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Abstract We consider discontinuous Galerkin (DG) approximations of the Maxwell eigen-
problem on meshes with hanging nodes. It is known that while standard DG methods pro-
vide spurious-free and accurate approximations on the so-called k-irregular meshes, they
may generate spurious solutions on general irregular meshes. In this paper we present a
mortar-type method to cure this problem in the two-dimensional case. More precisely, we
introduce a projection based penalization at non-conforming interfaces and prove that the
obtained DG methods are spectrally correct. The theoretical results are validated in a series
of numerical experiments on both convex and non convex problem domains, and with both
regular and discontinuous material coefficients.

Keywords Discontinuous Galerkin methods · Maxwell’s equations · Eigenvalue
problems · Mortar methods

1 Introduction

The theory of discontinuous Galerkin (DG) approximations of the Maxwell eigenproblem
with discontinuous material coefficients was developed in [7]. In that paper, under the as-
sumption of regular meshes (i.e., with no hanging nodes), necessary and sufficient conditions
under which a given DG method provides a spurious-free approximation for the Maxwell
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eigenproblem were identified. Numerical experiments reported in [6] showed that standard
DG methods provide accurate and spurious-free approximations of the Maxwell eigenprob-
lem also on some non-regular meshes, namely on k-regular meshes, where the hanging
nodes are regularly spaced (the theory of [7] could be easily extended to this case). On the
other hand, on general non-regular meshes they may generate spurious solutions, according
to the results reported in [18] and in [6].

In this paper we introduce a cure of this problem in the two-dimensional case. We take
inspiration from the literature about domain decomposition methods on non-matching grids,
and the main ideas come from the mortar method which provides optimal treatment of non-
conforming interfaces. We refer the reader to [4] for the definition of the method, and to
[3] and [2] for its extensions to electromagnetic problems. More precisely, we introduce a
projection-based corrections for the treatment of jumps across the non-conforming inter-
faces. The method we propose is related to the mortar-Nitsche method (see e.g., [13]) since
a suitable mortar projection of jumps across the non-conforming interfaces is penalized. We
adopt this approach instead of the classical mortar technique because it is more coherent
with the discontinuous Galerkin paradigms.

As far as the spectral theory is concerned, the main difference with respect to the setting
of [7] is that the inclusion of the discrete kernel into the continuous kernel of the Maxwell
operator is no longer valid. Therefore, we need to modify the theory of [7] in order to prove
that no pollution of the spectrum is generated by the mortar-DG method. On the other hand,
the result on the non-pollution of the eigenspaces is weaker that the corresponding one
of [7]: we can prove non-pollution of the eigenspaces for all the eigenvalues but the one
associated with the kernel of the Maxwell operator. We point out that some of the tools used
in our analysis are specific to the two-dimensional case and some preliminary numerical
tests not reported in this paper suggest that, in the three-dimensional case, a straightforward
extension of this method might present spurious solutions. Finally, our analysis applies also
to the case when conforming Nédélec elements of the second family are used away from the
non-conformity of the mesh. This means, in particular, that our analysis provides spectral
correctness also for a mortar-type discretisation of Maxwell equations.

This paper is organized as follows: the continuous Maxwell eigenproblem and its mortar-
DG discretisation are introduced in Sect. 2 and Sect. 3, respectively; the theoretical analysis
of the mortar-DG method is developed in Sect. 4; finally, in Sect. 5, numerical experiments
carried out on both convex and non convex problem domains, and with both regular and
discontinuous material coefficients are presented, demonstrating the theoretical results.

2 2D Model Problem

Let � be a simply-connected bounded Lipschitz polygon in R
2 with outward normal and

counterclockwise tangent unit vectors n and t, respectively, on ∂�. Consider the eigenprob-
lem: find u �= 0 and ω such that

∇ × (μ−1∇ × u) = ω2εu,

with u · t = 0, where μ and ε are the magnetic permeability and the electric permittivity,
respectively. More precisely, ε = ε(x) is a second order, real, symmetric tensor-valued func-
tion satisfying

ε�(x) ≤
2∑

i,j=1

εi,j ξiξj ≤ ε�(x) a.e. in �, ∀ξ ∈ R
2, ‖ξ‖ = 1,
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where ε�, ε� ∈ L∞(�), whereas μ = μ(x) is a scalar function such that μ�(x) = μ(x) =
μ�(x), with μ�, μ� ∈ L∞(�); we assume that both infx∈� ε�(x) and infx∈� μ�(x) are strictly
positive. Finally, we assume that there exists a partition of � into Lipschitz subdomains such
that in each of them ε is smooth and μ is constant.

We define, as usual, the following spaces of complex functions:

H(curl;�) = {v ∈ L2(�)2 : ∇ × v ∈ L2(�)},
H0(curl;�) = {v ∈ H(curl;�) : v · t = 0 on ∂�},

H0(curl0;�) = {v ∈ H0(curl;�) : ∇ × v = 0},
H(div0

ε;�) = {v ∈ L2(�)2 : ∇ · (εv) = 0}.
We set

V = H0(curl;�), V0 = H0(curl0;�), W = V ∩ H(div0
ε;�).

We denote by (·, ·) the standard inner product in L2(�)2 given by (u,v) = ∫
�

u · vdx,
and write L2

ε(�)2 for the space L2(�)2 endowed with the ε-weighted inner product (u,v)ε =∫
�

εu · vdx. The L2-norm and the L2
ε-norm are clearly equivalent, due to the assumptions

on ε.
We endow V with the seminorm |v|V = ‖μ−1/2∇ × v‖0,�, the inner product (u,v)V =

(μ−1∇ × u,∇ × v) + (u,v)ε and the norm ‖v‖2
V = ‖μ−1/2∇ × v‖2

0,� + ‖ε1/2v‖2
0,�.

Define the (hermitian) bilinear forms a : V × V → C and b : V × V → C as

a(u,v) = (μ−1∇ × u,∇ × v),

b(u,v) = a(u,v) + (u,v)ε.

The variational formulation of the eigenproblem we are interested in is the following:
find (0 �= u,ω) ∈ W × C such that

a(u,v) = ω2(u,v)ε ∀v ∈ W.

A standard way to discretise this problem consists in neglecting the constraint u ∈ W
and adding a zero frequency eigenspace corresponding to the infinite-dimensional space V0,
leading to the following variational problem.

Problem 1 Find (0 �= u,ω) ∈ V × C:

a(u,v) = ω2(u,v)ε ∀v ∈ V.

For the purpose of the analysis, following [8], we introduce the following auxiliary eigen-
problem with positive definite operator.

Problem 2 Find (0 �= u, ω̃) ∈ V × C:

b(u,v) = ω̃2(u,v)ε ∀v ∈ V.

The eigenvalues of Problem 1 and those of Problem 2 are such that ω̃2 = ω2 + 1; thus,
ω̃2 = 1 is an eigenvalue of Problem 2 with infinite multiplicity and associated eigenspace V0.
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Define the solution operator A : L2(�)2 → V as follows: given f ∈ L2(�)2, Af is the
(unique) element of V which satisfies

b(Af,v) = (f,v)ε ∀v ∈ V.

We have that A ∈ L(L2(�)2,V). Notice that (u,ω) is an eigenpair of Problem 1 if and only
if (u, λ = 1

ω2+1
) is an eigenpair of A.

Denote by σ(A) and ρ(A) the spectrum and the resolvent set (in the complex plane),
respectively, of the solution operator A. Finally, for any z ∈ ρ(A), we define the resolvent
operator Rz(A) = (z − A)−1 from V to V.

3 The Mortar-DG Method

Let � = �1 ∪ �2 be a non-overlapping subdomain partition with simply-connected �1 and
�2, with interface � = ∂�1 ∩ ∂�2; let T 1

h and T 2
h be simplicial meshes of �1 and �2,

respectively, non-matching at �, and set Th = T 1
h ∪ T 2

h . The mesh parameter h is defined as
h = maxK∈Th

{hK}, with hK = diam(K).
We assume μ to be piecewise constant on Th and ε piecewise smooth on Th. For the

minimal assumptions on the regularity of the components of ε, we refer to [17, Sect. 4.2].
We denote by F 1

h and F 2
h the sets of all faces (edges) of T 1

h and T 2
h , respectively, which

do not lie on �, and by F �
h the set of all faces of T 2

h which lie on �. On Fh := F 1
h ∪ F 2

h ∪ F �
h ,

we define the mesh size function h ∈ L∞(Fh) by

h(x) = hf m(x) x ∈ f, f ∈ Fh,

where hf is the diameter of f , and m ∈ L∞(Fh) is defined as follows: if μK is the restriction
of μ to K , then m(x) = min{μK+ ,μK−} if x is in the interior of ∂K+ ∩∂K−, and m(x) = μK

if x is in the interior of ∂K ∩ ∂�.
Introduce the DG finite element spaces:

Vh = {v ∈ L2(�)2 : v|K ∈ P �(K)2 ∀K ∈ Th}, � ≥ 1

where P �(K) is the space of complex polynomials of total degree at most � on K . We set
Vi

h := Vh|�i
, and wi := w|�i

, i = 1,2.
Define the DG trace spaces

h = {ψ ∈ L2(�) : ψ|f = (v · tf )|f for some v ∈ V2
h and ∀f ∈ F �

h }
= {ψ ∈ L2(�) : ψ|f ∈ P �(f ) ∀f ∈ F �

h }

and denote by �h,� the L2(�)-projection onto h, i.e., for any ϕ ∈ h,

∫

F �
h

(ϕ − �h,�ϕ)ψ ds = 0 ∀ψ ∈ h.

