
J Sci Comput (2009) 39: 189–205
DOI 10.1007/s10915-008-9257-x

A Fast Marching Method for Hamilton-Jacobi Equations
Modeling Monotone Front Propagations

Emiliano Cristiani

Received: 17 February 2008 / Revised: 26 June 2008 / Accepted: 18 November 2008 /
Published online: 3 December 2008
© Springer Science+Business Media, LLC 2008

Abstract In this paper we present a generalization of the Fast Marching method introduced
by J.A. Sethian in 1996 to solve numerically the eikonal equation. The new method, named
Buffered Fast Marching (BFM), is based on a semi-Lagrangian discretization and is suit-
able for Hamilton-Jacobi equations modeling monotonically advancing fronts, including
Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Isaacs equations which arise in the frame-
work of optimal control problems and differential games. We also show the convergence of
the algorithm to the viscosity solution. Finally we present several numerical tests comparing
the BFM method with other existing methods.

Keywords Fast Marching methods · Front propagation · Semi-Lagrangian schemes ·
Hamilton-Jacobi equations · Optimal control problems

1 Introduction

The Fast Marching (FM) method is a numerical method for the eikonal equation

{
c(x)|∇T (x)| = 1 x ∈ R

n\�0

T (x) = 0 x ∈ ∂�0
(1)

where �0 is a closed set and c : R
n → R is Lipschitz continuous and strictly positive. This

equation appears in front propagation problems in which the interface propagates in nor-
mal direction with speed c(x), more precisely the t -level set of its viscosity solution T is
the interface at time t . The interface at time t = 0 is given by �0 = ∂�0. The FM method

This research was partially supported by the MIUR Project 2006 “Modellistica Numerica per il Calcolo
Scientifico ed Applicazioni Avanzate” and by INRIA–Futurs and ENSTA, Paris, France.

E. Cristiani (�)
via Nazario Sauro 21A, 00012 Villanova di Guidonia (RM), Italy
e-mail: emiliano.cristiani@gmail.com

mailto:emiliano.cristiani@gmail.com

190 J Sci Comput (2009) 39: 189–205

is officially born with the paper of Sethian [20] in 1996 (see also his book [21]). Before
that, Tsitsiklis [25] already proposed a slightly different Dijkstra-like algorithm based on
a control-theoretic discretization which contains all the basic ideas of the FM technique.
The method is very powerful because it is able to compute the viscosity solution of (1)
much faster than any other iterative algorithms in which every node of the grid is computed
at every iteration. Its computational cost is O(N lnN) where N is the total number of grid
nodes. Since its first appearance, it was applied in many fields like mesh generation, seismol-
ogy, geodesic computation, image and video segmentation, image enhancement, dislocation
dynamics and so on.

The original FM method is based on the following up-wind first-order finite difference
approximation (we choose n = 2 to avoid cumbersome notations)

(max{max{D−
x ,0},−min{D+

x ,0}})2

+ (max{max{D−
y ,0},−min{D+

y ,0}})2 = c−2
i,j (2)

where D−
x = Ti,j −Ti−1,j

�x
, D+

x = Ti+1,j −Ti,j

�x
(and analogous definition for D+

y and D+
y) and

Ti,j = T (i�x, j�y) as usual. The FM technique consists in computing the values at the
nodes in a special order such that convergence is reached in just one iteration. At a generic
step of the algorithm the grid nodes are divided in three sets, accepted, narrow band and
far nodes. The accepted nodes are those where the solution has been already computed and
where the value can not change in the following iterations. The narrow band nodes are the
nodes where the computation actually takes place and their value can still change at the
following iterations. Finally, the far nodes are the remaining nodes where an approximate
solution has not been computed yet. In physical terms, the far nodes are those in the space
region which has not been touched by the front yet, the accepted nodes are those where the
front has already passed through and the narrow band nodes are, iteration by iteration, those
lying in a neighborhood of the front. The crucial point is how the nodes in the narrow band
are chosen to become accepted. This condition must guarantee that the value of those nodes
can not change in following iterations. In the classical FM method the criterion is picking
the node (only one at a time) with the minimal value.

In the last decade many authors tried to improve the FM method in both velocity and
accuracy. Other papers were devoted to the extension of the FM method to more general
equation. This is probably the most difficult task since the FM method strictly relies on
some particular properties of the eikonal equation as we will see in Sect. 2.2.

Kimmel and Sethian [16] extended the FM method to triangulated domains on mani-
folds preserving the same computational complexity (see also [23]). Again Kimmel and
Sethian [17] extended the FM method to an equation of the form (1) in which c depends on
x and T itself. They apply their result to the solution of the Shape from Shading problem.

Sethian and Vladimirsky [22] extended the FM method to equation of the form (1) in
which c depends on x and ∇T/|∇T | on unstructured grids. This equation includes the case
of the anisotropic front propagation problem. The authors explain in detail the limitations
of the classical FM technique and how they can be overcome. Unfortunately they did not
perform many numerical tests and did not present CPU times needed for computations.
Prados [18] proposed an interesting generalization of the FM method to solve Hamilton-
Jacobi-Bellman equations. The new method changes the way a node is accepted, it is not
the node with the minimal value T in the narrow band but it is the node with the minimal
value T − φ where φ is a viscosity subsolution of the equation. Of course this can not be
considered a real numerical method because a subsolution must be known, nevertheless this
procedure can be a useful suggestion for further developments.

