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Abstract The size estimates approach for Electrical Impedance Tomography (EIT) allows
for estimating the size (area or volume) of an unknown inclusion in an electrical conductor
by means of one pair of boundary measurements of voltage and current. In this paper we
show by numerical simulations how to obtain such bounds for practical application of the
method. The computations are carried out both in a 2-D and a 3-D setting.

Keywords Size estimates · Electrical impedance tomography

1 Introduction

EIT is aimed at imaging the internal conductivity of a body from current and voltage mea-
surements taken at the boundary. It is well known [1, 2], that, even in the ideal situation
in which all possible boundary measurements are available, the correspondence boundary
data → conductivity is highly (exponentially) unstable. As a consequence it is evident that,
in practice, it is impossible to distinguish high resolution features of the interior from limited
and noisy boundary data [3].

Motivated by applications, a line of investigation pursued by many authors [4–11], has
been the one of limiting the analysis to cases in which one seeks an unknown interior inclu-
sion embedded in an otherwise known (may be even homogeneous) conductor, and whose
conductivity is assumed to differ from the background.
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Even in this restricted case, and even when full boundary data are available, the instability
remains of exponential type [12].

It is therefore reasonable to further restrict the goal and attempt to evaluate some para-
meters expressing the size (area, volume) of the inclusion, disregarding its precise location
and shape, having at our disposal one pair of boundary measurements of voltage and cur-
rent. This approach, which can be traced back to [4], has been well developed theoretically
[13–16], see also [17] and [18] for the analogous treatment in the linear elasticity framework.
In order to describe such type of results we need first to introduce some notation.

We denote by � a bounded domain in R
n, n = 2,3, representing an electrical con-

ductor. The boundary ∂� of � is assumed of Lipschitz class, with constants r0, M0, that
is the boundary can be locally represented as a graph of a Lipschitz continuous function
with Lipschitz constant M0 in some ball of radius r0. When no inclusion is present in the
conductor we assume that it is homogeneous and, more specifically, we assume its con-
ductivity σ(x) ≡ 1. When the conductor contains an unknown inclusion D of different
conductivity, say k > 0, k �= 1 the overall conductivity in the conductor will be given by
σ(x) = 1 + (k − 1)χD(x). Here and in what follows it is assumed that D is strictly con-
tained in �. More precisely, for a given d0 > 0,

dist(D, ∂�) ≥ d0. (1.1)

Let ϕ ∈ H− 1
2 (∂�),

∫
∂�

ϕ = 0, be an applied current density on ∂�. The induced electrostatic
potential u ∈ H 1(�) is the solution of the Neumann problem

{
div ((1 + (k − 1)χD)∇u) = 0, in �,

∇u · ν = ϕ, on ∂�,
(1.2)

where ν denotes the outer unit normal to ∂�.
When D is the empty set, that is when the inclusion is absent, the reference electrostatic

potential u0 ∈ H 1(�) satisfies the Neumann problem
{

�u0 = 0, in �,

∇u0 · ν = ϕ, on ∂�.
(1.3)

In both cases (1.2) and (1.3), the solutions u and u0 are determined up to an additive
constant.

Let us denote by W , W0 the powers required to maintain the current density ϕ on ∂�

when D is present or it is absent, respectively. Namely

W =
∫

∂�

uϕ =
∫

�

(1 + (k − 1)χD)|∇u|2, (1.4)

W0 =
∫

∂�

u0ϕ =
∫

�

|∇u0|2. (1.5)

The size estimate approach developed in [13–16], tells us that the measure |D| of D can be
bounded from above and below in terms of the quantity |W0−W

W0
| which we call the normal-

ized power gap. More precisely the following bounds hold, see [16, Theorem 2.3].

