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Abstract Diagonally split Runge–Kutta (DSRK) time discretization methods are a class of
implicit time-stepping schemes which offer both high-order convergence and a form of non-
linear stability known as unconditional contractivity. This combination is not possible within
the classes of Runge–Kutta or linear multistep methods and therefore appears promising for
the strong stability preserving (SSP) time-stepping community which is generally concerned
with computing oscillation-free numerical solutions of PDEs. Using a variety of numerical
test problems, we show that although second- and third-order unconditionally contractive
DSRK methods do preserve the strong stability property for all time step-sizes, they suffer
from order reduction at large step-sizes. Indeed, for time-steps larger than those typically
chosen for explicit methods, these DSRK methods behave like first-order implicit methods.
This is unfortunate, because it is precisely to allow a large time-step that we choose to use
implicit methods. These results suggest that unconditionally contractive DSRK methods are
limited in usefulness as they are unable to compete with either the first-order backward Euler
method for large step-sizes or with Crank–Nicolson or high-order explicit SSP Runge–Kutta
methods for smaller step-sizes.

We also present stage order conditions for DSRK methods and show that the observed
order reduction is associated with the necessarily low stage order of the unconditionally
contractive DSRK methods.
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1 Introduction

Strong stability preserving (SSP) high-order time discretizations [13, 32, 33] were developed
for the solution of semi-discrete method-of-lines approximations of hyperbolic partial dif-
ferential equations (PDEs) with discontinuous solutions. In such cases, carefully constructed
spatial discretization methods guarantee a desired nonlinear or strong stability property (for
example, that the solution be free of oscillations) when coupled with first-order forward
Euler (FE) time-stepping. However, for practical computation, higher-order time discretiza-
tions are usually needed, and there is no guarantee that the nonlinearly stable spatial dis-
cretization will produce stable results when coupled with an only linearly stable higher-
order time discretization. In fact, numerical evidence [12] shows that oscillations may occur
when using a linearly stable, high-order time discretization which does not preserve the sta-
bility properties of forward Euler, even if the same spatial discretization is total variation
diminishing (TVD) when combined with the first-order forward Euler time-discretization.
SSP methods are high-order time discretization methods that preserve the strong stability
properties—in any norm or semi-norm—of the spatial discretization coupled with forward
Euler time-stepping.

The idea behind SSP methods is to assume that the spatial discretization is strongly stable
under a certain semi-norm when coupled with the forward Euler time discretization, for a
suitably restricted time-step, and then find a higher-order time discretization that maintains
strong stability for the same semi-norm, perhaps under a different time-step restriction. The
class of high-order SSP time discretization methods for the semi-discrete method-of-lines
approximations of PDEs was developed in [32, 33] and was at that time known as TVD
time discretizations. This class of methods was further studied by Gottlieb and Shu, Spiteri
and Ruuth, Higueras, Ferracina and Spijker and others (e.g., [7, 12, 16, 36]). The methods
preserve the stability properties of forward Euler in any norm or semi-norm. In fact, be-
cause the stability arguments are based on convex decompositions of high-order methods
in terms of the forward Euler method, any convex function will be preserved by SSP high-
order time discretizations. SSP time discretizations can then be safely used with any spatial
discretization which has the required stability properties when coupled with forward Euler.

The drawback of explicit SSP methods is that they suffer from restrictive time-step condi-
tions. To obviate these difficulties we turn to implicit time-stepping methods with SSP prop-
erties. It was shown in [19] and [15], that any spatial discretization which is strongly stable
in some semi-norm for the explicit forward Euler method under a certain time restriction
will also be strongly stable, in the same semi-norm, with the implicit backward Euler (BE)
method, without a time-step restriction. In previous work [13], efforts have been made to de-
sign higher-order implicit methods which share the strong stability properties of backward
Euler, without any restriction on the time-step. Unfortunately, this goal cannot be realized
for methods within the class of Runge–Kutta or linear multistep methods. For both implicit
Runge–Kutta and multistep methods it has been proved that any higher-order SSP method,
even for linear constant coefficient problems, will have some time-step restriction [13, 34].
This step-size restriction becomes apparent even in the simplest computations. An exam-
ple of this is seen in Sect. 2.1, Fig. 1 where the solution to a linear advection equation is
discretized using a TVD forward difference spatial discretization and the implicit Crank–
Nicolson (CN) time discretization. The numerical solution develops oscillations when the
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time-step restriction is exceeded. However, when the first-order, unconditionally SSP back-
ward Euler method is used with this spatial discretization, the numerical solution remains
TVD even for large step sizes.

To identify methods with no step-size restriction, we must extend our search beyond the
standard Runge–Kutta and linear multistep methods. One such class, in particular, is the
family of diagonally split Runge–Kutta methods (DSRK) [1, 2, 17, 20], which have been
shown to allow a form of nonlinear stability known as unconditional contractivity. In this
paper, we study unconditionally contractive DSRK methods and examine numerically the
nonlinear stability properties exhibited by these methods. We then compare their perfor-
mance in terms of nonlinear stability and accuracy to standard implicit and explicit SSP
time-stepping methods. The paper is structured as follows: in Sect. 2 we describe the con-
struction of SSP Runge–Kutta methods and review the results for explicit and implicit SSP
Runge–Kutta methods. In Sect. 3 we introduce the DSRK methods and their properties. In
Sect. 4 we present numerical studies comparing DSRK with implicit and explicit Runge–
Kutta methods, in terms of both accuracy and efficiency. In Sect. 5, we discuss order reduc-
tion of DSRK and present stage order conditions to avoid it. In Sect. 6, we draw conclusions
about the use of unconditionally contractive DSRK methods and future research directions.

2 SSP Runge–Kutta Methods

We wish to approximate the solution of the ODE system

ut = L(u), (1)

with initial conditions u(t0) = u0, typically arising from the spatial discretization of the PDE

ut + f (u)x = 0,

in which case u = (uj ) is a vector which gives the numerical solution of the PDE at spatial
points xj , j = 1, . . . ,m. The spatial discretization L(u) is often chosen so that forward Euler

un+1 = un + �tL(un),

is strong stability preserving (SSP)

‖un+1‖ ≤ ‖un‖, (2)

in some norm, semi-norm or convex functional ‖ · ‖, under the restricted time-step

�t ≤ �tFE.