J Sci Comput (2009) 39: 189–205 191

The papers [13, 14] made a comparative study of FM method and other existing methods
for the eikonal equation, in particular with the Fast Sweeping method (see [19, 24] and
references therein) which can overcome FM method in some situations. Carlini et al. [4, 5]
extended the FM method to the evolutive eikonal equations modeling non-monotone front
propagation problems in which the velocity c of the front can change sign in space and/or in
time. The authors apply their results to the simulation of the dislocation dynamics in which
the velocity c does not depend locally on a point x but is given in an integral form.

Vladimirsky [26] deals with equations of the form (1) in which c depends on x, ∇T (x)

and T . He presents a rigorous analysis and some numerical experiments.
The author and Falcone [9] introduced the Characteristic FM method for the eikonal

equation which, similarly to Kim [15], accepts more than one node at the same time and it
is faster than the FM method in most cases. Again the author and Falcone [7] (see also [6])
introduced the FM method based on the semi-Lagrangian discretization in the framework
of control theory and minimum time problem. The semi-Lagrangian scheme is proved to
be more accurate than the finite difference scheme classically used in FM method although
they are both first order schemes.

In this paper we introduce a new FM method based on a semi-Lagrangian discretization
which is able to compute an approximate solution of Hamilton-Jacobi equations model-
ing front propagation problems in which the front does not pass more than one time on
the same point. This class of equations includes Hamilton-Jacobi-Bellman and Hamilton-
Jacobi-Isaacs equations which arise in the framework of optimal control problems and differ-
ential games. The new method, named Buffered Fast Marching, uses a forth set (the buffer)
in addition to the sets accepted, narrow band and far to menage the nodes. The buffer is
in the middle between the narrow band and the accepted zone and contains the nodes until
they can be accepted once and for all. The size of the buffer depends on the anisotropy of the
problem. In the case of the eikonal equation (1) (corresponding to an isotropic front propa-
gation) the buffer disappears and the Buffered Fast Marching method changes back into the
Fast Marching method.

The paper is organized as follows. In Sect. 2 we introduce the equations we deal with and
we recall the FM method for the eikonal equation based on the semi-Lagrangian discretiza-
tion introduced in [7]. We also show why the FM technique does not work for more general
equations. In Sect. 3 we introduce the Buffered Fast Marching (BFM) method, detailing the
algorithm and its properties. Finally in Sect. 4 we present some numerical tests on a series
of benchmarks commenting the general behavior of the solutions and CPU times.

2 Background

In this section we introduce the equations we deal with and we recall the FM method based
on the semi-Lagrangian discretization introduced in [7]. It will be the foundation of the
Buffered FM method proposed here. We also recall the limitations of the FM method.

2.1 Related Equations

A front propagation problem consists in recovering the position of a front �t : R
+ → R

n

(for example the interface between two layers) at any time t starting from an initial configu-
ration �0. We denote by �t the region inside the front �t . One of the most popular method
to face this kind of problem is the level set method [21] in which we look for a function

192 J Sci Comput (2009) 39: 189–205

u : R
n × R

+ → R such that �t = {x ∈ R
n : u(x, t) = 0}. It is well known that the function u

is solution of the following PDE

ut (x, t) + φ(x, t, u(x, t),∇u(x, t)) · ∇u(x, t) = 0, x ∈ R
n, t > 0 (3)

where φ is the velocity of the front (note that it can also depend on u(·) all over the domain
and on higher order derivatives as well) and the initial condition u(x,0) is chosen as the
signed distance function from �0. If the velocity field φ is such that the front did not pass
for any point x more than one time the evolution is said to be monotone, i.e.

�t1 ⊂ �t2 for any t1 < t2. (4)

If (4) is satisfied, it is proved in [21] that the front can be recovered by �t = {x ∈ R
n :

T (x) = t} where T is the viscosity solution of the following time-independent equation

φ(x,T ,∇T) · ∇T (x) = 1, x ∈ R
n\�0 (5)

where we use again the symbol φ for the velocity with an abuse of notation. If the direc-
tion of the velocity is normal to the interface the function φ has the form φ(x,T ,∇T) =
c(x) ∇T

|∇T | , so (5) can be written as c(x)|∇T (x)| = 1 (eikonal equation).

By the Kružkov transform v(x) = 1 − e−T (x), (5) becomes

v(x) + φ(x, v,∇v) · ∇v(x) − 1 = 0, x ∈ R
n\�0. (6)

This equation is very general and is found in many applications, for example in the minimum
time problem as follows [1, 6]. Let us consider the controlled nonlinear dynamical system

{
ẏ(t) = f (y(t), a(t)), t > 0
y(0) = x

(7)

where y(t) is the state of the system, a(·) ∈ A is the control of the player, A being the set of
admissible controls defined as

A = {a(·) : [0,+∞) → A, measurable},

and A is a given compact set of R
m. Assume hereafter f : R

n × A → R
n to be continuous

in both variables and Lipschitz continuous with respect to y uniformly in a. The unique tra-
jectory solution of (7) will be denoted by yx(t;a(·)). In the minimum time problem the final
goal is to find an optimal control a∗(t) such that the corresponding trajectory yx(t;a∗(·))
minimizes over all admissible trajectories the time needed by the system to reach a given
closed target T ⊂ R

n. The optimal control a∗(t) can be computed by means of the value
function T defined as

T (x) := inf
a(·)∈A

min{t : yx(t;a(·)) ∈ T } (8)

where we set T (x) := +∞ if yx(t;a(·)) /∈ T for all a(·) ∈ A and t ≥ 0. By the Dynamic
Programming Principle it can be shown that v = 1 − e−T is the viscosity solution of

{
v(x) + maxa∈A{−f (x, a) · ∇v(x)} − 1 = 0 x ∈ R

n\T
v(x) = 0 x ∈ ∂T .

