,t = Cp) and N-type (Cp,n = Cp,Cp,t = 0) variants of Eigensolver 1 using conforming
uniform meshes, where Cp = 30 on the left and Cp = 100 on the right



J Sci Comput (2009) 40: 51–85 67

Fig. 7 Maxwell eigenvalues (from top to bottom) for the L-shaped domain computed by TN-type
(Cp,n = Cp,t = Cp), T-type (Cp,n = 0,Cp,t = Cp) and N-type (Cp,n = Cp,Cp,t = 0) variants of Eigen-
solver 1 using graded meshes, where Cp = 25 on the left and Cp = 50 on the right
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Fig. 8 First 20 Maxwell eigenvalues on (0,π)2 computed by Eigensolver 2 (top) and its variant where the
weight for the divergence term in (2.7) is h−1 (bottom), using conforming uniform meshes
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Fig. 9 First 10 Maxwell eigenvalues for the L-shaped domain computed by Eigensolver 2 using graded
meshes

Table 3 First 5 Maxwell eigenvalues on (0,π)2 computed by Eigensolver 2 using conforming uniform
meshes

n = π
h

1st Order 2nd Order 3rd Order 4th Order 5th Order

4 0.943 – 1.000 – 1.798 – 2.647 – 3.145 –

8 0.988 2.19 1.000 −0.40 1.967 2.60 3.895 3.69 3.896 3.04

16 0.997 2.07 1.000 1.26 1.993 2.27 3.977 2.21 3.977 2.20

32 0.999 2.03 1.000 1.72 1.998 2.12 3.995 2.08 3.995 2.08

64 1.000 2.01 1.000 1.87 2.000 2.05 3.999 2.03 3.999 2.03

128 1.000 2.01 1.000 1.94 2.000 2.03 4.000 2.01 4.000 2.01

Exact 1 1 2 4 4

Table 4 First 5 Maxwell eigenvalues for the L-shaped domain computed by Eigensolver 2 using graded
meshes

n = 1
2h

1st Order 2nd Order 3rd Order 4th Order 5th Order

4 5.319 – 10.726 – 11.275 – 11.440 – 12.349 –

8 5.756 1.99 13.532 2.50 31.448 1.81 37.651 3.94 39.529 2.46

16 5.867 2.05 13.992 2.07 37.307 1.89 39.100 2.27 44.429 2.42

32 5.894 2.08 14.101 2.03 38.929 1.98 39.390 2.10 45.291 2.08

64 5.901 2.08 14.127 2.01 39.341 2.00 39.457 2.05 45.493 2.03

Exact 5.902 14.136 39.478 39.478 45.558
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4.2.2 The Weight for the Divergence Term in (2.7)

The divergence-free constraint on eigenfunctions is imposed in Eigensolver 2 through the
weight h−2 for the divergence term in (2.7). Here we explore the variant where the weight is
h−1 by comparing in Fig. 8 the first 20 Maxwell eigenvalues for the square (0,π)2 computed
by the two schemes using conforming uniform meshes. Based on these plots, the following
comments can be made.

1. The lower ranges of the numerical spectra computed by Eigensolver 2 and the variant are
almost identical.

2. Eigensolver 2 can resolve the eigenvalues of different magnitudes very well even on
relatively coarse meshes. For larger eigenvalues, the same level of resolution can only
be achieved by the variant on finer meshes. This is confirmed further by the numerical
results for the next 20 Maxwell eigenvalues (which are not reported).

We can understand these observations by considering the following eigenproblem: Find
(u, λ) ∈ H0(curl;�) ∩ H(div;�) such that

(∇ × u,∇ × v) + γ (∇ · u,∇ · v) = λ(u,v), (4.2)

for all H0(curl;�)∩H(div;�). It follows from the results in [7] that this eigenproblem can
be solved with second order accuracy using the finite element space Wh by replacing the
weight h−2 in bh,0(·, ·) with γ .