The original choice for ‖ · ‖ was the total variation semi-norm

‖u‖TV =
∑

j

|uj+1 − uj |,

and a spatial discretization which, when combined with forward Euler, results in a method
which is SSP in this semi-norm is said to be total variation diminishing (TVD).
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A general explicit m-stage Runge–Kutta method for (1) is written in Shu–Osher
form [33]

u(0) = un,

u(i) =
i−1∑

k=0

(
αiku

(k) + �tβikL(u(k))
)
, αik ≥ 0, i = 1, . . . ,m, (3)

un+1 = u(m).

Consistency requires that
∑i−1

k=0 αik = 1 and if αik ≥ 0 and βik ≥ 0, all the intermediate stages
in (3), u(i), are simply convex combinations of forward Euler operators, with �t replaced
by βik

αik
�t . Therefore—as originally shown in [33]—any norm, semi-norm or convex func-

tion property satisfied by the forward Euler method will be preserved by the Runge–Kutta
method, under the time-step restriction

�t ≤ min
i<k

αik

βik

�tFE, (4)

where αik

βik
= ∞ if βik = 0.

Much of the research in the field of SSP methods centers around the search for high-
order SSP methods where the allowable time-step is as large as possible. If a method has a
SSP time-step restriction �t ≤ C�tFE, then we will often use C, the SSP coefficient or CFL
coefficient, to measure the allowable time-step of a method relative to that of forward Euler.
Many optimal methods with the largest possible SSP coefficients are listed in [11, 30, 37]
and some popular explicit SSP Runge–Kutta methods are given below.

Two-Stage, Second-Order SSP Runge–Kutta (SSP22) An optimal second-order SSP
Runge–Kutta method is given by

u(1) = un + �tL(un),

un+1 = 1

2
un + 1

2
u(1) + 1

2
�tL(u(1)).

The step-size restriction for this method is �t ≤ �tFE, which means that it has a SSP coef-
ficient of C = 1. However, note that the computational work required is doubled compared
to forward Euler.

Three-Stage, Third-Order SSP Runge–Kutta (SSP33) An optimal third-order SSP Runge–
Kutta method is given by

u(1) = un + �tL(un),

u(2) = 3

4
un + 1

4
u(1) + 1

4
�tL(u(1)),

un+1 = 1

3
un + 2

3
u(2) + 2

3
�tL(u(2)).

The step-size restriction for this method is �t ≤ �tFE, so it has a value of C = 1. However,
the computational work in this method is three times that of forward Euler. This method is
very commonly used and is often referred to as the third-order TVD Runge–Kutta scheme
or the Shu–Osher method.
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Five-Stage, Fourth-Order SSP Runge–Kutta (SSP54) An optimal method developed in [22,
29, 36] with coefficients expressed to 15 digits is

u(1) = un + 0.391752226571890�tL(un),

u(2) = 0.444370493651235un + 0.555629506348765u(1)

+ 0.368410593050371�tL(u(1)),

u(3) = 0.620101851488403un + 0.379898148511597u(2)

+ 0.251891774271694�tL(u(2)),

u(4) = 0.178079954393132un + 0.821920045606868u(3)

+ 0.544974750228521�tL(u(3)),

un+1 = 0.517231671970585u(2)

+ 0.096059710526146u(3) + 0.063692468666290�tL(u(3))

+ 0.386708617503269u(4) + 0.226007483236906�tL(u(4)).

The step-size restriction for this method is approximately �t ≤ 1.508�tFE, which means
that it has a value of C ≈ 1.508. The computational work in this method is five times that
of forward Euler, but the allowable time-step makes this method almost as efficient as the
SSP33 method, yet higher order.

In the development of new methods and in the numerical tests below, these explicit meth-
ods will serve as the gold standard, to be compared to implicit methods in terms of the
time-step allowed and the computational cost required.

2.1 Implicit SSP Methods

Historically, total variation diminishing (TVD) spatial discretizations are constructed in con-
junction with the forward Euler method. The implicit backward Euler method will then pre-
serve this property for all step-sizes [15, 19]. However, a higher-order time-discretization,
such as the second-order Crank–Nicolson (CN) method, may only preserve the TVD prop-
erty for a limited range of step-sizes. For example, consider the case of the linear wave
equation

ut + aux = 0,

with a = −2π , a step-function initial condition

u(x,0) =
{

1 if π
2 ≤ x ≤ 3π

2 ,
0 otherwise,

and periodic boundary conditions on the domain (0,2π]. The solution is a step function
convected around the domain. For a simple first-order forward-difference TVD spatial dis-
cretization L(u) of −aux , the result will be TVD for all sizes of �t when using the implicit
backward Euler method. If we use the forward Euler time-stepping, the result is TVD for
�t ≤ �tFE = �x

|a| . On the other hand, consider the Crank–Nicolson method

un+1 = un + 1

2
�tL(un) + 1

2
�tL(un+1). (5)
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Fig. 1 Oscillations from
Crank–Nicolson time-stepping in
the advection of a square wave
with �t = 8�tFE = 8�x and
�x = 2π

512

Using the Shu–Osher theory, CN can be shown to be SSP only for values �t ≤ 2�tFE [11].
This restriction is illustrated in Fig. 1 where an excessively large �t leads to oscillations
and a clear violation of the TVD property.

Crank–Nicolson requires extra computational cost due to the solution of an implicit sys-
tem, but with respect to strong stability only allows a doubling of the step-size compared to
forward Euler or the second-order SSP22. This means that, in general, it will not be efficient
to use this method.