If K− and K+ are two adjacent elements, on ∂K− ∩ ∂K+ we define the weighted aver-
ages and jumps by {{w}}δ = δw|K− + (1 − δ)w|K+ and [[w]]T = w|K− · t− + w|K+ · t+, where
t± are the counterclockwise oriented tangential unit vectors to ∂K±. In particular, on �, we
understand �1 as ‘minus’ side and �2 as ‘plus’ side; therefore, {{w}}δ = δw|�1

+(1−δ)w|�2
.
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For simplicity, we restrict ourselves to the case of an interior penalty (IPDG) discreti-
sation in each subdomain, although other DG methods could be considered instead. More
precisely, for i = 1,2, let ai

h(·, ·) : Vi
h × Vi

h → C defined by

ai
h(u

i ,vi ) =
∫

�i

μ−1∇h × ui · ∇h × vi dx −
∫

F i
h

[[vi]]T · {{μ−1∇h × ui}}δ ds

−
∫

F i
h

[[ui]]T · {{μ−1∇h × vi}}δ ds +
∫

F i
h

a [[ui]]T · [[vi]]T ds,

with 0 ≤ δ ≤ 1 and with stability parameter a chosen proportional to h−1.
We complete the definition of the mortar-DG method by including a projection based pe-

nalization at the non-conforming interface F �
h , together with consistency terms. Therefore,

we consider the following complex-valued mortar-DG bilinear form on Vh × Vh:

ah(u,v) = a1
h(u

1,v1) + a2
h(u

2,v2)

−
∫

F �
h

[[v ]]T · {{μ−1∇h × u}}δ ds −
∫

F �
h

[[u]]T · {{μ−1∇h × v}}δ ds

+
∫

F �
h

a�h,�[[u]]T · �h,�[[v ]]T ds,

with δ = 0 in the integrals over F �
h . Again, the stability parameter a is chosen proportional

to h−1. Notice that ah(·, ·) is hermitian. We also define

bh(u,v) = ah(u,v) + (u,v)ε.

The mortar-DG approximation of Problem 1 reads as follows.

Problem 3 Find (0 �= uh,ωh) ∈ Vh × C:

ah(uh,v) = ω2
h(uh,v)ε ∀v ∈ Vh.

Problem 3 is clearly consistent.

Remark 3.1 The case of conforming discretisations with the Nédélec elements of the second
family within each subdomain is nothing but a particular case of the presented method.

Introduce the following seminorm and norm on V(h) := V + Vh:

|v|2V(h) = ‖μ−1/2∇h × v‖2
0,�1∪�2

+ ‖h−1/2[[v]]T ‖2
0,F 1

h
∪F 2

h

+ ‖h−1/2�h,�[[v]]T ‖2
0,F �

h

,

‖v‖2
V(h) = |v|2V(h) + ‖ε1/2v‖2

0,�.

The inner product in Vh is defined by

(v,w)V(h) = (v,w)ε +
∫

�

μ−1∇h × v · ∇h × wdx

+
∫

F 1
h
∪F 2

h

h−1[[v]]T · [[w ]]T ds +
∫

F �
h

h−1�h,�[[v]]T · �h,�[[w ]]T ds.
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Define the kernel of ah(·, ·) and its V(h)-orthogonal complement as follows:

Kh = {v ∈ Vh : ah(v,w) = 0 ∀w ∈ Vh},
K⊥

h = {v ∈ Vh : (v,w)V(h) = 0 ∀w ∈ Kh}.

We define the discrete solution operator Ah : L2(�)2 → Vh as follows: given f ∈ L2(�)2,
Ahf is the (unique) element of Vh which satisfies

bh(Ahf,v) = (f,v)ε ∀v ∈ Vh.

The operator Ah is well defined and Ah ∈ L(L2(�)2,Vh) (see Remark 4.3).
As in the continuous case, we denote by σ(Ah) and ρ(Ah) the spectrum and the resolvent

set, respectively, of the discrete solution operator Ah. Finally, for any z ∈ C, we formally
define the resolvent operator Rz(Ah) = (z − Ah)

−1 from Vh to Vh.

4 Theoretical Analysis

The analysis of Problem 3 can be carried out by slightly modifying the theoretical setting
of [7].

4.1 Preliminary Properties

In this section we state (as Properties) and prove the validity of the assumptions of the theory
developed in [7], or their modifications when it is needed. Indeed, the theory developed in [7]
needs to be modified due to a major difference: it is no longer true that Kh ⊂ V0 and this
changes the spectral convergence theory.

It is straightforward to see that the following property holds true (compare with the sec-
ond part of Assumption 1 of [7]).

Property 1 (Norm compatibility) If v ∈ V, then |v|V(h) = |v|V.

Notice that the first part of Assumption 1 of [7], namely, if v ∈ V(h) and |v|V(h) = 0,
then v ∈ V0, is not satisfied; as a consequence, the discrete kernel Kh is not contained in the
continuous kernel V0; this is the reason why we need to slightly modify the theory of [7].

We can prove that also the following two properties are satisfied (compare with [7, As-
sumptions 2 and 3]).

Property 2 (Approximation property of Vh) There holds

lim
h→0

inf
vh∈Vh

‖v − vh‖V(h) = 0 ∀v ∈ V.

Property 3 (Coercivity in seminorm and continuity) Provided that the stability parameter
a is chosen as aIPh−1, with aIP sufficiently large, there exist positive constants α, γ inde-
pendent of the mesh size such that

ah(v,v) ≥ α |v|2V(h) ∀v ∈ Vh,

|ah(u,v)| ≤ γ ‖u‖V(h)‖v‖V(h) ∀u,v ∈ Vh.
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Proposition 4.1 Property 2 holds true.

Proof Owing to the density of C∞(�)2 in V, it is enough to prove the result for all
v ∈ C∞(�)2. To this end, given v ∈ C∞(�)2, let vh be the elementwise second family
Nédélec’s interpolation of v. Then ‖v − vh‖V(h) tends to zero as h → 0 owing to the usual
approximation properties of the Nédélec elements and to L2-stability of �h,� . �

Proposition 4.2 Property 3 holds true.

Proof The proof of the continuity exploits the fact that, for δ = 0 in the integrals over F �
h ,

the assumption μ piecewise constant on Th implies
∫

F �
h

[[v]]T · {{μ−1∇ × w}}δ ds =
∫

F �
h

�h,�[[v]]T · {{μ−1∇ × w}}δ ds

for all v,w ∈ Vh. The proof of the coercivity is standard. �

From here on, we assume a= aIPh−1, with aIP such that the coercivity bound of Prop-
erty 3 is satisfied.

Remark 4.3 From Property 3 it follows that

bh(v,v) ≥ min{α,1}‖v‖2
V(h) ∀v ∈ Vh, (1)

and that

|v|V(h) = 0 ∀v ∈ Kh. (2)

The coercivity property (1) guarantees that, for any given f ∈ L2(�)2, there exists a
unique uh ∈ Vh such that bh(uh,v) = (f,v)ε for all v ∈ Vh, and ‖uh‖V(h) ≤ C‖f‖0,�, with
C > 0 independent of the mesh size and of the right-hand side f.

Moreover, introducing the subspace

Vc
h = {v ∈ Vh : v|�i

∈H(curl,�i), i = 1,2, (v · t)|∂� = 0, �h,�[[v]]T = 0 on �}, (3)

the identity (2) gives that

Kh = {v ∈ Vc
h : (∇ × v)|�i

= 0, i = 1,2}. (4)

For the following property (compare with [7, Assumption 4]), we introduce the broken
spaces:

Hs(Th)
2 = {v ∈ L2(�)2 : v|K ∈ Hs(K)2 ∀K ∈ Th} for s ≥ 0,

H r(curl; Th) = {v ∈ L2(�)2 : εv|K ∈ Hr(K)2,

μ−1∇ × v|K ∈ Hr(K) ∀K ∈ Th} for r > 0,

and the norms:

‖v‖2
Hs(Th)2 =

∑

K∈Th

‖v‖2
s,K,

‖v‖2
Hr (curl;Th) =

∑

K∈Th

(‖ε1/2v‖2
r,K + ‖μ−1/2∇ × v‖2

r,K

)
.
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Property 4 (Convergence) Let f be in H(div0
ε;�); denote by us ∈ V the solution to the co-

ercive source problem b(us ,v) = (f,v)ε for all v ∈ V, and by uh ∈ Vh its Galerkin projection
which satisfies bh(uh,v) = (f,v)ε for all v ∈ Vh. Whenever us ∈ Hr(curl; Th), with r > 0,
there exists a sequence ξh, ξh → 0 as h → 0, such that

‖us − uh‖V(h) ≤ ξh

(‖us‖Hr (curl;Th) + ‖f‖0,�

)
. (5)

The bound (5), together with the regularity results in [9], implies that

‖us − uh‖V(h) ≤ ξh‖f‖0,� ∀f ∈ H(div0
ε;�),

with ξh → 0 as h → 0.