Theorem 1.1 Let D be any measurable subset of � satisfying (1.1). Under the above as-
sumptions, if k > 1 we have

1

k − 1
C+

1

W0 − W

W0
≤ |D| ≤

(
k

k − 1

) 1
p

C+
2

(
W0 − W

W0

) 1
p

. (1.6)
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If, conversely, k < 1, then we have

k

1 − k
C−

1

W − W0

W0
≤ |D| ≤

(
1

1 − k

) 1
p

C−
2

(
W − W0

W0

) 1
p

, (1.7)

where C+
1 , C−

1 only depend on d0, |�|, r0, M0, whereas p > 1, C+
2 , C−

2 only depend on the
same quantities and, in addition, on the frequency of ϕ

F [ϕ] =
‖ϕ‖

H
− 1

2 (∂�)

‖ϕ‖H−1(∂�)

. (1.8)

When it is a priori known that the inclusion D is not too small (if it is at all present), a
situation which often occurs in practical applications, stronger bounds apply.

Theorem 1.2 Under the above hypotheses, let us assume, in addition, that

|D| ≥ m0, (1.9)

for a given positive constant m0. If k > 1 we have

1

k − 1
C+

1

W0 − W

W0
≤ |D| ≤ k

k − 1
C+

2

W0 − W

W0
. (1.10)

If, conversely, k < 1, then we have

k

1 − k
C−

1

W − W0

W0
≤ |D| ≤ 1

1 − k
C−

2

W − W0

W0
, (1.11)

where C+
1 , C−

1 only depend on d0, |�|, r0, M0, whereas C+
2 , C−

2 only depend on the same
quantities and, in addition, on m0 and F [ϕ].

Theorem 1.2 can be easily deduced from Theorem 1.1 by the arguments sketched in [19,
Appendix].

One of the goals of the present paper is to test the applicability of such bounds by nu-
merical simulations with the following purposes:

(i) Provide practical evaluations of the constants C±
1 , C±

2 appearing in the above inequali-
ties (1.6), (1.7), (1.10), (1.11).

(ii) When, due to special geometric configurations, we can solve (1.3) in closed form and it
is possible to explicitly evaluate such constants, compare such theoretical values with
those obtained by simulations.

(iii) Show that such upper and lower bounds deteriorate as the frequency F [ϕ] increases.

The other goal of this paper is to perform similar kinds of numerical simulations when
the so-called complete model of EIT is adopted. We recall that this model is aimed at an
accurate description of the boundary measurements suitable for medical applications, and
was introduced in [20] and subsequently developed in [21] and [22]. In this model, the metal
electrodes behave as perfect conductors and provide a low-resistance path for current. An
electrochemical effect at the contact between the electrodes and the body results in a thin,
highly resistive, layer. The impedance of this layer is characterized by a positive quantity zl

on each electrode el , l = 1, . . . ,L, which is called surface impedance.
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Denoting by Il the current applied to each el , the resulting boundary condition on each
electrode el becomes

u + zl∇u · ν = Ul, on el, (1.12)

where the unknown constant Ul is the voltage which can be measured at the electrode el .
We assume, as before, that the reference conductor has conductivity σ ≡ 1 and that an

unknown inclusion D of conductivity σ ≡ k, with k > 0 and k �= 1, is strictly contained
in �. Therefore, the electrostatic potential u inside the conductor is determined, up to an
additive constant, as the solution to the following problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

div((1 + (k − 1)χD)∇u) = 0, in �,

u + zl∇u · ν = Ul, on el , 1 ≤ l ≤ L,

∇u · ν = 0, on ∂� \ ⋃L

l=1 el ,
∫

el
∇u · ν = Il, 1 ≤ l ≤ L,

(1.13)

where the so-called current pattern I = (I1, . . . , IL) is subject to the conservation of charge
condition

∑L

l=1 Il = 0, and the unknown constants Ul are the components of the so-called
voltage pattern U = (U 1, . . . ,UL).

When the inclusion is absent, the electrostatic potential u0 induced by the same current
pattern I is determined, up to an additive constant, as the solution of the following problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�u0 = 0, in �,

u0 + zl∇u0 · ν = Ul
0, on el , 1 ≤ l ≤ L,

∇u0 · ν = 0, on ∂� \ ⋃L

l=1 el ,
∫

el
∇u0 · ν = Il, 1 ≤ l ≤ L,

(1.14)

where, as before, the Ul
0 are unknown constants in the direct problem (1.14).