The Shu–Osher form (3) has been generalized for implicit Runge–Kutta methods [7, 11,
16], and the search for implicit methods which are SSP without a time-step restriction has
generated much interest. The first-order backward Euler method is one such method. Un-
fortunately, there are no Runge–Kutta or linear multistep methods of order greater than one
which will satisfy this property [18, 34]. The search for implicit SSP Runge–Kutta meth-
ods with optimal SSP coefficients has been documented in [8, 21]. As discussed further in
Sect. 3.1, strong stability and contractivity are closely related for the class of implicit Runge–
Kutta methods. This motivates us to search outside the class of Runge–Kutta methods for
methods which are unconditionally contractive and high-order in the hope that they have
good SSP properties as well. One class of high-order unconditionally contractive methods
is the family of diagonally split Runge–Kutta (DSRK) methods.

3 Diagonally Split Runge–Kutta Methods

DSRK methods [1, 2, 17, 20] are one-step methods which are based on a Runge–Kutta
formulation, but where the ODE operator L in (1) has different inputs used for the diagonal
and off-diagonal components. We define the diagonal splitting function of L as

Lj (u,z) = L(z1, z2, . . . , zj−1, uj , zj+1, . . . , zm), j = 1, . . . ,m, (6)

that is, the j th component of L(u,z) is computed using the j th component of u for the j th
input of L and components of z for the other inputs of L.

The general DSRK method is

U i = un + �t

m∑

j=1

aijL(U j ,Zj ), (7a)
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Table 1 The 14 order conditions
for fourth-order DSRK schemes
written in matrix form where
C = diag(c). See [1] for an
explanation of the trees

Order 1 bTe = 1

Order 2 bTCe = 1
2

Order 3 bTC2e = 1
3

bTWCe = 1
6 bTACe = 1

6

Order 4 bTC3e = 1
4

bTCWCe = 1
8 bTCACe = 1

8

bTWC2e = 1
12 bTAC2e = 1

12

bTW2Ce = 1
24 bTAWCe = 1

24

bTWACe = 1
24 bTA2Ce = 1

24

Zi = un + �t

m∑

j=1

wijL(U j ,Zj ), (7b)

un+1 = un + �t

m∑

j=1

bjL(U j ,Zj ). (7c)

The schemes are consistent [2] and the coefficients (A,bT, c,W) must satisfy the order con-
ditions [1] in Table 1. We note that these include the order conditions of the so-called under-
lying Runge–Kutta method (i.e., conditions only on A = (aij ), b, and c) and are augmented
by additional order conditions on the coefficients W = (wij ).

3.1 Dissipative Systems and Contractivity

Bellen et al. [2] introduced the class of DSRK methods for dissipative systems ut = L(t,u).
In the special case of the maximum norm ‖ · ‖∞, a dissipative system is characterized (see
e.g., [1]) by the condition

m∑

j=1,j �=i

∣∣∣∣
∂Li(t,u)

∂uj

∣∣∣∣ ≤ −∂Li(t,u)

∂yi

, i = 1, . . . ,m,

for all t ≤ t0 and u ∈ R
m. We note in particular that the ODEs resulting from the spatial

discretizations of our linear PDE test problems in Sects. 4.1, 4.2, and 4.3 satisfy this condi-
tion. The ODE system resulting from the nonlinear problem in Sect. 4.4 can be shown to be
dissipative in ‖ · ‖1.

If the ODE system is dissipative, then solutions satisfy a contractivity property
[22, 34, 38]. Specifically, if u(t) and v(t) are two solutions corresponding to initial con-
ditions u(t0) and v(t0) then

‖u(t) − v(t)‖ ≤ ‖u(t0) − v(t0)‖,
in some norm of interest. Naturally, if solutions to the ODE system obey a contractivity
property then it is desirable that a numerical method for solving the problem be contractive
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as well, i.e., that given numerical solutions un and ũn, ‖ũn+1 −un+1‖ ≤ ‖ũn −un‖ (possibly
subject to a time-step restriction).

In [20], in ’t Hout showed that if a DSRK method is unconditionally contractive in the
maximum norm, the underlying Runge–Kutta method is of classical order p ≤ 4, and has
stage order p̃ ≤ 1. In [17], Horváth studied the positivity of Runge–Kutta and DSRK meth-
ods, and showed that DSRK schemes can be unconditionally positive.

The results on DSRK methods in terms of positivity and contractivity appear promising
when searching for implicit SSP schemes, because positivity, contractivity, and the SSP con-
dition are all very closely related for Runge–Kutta and multistep methods [6, 7, 15, 16, 22].
For example, a loss of positivity implies the loss of the max-norm SSP property. For Runge–
Kutta methods a link has also been established between time-step restrictions under the SSP
condition and contractivity, namely that the time-step restrictions under either property agree
[6], thereby enabling the possibility of transferring results established for the contractive
case to the SSP case [15], and vice versa. For multistep methods, the time-step restrictions
coming from either an SSP or contractivity analysis are the same, as can be seen by ex-
amining the proofs appearing in [24, 25, 32]. If we include the starting procedure into the
analysis, or if we consider boundedness (a related nonlinear stability property) rather than
the SSP property, significantly milder time-step restrictions may arise [19]. However, even
with this less restrictive boundedness property, we find that unconditional strong stability is
impossible for schemes that are more than first order [18]. The promise of DSRK method
is that there exist higher-order implicit unconditionally contractive methods, and therefore
possibly DSRK methods which are unconditionally SSP, in this class.

3.2 DSRK Schemes

It is illustrative to examine (7) when the ODE operator L is linear. In this case, with matrix L
decomposed into L = LD + LN where LD = diag(L), we have L(u,z) = LDu + LNz and
(7) becomes

U i = un + �t

m∑

j=1

aij

(
LDU j + LNZj

)
, (8a)

Zi = un + �t

m∑

j=1

wij

(
LDU j + LNZj

)
, (8b)

un+1 = un + �t

m∑

j=1

bj

(
LDU j + LNZj

)
, (8c)

and thus we see that for a linear ODE system, DSRK methods decompose the system into
diagonal and off-diagonal components and treat each differently.

We now list the DSRK schemes which are used in Sect. 4 for our numerical tests.