Proposition 4.4 Property 4 holds true.

Proof Following the same arguments as in [7], we observe that the result is a consequence of
the coercivity in Property 3 and of the following continuity property: for all w ∈ Hr(curl; Th)

with ∇h × (μ−1∇h × w) ∈ L2(�), and vh ∈ Vh, we have

|ah(w,vh)| ≤ C‖w‖Vσ (h)‖vh‖V(h), (6)

with a constant C > 0 independent of the mesh size, where the Vσ (h)-norm is defined as
follows. If 0 < σ < min{1/2, r}, then, for all w ∈ Hr(curl; Th) with ∇h × (μ−1∇h × w) ∈
L2(�), we set

‖w‖2
Vσ (h) = ‖w‖2

V(h) + |w|2Vσ (h),

with

|w|2Vσ (h) =
∑

K∈Th

(h2σ
K μK‖μ−1∇ × w‖2

σ,K + h2
KμK‖∇ × (μ−1∇ × w)‖2

0,K)

where μK stands for μ|K . Note that there exists a sequence ηh, ηh → 0 when h → 0 such
that for all w ∈ Hr(curl, Th) such that ∇h × (μ−1∇h × w) ∈ L2(�), it holds

inf
vh∈Vh

‖w − vh‖Vσ (h) ≤ ηh

(
‖w‖Hr (curl;Th) +

( ∑

K∈Th)

μK‖∇ × (μ−1∇ × w)‖2
0,K

)1/2)
.

In order to prove (6), first of all, it is easy to see that

|ah(w,vh)| ≤C ‖w‖V(h)‖vh‖V(h) + C ′
∫

F 1
h
∩F 2

h

[[vh]]T {{μ−1∇h × w}}δ ds

+ C ′
∫

F �
h

[[vh]]T (μ−1∇h × w)|�2
ds.

Consequently, in order to get (6), it is enough to show that, if f ∈ Fh and K is an element
having f as a complete face, then

∫

f

[[vh]]T (μ−1∇h × w)|K ds ≤ C|w|Vσ (h)‖vh‖V(h).
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The proof of this estimate can be carried out by adapting to the 2D case the steps of [7, Proof
of Lemma 8.2], where the 3D case was considered (the changes in the scalings actually
compensate and the obtained result is the same). �

We have the following result, whose proof can be carried out exactly as in [7, Propo-
sitions 3.2 and 3.3] (notice that since ah(·, ·) is hermitian, all the discrete eigenvalues are
real).

Proposition 4.5 If λh ∈ σ(Ah), then 0 < λh ≤ 1; 1 ∈ σ(Ah) and its associated eigenspace
is Kh. Moreover, for all eigenfunctions v1, v2 associated with different eigenvalues, it holds
(v1,v2)ε = bh(v1,v2) = 0; in particular, if v �= 0 is an eigenfunction of Ah associated with
an eigenvalue λh �= 1, then (v,w)ε = (v,w)V(h) = bh(v,w) = 0 for all w ∈ Kh.

4.2 Characterization of the Kernel

Setting

Qh = {q ∈ L2(�) : q|K ∈ P �+1(K) ∀K ∈ Th}
(and Qi

h := Qh|�i
, i = 1,2), and defining the subspace

Qc
h = {q ∈ Qh : q|�i

∈H 1(�i), i = 1,2, q|∂� = 0, �h,�[[∇hq]]T = 0 on �},

from (4) we have the characterization

Kh = ∇hQ
c
h, (7)

i.e., any v ∈ Kh can be expressed as ∇hp, with p ∈ Qc
h. Notice that since ∂� ⊂ ∂�, if

p ∈ Qc
h, setting [[p]] := (p|�1

− p|�2
)|� , [[p]] ∈ H 1

0 (�) and, by integration by parts, we
obtain

∫

�

[[p]] ∂tϕ ds = 0 ∀ϕ ∈ h ∩ H 1(�), (8)

where ∂t denotes the tangential derivative along �. In particular,
∫

�
[[p]]ds = 0.

In the following, we will also need to characterize K⊥
h ∩ Vc

h, with V c
h defined as in (3).

To this aim, denote by Kc
h the kernel of ah(·, ·) in Vc

h, i.e.,

Kc
h = {v ∈ Vc

h : ah(v,w) = 0 ∀w ∈ Vc
h}.

It is immediate to see that Kh = Kc
h , and then

K⊥
h ∩ Vc

h = (Kc
h)

⊥, (9)

where (Kc
h)

⊥ denotes the V(h)-orthogonal complement of Kc
h in Vc

h.

4.3 Main Properties

We have the following property which is a stronger form of the Gap property defined in [7].
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Property 5 (Strong gap property) For all h small enough, for any wh ∈ K⊥
h there exists

w = w(h) ∈ W such that

‖w − wh‖0,� ≤ ηh‖wh‖V(h),

with ηh → 0 as h → 0.

In order to prove Property 5, we need an approximation result, which extends that
of [15, Proposition 1] to our situation, and a stable orthogonal decomposition of Vh.

Proposition 4.6 Let Vc
h be defined as in (3). For any v ∈ Vh there exists vc ∈ Vc

h such that

‖v − vc‖2
0,� ≤ C

[‖h1/2[[v]]T ‖2
0,F 1

h
∪F 2

h

+ ‖h1/2�h,�[[v]]T ‖2
0,F �

h

]
,

‖v − vc‖2
V(h) ≤ C

[‖h−1/2[[v]]T ‖2
0,F 1

h
∪F 2

h

+ ‖h−1/2�h,�[[v]]T ‖2
0,F �

h

]
,

with a constant C > 0 independent of v and of the mesh size.

Proof Notice that Vc
h is the space of the Nédélec elements of the second family in �1

and �2, with zero tangential trace on ∂� and with the constraint �h,�[[v]]T = 0 on the
interface �.

Fix v ∈ Vh. We construct vc ∈ Vc
h by modifying the construction given in [15, Appen-

dix] along �. More precisely, the volume moments of vc coincide with those of v; the face
moments of vc are zero on the faces on ∂� and are equal to the mean values of the face
moments of v from the two sides on the faces in F 1

h and F 2
h which do not lie on ∂� (no

hanging nodes); finally, the face moments of vc coincide with those of v on the faces on �

from the �1 side and are equal to the face moments of �h,�v|�1
on the faces on � from the

�2 side (all the above moments are non averaged moments).
We can prove that, for any w ∈ P �(K)2 of volume moments {wi

K}Nv

i=1 and face moments

{wi
K,f }Nf

i=1, with Nv and Nf being the number of volume and face moments, respectively, we
have

h−2
K ‖w‖2

0,K + ‖∇ × w‖2
0,K ≤ Ch−2

K

⎛

⎝
∑

f ⊂∂K

Nf∑

i=1

|wi
K,f |2 +

Nv∑

i=1

|wi
K |2

⎞

⎠ , (10)

with a constant C > 0 independent of the element size.
In fact, on the reference element, the bound (10) follows from the representation of func-

tions in discrete spaces in terms of linear combinations of Lagrange basis functions with
respect to the given moments and the Cauchy-Schwarz inequality.

Consider now a general element K ∈ Th, image of the reference element K̂ under the
affine mapping FK , where FK( x̂ ) = BK x̂ + bK , with BK ∈ R

2×2 and bK ∈ R
2. Since the

transformation w ◦ FK = B−T
K ŵ preserves the moments, and

‖w‖2
0,K ≤ C‖ŵ‖2

0,K̂
, ‖∇ × w‖2

0,K ≤ Ch−2
K ‖∇̂ × ŵ‖2

0,K̂
,

with a constant C > 0 independent of the mesh size (see, e.g., [5, Proposition 3.1]), the
bound (10) is obtained.
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Denoting by vi
K,f and ṽi

K,f the moments of the face f ⊂ ∂K of v and vc , respectively,
for i = 1, . . . ,Nf , since the volume moments of v − vc are zero, we have

h−2
K ‖v − vc‖2

0,K + ‖∇ × (v − vc)‖2
0,K ≤ Ch−2

K

⎛

⎝
∑

f ⊂∂K

Nf∑

i=1

|vi
K,f − ṽi

K,f |2
⎞

⎠ .

If f �⊂ �, if K and K ′ are the two elements sharing f , we have

Nf∑

i=1

|vi
K,f − ṽi

K,f |2 = 1

4

Nf∑

i=1

|vi
K,f − vi

K ′,f |2 ≤ C|f |
∫

f

|[[v]]T |2;

if f ⊂ � belongs to K ∈ T 1
h we have

Nf∑

i=1

|vi
K,f − ṽi

K,f |2 = 0,

while if f ⊂ � belongs to K ∈ T 2
h we have

Nf∑

i=1

|vi
K,f − ṽi

K,f |2 ≤ C|f |
∫

f

|�h,�[[v]]T |2.