(9)

J Sci Comput (2009) 39: 189–205 193

Equation (9) is known as the Hamilton-Jacobi-Bellman equation for the minimum time
problem. Note that v is always in the interval [0,1] while T is in general unbounded. Finally
note that defining

a∗(x,∇v(x)) := arg max
a∈A

{−f (x, a) · ∇v(x)},

φ(x,∇v(x)) := −f (x, a∗(x,∇v(x))) and �0 := T

equation (9) takes the general form (6).
In order to discretize (9), we will introduce a structured grid G denoting its nodes by

xi , i = 1, . . . ,N , i.e. G = {xi , i = 1, . . . ,N}. It was proved in [2] that the semi-Lagrangian
scheme stems from a discrete version of the Dynamic Programming Principle (see f.e. [1]),
this leads to the equation

{
w(xi) = mina∈A{βw(xi − hf (xi, a))} + 1 − β for xi ∈ G\T
w(xi) = 0 for xi ∈ G ∩ T (10)

where w is an approximation of v, β = e−h, h is a discretization step and we defined w = 0
also in the internal nodes of T . We use a linear interpolation to approximate the value
w(xi −hf (xi, a)). It has been shown in [11] that (10) has a unique solution w in the class of
piecewise linear functions defined on the grid. It can be computed by a fixed point technique,
iterating until convergence

w(k+1) = �(w(k)) k = 0,1,2, . . . (11)

where �(w)i = mina∈A{βw(xi − hf (xi, a)} + 1 − β and w(0) is equal to 0 in G ∩ T
and 1 elsewhere. Since we want to use just the three nearest nodes to xi to compute
w(xi − hf (xi, a)), we choose h = h(xi, a) = �x/|f (xi, a)|. Of course the constant β = e−h

must be included in the minimum over a’s.
We also recall the Hamilton-Jacobi-Isaacs equation which arises in the framework of

differential games [1, 12],
{

v(x) + minb∈B maxa∈A{−f (x, a, b) · ∇v(x)} − 1 = 0 x ∈ R
n\T

v(x) = 0 x ∈ ∂T .
(12)

Here f is the dynamics for the game, A and B are two compact sets in R
m representing re-

spectively the control sets for the first player and the second player. The two players can both
steer the system, the first wants the system reaches the target T in the minimum time while
the second player wants the system goes away for ever. The value function T = − ln(1 − v)

represents the time to reach the target if both players play optimal nonanticipative strategies.

2.2 The Semi-Lagrangian FM Method and Its Limitations

It is easy to show that choosing in (9)

f (x, a) = c(x)a, A = B(0,1), T = �0

and re-writing the equation in T = − ln(1 − v), we get back to the eikonal equation (1). In
the particular framework of the eikonal equation it was introduced in [7] the FM method
based on the semi-Lagrangian discretization and it was proved that the new algorithm is
slightly slower than the original FM method but much more accurate.

194 J Sci Comput (2009) 39: 189–205

The idea which is behind the semi-Lagrangian FM method is rather simple: we follow
the initialization and all the steps of the classical FM method but the step where the value at
the node xi is actually computed where we use the semi-Lagrangian scheme instead of the
finite difference scheme.

As we said in the introduction, in the last ten years the extensions of the FM method to
more general equations were quite timid and limited to equations very similar to (1). This
is due to the fact that the method strictly relies on its physical interpretation based on the
isotropic front propagation problem. From the mathematical point of view, it appears that
labeling as accepted the node in the narrow band with the minimal value is suitable only
in the case the characteristic curves of the equation coincide with the gradient lines of its
solution. This is due to the fact that accepting the minimal value in the narrow band means
to compute v (or T) in the ascending order and then to maintain the right up-winding only
in the case the optimal control a∗(x) := arg maxa∈A{−f (x, a) · ∇v(x)} satisfies

a∗(x) = − ∇v(x)

|∇v(x)| .

This is the case for the eikonal equation but it is not true in the general case. As stated in the
Criterion 5.1 of [22], the FM method fails exactly where characteristic and gradient lines lie
in different simplices (but it is able to compute the right solution elsewhere, even if the two
directions do not coincide exactly).

In the case of differential games it is even clearer that the accepting-the-minimum rule
of the FM technique can not work. In fact, the optimal trajectory for the second player aims
for the higher values of the value function v.

3 The Buffered Fast Marching Method

In this section we present the new method in detail. We also present a convergence result
and some considerations about the computational cost.

3.1 Main Idea of the BFM Method

As we explained in Sect. 2.2, the update procedure of FM method is not suitable for the
numerical solution of equations different from the eikonal equation. On the contrary the
BFM method is designed to solve correctly and rapidly any equation of the form (6).

In the proposed algorithm, the node in the narrow band with the minimum value is not
accepted as it happens in the FM method but it is moved in a buffer. All the nodes in the
buffer are recomputed at each step of the algorithm until it is sure that their value can not
change any more, this is guaranteed by a local condition which will be introduced below.
After that, they are finally labeled as accepted (see Fig. 1).

Note that the size of the buffer strictly depends on the anisotropy coefficient and so the
computational cost does.