Second-Order DSRK (“DSRK2”) This second-order DSRK from [2] is based on the un-
derlying two-stage, second-order implicit Runge–Kutta method specified by the Butcher
tableau

c A

bT =
0 1

2 − 1
2

1 1
2

1
2

1
2

1
2

, combined with W =
[

0 0
1
2

1
2

]
. (9a)
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Thus the DSRK2 scheme is

U 1 = un + 1

2
�tL(un,U 1) − 1

2
�tL(un+1), (9b)

un+1 = un + 1

2
�tL(un,U 1) + 1

2
�tL(un+1). (9c)

Note that the un+1 terms are not split. For linear problems, (9) becomes

U 1 = un + 1

2
�t

[
LNun + LDU 1

] − 1

2
�t

[
Lun+1

]
, (10a)

un+1 = un + 1

2
�t

[
LNun + LDU 1

] + 1

2
�t

[
Lun+1

]
. (10b)

Note also in the special case when LD = 0, (10) decouples and (10b) is exactly the Crank–
Nicolson method.

Third-Order DSRK (“DSRK3”) This formally third-order DSRK scheme [1, 2, 20] is
based on the underlying Runge–Kutta method:

c A

bT =

0 5
2 −2 − 1

2
1
2 −1 2 − 1

2

1 1
6

2
3

1
6

1
6

2
3

1
6

, combined with W =
⎡

⎢⎣
0 0 0
7

24
1
6

1
24

1
6

2
3

1
6

⎤

⎥⎦ .

Higher-Order DSRK Schemes Thus far, no unconditionally contractive fourth-order
DSRK methods have been found. We begin searching for fourth-order DSRK using nec-
essary conditions for maximum norm unconditionally contractivity found in the proof of
[20, Theorem 2.4]; specifically,

all principal minors of A − ebT are nonnegative, (11a)

for each i ∈ {1,2, . . . , s}, det[(A ←i bT)(I)] ≥ 0

for every I ⊂ {1,2, . . . , s} with i ∈ I,
(11b)

where the notation M(I) indicates the principal submatrix formed by selecting from M only
those rows and columns indexed by I .

In [21, 26, 29] the proprietary Branch and Reduce Optimization Navigator (BARON) soft-
ware [31] was used to find optimal SSP Runge–Kutta schemes. Here we begin by searching
for any feasible DSRK methods by imposing the 14 order conditions in Table 1 and the
48 necessary conditions (11) as constraints and minimizing the sum of the squares of the b

coefficients. BARONwas interrupted after 30 days of calculation (on an Athlon MP 2800+
with 1 GiB of RAM) and was unable to find any feasible solutions. Constrained only by
the order conditions, BARONwas able to quickly find DSRK44 schemes; it was also able to
quickly find five-stage fourth-order DSRK54 methods satisfying the order conditions and
necessary conditions (11).

Altogether, this is a strong indication that unconditionally contractive DSRK44 methods
do not exist. We leave open the question of the existence of unconditionally contractive
DSRK54 schemes, noting however that such schemes are still likely to suffer from the order
reduction noted in Sect. 4.
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3.3 Numerical Implementation of DSRK

For linear problems, we implement DSRK using (8) by re-arranging all the unknowns into
a larger linear system, in general (2sm)× (2sm) where m is the size of the linear system (1)
and s is the number of stages in the underlying Runge–Kutta scheme. However particular
choices of methods may result in smaller systems; for example, the two-stage DSRK2 (10)
can be written as the 2m × 2m system

[
I − 1

2�tLD
1
2 �tL

− 1
2�tLD I − 1

2�tL

](
U 1

un+1

)
=

(
un + 1

2�tLNun

un + 1
2�tLNun

)
,

where I represents the m × m identity. We then simply solve this linear system to advance
one time-step. As is usually the case, nonlinear systems are considerably more difficult. For
the non-linear problems, we use a numerical zero-finding method to solve the nonlinear
equations.

All numerical computations are performed with MATLABversions 7.0 and 7.3 using dou-
ble precision on x86 and x86-64 architectures. Linear systems were solved using MATLAB’s
backslash operator, whereas for the nonlinear problems in Sects. 4.4 and 5.1, we imple-
ment the diagonal splitting function (6), and use a black-box equation solver (MATLAB’s
fsolve) directly on (7).

4 Numerical Results

Our primary aim is to show that unconditionally contractive DSRK methods preserve the
desired strong stability properties when applied to a variety of test cases. We focus our
numerical experiments on three types of problems: convection, diffusion, and convection-
diffusion. The SSP property is perhaps most important for convection driven problems, such
as hyperbolic problems with discontinuous solutions. The methods have also been used to
treat problems where the slope or some derivative of the solution is discontinuous and, for
this reason, SSP schemes have been used widely to treat Hamilton–Jacobi equations (see,
e.g., [27]). Many other problems of reaction-advection-diffusion type also can benefit from
nonlinearly stable time-stepping. For example time-stepping a spatially discretized Black–
Scholes equation (an equation we consider in Sect. 4.3) can lead to spurious oscillations
in the solution. These oscillations are particularly undesirable in option-pricing problems
because they can lead to highly oscillatory results in the first and second spatial derivatives—
known respectively as γ and δ (“the Greeks”) in computational finance.

4.1 Convection Driven Problems

An important prototype problem for SSP methods is the linear wave equation, or advection
equation

ut + aux = 0, 0 ≤ x ≤ 2π. (12)

We consider (12) with a = −2π , periodic boundary conditions and various initial condi-
tions. We use a method-of-lines approach, discretizing the interval (0,2π] into m points
xj = j�x, j = 1, . . . ,m, and then discretizing −aux with first-order upwind finite differ-
ences. We solve the resulting linear system using the time-stepping schemes described in
Sects. 2 and 3.
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4.1.1 Smooth Initial Conditions

To study the order of accuracy of the methods, we consider (12) with smooth initial condi-
tions

u(0, x) = sin(x).