We shall assume that the sets e1, . . . , eL, representing the electrodes, are open, pairwise
disjoint, connected subsets of ∂� and, in addition,

dist(el, ek) ≥ δ1 > 0 for every l, k, l �= k. (1.15)

The surface impedance zl on el , l = 1, . . . ,L, is assumed to be real valued and to satisfy
the following bounds

0 < m ≤ zl ≤ M, for every l = 1, . . . ,L. (1.16)

In this formulation, the powers W and W0 become

W =
L∑

i=1

IiU
i, (1.17)

W0 =
L∑

i=1

IiU
i
0. (1.18)

Size estimates like those of Theorems 1.1, 1.2 were obtained for the complete model in [23].
In particular we have
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Theorem 1.3 Let D be any measurable subset of � satisfying (1.1) and let W , W0 be given
by (1.17), (1.18). Then, inequalities (1.6), (1.7) hold for k > 1 and k < 1, respectively, where
the constants C+

1 , C−
1 only depend on d0, |�|, r0, M0, and C+

2 , C−
2 and p > 1 only depend

on the same quantities and, in addition, on δ1, M and m.

Also in this case, the size estimates of |D| can be improved to the form (1.10), (1.11)
when condition (1.9) is satisfied.

In Sect. 2 we consider the standard EIT setting. We start by describing the finite element
setup used in our numerical simulations in Sect. 2.1. Next (as a warm-up) we consider a
two-dimensional model in Sect. 2.2.

In Sect. 2.3 we consider the three-dimensional case and we discuss all items (i), (ii), (iii)
introduced above. In particular we observe that, comparing the results as the frequency F [ϕ]
increases, we have quite rapidly a serious deterioration of the bounds. This poses a severe
warning on the limitations that have to be taken into account in the choice of the boundary
current profile ϕ.

Section 3 is devoted to simulations with the complete EIT model. In this case it is reason-
able analyze the case when only two electrodes, one positive and one negative, are attached
to the surface of the conductor. In this case, the frequency function is not available from the
data since we are not prescribing the boundary current ∇u · ν|∂� but only the current pattern,
which is a 2-electrode configuration, is just the pair (1,−1). In place of the frequency func-
tion, the parameters that may influence the constants in the volume bounds are: the width of
the electrodes and the distance between them. We perform various experiments to test such
variability.

2 Numerical Simulations for the EIT Model

2.1 Numerical Model

The numerical model is based on the discretization of the energy functional
J : H 1(�,R

n) → R

J (u) = 1

2

∫

�

(1 + (k − 1)χD)∇u · ∇u −
∫

∂�

ϕu, (2.1)

associated with the variational formulation of problem (1.2). The energy functional (2.1) has
been discretized by using the High Continuity (HC) technique already presented in [24] and
[25] in the context of linear elasticity. Accordingly, for 2–D problems the electric potential
on the eth finite element can be represented as

ue =
3∑

i,j=1

φi(ξ1)φj (ξ2)uij , (2.2)

whereas for the 3-D case it assumes the form

ue =
3∑

i,j,l=1

φi(ξ1)φj (ξ2)φl(ξ3)uij l, (2.3)
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Fig. 1 HC interpolation in the 1-D case: nodes, parameters and shape functions

Fig. 2 HC mesh in the 2-D case: nodes for boundary and inner elements

where the coordinates ξr , r = 1, . . . , n, span the unitary element domain [− 1
2 , 1

2 ]n, n = 2,3,
and uij , uijl are the HC parameters involved in the field interpolation on the generic element.
The shape functions φi(ξr ) are defined as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ1(ξr ) = 1

8
− 1

2
ξr + 1

2
ξ 2
r ,

φ2(ξr ) = 3

4
− ξ 2

r ,

φ3(ξr ) = 1

8
+ 1

2
ξr + 1

2
ξ 2
r .

