
J Sci Comput (2007) 33: 239–278
DOI 10.1007/s10915-007-9151-y

Multirate Timestepping Methods for Hyperbolic
Conservation Laws

Emil M. Constantinescu · Adrian Sandu

Received: 17 March 2007 / Revised: 12 July 2007 / Accepted: 25 July 2007 /
Published online: 9 September 2007
© Springer Science+Business Media, LLC 2007

Abstract This paper constructs multirate time discretizations for hyperbolic conservation
laws that allow different timesteps to be used in different parts of the spatial domain. The
proposed family of discretizations is second order accurate in time and has conservation and
linear and nonlinear stability properties under local CFL conditions. Multirate timestepping
avoids the necessity to take small global timesteps (restricted by the largest value of the
Courant number on the grid) and therefore results in more efficient algorithms. Numerical
results obtained for the advection and Burgers’ equations confirm the theoretical findings.

Keywords Multirate time integration · Hyperbolic conservation laws · Nonlinear stability ·
Strong stability preservation

1 Introduction

Hyperbolic conservation laws are of great practical importance as they model diverse phys-
ical phenomena that appear in mechanical and chemical engineering, aeronautics, astro-
physics, meteorology and oceanography, financial modeling, environmental sciences, etc.
Representative examples are gas dynamics, shallow water flow, groundwater flow, non-
Newtonian flows, traffic flows, advection and dispersion of contaminants, etc.

Conservative high resolution methods with explicit time discretization have gained wide-
spread popularity to numerically solve these problems [34]. Stability requirements limit the
temporal step size, with the upper bound being determined by the ratio of the temporal and
spatial meshes and the magnitude of the wave speed. Local spatial mesh refinement reduces
the allowable timestep for the explicit time discretizations. The timestep for the entire do-
main is restricted by the finest mesh patch or by the highest wave velocity, and is typically
(much) smaller than necessary for other variables in the computational domain.

This work was supported by the National Science Foundation through award NSF CCF-0515170.

E.M. Constantinescu · A. Sandu (�)
Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg
24061, USA
e-mail: asandu@cs.vt.edu

E.M. Constantinescu
e-mail: emconsta@cs.vt.edu

240 J Sci Comput (2007) 33: 239–278

One possibility to circumvent this restriction is to use implicit, unconditionally stable
timestepping algorithms which allow large global timesteps. However, this approach re-
quires the solution of large (nonlinear) systems of equations. Moreover, the quality of the
solution, as given by a maximum principle, may not be conserved with high order implicit
schemes unless the timestep is also restricted by a CFL-like condition.

In this work we develop multirate time integration schemes for the simulation of PDEs.
In this approach the timestep can vary across the spatial domain and has to satisfy the CFL
condition only locally, resulting in substantially more efficient overall computations. We
follow the method of lines (MOL) framework, where the temporal and spatial discretizations
are independent.

The development of multirate integration is challenging due to the conservation and sta-
bility constraints that need to be satisfied by the timestepping schemes. The algorithms used
in the solution of conservation laws need to preserve the system invariants. Moreover, the
solutions to hyperbolic PDEs may be non-smooth: shock waves or other discontinuous be-
havior can develop even from smooth initial data. In such cases, strong-stability-preserving
(SSP) numerical methods which satisfy nonlinear stability requirements are necessary to
avoid certain types of nonphysical behavior (spurious oscillations, etc.)

A zooming technique for wind transport of air pollution discussed in [4] is a positive,
conservative finite volume discretization that allows the use of smaller timesteps in the re-
gion of fine grid resolution. The flux at the coarse-to-fine interface is applied in the very first
fine sub-step in order to preserve positivity.

Dawson and Kirby [8, 30] developed second order local timestepping. The maximum
principle, TVD property, and entropy condition are all fulfilled by the second order finite
volume method with two level timestepping; however, the timestepping accuracy of the
overall method is first order. Tang and Warnecke [52] reformulated Dawson and Kirby’s
algorithm in terms of solution increments to obtain second order consistency in time for
two-rate integration. Savcenco et al. [43, 44] develop a multirate approach for parabolic
equations using a locally self-adjusting multirate timestepping.

In this paper we develop a general systematic approach to extend strongly stable Runge–
Kutta (RK) methods [13, 17, 26] to multirate Runge–Kutta methods that inherit the strong
stability properties of the corresponding single rate integrators. The second order of accuracy
of the overall scheme is preserved, unlike previous multirate approaches that lead to first
order accuracy due to the interface treatment [4, 30]. Moreover, for conservation laws, this
multirate approach is conservative (preserves the system invariants).

This paper is structured as follows: in Sect. 2 we review the main properties and issues
with the simulation of hyperbolic conservation laws. Section 3 presents the construction
of the multirate time integrators from single rate integrators. Our numerical results with
two types of conservation laws are shown and discussed in Sect. 4. Conclusions and future
research directions are given in Sect. 5.