Table 2 shows a convergence study with fixed �x. The implicit time-discretization methods
used are backward Euler (BE), Crank–Nicolson (CN), DSRK2 and DSRK3. We also evolve
the system with several explicit methods: forward Euler (FE), SSP22, SSP33, and SSP54. To
isolate the effect of the time-discretization error, we exclude the effect of the error associated
with the spatial discretization by comparing the numerical solution to the exact solution of
the ODE system (1), rather than to the exact solution of the underlying PDE. In lieu of the
exact solution we use a very accurate numerical solution obtained using MATLAB’s ode45
with minimal tolerances (AbsTol= 1 × 10−14, RelTol= 1 × 10−13). Table 2 shows that
all the methods achieve their design order when �t is sufficiently small. However, the errors
from CN are typically smaller than the errors produced by the other implicit methods. For
large �t , the second- and third-order DSRK schemes are far worse than CN. If we broaden
our experiments to include explicit schemes, and take time-steps which are within the stabil-
ity time-step restriction, we obtain smaller errors still. Given the relatively inexpensive cost
of explicit time-stepping, it would appear that high-order explicit schemes (e.g., SSP54) are
preferred for this smooth problem, unless, perhaps, very large time-steps are preferred over
accuracy considerations.

Table 2 Convergence study for the linear advection of a sine wave to tf = 1 using N time-steps, m = 64
points and a first-order upwinding spatial discretization. Here c measures the size of the step relative to �tFE

c N Discrete error, l∞-norm

BE Order CN Order DSRK2 Order DSRK3 Order

4 16 0.518 0.0582 0.408 0.395

2 32 0.336 0.62 0.0147 1.98 0.194 1.08 0.178 1.15

1 64 0.194 0.79 3.70e−3 2.00 0.0714 1.44 0.0590 1.59
1
2 128 0.105 0.89 9.25e−4 2.00 0.0223 1.68 0.0152 1.95

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1
32 2048 7.04e−3 3.61e−6 1.09e−4 1.21e−5
1
64 4096 3.53e−3 1.00 9.04e−7 2.00 2.74e−5 1.99 1.61e−6 2.91
1

128 8192 1.77e−3 1.00 2.26e−7 2.00 6.87e−6 1.99 2.09e−7 2.95

c N FE Order SSP22 Order SSP33 Order SSP54 Order

2 32 Unstable Unstable Unstable 2.66e−5

1 64 0.265 7.43e−3 1.82e−4 1.66e−6 4.00
1
2 128 0.122 1.12 1.85e−3 2.01 2.27e−5 3.00 1.03e−7 4.01
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4.1.2 Discontinuous Initial Conditions

To study the nonlinear stability properties of the methods, we consider the case of advection
of discontinuous data

u(x,0) =
{

1 if π
2 ≤ x ≤ 3π

2 ,
0 otherwise.

(13)

Figure 2 shows typical results. Note that oscillations are observed in the Crank–Nicolson
results, while the DSRK schemes are free of such oscillations. In fact, Table 3 shows that
for any time-step size BE, DSRK2 and DSRK3 preserve the TVD property of the spatial
discretization coupled with forward Euler. In contrast, Crank–Nicolson exhibits oscillations
for time-steps larger than �t = 2

|a|�x (i.e., c > 2). These results suggest that the uncondi-
tionally contractive DSRK schemes do preserve the strong stability properties of the ODE
system.

4.1.3 Order Reduction and Scheme Selection

We now delve deeper into the observed convergence rates of our smooth and nonsmooth
problems.

Fig. 2 Advection of a square wave after two time-steps, showing oscillations from Crank–Nicolson and none
in the other methods. Here c = 16 and we take a first-order upwinding spatial discretization with m = 512
points in space
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Table 3 Total variation of the
solution for the advection of a
square wave (N time-steps,
tf = 1). The spatial discretization
uses m = 512 points, first-order
upwinding, and periodic BCs

c N maxt T V (u)

Exact CN BE DSRK2 DSRK3

32 16 2 8.78 2 2 2

16 32 2 6.64 2 2 2

8 64 2 4.73 2 2 2

4 128 2 3.33 2 2 2

2 256 2 2 2 2 2

1 512 2 2 2 2 2

Fig. 3 Convergence study for linear advection of a sine wave to tf = 1. The spatial discretization here is
first-order upwinding with 64 points (left) and 2048 points (right). We indicate the spatial discretization error
with a dotted horizontal line

Figures 3 and 4 show that for large time-steps, the DSRK methods exhibit behavior
similar to backward Euler in that they exhibit large errors and as we decrease size of the
time-steps, the error decreases at a rate which appears only first order. As the time-steps are
taken smaller still, the convergence rate increases to the design order of the DSRK schemes.
In contrast, we note that Crank–Nicolson shows consistent second-order convergence over
a wide range of time-steps.

On the discontinuous problem (Fig. 4) we note the DSRK schemes do not produce signif-
icantly improved errors over backward Euler until the time-step sizes are small enough that
Crank–Nicolson no longer exhibits spurious oscillations (c = 2 in Fig. 4). In fact, once the
time-steps are small enough that DSRK are competitive, we are almost within the nonlinear
stability constraint of explicit methods such as SSP22 (c = 1 in Fig. 4) .

We note that neither Fig. 3 nor Fig. 4 takes into account the differences in computational
work required by the various methods. The costs for DSRK2 and DSRK3 are significantly
larger than BE and CN, because the underlying systems are larger. In the linear case, the size
of the DSRK2 system is 2m × 2m and the DSRK3 system is 5m × 5m whereas the BE and
CN systems are only m × m. Even if the cost of solving the system rose only linearly with
the size of the system, the cost is doubled for DSRK2 and increased five-fold for DSRK3.
In reality, the cost may increase more rapidly, depending on the structure of the implicit
system and the method used to solve the implicit equations. Furthermore, if a nonlinear
system is solved, this cost may increase even further. It is even more difficult to quantify the
increased cost of an implicit method over that of an explicit method. However, it is clear that
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Fig. 4 Linear advection of a
square wave to time tf = 1 using
first-order upwinding and 512
points in space. Note that
Crank–Nicolson produces
oscillations during the
computation for c > 2. We
indicate the spatial discretization
error with a dotted horizontal line

implicit methods in general and DSRK methods in particular are significantly more costly
than explicit methods.