(2.4)

The 1-D case illustrated in Fig. 1 shows the meaning of the HC parameters. They allow
us to define the slopes of the interpolated function at the end points of the element. On the
same figure one can see also the positions of the HC nodes and the shape functions (2.4).

Figure 2 shows a typical structured mesh on a rectangular domain and the nodes used
for the approximation of the potential field in the 2-D case. For elements with a side lying
on the boundary, in order to easily impose the Neumann boundary conditions, special shape
functions are used. In practice, the external HC nodes are translated onto the boundary ∂�

and the related HC parameters have the meaning of function values (see again Fig. 2). In this
case the shape functions relative to a left boundary (ξr = − 1

2 ) and a right boundary (ξr = 1
2 )
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of the finite element are

left :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

φ1(ξr ) = 1

4
− ξr + ξ 2

r ,

φ2(ξr ) = 5

8
+ 1

2
ξr − 3

2
ξ 2
r ,

φ3(ξr ) = 1

8
+ 1

2
ξr + 1

2
ξ 2
r ,

right :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ1(ξr ) = 1

8
− 1

2
ξr + 1

2
ξ 2
r ,

φ2(ξr ) = 5

8
− 1

2
ξr − 3

2
ξ 2
r ,

φ3(ξr ) = 1

4
+ ξr + ξ 2

r .

(2.5)

Further details about the HC interpolation can be found in [24] and [25]. This interpola-
tion technique, which can be considered as a particular case of the Bézier interpolation, has
the main advantage of reproducing potential fields of C1 smoothness with a computational
cost equivalent to a C0 interpolation.

By (2.2) or (2.3), the potential field u on each element e takes the compact form

ue = Newe. (2.6)

The one-row matrix Ne collects the shape functions of the HC interpolation, whereas the
components of the vector we are the nodal parameters of the underlying element. With this
notation, the gradient of the potential field is given by

∇ue = ∇Newe. (2.7)

We remark that the dimensions of the matrices Ne , ∇Ne and vector we are 1 × 9, 2 × 9
and 9 × 1 for the 2-D case and 1 × 27, 3 × 27 and 27 × 1 for the 3-D case.

By (2.6) and (2.7), the discrete form of (2.1) becomes

J (we) =
∑

e

(
1

2

∫

�e

(1 + (k − 1)χD)(∇Newe) · (∇Newe) −
∫

∂�e

ϕNewe

)

, (2.8)

or, in a compact form,

J (we) =
∑

e

(wT
e Kewe − wT

e pe). (2.9)

The latter equation provides the definition of the matrix and the vector associated with the
eth element

{
Ke = ∫

�e
(1 + (k − 1)χD)(∇Ne)

T ∇Ne,

pe = ∫
∂�e

ϕNe,
(2.10)

which can be used to assemble, by using standard techniques, the system of equations to
solve.

2.2 Two-Dimensional Case

Numerical analysis has been performed on a square conductor � of side l under the two
current density fields ϕ illustrated in Fig. 3. The domain � has been discretized with a mesh
of 21 × 21 HC finite elements and for both Test T1 and Test T2 of Fig. 3 we have considered
an inclusion D with conductivity k = 0.1 or k = 10.
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Fig. 3 Square conductor considered in 2-D numerical simulations for the EIT model and applied current
density fields: Test T1 (a), Test T2 (b)

Fig. 4 Influence of d0 for square inclusions in Test T1 of Fig. 3a (21 × 21 FE mesh): k = 0.1 (a), k = 10 (b)

A first series of experiments has been carried out by considering all possible square
inclusions with side ranging from 1 to 5 elements, that is the size of inclusion has been kept
lower than 6% of the total size of the conductor. The results are collected in Figs. 4 and 5
for different values of the minimum distance d0 between the inclusion D and the boundary
of �.

From Figs. 4a and 5a, which refer to the case k = 0.1, one can note that the upper bound
of |D| is rather insensitive to the choice of d0, whereas the lower bound in (1.11) improves
as d0 increases. The converse situation occurs when the inclusion is made by material of
higher conductivity, see Figs. 4b and 5b.