Therefore, owing to the shape regularity assumption, we obtain

h−2
K ‖v − vc‖2

0,K + ‖∇ × (v − vc)‖2
0,K

≤ Ch−1
K

⎛

⎝
∑

f ⊂∂K\�

∫

f

|[[v]]T |2 +
∑

f ⊂∂K∩�

∫

f

|�2
h[[v]]T |2

⎞

⎠ ,

from which the result follows after summation over all elements. �

Corollary 4.7 For any w ∈ K⊥
h there exists wc ∈ K⊥

h ∩ Vc
h such that

‖w − wc‖2
0,� ≤ C

[‖h1/2[[w]]T ‖2
0,F 1

h
∪F 2

h

+ ‖h1/2�h,�[[w]]T ‖2
0,F �

h

]
,

‖w − wc‖2
V(h) ≤ C

[‖h−1/2[[w]]T ‖2
0,F 1

h
∪F 2

h

+ ‖h−1/2�h,�[[w]]T ‖2
0,F �

h

]
,

(11)

with a constant C > 0 independent of w and of the mesh size.

Proof For each w ∈ K⊥
h , let vc be the element of Vc

h given by Proposition 4.6. Due to (9),
we can write vc = k + wc , with k ∈ Kc

h and wc ∈ (Kc
h)

⊥ = K⊥
h ∩ Vc

h. By definition, it holds

‖w − vc‖2
0,� = ‖w − wc‖2

0,� + ‖k‖2
0,�

and

‖w − vc‖2
V(h) = ‖w − wc‖2

V(h) + ‖k‖2
0,�,

from which the result readily follows. �
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Proposition 4.8 Let Vc
h be defined as in Proposition 4.6. There exists a complement V⊥

h of
Vc

h in Vh such that the decomposition Vh = Vc
h + V⊥

h is stable in the V(h)-norm, i.e., there
exists a constant C > 0 independent of the mesh size such that, for all vh ∈ Vh, we have

vh = vc
h + v⊥

h , ‖vc
h‖V(h) + ‖v⊥

h ‖V(h) ≤ C‖vh‖V(h).

Proof See [7, Proposition 7.5]. �

We can now prove Property 5. Following the same approach as in [8] (see also [17,
Theorem 7.17 and Theorem 7.18]), we first prove Property 5 when ε = I , then we derive
the general case.

Theorem 4.9 Assume that ε = I . Then, Property 5 holds true. Moreover, with the notation
of Property 5, it holds:

‖w‖V(h) ≤ C‖wh‖V(h), (12)

with a constant C > 0 independent of wh and of the mesh size.

Proof We are given with a wh ∈ K⊥
h , by Corollary 4.7 and Proposition 4.8, we know that

there exists a ψc
h ∈ K⊥

h ∩ Vc
h such that

‖wh − ψc
h‖0,� ≤ Ch‖wh‖V(h) and ‖ψc

h‖V(h) ≤ C‖wh‖V(h). (13)

Let w ∈ W be the unique solution of the problem

∇ × w = ∇h × ψc
h. (14)

Recall that W ↪→ H 1/2+σ (�)2, with 0 < σ ≤ 1/2, with σ depending only on � (see,
e.g., [1]). The well-posedness of the problem (14), the use of the Poincaré-Friedrichs in-
equality on vector fields in W and the second bound in (13) imply then

‖w‖1/2+σ,� ≤ C‖w‖V(h) ≤ C‖∇h × ψc
h‖0,� ≤ C‖wh‖V(h),

i.e., (12).
We estimate now the quantity ‖w − wh‖2

0,�. Let �M
h be a projector from W to Vc

h. We
split the quantity to be estimated into three addends:

‖w − wh‖2
0,� = (w − �M

h w,w − wh) + (�M
h w − ψc

h,w − wh)

+ (ψc
h − wh,w − wh)

= : T1 + T2 + T3,

and we estimate them separately.

1st term. We first need to choose a suitable projection �M
h . Let Q�

h be the restriction to �

of Q2
h (see Sect. 4.2), i.e.,

Q�
h = {q ∈ H 1

0 (�) : q|I ∈ P �+1(I ) ∀I ∈ F �
h }

(recall that F �
h = T 2

h |� ). We remark that

ϕ ∈ h :
∫

�

ϕ ds = 0 ⇐⇒ ∃χh ∈ Q�
h : ϕ = ∂tχh.
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Define Ihw by (Ihw)|
�i

= I i
hw|

�i
, i = 1,2, where I i

h is the edge element interpolation
operator in �i , i = 1,2. Since

∫
�
(I 1

h w − I 2
h w) · τ ds = 0, we have

∫
�
�h,�(I 1

h w − I 2
h w) ×

τ ds = 0, i.e. there exists a χh ∈ Q�
h such that

�h,�(I 1
h w − I 2

h w) · τ = ∂tχh.

Now, we denote by Hh : Q�
h → Q2

h the discrete harmonic extension from � to �2. It is
easy to see that, if we define

�M
h w := Ihw + ∇Hh(χh), (15)

then �M
h w ∈ Vc

h. The projection �M
h w is called in the literature mortar interpolation oper-

ator; see [3] and [2]. We can estimate the quantity ‖w − �M
h w‖0,� as follows:

‖w − �M
h w‖0,� ≤ ‖w − Ihw‖0,� + ‖∇Hh(χh)‖0,�

≤ C1h
1/2+σ ‖w‖1/2+σ,� + C2‖χh‖1,�, (16)

where we have used the regularity of w ∈ H 1/2+σ (�)2 and the fact that Ih is well defined
on vector fields in H 1/2+σ (�)2. Since χh ∈ H 1

0 (�), we have a Poincaré inequality

‖χh‖1,� ≤ C‖∂tχh‖0,�.

Finally, using the L2(�) stability of �h,� , we have

‖∂tχh‖0,� ≤ C‖(I 1
h w − I 2

h w) · τ‖0,�

≤ C‖(I 1
h w − w) · τ‖0,� + C‖(w − I 2

h w) · τ‖0,�

≤ Chσ |w|σ,� ≤ Chσ ‖w‖1/2+σ,�,

where we have used again the regularity of w ∈ H 1/2+σ (�). Therefore, using the Cauchy-
Schwarz inequality and the estimate (12), we obtain

T1 ≤ Chσ ‖w‖1/2+σ,�‖w − wh‖0,� ≤ C1h
σ ‖wh‖V(h)‖w − wh‖0,�.

2nd term. It is easy to see that �M
h w − ψc

h ∈ Vc
h. Moreover, thanks to the structure of (15),

the identity (14), and the commuting diagram properties for the edge element interpolation
operator Ih, we have:

∇h × (�M
h w − ψc

h) = ∇h × (Ihw − ψc
h) = 0.

Thus, we have �M
h w − ψ c

h ∈ Kh. Thus, owing to (7), there exists a ξh ∈ Qc
h such that

�M
h w − ψc

h = ∇hξh. Since wh ∈ K⊥
h , by integrating by parts, we obtain

T2 = (∇hξh,w − wh) =
∫

�

[[ξh]]w · nds.

On �, by surjectivity of the operator ∂t , since w · n ∈ Hσ (�), there exists a ϕ ∈ H 1+σ (�)

such that ∂tϕ = w · n. Using (9) and recalling that [[ξh]] ∈ H 1
0 (�) we obtain that, for any

ϕh ∈ h ∩ H 1(�),
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∫

�

[[ξh]]w · nds =
∫

�

[[ξh]]∂t (ϕ − ϕh) ds =
∫

�

∂t [[ξh]](ϕ − ϕh) ds

≤ C hσ ‖∂t [[ξh]]‖−1,�‖ϕ‖1+σ,�

≤ C hσ ‖wh‖2
V(h), (17)

where we have used that ϕh is at least a piecewise polynomial of degree 1, and the following
estimate:

‖∂t [[ξh]]‖−1,� ≤ ‖∇hξh‖0,� ≤ ‖�M
h w‖0,� + ‖ψc

h‖0,�

≤ C1‖w‖1/2+σ,� + C2‖wh‖V(h)

≤ C‖wh‖V(h).

Therefore, we have the bound

T2 ≤ C2 hσ ‖wh‖2
V(h).

3rd term. From the estimate (13), we have

T3 ≤ C3h‖wh‖V(h)‖w − wh‖0,�.

Collecting the estimates from the previous steps, we obtain

‖w − wh‖2
0,� ≤ C1h

σ ‖wh‖V(h)‖w − wh‖0,�

+ C2h
σ ‖wh‖2

V(h)

+ C3h‖wh‖V(h) ‖w − wh‖0,�, (18)

which implies

‖w − wh‖0,� ≤ Chσ/2‖wh‖V(h),

hence the result. �

We now turn to the proof of Property 5 for general piecewise smooth tensors ε. To this
aim, we need some preliminary results.

As a consequence of Theorem 4.9, we have the following proposition.