We choose how the nodes go out from the buffer as follows. In a copy of the matrix
where the computation is being performed we substitute the value v = 1 for all the values
in the narrow band. Then we compute until convergence the nodes in the buffer iterating the
computation (for example (11)). After that, we repeat the procedure substituting the value
v = 0 for all the values in the narrow band. Finally, we look for the nodes whose values have
not changed in the two steps. In other words, we treat the narrow band as part of the boundary
of the computation domain, imposing at nodes in it two different boundary conditions. The

J Sci Comput (2009) 39: 189–205 195

Fig. 1 Division of the nodes:
target, accepted, part of the buffer
which is going to be accepted,
buffer, narrow band and far

first one is v = 1, that is the maximum value a node can assume and the second is v = 0
that is the minimum value a node can assume. Clearly, if a node does not change its value
after this kind of modification it means that its value does not depend on the next steps of
the algorithm whatever it happens and then it can be labeled as accepted.

3.2 The Algorithm

Let us introduce the algorithm. In the following, the narrow band will be denoted by NB and
the buffer by BUF. We also introduce the following

Definition 3.1 (Neighboring nodes for the semi-Lagrangian scheme) Let the dimension n

be 2 and let xi,j be a node. We define the set of neighboring nodes to xi,j as

NSL(xi,j) := {xi±1,j , xi,j±1, xi+1,j+1, xi+1,j−1, xi−1,j+1, xi−1,j−1}.

The nodes in NSL(xi,j) are the nodes that appear in the stencil of the first order semi-
Lagrangian discretization. The above definition can be easily extended to the n-dimensional
case.

The BFM algorithm

Initialization

• Locate the nodes belonging to the initial front �0 = ∂�0 = ∂T and label them as accepted.
They form the set �̃0. Impose v(�̃0) = 0 (corresponding to T (�̃0) = 0).

• Define NB as the set of the nodes belonging to NSL(�̃0), external to �0.
• Iterate the computation in NB until convergence (as in the classical fixed point method).
• Label the remaining nodes as far, setting their values to v = 1 (corresponding to

T = +∞).

Main Cycle

1. Let A be the node with the minimum value among all the nodes in NB. Find A, remove
it from NB and insert it in BUF. Move the far nodes of NSL(A) into NB and (re)compute
the nodes in NSL(A) which are not accepted.

2. Compute all the nodes in BUF until convergence (as in the classical fixed point method).
3. In a copy of the matrix where the computation is being performed, substitute v = 1 for

the value of the nodes in NB. Then iterate the computation on all the nodes in BUF until
convergence.

196 J Sci Comput (2009) 39: 189–205

4. Again in the copy of the matrix, substitute v = 0 for the value of the nodes in NB. Iterate
again the computation on all the nodes in BUF until convergence.

5. Remove from BUF and label as accepted the nodes whose value is not changed in the
two previous steps.

6. If NB is not empty go back to step 1, otherwise iterate the computation on all the nodes
in BUF until convergence and stop computation.

Remark 3.1 It is possible that in step 1 of the main cycle the node A is not unique. In this
case, the procedure described for the node A can be repeated for all other nodes with the
same value before passing to step 2.

Real Implementation

Unfortunately, the described algorithm can be slower than the classical iterative scheme in
many situations. Nevertheless, some tricks can speed up the computation. The real imple-
mentation of the method includes all the following modifications.

M1. Assuming that the solution is increasing along characteristics (this is the typical situ-
ation in the minimum time problem, for example) we use the current minimal value
vmin in the NB instead of v = 0 in step 4. In fact the values of not-yet-accepted nodes
will be greater than vmin in the following iterations.

M2. We perform steps 2–5 every p > 1 executions of the main cycle. It seems that p =
p(N) = √

N/2 is a good choice in most cases (N being the total number of nodes
and the dimension of the problem being 2). This leads to a larger buffer but to a faster
algorithm.

M3. It is not really needed to store a second matrix to perform intermediate computations
described in steps 3 and 4. Saving the values of narrow band and buffer nodes in the
same dynamic lists which contain their indexes, we can modify the full matrix and
then easily restore the old (right) values. This leads to a faster algorithm and a gain in
memory requirement.

M4. In step 5 we accept the nodes such that their variation is smaller than a given quantity ε.
M5. In steps 3 and 4 it is not needed to be very accurate because we are just interested if the

values in BUF change or not. So we iterate the computation for each node xi,j until

|w(k+1)(xi,j) − w(k)(xi,j)| < ε′, k = 0,1, . . .

M6. The step 3 is completely skipped because the far zone already plays the role of a mov-
ing boundary condition with values v = 1. Moreover, in step 2 all the nodes in BUF
are computed just once.

Remark 3.2 Modifications M1, M2 and M3 does not modify the solution with respect to
the ideal algorithm. They are just tricks to speed-up the convergence. Modifications M4 and
M5 produce an error in the solution which is expected to vanish as ε and ε′ tend to zero (as
confirmed by numerical tests). Modification M6 seems to not affect the solution, but this is
just an experimental evidence.

Remark 3.3 (BFM as generalization of FM) Let us consider the case of the eikonal equa-
tion (1) (isotropic front propagation) and include in the algorithm the “natural” modification
M1, but not M2. Then the buffer’s size is never greater than one and the BFM method
changes back into the FM method. To prove this, let us define the node A as in step 1. We
easily note that it is not possible that the value v(A) changes in step 2. In fact, if it changes, it

J Sci Comput (2009) 39: 189–205 197

means that it can be still improved, and this is in contradiction with the prove of convergence
of the FM method given in [7].