As a second class of experiments, we have considered inclusions of general shape on a
FE mesh of 15 × 15 HC elements. More precisely, each inclusion is the union of elements
having at least a common side and being at least d0 = 2 elements far from the boundary ∂�.
Results are collected in Figs. 6 and 7.
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Fig. 5 Influence of d0 for square inclusions in Test T2 of Fig. 3b (21 × 21 FE mesh): k = 0.1 (a), k = 10 (b)

Fig. 6 Numerical size estimates for inclusions of general shape generated from a generic element inside �

for test T1 of Fig. 3a (21 × 21 FE mesh, d0 = 2): k = 0.1 (a), k = 10 (b)

The straight lines drawn in Figs. 4 and 6 correspond to the theoretical size estimates for
test T1 of Fig. 3a. For both cases k = 0.1 and k = 10 we have

1

9

|W − W0|
W0

≤ |D|
|�| ≤ 10

9

|W − W0|
W0

. (2.11)

The comparison with the region of the plane
( |D|

|�| ,
|W−W0|

W0

)
covered by the corresponding nu-

merical experiments confirms, as already remarked in [19] in the context of linear elasticity,
that practical applications of the size estimates approach lead to less pessimistic results with
respect to those obtained via the theoretical analysis.
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Fig. 7 Numerical size estimates for inclusions of general shape generated from a generic element inside �

for test T2 of Fig. 3b (21 × 21 FE mesh, d0 = 2): k = 0.1 (a), k = 10 (b)

2.3 Three-Dimensional Case

The first part of this subsection is devoted to the extension to the 3-D case of the numerical
simulations given in Sect. 2.2. In the second part, we shall investigate the effect of the
oscillation character of the Neumann data on the upper bound of size inclusion.

Similarly to the 2-D case, a first series of numerical simulations has been performed
on an electrical conductor of cubic shape, with side l, with the two current density fields
illustrated in Fig. 8. In both cases, a mesh of 20×20×20 finite elements has been considered
when performing simulations in presence of cubic inclusions. The results are illustrated in
Figs. 9 and 10. Figure 9 contains also the straight lines corresponding to the theoretical size
estimates for test T1 of Fig. 8, that is

1

9

|W − W0|
W0

≤ |D|
|�| ≤ 10

9

|W − W0|
W0

. (2.12)

In order to deal with inclusions of general shape, however, the numerical experiments
require some restrictions to reduce the computer time. A rough estimate of the computational
cost can be obtained noting that the numerical effort is essentially due to the solution of the
linear system (2.9). Denoting by m the number of the equations and by b the half bandwidth
of the matrix, the decomposition requires m(b−1) multiplications and mb(b−1) additions,
whereas the computation of the solution involves mb multiplications.

Therefore, for each given inclusion in a 20 × 20 × 20 FE mesh, a linear system of 10648
(b = 1015) equations has to be solved, requiring a computer time of approximately 86 s
working on an Opteron 2.4 GHz computer. Since the number of all possible inclusions

formed by ni elements on a mesh of ne × ne × ne is n3
e !

ni !(n3
e−ni )! , the treatment of all the

possible cases is practically impossible. Indeed by considering that the 20 × 20 × 20 is
formed by 8000 elements and that, if the ratio |D|/|�| is less than 6% that is 480 elements,
the number of cases to analyze is 69.1183 × 10785.

In order to reduce the computer time significantly we have considered a 7 × 7 × 7 mesh
generating a system of 729 equations. Despite of this, the number of possible cases to con-
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Fig. 8 Cubic conductor considered in 3-D numerical simulations for the EIT model and applied current
density fields: Test T1 (a) and Test T2 (b)

Fig. 9 Influence of d0 for cubic inclusions in test T1 of Fig. 8 (20×20×20 FE mesh): k = 0.1 (a), k = 10 (b)

sider still remains very high; for instance, for inclusions formed by 5 elements, one has
to solve about 3.8 × 1010 linear systems. Therefore, we decided to restrict our analysis to
inclusions satisfying the following additional conditions:

(i) The inclusion is the union of elements having at least one common face and it is formed
by starting from a generic element inside an octant of the cube (this last assumption is
not really restrictive due to the symmetries of the problem).