We note that phase errors were also investigated to see if the DSRK schemes had im-
proved phase error properties compared to BE but they do not. In general, for large �t ,
DSRK methods behave similarly in many aspects to backward Euler.

In summary, our results on the advection equation show that although the unconditionally
contractive DSRK method are formally high order, in practice we encounter a reduction of
order for large time-steps. If one requires large time-steps and no oscillations, backward
Euler is a good choice. If on the other hand, one requires accuracy, an explicit high-order SSP
method is probably better suited. We will see that these results are typical for unconditionally
contractive DSRK schemes.

4.2 Diffusion Driven Problems

Consider the diffusion or heat equation

ut = νuxx, (14)

with heat coefficient ν on a periodic domain (0,2π ]. We begin by discretizing the uxx term
with second-order centered finite differences to obtain ODE system (1).

In Fig. 5 and Table 4, we consider (14) with smooth initial conditions

u(0, x) = sin(x) + cos(2x).

Once again, we note that the DSRK schemes achieve their design order as �t gets smaller,
but for large time-steps they exhibit large errors and reduced convergence rates.

Figure 6 shows that Crank–Nicolson produces spurious oscillations in the solution to the
heat equation with discontinuous initial conditions (13). Also, Fig. 6 shows that the DSRK
schemes are not competitive with backward Euler until the time-steps are smaller than the
explicit stability limit (in this case, the restrictive �t ≤ �x2

2ν
shown by the dotted vertical

line). Clearly, the unconditionally contractive DSRK methods exhibit order reduction for
this parabolic problem as well.



J Sci Comput (2008) 35: 89–112 103

Fig. 5 Convergence studies for the heat equation with smooth initial conditions. Left: m = 64, tf = 10,
ν = 1/16. Right: m = 1024, tf = 1, ν = 1/4. The spatial discretization uses second-order centered differ-
ences and the level of spatial discretization error is indicated by the horizontal dotted line labeled “s.d.e.”

Table 4 Convergence study for the heat equation with smooth initial conditions. Here ν = 1/4, m = 1024,
tf = 1. The discrete error is computed against the ODE solution calculated with MATLAB’s ode15s. For
comparison explicit methods are shown near their stability limits around c = 1

c N Discrete error l∞-norm

BE CN DSRK2 DSRK3

830 16 0.0127 1.24e−4 0.0127 0.0127

415 32 0.00643 3.09e−5 0.00640 0.00640

. . . . . . . . . . . . . . . . . .

12.97 1024 2.03e−4 3.02e−8 1.76e−4 1.74e−4

6.48 2048 1.02e−4 7.55e−9 7.77e−5 7.55e−5

1 13280 1.57e−5 1.80e−10 5.23e−6 4.28e−6

c N FE SSP22 SSP33 SSP54

2 6640 Unstable Unstable Unstable 8.74e−13

1 13280 1.57e−5 3.59e−10 4.42e−13 1.32e−12

Fig. 6 Heat equation with
discontinuous initial conditions
using m = 512, tf = 1, and
ν = 1/4. The spatial
discretization in this example is
second-order centered differences
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4.3 The Black–Scholes Equation

The Black–Scholes equation [3]

Vτ = σ

2
S2VSS + rSVS − rV , (15)

is a PDE used in computational finance [9] for determining the fair price V of an option at
stock price S, where σ is the volatility and r is the risk-free interest rate. Note S is the in-
dependent (we can think “spatial”) variable on the positive half-line and τ is a rescaled time
(the actual time runs backwards from “final conditions”). We consider the initial conditions
shown in Fig. 7 which have a discontinuity in the first derivative at S = 100 (these initial
conditions are known as a “put option” with a “strike price” of S = 100).

We note that for our purposes, (15) is a linear non-constant coefficient advection-
reaction-diffusion equation and we treat it as the ODE system (1) by approximating the
VS term with first-order upwind finite differences and the VSS term with second-order cen-
tered finite differences. We use σ = 0.8, r = 0.1 and for this choice we did not notice
any significant difference between upwind and centered differences for the advection term.
The right-hand boundary condition is an approximation to limS→∞ V (S) = 0, specifically
V (Smax) = 0. At the left-hand end of the domain, we note that (15) reduces to

V̇0 = −rV0,

and thus it is both natural and convenient to simply solve this ODE coupled with the other
components Vj as part of our method-of-lines computation.

Figure 8 shows the problem of oscillations which show up in a Crank–Nicolson calcula-
tion of the Black–Scholes problem. The oscillations are amplified in “the Greeks” i.e., the
first and second spatial derivatives. We note this is a well-known phenomenon [5] associated
with the CN numerical solution of (15); in practice, Rannacher time-stepping consisting of
several initial steps of BE followed by CN steps [10] is often used to avoid these oscilla-
tions. DSRK schemes also avoid oscillations but are not likely competitive with Rannacher
time-stepping in terms of efficiency due to the order reduction illustrated in Table 5. A great
number of time-steps (N = 17800 in the case considered in Table 5) are required before the
Crank–Nicolson calculation is completely oscillation-free in “the Greeks”.

We note that explicit methods are not practical for this problem because of the severe
linear stability restriction imposed by the diffusion term in (15). If an oscillation-free cal-
culation is desired, then backward Euler is preferred over DSRK methods because DSRK

Fig. 7 Computational domain
and initial conditions for the
Black–Scholes problem



J Sci Comput (2008) 35: 89–112 105

Fig. 8 Numerical solutions of the Black–Scholes problem magnified near S = 100 with m = 1600, tf = 1
4 ,

σ = 0.8, r = 0.1, and Smax = 400 using N time-steps. From left-to-right: V , VS and VSS . Note that
Crank–Nicolson exhibits oscillations with N = 64 whereas BE and the DSRK schemes appear free of os-
cillation even with the larger time-steps corresponding to N = 8

methods cost more and offer essentially the same first-order convergence rates for step-
sizes of practical interest. Moreover, DSRK schemes can offer little practical advantage
over current Rannacher time-stepping techniques which attempt to combine the best aspects
of backward Euler and Crank–Nicolson.