We can conclude by contradiction as follows. If the node A inserted in BUF in step 1
does not exit BUF in step 5, then the value v(A) has changed in step 3 or step 4 modified.
This implies that the value v(A) was influenced by values greater or equal than itself, and
this is not possible for the eikonal equation.

3.3 Properties of the BFM

To prove the convergence of the algorithm to the viscosity solution of (6) we adopt the fol-
lowing strategy. We show that the BFM computes the same solution of the classical iterative
algorithm and then we recover convergence and a priori estimates by the results already
available for that scheme (see f.e. [1] for Hamilton-Jacobi-Bellman equations).

Proposition 3.1 (Convergence to the viscosity solution) Assume (6) has a unique viscosity
solution. Let v̄ : G → [0,1] be its discrete solution computed by the classical iterative (fixed
point) scheme based on a convergent numerical scheme and v : G → [0,1] be the discrete
solution of the same equation computed by the BFM method based on the same scheme.
Then v̄(X) = v(X) for any node X ∈ G.

Proof By induction on the cycles of the algorithm. Let us denote respectively by ACC(s),
BUF(s), NB(s) and FAR(s) the sets of nodes accepted, buffer, narrow band and far at the
generic cycle s of the algorithm. Let A(s) = arg minX∈NB(s){v(X)} be the node with the min-
imal value in NB(s).

We will prove that, for any s ≥ 0,

NSL(BUF(s)) ∩ FAR(s) = ∅ (13)

and

v(X) = v̄(X) for any X ∈ ACC(s) (14)

and then we easily conclude. For s = 0, assertion (13) is clearly true since BUF(0) = ∅. Also
assertion (14) is true because ACC(0) = �̃0 and the values v(�̃0) and v̄(�̃0) are imposed by
the boundary condition on �̃0.

Going from cycle s to cycle s + 1, we have (see step 1 and 5)

BUF(s+1) = (BUF(s) ∪ {A(s)}) \ (ACC(s+1)\ACC(s))

and

FAR(s+1) = FAR(s) \ (NSL(A
(s)) ∩ FAR(s)).

As a consequence, the only new node in BUF(s+1) is surrounded by nodes not in FAR(s+1).
Then we have

NSL(BUF(s+1)) ∩ FAR(s+1) = ∅.

In order to show that (14) is true for s + 1, let us define the numerical boundaries of
BUF(s) as follows (see Fig. 2)

�
(s)

ACC = {X ∈ ACC(s) : NSL(X) ∩ BUF(s) �= ∅},
�

(s)
NB = {X ∈ NB(s) : NSL(X) ∩ BUF(s) �= ∅}.

198 J Sci Comput (2009) 39: 189–205

Fig. 2 The buffer zone and its
boundaries

Clearly we have �
(s)

ACC ∩ �
(s)
NB = ∅ since ACC(s) ∩ NB(s) = ∅. By (13), the nodes in BUF(s)

are surrounded only by nodes in ACC(s) and NB(s) (and BUF(s) itself, of course) so that the
values of the nodes in �

(s)

ACC and �
(s)
NB play the role of two boundary conditions for BUF(s).

The algorithm produces three solutions in BUF(s),

v(s) with v(�
(s)
NB) and v(�

(s)

ACC) unchanged,

v
(s)

1 with v(�
(s)
NB) = 1 and v(�

(s)

ACC) unchanged,

v
(s)

0 with v(�
(s)
NB) = 0 and v(�

(s)

ACC) unchanged,

and we have

ACC(s+1) = ACC(s) ∪ {X ∈ BUF(s) : v(s)(X) = v
(s)

1 (X) = v
(s)

0 (X)}.

By (14) we know that v(�
(s)

ACC) = v̄(�
(s)

ACC) while any boundary condition on �
(s)
NB has not

influence for the new accepted nodes. As a consequence, the iterative algorithm and the
BFM method must compute the same solution in ACC(s+1)\ACC(s) and then v(ACC(s+1)) =
v̄(ACC(s+1)). �

3.4 Some Considerations on the Computational Cost

We always denote by N the total number of nodes in the grid. We assume for simplicity that
we are working on a square grid in dimension 2 so each dimension has

√
N nodes.

Classical Iterative Method The iterative (fixed point) method consists in computing the
solution of the equation on every node of the grid until convergence is reached. Since it
needs O(

√
N) iterations to converge, its complexity is of order O(N

√
N)

FM Method The FM method has a complexity of order O(N lnNNB) where NNB is the
number of nodes in the narrow band (it varies at each step). NNB is bounded by N but in
general it is expected to be of order

√
N because the front has dimension 1, so its computa-

tional cost is O(N ln
√

N). The term O(ln
√

N) comes from the need of keeping an order in
the list containing the nodes of the narrow band (f.e. by an heap-tree structure), so that it is
fast to pick the node with the minimal value at each step. To this end it is important to note

J Sci Comput (2009) 39: 189–205 199

that the sequence of the minimal values of the narrow band is in many cases very close to be
increasing, this means that a simple insertion sort is not so costly as in the randomly-ordered
case. For this reason we did not implement an heap structure to store the nodes but a simple
dynamic linked list. By experiments it seems that the factor O(ln

√
N) is in fact O(1) for

two dimensional problems and a relatively small number of nodes (otherwise this is not true,
see for example [3]).