Proposition 4.10 Kh is approximating in V0 and K⊥
h is approximating in W, i.e.,

lim
h→0

inf
kh∈Kh

‖k − kh‖V(h) = 0 ∀k ∈ V0, (19)

lim
h→0

inf
wh∈K⊥

h

‖w − wh‖V(h) = 0 ∀w ∈ W. (20)

Proof (i) Proof of (19). Since both the continuous and discrete kernel do not depend upon ε,
we set ε = I in this part of the proof. Let �h be the V(h)-orthogonal projection from V onto
Vh; (I − �h) ∈ L(V,V(h)) and, owing to Property 2, (I − �h) → 0 as h → 0 pointwise.
Denote by Ph and Qh the V(h)-orthogonal projections of Vh onto K⊥

h and Kh, respectively
(recall that we have set, for the moment, ε = I ). Set kh = Qh�hk and wh := Ph�hk. Notice
that, owing to (7), kh = ∇hp

c
h for some pc

h ∈ Qc
h.
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Let w be the element of w ‘close’ to wh as from Theorem 4.9. Due to the definition of
wh and (·, ·)V(h), the orthogonality of k and w, the Cauchy-Schwartz inequality and Theo-
rem 4.9, we have

‖wh‖2
V(h) = (Ph�hk,wh)V(h) = (k,wh)1 = (k,wh − w)1 ≤ ηh‖k‖0,�‖wh‖V(h),

from which

‖wh‖V(h) ≤ ηh‖k‖0,�. (21)

The triangle inequality, (21) gives

‖k − kh‖V(h) ≤ ‖k − �hkh‖V(h) + ‖wh‖V(h)

hence (19), due to Property 2 and (21).
(ii) Proof of (20). Let �h be again the V(h)-orthogonal projection from V onto Vh, Ph

and Qh the V(h)-orthogonal projections of Vh onto K⊥
h and Kh, respectively (note that now

ε is any). Given a w ∈ W, the following chain of equalities holds for all kh = ∇hp
c
h, kh ∈ Kh

and pc
h ∈ Qc

h:

(Qh�hw,kh)V(h) = (w,kh)V(h) = (w,kh)ε =
∫

�

(ε w · n)[[pc
h]]. (22)

For any ϕh ∈ h ∩ H 1(�), owing to (8) we have

∫

�

(ε w · n)[[pc
h]]ds =

∫

�

(ε w · n − ∂tϕh) [[pc
h]]ds

≤ |[[pc
h]]|1/2,�‖ε w · n − ∂tϕh‖−1/2,�.

The continuity of trace, the Poincaré inequality, the equivalence between the L2(�)-norm
and the L2

ε(�)-norm and the definition of pc
h give

|[[pc
h]]|1/2,� ≤ C‖ε1/2kh‖0,�.

Due to the smoothness of w (indeed w ∈ Hσ (�)2, for some 0 < σ < 1/2, implies that
ε w · n ∈ H−1/2+σ (�)), and the fact that the space {∂tϕh , ϕh ∈ h ∩ H 1(�)} contains all
piecewise constant functions,

inf
ϕh∈h∩H 1(�)

‖ε w · n − ∂tϕh‖−1/2,� ≤ Chσ‖w‖V(h).

Therefore, by choosing kh = Qh�hw in (22), we have:

‖Qh�hw‖V(h) = ‖ε1/2Qh�hw‖0,� ≤ Chσ ‖w‖V(h).

Hence, (20) follows by triangle inequality and Property 2. �

Corollary 4.11 Let 0 < σ < 1/2; there exists a sequence ξh, ξh → 0 when h → 0, such that

inf
kh∈Kh

‖k − kh‖V(h) ≤ ξh‖k‖σ,� ∀k ∈ ∇H 1
0 (�) ∩ Hσ (�)2.
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Proof It is a direct consequence of Proposition 4.10 and the compactness of the injection of
∇H 1

0 (�) ∩ Hσ (�)2 in V0. �

Theorem 4.12 Property 5 holds true.

Proof Along this proof, we explicitly indicate with a subscript the dependence of V(h) on
ε by writing W1, V1(h) and Wε , Vε(h) for the cases ε = I and general ε, respectively.

Fix wh ∈ K⊥
h . Due to (7) and the definition of the Vε(h)-norm, we have

(wh,∇hq
c
h)Vε(h) = (wh,∇hq

c
h)ε = 0 ∀qc

h ∈ Qc
h. (23)

Now, decompose wh as wh = w̃h + ∇hp
c
h, with pc

h ∈ Qc
h and w̃h in the V1(h)-orthogonal

complement of ∇hQ
c
h in Vh. We have

(w̃h,∇hq
c
h)V1(h) = (w̃h,∇hq

c
h)1 = 0 ∀qc

h ∈ Qc
h. (24)

From Theorem 4.9, provided that h is small enough, given w̃h, there exists w̃ ∈ W1 such
that

‖w̃ − w̃h‖0,� ≤ η̃h‖w̃h‖V1(h), (25)

with η̃h → 0 as h → 0. Moreover, using (12), we also know that there is a σ > 0 such that
w̃ ∈ H 1/2+σ (�)2 and,

‖w̃‖1/2+σ,� ≤ C‖w̃‖V1(h) ≤ C‖w̃h‖V1(h). (26)

Notice that, owing to (24) and the Cauchy-Schwarz inequality, we have ‖w̃h‖2
V1(h) =

(w̃h, w̃h + ∇hp
c
h)V1(h) = (w̃h,wh)V1(h) ≤ ‖w̃h‖V1(h)‖wh‖V1(h), and then, due to equivalence

between the V1(h)-norm and the Vε(h)-norm, we have

‖w̃h‖V1(h) ≤ C‖wh‖Vε(h), (27)

with C only depending on ε.
Now, decompose w̃ ∈ W1 as w̃ = w + ∇p, with w ∈ Wε and p ∈ H 1

0 (�).
Note that p verifies the following variational equality:

∫

�

ε ∇p · ∇q =
∫

�

ε w̃ · ∇q ∀q ∈ H 1
0 (�).

The regularity theory for the Poisson problem implies that there exists a λ > 0 depending
upon ε and σ , such that p ∈ H 1+λ(�). Using also (26) and (27), it holds:

‖p‖1+λ,� ≤ C‖w̃‖V1(h) ≤ C‖w̃h‖V1(h) ≤ C‖wh‖Vε(h). (28)

We prove that

‖w − wh‖0,� ≤ ηh‖wh‖Vε(h),

with ηh → 0 as h → 0.
In order to do that, write

‖ε1/2(w − wh)‖2
0,� = (w − wh,w − w̃)ε + (w − wh, w̃ − w̃h)ε

+ (w − wh, w̃h − wh)ε

= : T1 + T2 + T3,
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and estimate T1, T2 and T3 separately.

1st term. From w̃ − w = ∇p, (w,∇p)ε = 0 and (23), we have

T1 = (w − wh,−∇p)ε = (wh,∇p − ∇hq
c
h)ε ≤ ‖εwh‖0,�‖∇p − ∇hq

c
h‖0,�

for all qc
h ∈ Qc

h. From Proposition 4.11 and the stability estimate (28), we have

T1 ≤ ξh‖εwh‖0,�‖wh‖Vε(h).

2nd term. For the second term, by using the Cauchy-Schwarz inequality, the equivalence
between the L2(�)-norm and the L2

ε(�)-norm, and the bounds (25) and (27), we have

T2 ≤ ‖ε1/2(w − wh)‖0,�‖ε1/2(w̃ − w̃h)‖0,�

≤ Cη̃h‖wh‖Vε(h)‖ε1/2(w − wh)‖0,�.

3rd term. Since w̃h − wh = ∇hp
c
h, by using (23), integration by parts and the fact that ∇ ×

(εw) = 0, we have

T3 = (w − wh,∇hp
c
h)ε = (w,∇hp

c
h)ε =

∫

�

(εw · n)[[pc
h]]ds.

Using the same techniques as in the proof of (20) in Proposition 4.10, we deduce that

T3 ≤ Chσ‖ε1/2∇hp
c
h‖0,�‖w‖Vε(h).

Thus, using the stability ‖w‖Vε(h) ≤ C‖w̃‖Vε(h) ≤ C‖wh‖Vε(h) (see also (28)), the stability
‖∇hp

c
h‖0,� ≤ C‖wh‖V1(h) and the equivalence between the V1(h)-norm and the Vε(h)-

norm, we obtain

T3 ≤ Chσ‖w‖Vε(h)‖∇hp
c
h‖0,�

≤ C hσ ‖wh‖Vε(h)‖wh‖V1(�) ≤ Chσ ‖wh‖2
Vε(h),

hence the result. �

We turn now the attention to another important consequence of Property 5.

Property 6 (Discrete Friedrichs inequality) Let wh ∈ K⊥
h , then there exists a β > 0 inde-

pendent of the mesh size, such that

‖wh‖2
0,� ≤ β ah(wh,wh).

Theorem 4.13 Property 5 implies Property 6.

Proof This proof follows the lines of [8, Proposition 2.19] (see also [17, Lemma 7.20]).
First, if ah(wh,wh) = 0, then it is easy to see that wh ∈ Kh. Thus wh = 0. This implies that
there exists a β = β(h), i.e., possibly depending upon h. We prove that β is independent of
h by contradiction.

First, we prove the statement for functions wc
h in K⊥

h ∩ Vc
h. Note that

ah(wc
h,wc

h) = ‖∇h × wc
h‖2

0,�.
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If β was depending on h, there would be a sequence a mesh sizes h(n), h(n) → 0 when
n → ∞, and vector fields wc

h(n) such that

‖wc
h(n)‖0,� = 1, ‖∇h × wc

h(n)‖0,� = 1/n.