It is known [18] that the eigenvalues defined by (4.2) has the structure of EM ∪ γEL,
where EM is the set of Maxwell eigenvalues and EL is the set of Laplace eigenvalues with
homogeneous Dirichlet boundary condition. Therefore, for γ = h−2 (Eigensolver 2) or γ =
h−1 (variant eigensolver), the lower ranges of the spectra defined by (1.1) and (4.2) become
identical as h ↓ 0 (i.e., γ ↑ ∞), and the Maxwell eigenvalues can be captured by either
scheme with second order accuracy.

4.2.3 Results for the Doubly Connected Domain

As discussed in Remark 2.2, unlike Vh, the discrete space Wh has a complete set of lo-
cal bases for general domains, therefore Eigensolver 2 can be easily implemented for both
simply and multiply connected domains. In this subsection, we consider the doubly con-
nected domain (0,4)2\(1,3)2, where the meshes are graded around the re-entrant corners
with grading parameter 1

3 (Fig. 3, right).
Numerical results for the first 5 Maxwell eigenvalues computed by Eigensolver 2 are

reported in Table 5, from which we can see that the scheme captures the zero Maxwell
eigenvalue with the correct multiplicity one.

Note that for this example, Maxwell eigensolvers based on (1.2), such as the standard
(symmetric, nonsymmetric or incomplete) interior penalty methods discussed in [12, 13],
will produce numerical eigenvalues approximating the true Maxwell eigenvalue 0 with mul-
tiplicity one, as well as the non-physical zero eigenvalues whose eigenspace is infinite di-
mensional. Additional steps may be needed to separate these approximations for some ap-
plications, see [26].

4.3 Numerical Results for Eigensolver 3

In this subsection we present numerical results for Eigensolver 3. We will focus on the
accuracy of the scheme, the role played by the last two terms in the definition of ch,0(·, ·),
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Table 5 First 5 Maxwell eigenvalues on the doubly connected domain (0,4)2 \ (1,3)2 computed by Eigen-
solver 2 using graded meshes

n = 1
h

1st 2nd 3rd 4th 5th

2 0.716 0.925 0.925 1.301 2.896

4 0.396 0.661 0.661 1.146 2.200

8 0.175 0.471 0.471 1.080 1.784

16 0.063 0.373 0.373 1.054 1.586

32 0.020 0.335 0.335 1.045 1.511

64 0.006 0.322 0.322 1.042 1.486

Fig. 10 First 20 Maxwell eigenvalues on (0,π)2 computed by Eigensolver 3 using conforming uniform
meshes

and the performance of the scheme on nonconforming meshes. Results similar to those
reported in Sect. 4.1.2 for Eigensolver 1 and those in Sect. 4.2.3 for Eigensolver 2 also hold
for Eigensolver 3 and will not be repeated here.

4.3.1 Accuracy of the Scheme

In the first experiment we compute the Maxwell eigenvalues for the square (0,π)2 using
conforming uniform meshes. Figure 10 contains the plot of the first 20 numerical eigen-
values versus the parameter n = π/h, which shows that the eigenvalues are well resolved
and there is no spurious eigenmode. The performance of this solver is not quite as good
as Eigensolver 1 and Eigensolver 2 for meshes that are relatively coarse. We can also see
from Table 6 that the numerical approximations converge with second order accuracy, which
confirms our error estimate (3.8).
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Table 6 First 5 Maxwell eigenvalues on (0,π)2 computed by Eigensolver 3 using conforming uniform
meshes