BFM Method As we already remarked, in the case of isotropic front propagation problems
the BFM method changes back into the FM method. So we expect a computational cost of
the same order in the best case. In the worse case the buffer becomes larger and larger and
we need to solve an iterative problem on the buffer to accept just few nodes or even any
node at all. This leads to a computational cost greater than that of the iterative algorithm.
Experiments says (see next section) that BFM method behaves like FM method in most
cases, although the constant in front of N ln

√
N is larger for the BFM method (of course

BFM method can deal with more general equations).

4 Numerical Tests

In this section we perform some tests on equations of the form (9) and (12). The aim is to
compare numerical results and CPU times for the classical iterative method, the FM method
and the BFM method (with modifications M1–M6). For the classical iterative method we
use the Fast Sweeping (FS) technique to speed up the convergence. This technique consists
in computing over the grid in four alternate directions (for example from North to South,
from South to North, from East to West and from West to East) until convergence is reached
(see [19, 24] and references therein for details). The algorithms are implemented in C++
on a PC with a Pentium IV 2.60 GHz processor and 256 MB RAM. In the following we
will consider the solution of the iterative method as the exact solution and we compute the
error of the other two methods with respect to that solution. Although this is obviously not
true (semi-Lagrangian scheme can produce bad results in some cases due to the numerical
diffusion) we can not expect neither FM nor BFM overcome the iterative method since
the three methods are based on the same numerical scheme. We compare the methods on
512, 1012 and 2012 structured grids (the number of nodes is chosen to have a grid node
corresponding to the point (0,0)).

Computation is done in a square domain Q on a structured grid. As stopping criterion
for the iterative Fast Sweeping method we used

‖v(k+1) − v(k)‖∞ < 10−16.

The L1 error is defined as

E1 = 1

|Q|
∫ ∫

Q

|T − T FS |

where T is the solution computed by FM or BFM and T FS is the solution computed by FS.
Note that the difference with respect to the relative error Ẽ1 = 1

|Q|
∫∫

Q
|T −T FS |/T FS is not

significant so it will be not reported.
Except for the first test (eikonal equation), the FM method is known to compute an in-

correct solution and then it is not a real alternative to FS and BFM. Nevertheless we think
it is interesting to show the error and the CPU time for the FM method in order to study its
robustness with respect to the anisotropy of the problem.

200 J Sci Comput (2009) 39: 189–205

Table 1 Errors and CPU times for Test 1

Method �x N p ε E1 CPU time (s) CPU N → 4N

FS 0.08 512 – – – 0.04 –

BFM 0.08 512 25 10−3 0 0.07 –

FM 0.08 512 – – 0 0.02 –

FS 0.04 1012 – – – 0.17 4.2

BFM 0.04 1012 50 10−3 0 0.27 3.8

FM 0.04 1012 – – 0 0.1 5.0

FS 0.02 2012 – – – 0.7 4.1

BFM 0.02 2012 100 10−3 0 1.12 4.1

FM 0.02 2012 – – 0 0.38 3.8

For the BFM, the values of the parameters ε (see step M4) and p (see step M2) are
reported in the tables test by test while the value of ε′ (see step M5) is fixed to 10−6.

Test 1: Eikonal Equation

In this test we solve the eikonal equation |∇T (x, y)| = 1 in [−2,2]2 coupled with a Dirichlet
boundary condition T (0,0) = 0. This equation can be written in the form (9) choosing
f (x, y, a) = a and A = B(0,1) ⊂ R

2. We discretized the unit ball with 16 points equally
spaced on the boundary. The level sets of the solution T (x, y) = x2 + y2 correspond to
an isotropic front propagation so the FM method can be used. By Table 1 we can see that
the three methods compute the same solution. Here FS method needs just four iterations to
reach convergence. Nevertheless, FM is the fastest method. BFM is slower than FM due to
the time spent to menage the buffer (even if here the buffer contains only one node at each
step). The last column reports the ratio between the CPU time for a 4N grid and a N grid.
The value 5.0 for the FM with N = 1012 is not completely correct because the FM with
N = 512 is too fast to be precisely measured.

Test 2: Eikonal Equation on a Manifold

In this test we solve an anisotropic front propagation problem, choosing in (9)

f (x, y, a1, a2) = (a1, a2)√
1 + (5a1 + 5a2)2

, (a1, a2) ∈ B(0,1) ⊂ R
2

and Dirichlet boundary condition v(0,0) = 0. This choice corresponds to solving the eikonal
equation on the plane z = 5x + 5y (see [22]). The unit ball is discretized in 16 points and Q

is again [−2,2]2. In Fig. 3 we show the exact solution and the solution computed by the FM
method. As shown in [22], the FM method is not able to compute the right solution even if
we increase the number of nodes.

By Table 2 and Fig. 4 we see that the behavior of BFM is quite good since it preserves
the order of the scheme with a significant difference in CPU time.

Note that the error of BFM does not converge to zero as the grid is refined because we
used a fixed ε in all cases.

J Sci Comput (2009) 39: 189–205 201

Fig. 3 Test 2: exact solution (left) and solution computed by FM method (right), 101 × 101 grid

Table 2 Errors and CPU times for Test 2

Method �x N p ε E1 CPU time (s) CPU N → 4N

FS 0.08 512 – – – 0.37 –

BFM 0.08 512 25 10−3 0.02 0.09 –

FM 0.08 512 – – 0.87 0.02 –

FS 0.04 1012 – – – 2.49 6.7

BFM 0.04 1012 50 10−3 0.01 0.45 5.0

FM 0.04 1012 – – 1.02 0.09 4.5

FS 0.02 2012 – – – 13.55 5.4

BFM 0.02 2012 70 10−3 0.02 1.67 3.7

FM 0.02 2012 – – 1.01 0.4 4.4

Test 3: Lunar Landing

In this test we solve (9) with
{

f1(x, y, a) = y

f2(x, y, a) = a

and Dirichlet boundary condition v(0,0) = 0. We chose A = {−1,1}. This test correspond
to the classical one-dimensional minimum time problem in which the dynamics is ẍ = a and
a can be chosen in {−1,1}. This is a difficult test because of the strong mutual dependency
of nodes. Moreover, the effect of boundary condition is very strong so we decided to perform
computation on the domain [−5,5]2 and to analyze the results on the subdomain [−2,2]2.
Results are shown in Table 3.