(ii) d0 = 1.

For inclusions formed by 1, . . . ,7 elements, we have considered all possible inclusions sat-
isfying the limitations (i) and (ii), whereas for inclusions formed by 8, . . . ,17 elements we
have considered a random sample because of the high computational cost. For these cases,
the ratio between the sample dimension and that of all the data approximately spans between
20% for inclusions formed by 8 elements and 0.01% for inclusions formed by 17 elements.
The results are presented in Figs. 11 and 12 for Test T1 and Test T2, respectively. In Fig. 11,
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Fig. 10 Influence of d0 for cubic inclusions in test T2 of Fig. 8 (20 × 20 × 20 FE mesh): k = 0.1 (a),
k = 10 (b)

Fig. 11 Numerical size estimates for inclusions of general shape generated from a generic element belonging
to an eight of the cube for test T1 of Fig. 8a (7 × 7 × 7 FE mesh, d0 = 1): k = 0.1 (a), k = 10 (b)

the straight lines corresponding to the theoretical bounds (2.12) for Test T1 are also drawn.
As already remarked in the treatment of the 2-D case, the theoretical analysis leads to rather
pessimistic results with respect to those obtained by the numerical simulations, especially
when the inclusion is softer than the surrounding material.

The Neumann data considered in the above experiments give rise to potential fields inside
the conductor with nonvanishing gradient. In the general case, when the gradient of the
solution may vanish, we expect, accordingly to Theorems 1.1, 1.2, that the upper bounds
deteriorate as the frequency F [ϕ] given by (1.8) increases. Since F [ϕ] is a ratio which
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Fig. 12 Numerical size estimates for inclusions of general shape generated from a generic element belonging
to an eight of the cube for test T2 of Fig. 8a (7 × 7 × 7 FE mesh, d0 = 1): k = 0.1 (a), k = 10 (b)

measures the frequency of oscillation of ϕ, we are interested to investigate the effectiveness
of the size estimates approach for oscillating Neumann data.

In particular, the numerical simulations have been carried out for the cubic electrical
conductor considered before and choosing the following Neumann data:

ϕ = − cos nπx
l

, on z = 0,

ϕ = cos nπx
l

, on z = l,

ϕ = 0, elsewhere on ∂�,

⎫
⎪⎬

⎪⎭
for n = 0,1,2. (2.13)

Case n = 0 has been already discussed at the beginning of this paragraph and corresponds
to the simple case in which the gradient of the unperturbed solution u0 does not vanish in �.

The two other cases are examples of Neumann data with higher frequency F [ϕ]. More
precisely, the corresponding solutions u0 have critical lines of equation

{

x = l

n

(
1

2
+ i

)

, z = l

n

(
1

2
+ j

)}

, i, j = 0, . . . , n − 1.

The mesh employed consists of 20 × 20 × 20 HC finite elements. The analysis has been
focussed on cubic inclusions having volume up to 6% of the total volume of the specimen
and conductivity k = 0.1 and k = 10. The numerical results for n = 1 and n = 2 are pre-
sented in Figs. 13 and 14, respectively. The numerical results show that the lower bound for
size estimates (1.10), (1.11) improves as d0 increases, whereas the upper bound of |D| is
rather insensitive to the choice of d0.
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Fig. 13 Cubic electrical conductor with Neumann data as in case n = 1 of (2.13): lower and upper bound of
the power gap for different values of d0 (k = 0.1 (a) and k = 10 (b)) on a 20 × 20 × 20 mesh

Theoretical estimates for cases n = 1 and n = 2 of (2.13) are given by

for k > 1:
tanh nπ

2

nπ(k − 1)

W0 − W

W0
≤ |D|

|�| ≤ 1

Cn

k

k − 1

tanh nπ
2

nπ

W0 − W

W0
;

for k < 1:
k

nπ(1 − k)
tanh

nπ

2

W − W0

W0
≤ |D|

|�| ≤ 1

Cn

1

1 − k

tanh nπ
2

nπ

W − W0

W0
,

(2.14)

where

Cn = 10

nπ cosh2 nπ
2

(

sinh
nπ

20
− sin

nπ

20

)

, n = 1,2.