4.4 Hyperbolic Conservation Laws: Burgers’ Equation

Up to now we have dealt exclusively with linear problems. In this Sect. we consider Burgers’
equation

ut = −f (u)x = −
(

1

2
u2

)

x

,

with initial condition u(0, x) = 1
2 − 1

4 sin(πx) on the periodic domain x ∈ [0,2). The solu-
tion is right-travelling and over time steepens into a shock. We discretize −f (u)x using a
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Table 5 Black–Scholes convergence study. * indicates oscillations in V , VS or VSS . Here, m = 1600,
Smax = 400, �x = 1

4 , tf = 1
4 , σ = 0.8, and r = 0.1. The discrete error is calculated against a numerical

solution from MATLAB’s ode15s with AbsTol= 1 × 10−14, RelTol= 1 × 10−13

N Discrete error l∞-norm

BE Order CN Order DSRK2 Order DSRK3 Order

32 0.0655 0.115* 0.0654 0.0654

64 0.0328 1.00 0.0452* 1.35 0.0327 1.00 0.0326 1.00

128 0.0164 1.00 8.64e−3* 2.39 0.0163 1.00 0.0163 1.00

256 8.21e−3 1.00 8.76e−5* 6.62 8.07e−3 1.01 8.06e−3 1.02

512 4.10e−3 1.00 1.95e−6* 5.49 3.97e−3 1.02 3.96e−3 1.03

1024 2.05e−3 1.00 4.88e−7* 2.00 1.92e−3 1.05 1.91e−3 1.05

. . . . . . . . . . . . . . . . . . . . . . . . . . .

8192 2.57e−4 7.62e−9* 1.60e−4 1.51e−4

16384 1.28e−4 1.00 1.90e−9* 2.00 5.67e−5 1.50 4.98e−5 1.60

32768 6.41e−5 1.00 4.75e−10 2.00 1.78e−5 1.67 1.67e−5 1.58

Fig. 9 Burgers’ equation with Crank–Nicolson (left) and DSRK2 (right) with m = 256 spatial points and
tf = 2, N = 32 (c = 8). For CN, the solution appears smooth until the shock develops, then an oscillation
develops at the trailing edge of the shock. Note that DSRK2 appears overly dissipative. The reference solution
is calculated with CN and N = 8192

conservative simple upwind approximation

−f (u)x ≈ − 1

�x

(
f̃i+ 1

2
− f̃i− 1

2

)
= − 1

�x
(f (ui) − f (ui−1)) .

Figure 9 shows that Crank–Nicolson produces spurious oscillations in the wake of the shock,
for c = 8 (in fact, we observe oscillations from CN for c ≥ 4 as noted in Table 6). As
expected, BE, DSRK2 and DSRK3 produce a non-oscillatory TVD solution. Table 6 shows
a convergence study for this problem which illustrates the familiar pattern of order reduction.

Notice, in particular, that for any time-step size considered, one of BE or CN gives non-
oscillatory results with smaller errors than the DSRK schemes considered here. However,
for small time-steps, the explicit methods clearly outperform the other choices.
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Table 6 Burgers’ equation convergence study. Values for which oscillations appear are indicated with *. The
setup here is the same as in Fig. 9 except the reference solution is calculated with SSP54 and N = 8192

c N Error (l∞-norm against ref. soln.)

BE Order CN Order DSRK2 Order DSRK3 Order

16 16 0.192 0.193* 0.195 0.195

8 32 0.173 0.15 0.109* 0.82 0.153 0.35 0.154 0.34

4 64 0.140 0.31 0.0399* 1.45 0.110 0.47 0.114 0.43

2 128 0.0964 0.54 0.0124 1.68 0.0644 0.78 0.0673 0.76

1 256 0.0589 0.71 3.11e−3 2.00 0.0273 1.24 0.0249 1.43

0.5 512 0.0320 0.88 7.72e−4 2.01 8.72e−3 1.65 6.79e−3 1.87

0.25 1024 0.0165 0.96 1.90e−4 2.02 2.45e−3 1.83 1.39e−3 2.29

c N FE Order SSP22 Order SSP33 Order SSP54 Order

4 64 Unstable Unstable Unstable Unstable

2 128 Unstable Unstable Unstable 2.50e−4

1 256 0.0880 5.98e−3 3.54e−4 1.36e−5 4.20

0.5 512 0.0377 1.22 1.45e−3 2.04 4.32e−5 3.03 7.63e−7 2.88

0.25 1024 0.0172 1.13 3.63e−4 2.00 5.34e−6 3.02 4.46e−8 4.10

0.125 2048 8.43e−3 1.03 9.08e−5 2.00 6.61e−7 3.01 2.68e−9 4.06

5 Stage Order and Order Reduction

In our numerical experiments in Sect. 4, we have shown that the unconditionally contractive
DSRK2 and DSRK3 methods preserve nonlinear stability properties when applied to our
test cases in Sect. 4. Unfortunately, however, these methods suffer from order reduction.
This implies that the unconditionally contractive DSRK methods are not likely a appropriate
choice for a time-stepping scheme, because they cannot compete with BE for large time-
steps or with SSP explicit methods for smaller time-steps.

5.1 The van der Pol Equation

To further investigate the order reduction observed in the previous numerical tests, we apply
the DSRK methods to the van der Pol equation, a problem often used for testing for reduction
of order (see, e.g., [23] and references therein). The problem can be written as an ODE initial
value problem consisting of two components

y ′
1 = y2, (16a)

y ′
2 = 1

ε

(−y1 + (1 − y2
1 )y2

)
, (16b)

with ε-dependent initial conditions [23, Table 5.1] and becomes increasingly stiff as ε is
decreased. We solve until tf = 1

2 .
Figure 10 shows the distinctive “flattening” [23] that occurs during the convergence stud-

ies whereby the error exhibits a region (depending on ε) of first-order behaviour as the step-
size decreases before eventually approaching the design order of the method. This suggests
that DSRK schemes suffer from order reduction whereas Crank–Nicolson does not. Before
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Fig. 10 A convergence study on the van der Pol equation. Error shown is in the second component, where
we have taken ε = 1 × 10−3 (left) and ε = 1 × 10−4 (right)

the flattened region, all the high-order methods produce similar errors. In particular DSRK3
does no better than the second-order Crank–Nicolson until after the flattening region. We
note that this order reduction is noticeable despite the fact that our choices of ε do not
correspond to particularly stiff systems.