n = π
h

1st Order 2nd Order 3rd Order 4th Order 5th Order

4 0.347 – 0.367 – 0.673 – 1.188 – 1.409 –

8 0.626 0.80 0.634 0.79 1.239 0.80 2.495 0.90 2.496 0.78

16 0.863 1.45 0.866 1.45 1.723 1.46 3.446 1.44 3.446 1.44

32 0.962 1.84 0.963 1.84 1.923 1.84 3.845 1.83 3.845 1.83

64 0.990 1.97 0.990 1.97 1.980 1.97 3.960 1.96 3.960 1.96

128 0.998 1.97 0.998 2.00 1.995 2.01 3.990 1.99 3.990 1.99

Exact 1 1 2 4 4

Table 7 First 5 Maxwell eigenvalues for the L-shaped domain (−0.5,0.5)2 \ [0,0.5]2 computed by Eigen-
solver 3 using graded meshes

n = 1
2h

1st Order 2nd Order 3rd Order 4th Order 5th Order

4 4.747 – 9.963 – 11.233 – 11.316 – 12.226 –

8 5.574 1.81 13.102 2.01 30.631 1.67 36.653 3.32 38.548 2.25

16 5.819 1.98 13.875 1.98 37.008 1.84 38.822 2.11 44.091 2.26

32 5.882 2.02 14.071 2.00 38.847 1.97 39.319 2.04 45.204 2.05

64 5.897 1.97 14.120 2.02 39.320 2.00 39.439 2.03 45.471 2.02

Exact 5.902 14.136 39.478 39.478 45.558

In the second experiment we compute the Maxwell eigenvalues for the L-shaped domain
using graded meshes. Table 7 contains the first 5 numerical eigenvalues which shows that the
scheme has second order accuracy. Results for the first 10 Maxwell eigenvalues are plotted
in Fig. 11, from which one can see that there is no spurious eigenmode.

4.3.2 The Role of the Last Two Terms in (2.9)

The last two penalization terms in the bilinear form ch,0(·, ·) are included to compensate
for the lack of any continuity for the vector fields in the space Uh. Numerical examples in
[9] indicate that without these two terms the numerical scheme for the source problem (1.3)
will fail to converge. In this subsection we examine the numerical spectrum of the variant of
Eigensolver 3 where the last two penalization terms in (2.9) are absent.

The first 40 eigenvalues for the square (0,π)2 computed by the variant eigensolver us-
ing conforming uniform meshes are presented in Fig. 12. One can see that there are many
spurious eigenvalues, which again confirms the necessity of these two penalization terms.

4.3.3 Results with Nonconforming Meshes

As discussed in Remark 3.4, the error estimates in Theorem 3.1 hold for Eigensolver 3 when
it is applied to both conforming and n-irregular nonconforming meshes. In this subsection
we show the performance of Eigensolver 3 when it is applied to the square (0,π)2 with
the 1-irregular nonconforming mesh depicted in Fig. 1 (right), where the domain is first
divided into �1 = (0, π

2 ) × (0,π) and �2 = ( π
2 ,π) × (0,π), and then conforming meshes
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Fig. 11 First 10 Maxwell eigenvalues for the L-shaped domain computed by Eigensolver 3 using graded
meshes

Fig. 12 First 40 numerical eigenvalues on (0,π)2 computed by the variant of Eigensolver 3 where the last
two terms in (2.9) are absent
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Table 8 First 5 Maxwell eigenvalues on (0,π)2 computed by Eigensolver 3 using nonconforming meshes

n = π
h

1st Order 2nd Order 3rd Order 4th Order 5th Order

4 0.331 – 0.349 – 0.652 – 1.077 – 1.307 –

8 0.603 0.75 0.611 0.74 1.200 0.75 2.389 0.86 2.433 0.78

16 0.851 1.41 0.853 1.40 1.699 1.41 3.392 1.41 3.404 1.39

32 0.958 1.82 0.958 1.81 1.915 1.82 3.828 1.82 3.830 1.81

64 0.990 1.96 0.989 1.96 1.978 1.96 3.956 1.96 3.956 1.96

128 0.997 1.99 0.997 1.99 1.995 1.99 3.989 1.99 3.989 1.99

Exact 1 1 2 4 4

are introduced on �1 and �2 separately, with the hanging nodes uniformly spaced along a
given edge on � = ∂�1 ∩ ∂�2. For such meshes, we define Eh by

Eh = {e ∈ ∂T : T ∈ Th and T ⊂ �1} ∪ {e ∈ ∂T \� : T ∈ Th and T ⊂ �2}.