The theoretical estimates are indicated in Figs. 13 and 14. The slope of the straight line
corresponding to the upper bound is so high that it practically coincides with the vertical
axis, at least for the portion of graph near the origin considered in this study. The theoretical
lower bound gives, for a fixed power gap, values significantly smaller than those obtained in
the numerical experiments.

3 Numerical Simulations for the Complete EIT Model

3.1 Numerical Model

In this case, by using the same notation introduced in Sect. 2, the energy functional J :
H 1(�) × R

L → R related to the variational formulation of problem (1.13) is given by

J (u,Ul) = 1

2

∫

�

(1 + (k − 1)χD)∇u · ∇u + 1

2

L∑

l=1

1

zl

∫

∂�l

(u − Ul)2 −
L∑

l=1

IlU
l. (3.1)
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Fig. 14 Cubic electrical conductor with Neumann data as in case n = 2 of (2.13): lower and upper bound of
the power gap for different values of d0 (k = 0.1 (a) and k = 10 (b)) on a 20 × 20 × 20 mesh

Using HC interpolation for the potential field u and with the notation introduced in
Sect. 2, the discrete energy functional becomes

J (we,U
l) = 1

2

∑

e

∫

�e

(1 + (k − 1)χD)(∇Newe) · (∇Newe)

+ 1

2

L∑

l=1

1

zl

∑

ê

∫

(∂�l)e

(Newe − Ul)2 −
L∑

l=1

IlU
l, (3.2)

or

J (we,U
l) = 1

2

∑

e

wT
e Kewe

+ 1

2

L∑

l=1

1

zl

∑

ê

(wT
e Kllwe + (Ul)2 − 2wT

e KelU
l) −

L∑

l=1

IlU
l, (3.3)

having used the compact notation

Ke =
∫

�e

(1 + (k − 1)χD)(∇Ne)
T ∇Ne,

Kll =
∫

(∂�l)e

NT
e Ne, (3.4)

Kel =
∫

(∂�l)e

NT
e .

We remark that the second sum in the right hand side of (3.2) and (3.3), that on ê, is extended
only to the elements under the electrodes.
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Fig. 15 Cubic conductor considered in 3-D numerical simulations for the physical EIT model and location
of the electrodes: test T1 (a), test T2 (b) and test T3 (c)

Collecting the unknown parameters representing the potential field in w, those of the
electrodes in U and the current pattern in I, by a standard method of assembling we obtain
the following linear system

[
Kww −KwU

−KT
wU KUU

][
w

U

]

=
[

0

I

]

, (3.5)

which can be efficiently solved through a two–step scheme: in the first step the vector w is
computed exploiting the diagonal form of the matrix KUU ; in the second step U is evaluated
on the basis of w.

3.2 Results for 3-D Cases

The analysis has been restricted to the case of two electrodes located on the boundary of a
cubic electrical conductor of side l, see Fig. 15. The specimen has been discretized by a mesh
of 17 × 17 × 17 cubic HC finite elements and the numerical experiments have been carried
out on cubic inclusions only, with volume up to 6% of the total volume and conductivity
value k = 0.1 or k = 10. The surface impedance takes a constant value such that ζ = zσ

l
=

0.2 on both electrodes, according to properties of human skin reported in literature, see, for
instance [26].

In test T1 of Fig. 15, the electrodes cover completely two opposite faces of the specimen,
whereas in Test T2 one electrode coincides with a face of ∂� and the other is a square,
formed by one or nine surface finite elements, and it is located in central position of the
opposite face. Finally, in Test T3, two electrodes are placed on the same face of the conductor
� in a symmetric way with respect to middle lines of the face. The electrodes are separated
by three finite elements and their dimensions are equal to the element size.