Now, using Property 5 and its proof, we know that, for each wc
h(n), there exists a w(n) ∈ W,

such that

∇ × w(n) = ∇h × wc
h(n), ‖wc

h(n) − w(n)‖0,� ≤ ηh(n)‖wc
h(n)‖V(h(n)). (29)

Thus, we know ‖w(n)‖0,� ≤ 1 + ηh(n)(1 + 1/n) and, the compactness of the L2(�) ↪→ W
implies that there exists a w ∈ L2(�) and a subsequence of {w(n)}, still denoted by {w(n)},
such that:

w(n) → w in L2(�) and ∇ · (εw) = 0.

Since ‖∇ × w(n)‖0,� = ‖∇h × wc
h(n)‖0,� = 1/n, by uniqueness of the limit, ∇ × w = 0.

Thus, w = 0 and ‖w(n)‖0,� → 0 as n → ∞. Using again (29), we have then

‖wc
h(n)‖0,� ≤ ‖w(n)‖0,� + ηh(n)(1 + 1/n),

which implies ‖wc
h(n)‖0,� → 0, which contradicts the assumption.

Given now wh ∈ K⊥
h , by Corollary 4.7 there exists a wc

h ∈ K⊥
h ∩ Vc

h such that (11) holds
true. Then, we can conclude that

‖wh‖2
0,� ≤ C

[
‖wc

h‖2
0,� + ‖h1/2[[wh]]T ‖2

0,F 1
h
∪F 2

h

+ ‖h1/2�h,�[[wh]]T ‖2
0,F �

h

]

≤ C
[
‖∇h × wc

h‖2
0,� + ‖h1/2[[wh]]T ‖2

0,F 1
h
∪F 2

h

+ ‖h1/2�h,�[[wh]]T ‖2
0,F �

h

]

≤ C
[
‖∇h × wh‖2

0,� + ‖h−1/2[[wh]]T ‖2
0,F 1

h
∪F 2

h

+ ‖h−1/2�h,�[[wh]]T ‖2
0,F �

h

]

≤ Cah(wh,wh). �

4.4 Non-Pollution of the Spectrum and Isolation of the Discrete Kernel

The present section is devoted to the proof that Problem 3 is a spurious free approximation
of Problem 1 in the sense of [8] and is intimately related to [7, Sect. 4]. We recall that for an
approximation to be spurious free, two main properties must hold: (i) there are no spurious
eigenvalues, (ii) the discrete kernel is isolated. Following [11], the main theoretical tool
for (i) is the proof of convergence for (A − Ah) when applied to discrete fields. The main
difference between the present theory and the one developed in [7] is that we can prove
such a convergence (see Theorem 4.14 below) only for discrete fields in K⊥

h and not for
fields in Vh. This fact will not have consequences on the main result of this section, i.e.,
Theorem 4.19, but it will weaken the theory of the non-pollution of eigenspaces. Namely,
we will prove non-pollution of eigenspaces for all eigenvalues but the value 1 associated to
the kernel (see Theorem 4.24 below).

In order to prove non-pollution of the spectrum, we need some intermediate steps.

Theorem 4.14 (Convergence in mesh-dependent norm) For all h small enough,

‖(A − Ah)fh‖V(h) ≤ ηh‖fh‖V(h) ∀fh ∈ K⊥
h ,
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with ηh → 0 as h → 0.

Proof The proof is a slight modification of that of [7, Proposition 4.4]. We report here the
complete proof, for convenience.

Fix fh ∈ K⊥
h and let f ∈ W be as in Property 5; thus,

‖(A − Ah)fh‖V(h) ≤ ‖(A − Ah)(f − fh)‖V(h) + ‖(A − Ah)f‖V(h). (30)

Owing to the continuity of Ah (see Remark 4.3) and Property 5, for the first term at the
right-hand side of (30) we have

‖(A − Ah)(f − fh)‖V(h) ≤ (‖A‖L(L2(�)2,V) + ‖Ah‖L(L2(�)2,Vh))‖f − fh‖0,�

≤ Cηh‖fh‖V(h).

For the second term at the right-hand side of (30), from Property 4, Property 5 and the
definition of the V(h)-norm, we have

‖(A − Ah)f‖V(h) ≤ ξh‖f‖0,� ≤ ξh(‖f − fh‖0,� + ‖fh‖0,�) ≤ ξh(ηh + 1)‖fh‖V(h),

and the proof is complete. �

Theorem 4.14 corresponds to the validity of [7, Property 2], i.e., the uniform convergence
to 0 of A − Ah : Vh → V(h). As we have already pointed out, Theorem 4.14 is weaker
than [7, Property 2] since it proves only the convergence to 0 for A − Ah : K⊥

h → V(h).
Fortunately, the following lemmas still hold.

Lemma 4.15 Fix 0 �= z ∈ ρ(A). There exists a positive constant C only depending upon �

and |z| such that, for all f ∈ V(h),

‖(z − A)f‖V(h) ≥ C‖f‖V(h).

Proof See proof of [7, Lemma 4.6]. �

The result of [7, Theorem 4.7] holds true, although its proof needs to be modified. We
first state the following lemma.

Lemma 4.16 If 0 �= z ∈ ρ(A), we have that (z − Ah)f ∈ K⊥
h if and only if f ∈ K⊥

h .

Proof For any f0 ∈ Kh, since (Ahf, f0)V(h) = (Ahf, f0)ε = (f, f0)ε = (f, f0)V(h), we have

(
(z − Ah)f, f0

)
V(h)

= z
(
f, f0

)
V(h)

,

and, since z �= 1, the result immediately follows. �

Theorem 4.17 Fix 0 �= z ∈ ρ(A). For h small enough, there exists a positive constant C

only depending upon � and |z| such that, for all f ∈ Vh,

‖(z − Ah)f‖V(h) ≥ C‖f‖V(h).
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Proof If f ∈ K⊥
h , then the result follows exactly as in the proof of [7, Theorem 4.7], due to

Theorem 4.14. In the general case, decompose f = f0 + f⊥, with f0 ∈ Kh and f⊥ ∈ K⊥
h . Due

to orthogonality, we have ‖f‖2
V(h) = ‖f0‖2

V(h) + ‖f⊥‖2
V(h).

Since Ahf0 = f0, we have

‖(z − Ah)f‖2
V(h) = ‖(z − 1)f0 + (z − Ah)f⊥‖2

V(h)

= |z − 1|2‖f0‖2
V(h) + ‖(z − Ah)f⊥‖2

V(h) + 2
(
(z − 1)f0, (z − Ah)f⊥

)
V(h)

.

The inner product on the right-hand side is zero, due to Lemma 4.16; then, the first part of
this proof allows us to conclude that

‖(z − Ah)f‖2
V(h) = |z − 1|2‖f0‖2

V(h) + ‖(z − Ah)f⊥‖2
V(h)

≥ C(‖f0‖2
V(h) + ‖f⊥‖2

V(h)) = C‖f‖2
V(h),

since z �= 1. �

Theorem 4.17 implies that, for any 0 �= z ∈ ρ(A) and h small enough, (z − Ah) is an
invertible operator and the following result holds true.

Corollary 4.18 Let F ⊂ ρ(A) be closed. Then, there exists a positive constant C indepen-
dent of the mesh size such that, for h small enough, we have

‖Rz(Ah)‖L(Vh,Vh) ≤ C

for all z ∈ F , with C > 0 independent of the mesh size.

Proof See proof of [7, Corollary 4.8]. �

The non-pollution of the spectrum is now a direct consequence of Corollary 4.18 and we
state it here in the form of a theorem:

Theorem 4.19 (Non-pollution of the spectrum) Let G ⊂ C be an open set containing σ(A).
Then, for h small enough, σ(Ah) ⊂ G.

Remark 4.20 For fixed z ∈ ρ(A) and f ∈ V(h), we can write

‖(z − A)f‖V(h) ≤ |z|‖f‖V(h) + ‖Af‖V ≤ |z|‖f‖V(h) + C‖f‖0,� ≤ C(|z|)‖f‖V(h),

owing to the stability estimate of the continuous problem and the definition of the V(h)-
norm. This, together with the result of Lemma 4.15, implies that, for all fixed 0 �= z ∈ ρ(A),
(z − A) : V(h) → V(h) is a continuous invertible operator with continuous inverse. An
immediate consequence of this fact is the analogue of Corollary 4.18: Let F ⊂ ρ(A) be
closed. Then, there exists a positive constant C independent of the mesh size such that, for
all z ∈ F ,

‖Rz(A)‖L(V(h),V(h)) ≤ C.

Let us know turn to the isolation of the discrete kernel. The following result holds.
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Theorem 4.21 (Isolation of discrete kernel) There exists 0 < β < 1 independent of the mesh
size such that, if 1 �= λh ∈ σ(Ah), then

Re[λh] ≤ β.

Proof It is a direct consequence of Property 6 which is proved to hold thanks to Theo-
rems 4.12 and 4.13. This result corresponds to [7, Proposition 4.1]. �

Remark 4.22 Consider the indefinite Maxwell source problem: given f ∈ L2(�)d and ω ∈ R

such that ω2 is not an eigenvalue of Problem 1, find u ∈ V such that

∇ × (μ−1∇ × u) − ω2εu = f.