As the grid size increases, we need to decrease the constant ε in order to maintain the
same order in the error. Not surprisingly, the FM computes a very inaccurate solution.

202 J Sci Comput (2009) 39: 189–205

Fig. 4 Test 2: solution computed by FS method (left) and BFM method (right)

Table 3 Errors and CPU times
for Test 3 Method �x N p ε E1 CPU time (s)

FS 0.2 512 – – – 0.13

BFM 0.2 512 12 10−3 0.07 0.01

FM 0.2 512 – – 1.54 0

FS 0.1 1012 – – – 0.67

BFM 0.1 1012 25 10−4 0.07 0.15

FM 0.1 1012 – – 3.21 0.02

FS 0.05 2012 – – – 3.91

BFM 0.05 2012 50 10−5 0.05 2.05

FM 0.05 2012 – – 6.11 0.11

Test 4: Tag-Chase Game with State Constraints

In this test we solve (12) with {
f1(x, y, a) = VAa

f2(x, y, b) = VBb

where a, b ∈ {−1,0,1}. This test models the one-dimensional Tag-Chase game where the
two players A and B are constrained to run in the segment [−2,2]. The game is set in
Q = [−2,2]2 ⊂ R

2. The velocities VA for the pursuer and VB for the evader are constant.
We choose VA = 2 and VB = 1. The axis of abscissas represents the coordinate xA of the
Pursuer and the axis of ordinate represents the coordinate xB of the Evader. The target is
T = {(xA, xB) : xA = xB} that is the set of point where the capture occurs (see [8, 10, 12] for
more details on the model and recent results on differential games with state constraints).

In Fig. 5 we show the exact solution with one optimal trajectory starting from the point
(−1.5,0). We show the result only in half domain due to the symmetry of the solution.
Clearly in this case characteristic and gradient lines does not lie on the same simplex so the
FM fails. In Fig. 6 we show the solution computed by FS (left) and by BFM (right). We can

J Sci Comput (2009) 39: 189–205 203

Fig. 5 Test 4: exact solution
with an optimal trajectory
starting from (−1.5,0)

Fig. 6 Test 4: solution computed by FS method (left) and BFM method (right)

see very well the effect of numerical diffusion due to the scheme but again the two solutions
are very similar.

FM and BFM Methods vs. Fast Sweeping Method

In this paper we used the Fast Sweeping technique to compute the solution of the classical
iterative scheme (11) because it is in general fast and robust and it is proved to converge to
the fixed point. The other advantage is that it is not restricted to isotropic front propagation
problems like FM method. Unfortunately it is very difficult to estimate the number of sweep-
ings needed to reach convergence in the case of a general velocity field but experiments say

204 J Sci Comput (2009) 39: 189–205

Fig. 7 A difficult test for the FS
method. The front moves in
normal direction with speed 1.
The rectangles represent
obstacles

that FS method is much faster than the classical iterative method where the nodes are visited
in only one fixed order.

Comparing FM/BFM and FS methods is not an easy task because their behavior is very
case-dependent. For example, test 2 was chosen to be “difficult” for FM/BFM methods be-
cause of the strong anisotropy. On the other hand, the same test is not so difficult for FS
method because the characteristic directions are straight lines to the origin and few sweep-
ings are enough to compute a good approximation of the viscosity solution. In test 2 the FS
method is faster than BFM method allowing the same L1 distance from the exact solution.

The result is reversed in the test described in Fig. 7. The choice of the velocity field
corresponds to an isotropic front propagation problem in presence of obstacles. The FS
method is slower than BFM method which is slower than FM method.

5 Conclusions

In this paper we introduced a new fast method to solve Hamilton-Jacobi equations modeling
a monotone front propagation problem, including Hamilton-Jacobi-Bellman and Hamilton-
Jacobi-Isaacs equations related to optimal control problems and differential games. Al-
though it does not compute exactly the same solution of the standard iterative (fixed point)
method based on the same first order semi-Lagrangian scheme, the new method is able to
compute a good approximation of the viscosity solution preserving the order of the scheme.
By the experiments, it seems that the computational cost is close to O(N) as for the FM
method, at least for two dimensional problems.

Acknowledgements The author wishes to thank Maurizio Falcone, Frederic Bonnans, Hasnaa Zidani,
Olivier Bokanowski, and Nicolas Forcadel for the useful discussions and suggestions.