The subset of Eh interior to � is denoted by E i
h.

Table 8 contains the first 5 Maxwell eigenvalues computed by Eigensolver 3 using such
nonconforming meshes. It shows that Eigensolver 3 remains second order accurate and it
generates no spurious eigenvalues, and its performance is comparable with the performance
on conforming meshes (Table 6).

5 Detection of Spurious Eigenmodes

In this section we discuss numerical techniques that can detect the spurious eigenmodes
generated by the T-type and N-type variants of Eigensolver 1 introduced in Sect. 4.1.2 and
turn these variants into effective Maxwell eigensolvers. These techniques may also con-
tribute to the development of methods that can detect spurious eigenmodes generated by
other Maxwell eigensolvers (cf. for example [5, 23]).

Given w ∈ Vh, we define

|w|t,h =
{∑

e∈Eh

[�μ(e)]2

|e|
∫

e

[[w]]2
t ds

}1/2

, (5.1)

|w|div,h =
{∑

e∈E i
h

[�μ(e)]2

|e|
∫

e

[[w]]2
n ds

}1/2

. (5.2)

Note that |w|t,h measures the conformity of w with respect to the space H0(curl;�), while
|w|div,h measures the conformity of w with respect to the space H(div;�) (and hence the
space H(div0;�), since vector fields in Vh are locally divergence-free).

Since the Maxwell eigenfunctions defined by (1.1) belong to H0(curl;�) ∩ H(div0;�),
in order for a sequence of discrete eigenfunctions {vh}h with vh ∈ Vh to approximate an
eigenfunction, the following conditions are necessary:

lim
h→0

|vh|t,h = 0, (5.3)
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lim
h→0

|vh|div,h = 0. (5.4)

This is confirmed by examining the log-log plot of | ◦
uh |div,h (resp. | ◦

u |t,h) versus n = π/h

on the left (resp. right) side of the top row of Fig. 13, where
◦
uh is the discrete eigenfunction

for the square (0,π)2 computed by Eigensolver 1 and normalized so that ‖ ◦
uh ‖L2(�) = 1.

We can see that both | ◦
uh |div,h and | ◦

uh |t,h for the discrete eigenfunctions corresponding
to the first 20 discrete eigenvalues decay steadily to 0, mirroring the fact that the discrete
eigenfunctions computed by Eigensolver 1 converge to the Maxwell eigenfunctions (Theo-
rem 3.1).

We have also computed the first 20 eigenvalues for the square (0,π)2 by the T-type
variant of Eigensolver 1 defined by (4.1) with Cp,n = 0 and Cp,t = 30. On the bottom row of

Fig. 13, we present the log-log plots of | ◦
uh |div,h (left) and | ◦

uh |t,n (right) versus n = π/h,

where the
◦
uh’s are the normalized discrete eigenfunction. We can see that (5.3) and (5.4)

hold for some but not all discrete eigenfunctions, which agree with the plot in the middle
row on the left of Fig. 6 and demonstrate the existence of spurious eigenmodes for the T-type
variant.

To better understand the behavior of these numerical eigenfunctions, we present the data
in a different way in Fig. 14, where bright colors indicate the violation of (5.4) (left) or (5.3)
(right). Based on Figs. 13 and 14, we can assert, for example, that (i) when n = 50, the
11th, 14th, 19th numerical eigenvalues are spurious, (ii) when n = 70, the 11th, 14th and
17th numerical eigenvalues are spurious, and (iii) when n = 85, the 9th, 14th and 15th
numerical eigenvalues are spurious. These assertions agree with the results in Fig. 6. Under
a more careful examination of the numerical results, one can conclude that (5.3) and (5.4)
are necessary and sufficient for the numerical eigenvalues computed by the T-type variant
of Eigensolver 1 to approximate physical Maxwell eigenvalues.