With the same abstract arguments as in [7, Sect. 6], based on Theorem 4.17 and Corol-
lary 4.18, one can prove that, provided that h is sufficiently small, the mortar-DG method

ah(uh,v) − ω2(uh,v)ε = (f,v) ∀v ∈ Vh,

is well-posed (existence and uniqueness of discrete solutions and continuous dependence
on f) and the following inf-sup condition holds true: there exists a constant κ > 0 indepen-
dent of h such that

inf
0�=uh∈Vh

sup
0�=vh∈Vh

Re[ah(uh,vh) − ω2(uh,vh)ε]
‖uh‖V(h)‖vh‖V(h)

≥ κ.

This inf-sup condition, together with the consistency, the coercivity in Property 3, and the
continuity property (6) established within the proof of Proposition 4.4, are the key ingre-
dients in the proof of the convergence of the mortar-DG method for the indefinite source
problem.

4.5 Non-Pollution and Completeness of the Eigenspaces, and Completeness of the
Spectrum

Let λ be an eigenvalue of A with algebraic multiplicity m, and let � be a circle in the
complex plane centered at λ which lies in ρ(A) and does not enclose any other point of
σ(A). According to [16, p. 178], we define the spectral projections E and, for h small
enough, Eh from Vh into V(h) by

E = Eλ = 1

2πi

∫

�

Rz(A)dz, Eh = Eh,λ = 1

2πi

∫

�

Rz(Ah) dz, (31)

respectively. Theorem 4.19 guarantees that, for h small enough, Eh is well defined.
We need to slightly modify the theory of [7], and we obtain a result on the non-pollution

of the eigenspaces which is weaker than that of [7], namely, we have non-pollution only for
the eigenspaces associated with discrete eigenvalues different from 1.

Theorem 4.23 For h small enough,

‖(E − Eh)f‖V(h) ≤ ξh‖f‖V(h) ∀f ∈ K⊥
h ,

with ξh → 0 as h → 0.
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Proof Since Rz(A) − Rz(Ah) = Rz(A)(A − Ah)Rz(Ah), due to the fact that, if f ∈ K⊥
h then

Rz(Ah)f ∈ K⊥
h (see Lemma 4.16), from Remark 4.20, Theorem 4.14 and Corollary 4.18, we

have

‖Rz(A)(A − Ah)Rz(Ah)f‖V(h) ≤ ‖Rz(A)‖L(V(h),V(h))‖(A − Ah)Rz(Ah)f‖V(h)

≤ Cηh‖f‖V(h).

The result immediately follows. �

If Y and Z are closed subspaces of V(h), we define

δh(x, Y ) := inf
y∈Y

‖x − y‖V(h), δh(Y,Z) := sup
y∈Y

‖y‖V(h)=1

δh(y,Z),

δ̂h(Y,Z) := max{δh(Y,Z), δh(Z,Y )}.
The following result is the analogue of [7, Theorem 4.11] for eigenspaces associated with

discrete eigenvalues different from 1.

Theorem 4.24 (Non-pollution of the eigenspaces) If λ �= 1, we have

lim
h→0

δh(Eh(Vh),E(V)) = 0.

Proof The proof is basically the same as that of [7, Theorem 4.11] (the only change is at the
very end; we report here all the step for convenience).

We start by observing that E(V) = E(L2(�)d). Indeed, E(V) is the projection onto the
eigenspace associated with the eigenvalue λ of the operator A : V → V, and E(L2(�)d)

is the projection onto the eigenspace associated with the eigenvalue λ of the operator
A : L2(�)d → L2(�)d (see, e.g., [12, Theorem 5, p. 579]). Since all eigenfunctions of
A : L2(�)d → L2(�)d are in V, the two eigenspaces coincide, i.e., E(V) = E(L2(�)d).
Therefore,

sup
yh∈Eh(Vh)

‖yh‖V(h)=1

inf
x∈E(V)

‖yh − x‖V(h) = sup
yh∈Eh(Vh)

‖yh‖V(h)=1

inf
x∈E(L2(�)d )

‖yh − x‖V(h)

= sup
yh∈Eh(Vh)

‖yh‖V(h)=1

inf
x∈L2(�)d

‖Ehyh − Ex‖V(h),

where in the last step we have used that Ehyh = yh for all yh ∈ Eh(Vh). Taking x = yh, since
yh ∈ K⊥

h , Theorem 4.23 allows us to conclude. �

Theorem 4.25 (Completeness of the eigenspaces) If E = Eλ is associated with an eigen-
value λ �= 1, then

lim
h→0

δh(E(V),Eh(Vh)) = 0.

Proof The proof follows the same lines as that of [7, Theorem 4.12]. Here, since the bound
of Theorem 4.23 holds true for function in K⊥

h only, we use Proposition 4.10 instead of
Property 2. We report here the complete proof, for convenience.
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Since EEy = Ey for all y ∈ V, we can write

δh(E(V),Eh(Vh)) = sup
x∈E(V)

‖x‖V(h)=1

inf
xh∈Vh

‖Ex − Ehxh‖V(h).

Fix x ∈ E(V). Then, Ex = x and x ∈ W. By Proposition 4.10, there exists x̃h ∈ K⊥
h such

that

lim
h→0

‖x − x̃h‖V(h) = 0. (32)

Therefore,

inf
xh∈Vh

‖Ex − Ehxh‖V(h) ≤ ‖Ex − Eh̃xh‖V(h)

≤ ‖E(x − x̃h)‖V(h) + ‖(E − Eh)̃xh‖V(h)

≤ ‖E‖L(V(h),V(h))‖x − x̃h‖V(h) + ηh‖̃xh‖V(h),

with ηh → 0 as h → 0 (see Theorem 4.23); the first term at right-hand side also tends to
zero, as h → 0, due to (32). Since E(V) is the eigenspace associated with λ �= 1, it is finite
dimensional; therefore, pointwise convergence implies uniform convergence in E(V), and
the result readily follows. �

Finally, as far as the completeness of the spectrum is concerned, the analogue
of [7, Theorem 4.13] holds true with the same proof.

Theorem 4.26 (Completeness of the spectrum) For all λ ∈ σ(A),

lim
h→0

δh(λ,σ (Ah)) = 0.

5 Numerical Results

We implemented the discrete Problem 3 following [14] and we applied it in four example
meshes and geometries that follow. The mortar mesh for each case was formed by choosing
the edges from one of the sides of the non-conforming interface. In all of the following

experiments we chose a penalty parameter of the form a= 10 (�+1)2

h
.

5.1 Example 1: Square Cavity + Single Mortar

In this example we let � = (0,π)2 with μ = 1 and ε = I with corresponding eigenvalues
λ = (n2 + m2) for non-negative integers n,m with at least one of n,m being non-zero.
The base mesh chosen for our initial experiments is shown in Fig. 1. It consists of two
conforming blocks with a non-conforming interface at x = π/2.

In our first experiment we applied a standard IPDG formulation on a sequence of meshes
obtained by uniform refinement of the base mesh. For each mesh, we computed all the
eigenvalues in a range bracketing 0 to 8. We show in Table 1 the computed eigenvalues,
and we see that there is pollution of the eigenvalues near zero and also extra eigenvalues
interleave the expected eigenvalues.

Furthermore, in Table 2, we show that similar pollution happens for a IPDG discretisation
when we keep the mesh fixed but increase the polynomial order of approximation, �.
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Fig. 1 Exploded view of the
base non-conforming mesh
blocks and mortar meshes used
for Examples 1

Table 1 Eigenvalues obtained
with IPDG compared with
expected eigenvalues for the
μ = 1 and ε = I material square
domain shown in Fig. 1. Here

� = 1, and a= 10(�+1)2

h

Expected h h/2 h/4 h/8

1.0000 0.0000 1.0318 0.0468 0.0097

1.0000 0.5293 1.0468 0.0569 0.0130

2.0000 1.1267 2.1841 1.0079 0.0856

4.0000 1.1772 2.9721 1.0119 0.0924

4.0000 3.1432 3.2261 2.0472 1.0020

5.0000 4.9785 4.3796 2.8705 1.0030

5.0000 7.4444 4.6601 3.1185 1.2375

8.0000 8.1280 5.7319 4.1109 1.3953

– – 6.2757 4.1741 2.0117

– – – 5.2056 3.5326

– – – 5.3193 3.7611

– – – 8.5813 4.0286

– – – – 4.0448

– – – – 5.0521

– – – – 5.0779

– – – – 8.1464

In contrast, in Table 3 we show that when we use the mortar-DG method, which is based
on a projection based penalization at the non-conforming interface (IPPDG from here on)
there is no pollution for the low eigenvalues on h-refinement.