J Sci Comput (2009) 39: 189–205 205

References

1. Bardi, M., Capuzzo Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman
Equations. Birkhäuser, Boston (1997)

2. Bardi, M., Falcone, M.: An approximation scheme for the minimum time function. SIAM J. Control
Optim. 28, 950–965 (1990)

3. Bokanowski, O., Cristiani, E., Zidani, H.: An efficient data structure to solve front propagation problems.
J. Sci. Comput. (2008, submitted)

4. Carlini, E., Cristiani, E., Forcadel, N.: A non-monotone Fast Marching scheme for a Hamilton-Jacobi
equation modelling dislocation dynamics. In: Bermúdez de Castro, A., Gómez, D., Quintela, P., Sal-
gado, P. (eds.) Proceedings of ENUMATH 2005 (Santiago de Compostela, Spain, July 2005). Numerical
Mathematics and Advanced Applications, pp. 723–731. Springer, Berlin (2006)

5. Carlini, E., Falcone, M., Forcadel, N., Monneau, R.: Convergence of a Generalized Fast Marching
Method for an eikonal equation with a velocity changing sign. SIAM J. Numer. Anal. 46, 2920–2952
(2008)

6. Cristiani, E.: Fast marching and semi-Lagrangian methods for Hamilton-Jacobi equations with ap-
plications. Ph.D. thesis, Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate,
SAPIENZA—Università di Roma, Rome, Italy (2007)

7. Cristiani, E., Falcone, M.: Fast semi-Lagrangian schemes for the Eikonal equation and applications.
SIAM J. Numer. Anal. 45, 1979–2011 (2007)

8. Cristiani, E., Falcone, M.: Numerical solution of the Isaacs equation for differential games with state
constraints. In: Proceedings of 17th IFAC World Congress (Seoul, Korea, July 6–11, 2008) (2008)

9. Cristiani, E., Falcone, M.: A characteristics driven Fast Marching method for the Eikonal equation.
In: Kunisch, K. Of, G., Steinbach, O. (eds.) ENUMATH 2007, Graz, Austria, September 10–14, 2007.
Numerical Mathematics and Advanced Applications, pp. 695–702. Springer, Berlin (2008)

10. Cristiani, E., Falcone, M.: Fully-discrete schemes for the value function of Pursuit-Evasion games with
state constraints. Ann. Int. Soc. Dyn. Games 10, 177–206 (2008, to appear)

11. Falcone, M.: The minimum time problem and its applications to front propagation. In: Visintin, A.,
Buttazzo, G. (eds.) Motion by Mean Curvature and Related Topics, pp. 70–88. de Gruyter, Berlin (1994)

12. Falcone, M.: Numerical methods for differential games based on partial differential equations. Int. Game
Theory Rev. 8, 231–272 (2006)

13. Gremaud, P.A., Kuster, C.M.: Computational study of fast methods for the eikonal equation. SIAM J.
Sci. Comput. 27, 1803–1816 (2006)

14. Hysing, S.-R., Turek, S.: The eikonal equation: numerical efficiency vs. algorithmic complexity on
quadrilateral grids. In: Proceedings of ALGORITMY 2005, pp. 22–31 (2005)

15. Kim, S.: An O(N) level set method for eikonal equations. SIAM J. Sci. Comput. 22, 2178–2193 (2001)
16. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifold. Proc. Natl. Acad. Sci. USA 95,

8431–8435 (1998)
17. Kimmel, R., Sethian, J.A.: Optimal algorithm for shape from shading and path planning. J. Math. Imag-

ing Vis. 14, 237–244 (2001)
18. Prados, E., Soatto, S.: Fast marching method for generic shape from shading. In: Paragios, N.,

Faugeras, O., Chan, T., Schnoerr, C. (eds.) Proceedings of VLSM 2005 (Third International Workshop
on Variational, Geometric and Level Set Methods in Computer Vision), October 2005. Lecture Notes
in Computer Science, vol. 3752, pp. 320–331. Springer, Berlin (2005). http://perception.inrialpes.fr/
Publications/2005/PS05

19. Qian, J., Zhang, Y.-T., Zhao, H.-K.: A fast sweeping method for static convex Hamilton-Jacobi equations.
J. Sci. Comput. 31, 237–271 (2007)

20. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad.
Sci. USA 93, 1591–1595 (1996)

21. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Evolving Interfaces in Computational
Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press,
Cambridge (1999)

22. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton–Jacobi equations: Theory
and algorithms. SIAM J. Numer. Anal. 41, 325–363 (2003)

23. Spira, A., Kimmel, R.: An efficient solution to the eikonal equation on parametric manifolds. Interfaces
Free Bound. 6, 315–327 (2004)

24. Tsai, Y.-H.R., Cheng, L.-T., Osher, S., Zhao, H.-K.: Fast sweeping algorithms for a class of Hamilton–
Jacobi equations. SIAM J. Numer. Anal. 41, 673–694 (2003)

25. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Automat. Control 40,
1528–1538 (1995)

26. Vladimirsky, A.: Static PDEs for time-dependent control problems. Interfaces Free Bound. 8, 281–300
(2006)

http://perception.inrialpes.fr/Publications/2005/PS05
http://perception.inrialpes.fr/Publications/2005/PS05

	A Fast Marching Method for Hamilton-Jacobi Equations Modeling Monotone Front Propagations
	Abstract
	Introduction
	Background
	Related Equations
	The Semi-Lagrangian FM Method and Its Limitations

	The Buffered Fast Marching Method
	Main Idea of the BFM Method
	The Algorithm
	Real Implementation

	Properties of the BFM
	Some Considerations on the Computational Cost
	Classical Iterative Method
	FM Method
	BFM Method

	Numerical Tests
	Test 1: Eikonal Equation
	Test 2: Eikonal Equation on a Manifold
	Test 3: Lunar Landing
	Test 4: Tag-Chase Game with State Constraints
	FM and BFM Methods vs. Fast Sweeping Method

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