The numerical results for Test T1 are presented in Fig. 16 for k = 0.1 and k = 10, respec-
tively, and for varying values of d0. For both cases k = 0.1 and k = 10, the theoretical size
estimates are given by

1

9

(
l + 2z

l

) |W − W0|
W0

≤ |D|
|�| ≤ 10

9

(
l + 2z

l

) |W − W0|
W0

and, again, they lead to a rather pessimistic evaluation of the upper and lower bounds.
Concerning Test T2, Fig. 17 shows the results when the small electrode coincides with

one surface finite element, whereas Fig. 18 refers to the case of a 3 × 3 finite elements
electrode. One can notice that in all the four cases, the upper bound is not really influenced
by the value of d0. Moreover, the inaccuracy in determining the lower bound of the angular
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Fig. 16 Influence of d0 for cubic inclusions in Test T1 of Fig. 15a (17 × 17 × 17 FE mesh, ζ = 0.2):
k = 0.1 (a), k = 10 (b)

Fig. 17 Influence of d0 for cubic inclusions in Test T2 of Fig. 15b (17 × 17 × 17 FE mesh, ζ = 0.2, 1 × 1
FE electrode): k = 0.1 (a), k = 10 (b)

sector, is probably due to the fact that the present analysis is restricted to the special class of
cubic inclusions.

A comparison between Fig. 17 and Fig. 18 suggests that better upper bounds can be
obtained by enlarging the size of the small electrode. Moreover, from Figs. 17 and 18 it
appears clearly that the lower bound significantly improves as the distance d0 between the
inclusion D and the boundary of � increases. This property has been further investigated by
increasing only the distance d03 of the inclusion D from the face of the conductor containing
the small electrode. Figure 19 shows the results of simulations in the case of a single finite
element electrode and a comparison with Fig. 17 suggests that the improvement of the lower
bound is mainly due to the greater distance from the electrode.
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Fig. 18 Influence of d0 for cubic inclusions in Test T2 of Fig. 15b (17 × 17 × 17 FE mesh, ζ = 0.2, 3 × 3
FE electrode): k = 0.1 (a), k = 10 (b)

Fig. 19 Influence of d03 for cubic inclusions in Test T2 of Fig. 15b (17 × 17 × 17 FE mesh, ζ = 0.2, 1 × 1
FE electrode): k = 0.1 (a), k = 10 (b)

Finally, the results of the numerical simulations for Test T3 are presented in Fig. 20. In
this case, the lower bound improves as the distance d0 between the inclusion D and the
boundary of � increases, whereas the upper bound is indistinguishable from the vertical
axis.

4 Conclusions

We have tested by numerical simulations the approach of size estimates for EIT. We could
perform experiments in the 2-D setting with a large varieties of shapes of inclusions and we
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Fig. 20 Influence of d0 for cubic inclusions in Test T3 of Fig. 15c (17 × 17 × 17 FE mesh, ζ = 0.2, 1 × 1
FE electrode): k = 0.1 (a), k = 10 (b)

found quite satisfactory bounds, which in some cases are markedly better than those derived
theoretically.

In the 3-D case, we had to limit the variety of shapes of the test inclusions since the
growth of their degree of freedom conflicts with the limitations of computer time. We
showed that good volume bounds hold when the boundary data ϕ is well-behaved in terms
of its frequency, whereas they rapidly deteriorate as the frequency increases.

For the complete EIT model we have also made tests in a 3-D setting and compared
the bounds in terms of the size of the electrodes, their relative distance and their a priori
assumed distance from the inclusion D. We have shown that we obtain good bounds when
the electrodes are not too small and when D is sufficiently distant from them.

Acknowledgements Work supported by MIUR, PRIN no. 2004011204. The Laboratory of Computational
Mechanics of University of Calabria is gratefully acknowledged for the access to the 18 CPUs cluster used to
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