We have also performed a similar numerical study for the L-shape domain, computing
the first 10 discrete eigenvalues by the TN-type, T-type and N-type variants using graded
meshes. The plots in Figs. 15 and 16 confirm that both the TN-type and T-type variants
produce accurate approximations for the Maxwell eigenvalues. The same holds for the N-
type variant, except for the 3 spurious zero eigenvalues. These results are consistent with the
plots in Fig. 7.

Similar tests can also be performed for the variants of Eigensolver 2 and Eigensolver 3,
as long as the definitions of (5.1) and (5.2) are modified accordingly. For instance, to detect
spurious eigenmodes for the variants of Eigensolver 2, one needs to modify the definition of
(5.2) to include the numerical divergence contributed by

∑
T ∈Th

‖∇h · w‖2
L2(T ).

6 Concluding Remarks

Our previous work [8–10] on the source problem for the time-harmonic Maxwell equations
indicates that the Maxwell eigenproblem (1.1) can also be solved by nonconforming finite
element methods. However, only Eigensolver 3 has been analyzed in [9]. In this paper we
have presented a unified analysis and performed thorough numerical tests for all three non-
conforming Maxwell eigensolvers.

Our results show that these Maxwell eigensolvers have optimal order convergence on
properly graded meshes and they do not generate any spurious eigenmodes even on relatively
coarse meshes. Furthermore, they impose just the right amount of continuity across element
interfaces without having to choose any parameters.
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Fig. 13 Log-log plots of | ◦
uh |div,h (left) and | ◦

uh |t,n (right) versus n, where n = π/h, for the TN-type
eigensolver (top, with Cp,n = Cp,t = 1 in (4.1)) and the T-type eigensolver (bottom, with Cp,n = 0 and
Cp,t = 30 in (4.1)) on (0,π)2 with conforming uniform meshes
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Fig. 13 (Continued)
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Fig. 14 | ◦
uh |div,h (left) and | ◦

uh |t,h (right) versus different n = π/h, for normalized discrete eigenfunc-
tions corresponding to the first 20 numerical eigenvalues computed by the T-type variant of Eigensolver 1
(with Cp,n = 0 and Cp,t = 30 in (4.1)) on (0,π)2 using conforming uniform meshes
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Fig. 15 Log-log plots of | ◦
uh |div,h (left) and | ◦

uh |t,n (right) versus n, where n = 1/(2h), for the TN-type
eigensolver (top, with Cp,n = Cp,t = 1 in (4.1)) the T-type eigensolver (middle, with Cp,n = 0 and
Cp,t = 25 in (4.1)) and the N-type eigensolver (bottom, with Cp,n = 25 and Cp,t = 0 in (4.1)) on the
L-shape domain with graded meshes
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Fig. 15 (Continued)
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Fig. 15 (Continued)
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Fig. 16 | ◦
uh |div,h (left) and | ◦

uh |t,h (right) versus different n = 1/(2h), for normalized discrete eigenfunc-
tions corresponding to the first 10 numerical eigenvalues computed by the T-type variant of Eigensolver 1
(top, with Cp,n = 0 and Cp,t = 25 in (4.1)) and the N-type variant of Eigensolver 1 (bottom, with Cp,n = 25
and Cp,t = 0 in (4.1)) for the L-shaped domain using graded meshes
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Fig. 16 (Continued)
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We have demonstrated the capability of these eigensolvers for multiply connected do-
mains and nonconforming meshes. We have also developed numerical techniques that can
detect the spurious eigenmodes generated by some variants of these eigensolvers.

Our schemes can be extended to the higher order vector finite elements proposed in [11].
The extension to three dimensional electromagnetic problems as well as the development of
fast solvers for these schemes are subjects of our ongoing research.

Acknowledgement The authors would like to thank Guido Kanschat for helpful discussions concerning
the material in Sect. 5.
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