And similarly in Table 4 we also see no pollution for a IPPDG discretisation when the
mesh size is kept fixed and the order is increased, furthermore we see exponential conver-
gence for each eigenvalue.
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Table 2 Eigenvalues obtained
with IPDG compared with
expected eigenvalues for the
μ = 1 and ε = I material square
domain shown in Fig. 1. Here

a= 10(�+1)2

h

Expected � = 1 � = 2 � = 3 � = 4 � = 5

1.0000 0.5293 0.0889 0.0079 0.0005 0.0000

1.0000 1.1267 1.0036 0.2352 0.0166 0.0009

2.0000 1.1772 1.0043 1.0001 1.0000 0.5898

4.0000 3.1432 2.0157 1.0009 1.0000 1.0000

4.0000 4.9785 2.0826 2.0059 2.0000 1.0000

5.0000 7.4444 4.0489 4.0272 4.0001 2.0000

5.0000 8.1280 4.2297 4.0366 4.0142 4.0000

8.0000 – 5.2783 5.0576 5.0029 4.0002

– – 6.1367 5.0708 5.0379 5.0002

– – – 8.2023 5.4277 5.0004

– – – – 8.0945 8.0016

Table 3 First eight discrete
eigenvalues, obtained with
IPPDG, compared with expected
eigenvalues for the μ = 1 and
ε = I material square domain
shown in Fig. 1. Here � = 1, and

a= 10(�+1)2

h

Expected h h/2 h/4 h/8 Est. order

1.0000 1.1255 1.0318 1.0079 1.0020 1.995

1.0000 1.1769 1.0467 1.0119 1.0030 1.966

2.0000 3.2260 2.1978 2.0473 2.0117 2.219

4.0000 4.9419 4.3794 4.1109 4.0286 1.690

4.0000 7.9118 4.6567 4.1738 4.0448 2.127

5.0000 – 5.7296 5.2055 5.0521 2.158

5.0000 – 6.2847 5.3171 5.0777 2.004

8.0000 – – 8.5808 8.1463 2.110

Table 4 Eigenvalues obtained
with IPPDG compared with
expected eigenvalues for the
μ = 1 and ε = I material square
domain shown in Fig. 1. Here

a= 10(�+1)2

h

Expected � = 1 � = 2 � = 3 � = 4 � = 5

1.0000 1.1255 1.0036 1.0001 1.0000 1.0000

1.0000 1.1769 1.0043 1.0009 1.0000 1.0000

2.0000 3.2260 2.0153 2.0059 2.0000 2.0000

4.0000 4.9419 4.0468 4.0269 4.0001 4.0000

4.0000 7.9118 4.2261 4.0366 4.0142 4.0002

5.0000 – 5.2737 5.0571 5.0029 5.0002

5.0000 – 6.1114 5.0707 5.0379 5.0004

8.0000 – – 8.2024 8.0944 8.0016

5.2 Example 2: Square Cavity + Multiple Mortars

To examine the impact of including the projection operator in the stabilization term we
created a base mesh for � by combining four unrelated meshes for each of four quadrants
as shown in Fig. 2.

We performed an h and p uniform refinement study for IPPDG discretisations using
three mesh levels obtained from the base mesh using uniform refinement and � = 1,2,3.
In Table 5 we show that the first eight eigenvalues are computed correctly, without any
spurious eigenvalues, using IPPDG with � = 1. In Table 6 we further show that for each



J Sci Comput (2009) 40: 86–114 111

Fig. 2 Exploded view of the
base non-conforming mesh
blocks and mortar meshes used
for Example 2

Table 5 First eight discrete
eigenvalues compared with
expected eigenvalues for the
μ = 1 and ε = I material square
domain shown in Fig. 2. Here

� = 1, and a= 10(�+1)2

h

Expected h h/2 h/4 h/8 Est. order

2.4674 2.4924 2.4737 2.4690 2.4678 2.000

2.4674 2.4937 2.4740 2.4691 2.4678 1.999

4.9348 5.0368 4.9607 4.9413 4.9364 1.991

9.8696 10.2721 9.9709 9.8949 9.8759 1.997

9.8696 10.3381 9.9881 9.8993 9.8770 1.994

12.3370 12.9674 12.4971 12.3772 12.3471 1.990

12.3370 13.0874 12.5283 12.3850 12.3490 1.989

19.7392 21.5189 20.1950 19.8539 19.7679 1.986

Table 6 Convergence rates for
the first eight eigenvalues for
Example 2 using � = 1,2,3

Expected � = 1 � = 2 � = 3

1.0000 2.000 3.990 5.959

1.0000 1.998 4.007 6.010

2.0000 1.986 4.005 5.948

4.0000 1.995 3.967 5.982

4.0000 1.990 3.969 5.957

5.0000 1.985 3.946 5.986

5.0000 1.983 3.983 5.911

8.0000 1.978 3.915 5.963

of the first eight eigenvalues the IPPDG method obtains optimal order of convergence with
rates approximately equal to 2� for � = 1,2,3.
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Fig. 3 Checkered material
geometry

Table 7 First ten discrete
eigenvalues compared with
reference results from
BENCHMAX for the εr = 1 &
εr = 0.5 checker material square
domain shown in Fig. 2. Here

� = 1, and a= 10(�+1)2

h

Expected h h/2 h/4 h/8 Est. order

3.3175 3.3514 3.3262 3.3197 3.3181 1.986

3.3663 3.3942 3.3729 3.3678 3.3667 2.137

6.1864 6.3133 6.2188 6.1945 6.1884 1.987

13.9263 14.5407 14.0817 13.9653 13.9361 1.993

15.0830 15.7391 15.2512 15.1253 15.0936 1.984

15.7789 16.6867 16.0127 15.8377 15.7936 1.982

18.6433 19.6901 18.9100 18.7102 18.6600 1.989

25.7975 28.2979 26.4491 25.9620 25.8387 1.975

29.8524 32.6070 30.5827 30.0373 29.8988 1.966

30.5379 – – 30.7069 30.5798 3.602

5.3 Example 3: Checkered Material Cavity

In this example we let � = (−1,1)2 with μ = 1 and ε = εrI , with εr given by

εr(x, y) =
{

1 for (x, y) ∈ (−1,0) × (0,1) ∪ (0,1) × (−1,0)

1/2 for (x, y) ∈ (−1,0) × (−1,0) ∪ (0,1) × (0,1)
(33)

as represented in Fig. 3. The first ten eigenvalues for this geometry are shown in the first
column of Table 7. In the second to fifth columns of this table we show the computed eigen-
values for a sequence of four meshes obtained via uniform refinement and the IPPDG dis-
cretisation. The final column provides an estimate for the rate of convergence of the discrete
eigenvalues to the reference values provided by BENCHMAX [10]. We note that no spe-
cial adaptivity strategy was used to create the refined meshes, as adaptive algorithms for
Maxwell’s eigenvalue problem will be the focus of a future paper.
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Fig. 4 Exploded view of the base non-conforming mesh blocks and mortar meshes used for L-shape geome-
try in Example 3. (a) Mesh is non-conforming at the reentrant corner. (b) Mesh is conforming at the reentrant
corner

Table 8 Convergence of the first
five discrete eigenvalues to
reference results from
BENCHMAX for the L-shape
domain with base mesh and
mortar as shown in Fig. 4a. Here

l = 1, and a = 10(l+1)2

h

Expected h h/2 h/4 h/8 Est. order

1.4756 1.6067 1.4990 1.4801 1.4798 1.727

3.5340 3.8678 3.6258 3.5576 3.5398 1.949

9.8696 11.8062 10.4752 10.0351 9.9120 1.841

9.8696 – 10.6906 10.0882 9.9250 2.434

11.3895 – 12.2837 11.6206 11.4477 2.479

5.4 Example 4: L-shape Domain

In this example we let:

� = (−1,1)2 \ {[0,1) × [−1,0)} (34)

with μ = 1 and ε = I . The first five eigenvalues are 1.47562182408, 3.53403136678, π2,
π2 and 11.3894793979 (see the BENCHMAX test suite at [10]). We created two different
base meshes for a numerical refinement study of this problem, see Fig. 4. The first base
mesh (Fig. 4a) consists of conforming left and right mesh blocks, with a non-conforming
interface and mortar grid at x = 0. In this case there is an element in the left block, and
corresponding mortar element that straddles the reentrant corner. In the second base mesh
(Fig. 4b) no element straddles the reentrant corner.

For a sequence of meshes obtained by uniform refinement from the base mesh in Fig. 4a
we see optimal order convergence rates, using IPPDG, for the first five eigenvalues as shown
in Table 8. The theory discussed earlier in this paper does not treat this case, yet it still gives
comparable convergence rates to those shown for the theoretically tractable second case in
Table 9.
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Table 9 Convergence of the first
five discrete eigenvalues to
reference results from
BENCHMAX for the L-shape
domain with base mesh and
mortar as shown in Fig. 4b. Here

l = 1, and a = 10(l+1)2

h

Expected h h/2 h/4 h/8 Est. order

1.4756 1.5033 1.4782 1.4738 1.4741 1.316

3.5340 3.7965 3.6095 3.5538 3.5390 1.906

9.8696 12.0068 10.5669 10.0588 9.9178 1.829

9.8696 – 10.6416 10.0768 9.9225 2.453

11.3895 – 12.0822 11.5825 11.4393 2.536

6 Conclusions

We have introduced and analyzed a mortar-DG method which provide a spurious-free ap-
proximation of the 2D Maxwell eigenproblem on general meshes with hanging nodes. Nu-
merical tests have confirmed that the mortar-type correction at the non-conforming inter-
faces actually remove the spurious eigenmodes generated by standard DG methods. Appro-
priate definitions of the non-conforming interface meshes and projections in order to extend
our mortar-DG method to the 3D case are still under study.
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