5.2 DSRK Schemes with Higher Underlying Stage Order

The order reduction is not completely unexpected, as [20] showed that the underlying
Runge–Kutta methods must have stage order at most one, and low stage order—at least
in Runge–Kutta schemes—is known to lead to order reduction [14]. For comparison, we
consider a DSRK method which is based on the two-stage, second-order, stage order two
implicit Runge–Kutta method

c A

bT =
1
2

3
4 − 1

4

1 1 0
1 0

, combined with W =
[

1
2 0
1 0

]
. (17)

We call this method DSRK2uso2. Because the underlying method has stage order larger
than one (i.e., two), the DSRK2uso2 method cannot be unconditionally contractive [20].

5.3 DSRK Schemes with Higher Stage Order

Figures 11 and 12 indicate that DSRK2uso2 also suffers from order reduction. Thus it ap-
pears that higher stage order of the underlying Runge–Kutta scheme is not sufficient to
avoid order reduction. We thus investigate stage order properties of the DSRK scheme it-
self by considering the test problem of [28]. However, because DSRK schemes reduce to
Runge–Kutta schemes on scalar problems, we use a modified vector version

u′ = �(u − φ(t)) + φ′(t), (18)

where u(t0) = φ(t0) and � is negative semidefinite, where the exact solution is u(t) = φ(t).
We apply a general DSRK scheme (8) to this test problem and, following Sect. IV.15 of

[14], we use Taylor series expansions to determine the defect of each stage U i and Zi and
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Fig. 11 Stage order convergence
study for linear advection of a
sine wave to tf = 1. The spatial
discretization here is first-order
upwinding with m = 2048 points

Fig. 12 Stage order convergence study on the van der Pol equation. Error shown is in the second component
and we have taken ε = 1 × 10−3 (left) and ε = 1 × 10−4 (right)

the final un+1. The order of each defect is determined by the relations

bTck−1 = 1

k
, for k = 1, . . . , q0, (19a)

Ack−1 = ck

k
, for k = 1, . . . , q1, (19b)

Wck−1 = ck

k
, for k = 1, . . . , q2, (19c)

where the ck indicates component-wise exponentiation. We define the stage order of the
DSRK method as min(q0, q1, q2). Note that min(q0, q1) is the stage order of the underlying
Runge–Kutta scheme and that q0 ≥ p, where p is the order of the DSRK scheme.

Our scheme DSRK2uso2 has q1 = 2 and q2 = 1. The DSRK2 scheme as q1 = 1 and
q2 = 2. It does not appear possible to create two-stage second-order DSRK scheme with
q1 = q2 = 2. However, we can find many three-stage second-order DSRK schemes with
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q1 = q2 = 2; a particular example is the method we call DSRK32so2 with

c A

bT =

0 1
4 − 1

2
1
4

1
2

1
4

1
4 0

1 1
4

1
2

1
4

1
4

1
2

1
4

, W =
⎡

⎢⎣
0 0 0
1
3

1
12

1
12

1
4

1
2

1
4

⎤

⎥⎦ .

We can also find third-order, three-stage DSRK methods with q1 = q2 = 2, for example,
DSRK33so2 with

c A

bT =

0 1
4 − 1

2
1
4

1
2

1
2 − 1

4
1
4

1 1
6

2
3

1
6

1
6

2
3

1
6

, W =
⎡

⎢⎣

1
3 − 2

3
1
3

1
3

1
12

1
12

1
6

2
3

1
6

⎤

⎥⎦ .

We reiterate that none of these higher stage order schemes can be unconditionally
contractive and in numerical tests (not included) we observed that indeed, DSRK2uso2,
DSRK32so2 and DSRK33so2 violated the strong stability property for large enough �t .

Figures 11 and 12 show that the DSRK32so2 scheme is free from order reduction. How-
ever, we note that DSRK33so2 still exhibits order reduction as its stage order is one less
than its design order.

The apparent importance of high stage order for DSRK schemes is intriguing especially
because we do not observe order reduction when using implicit SSP schemes (which neces-
sarily have stage order at most two) even when tested [21] on some of the same test problems
used here.

6 Conclusions and Future Directions

We studied the performance of unconditionally contractive diagonally split Runge–Kutta
(DSRK) schemes of orders two and three on a variety of archetypal test cases. The nu-
merical tests verified the asymptotic order of the schemes as well as the unconditional
contractivity property. However, in every numerical experiment, the unconditionally con-
tractive DSRK methods were out-performed by the first-order backward Euler (BE) scheme
when �t > 2�tFE, and by explicit Runge–Kutta methods or Crank–Nicolson (CN) when
�t ≤ 2�tFE. At larger time-steps, the unconditionally contractive DSRK schemes are strong
stability preserving (SSP) but suffer from order reduction, making BE a better choice. At
small step-sizes, CN and explicit SSP Runge–Kutta methods are SSP, and produce far more
accurate results at a smaller computational cost.

We showed that higher stage order of the underlying Runge–Kutta schemes was insuf-
ficient to avoid order reduction. We then derived DSRK stage order conditions and con-
structed DSRK schemes with stage order two which do not suffer from order reduction.
However, because of the high stage order, these schemes cannot be unconditionally contrac-
tive.

The class of unconditionally contractive DSRK methods does not produce viable alter-
natives to well-established conditionally SSP Runge–Kutta and linear multistep methods.
Recent research has focused on implicit and diagonally implicit Runge–Kutta [8, 21] as
well as on General Linear Methods [4, 35]. This work is ongoing. Future research will focus
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on high stage order DSRK methods which are not unconditionally contractive, but which
may have a large allowable step-size while not suffering from order reduction.
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