2 Hyperbolic Conservation Laws

We consider the one-dimensional scalar hyperbolic equation

∂y(t, x)

∂t
+ ∂f (y(t, x))

∂x
= 0,

with y(0, x) = y0(x), on x ∈ � ⊂ (−∞,∞), t > 0. (1)

J Sci Comput (2007) 33: 239–278 241

Conservative space discretizations of (1) are considered in this work. In the one-dimensional
finite volume approach, the change in the mean quantity in the ith cell depends on the fluxes
through the cell boundaries at i ± 1

2 . The semi-discrete (MOL) finite volume approximation
can be written as

y ′
i = − 1

�x

(
Fi+ 1

2
− Fi− 1

2

)
, yi(t) = 1

�xi

∫ x
i+ 1

2

x
i− 1

2

y(t, x) dx, y ′
i = ∂yi

∂t
, (2)

where yi(t) is the numerical solution at time t and grid point xi , �xi = xi+ 1
2

− xi− 1
2

is the
grid spacing, and Fi+ 1

2
= F(yi+k−1, . . . , yi−k) is the numerical flux at the control volume

face. The following notation will be used to denote the discrete solution yn
i = y(tn, xi), with

n > 0 and xi ∈ � (the discrete domain).
To provide physically meaningful solutions and avoid weak nonlinear instabilities (spuri-

ous oscillations), the numerical solution has to satisfy a stability condition. Next we review
some stability properties of the numerical solution which are used throughout this paper.

Maximum principle Exact solutions of hyperbolic problems have a range-diminishing
property that prevents the increase of existing maxima, the decrease of existing minima,
and the formation of new maxima or minima. Formally, it can be written as

max
i

(
yn

i

)≤ max
i

(
yn−1

i

)
and min

i

(
yn

i

)≥ min
i

(
yn−1

i

)
. (3)

TVD The total variation (TV) of the numerical solution is defined as

TV ({yn}) =
∑

i∈�

∣
∣yn

i+1 − yn
i

∣
∣, (4)

where TV ({•}) is the total variation norm. A numerical method is called total variation
diminishing (TVD) [25] if

TV ({yn}) ≤ TV
({

yn−1
})

. (5)

No spurious spatial oscillations are introduced during timestepping with TVD methods.

TVB A numerical method is called total variation bounded (TVB) (see [47]) if

TV ({yn}) ≤ B · TV
({

y0
})

, ∀t, 0 ≤ n ≤ T , B > 0. (6)

In this case some bounded total variation increase is allowed. TVD methods are also TVB.

Monotonicity-preservation Monotonic schemes have the property that if y0
i = y(t = 0, xi)

is monotonically increasing or decreasing in i, then so is {yi(t)}i for all t . A TVD scheme
is monotonicity-preserving.

Positivity Solution positivity is a typical requirement in various applications (e.g., chem-
ical engineering, meteorology, financial modeling, etc.). The semi-discrete scheme (2) is
positive if, whenever the initial condition is non-negative, the solution at all future times
t > 0 remains non-negative. A sufficient condition for the positivity of the semi-discrete
system (2) [27] is

yi(t) = 0 and yj (t) > 0 for ∀j 	= i ⇒ y ′
i ≥ 0. (7)

242 J Sci Comput (2007) 33: 239–278

Typically, the above properties are established for different spatial discretizations in con-
junction with the forward Euler timestepping method [34]. The forward Euler time dis-
cretization method with certain spatial discretizations has strong CFL restrictions and is
only first order accurate (in time). Following [18], in this paper we use convex combinations
of forward Euler time steps combined with appropriate spatial discretizations in order to pre-
serve the stability properties while increasing the order of accuracy and alleviating the CFL
restrictions. Unless specified otherwise, the nonlinear stability properties of various spatial
discretizations of type (2) are defined for forward Euler timestepping under the appropriate
CFL restriction.

Several methods to approximate the fluxes in (2) have been developed in the past decades.
Godunov’s method [15] is based on the exact solution of Riemann problems. The flux-
corrected transport method proposed by Boris and Book [5] and further developed by Zale-
sak [54] and Roe [41] established the basic principles for the construction of high resolution
methods. Upwind biased interpolation is coupled with limiters [51] which reduce the order
of accuracy of the scheme near discontinuities (e.g., reducing a high order interpolant to first
order, and further limiting its slope). Limiters allow the construction of TVD schemes [25]
for nonlinear scalar one-dimensional problems.

All these spatial discretization methods satisfy some of the above stability properties
(maximum principle, TVD, TVB, monotonicity-preservation, or positivity). High order
timestepping methods based on convex combinations of explicit Euler steps [18] are typ-
ically used to solve the semi-discrete form (2), which under a CFL-like condition maintains
the stability properties of the spatial discretization. One can construct implicit timestepping
methods which are unconditionally linearly stable; however, the nonlinear stability prop-
erties restrict the integration timestep to a CFL-like condition [18]. Moreover, the implicit
methods require the solution of (non)linear systems at each step. Considering these aspects,
explicit discretization methods are preferred for the solution of (2). In the next section we
briefly review explicit Runge–Kutta methods and relevant stability properties.

2.1 Explicit Runge–Kutta Methods

The MOL approach applied to (1) yields the semi-discrete problem (2) which needs to be
solved forward in time. An s stage explicit Runge–Kutta method [23] computes the next step
solution yn+1 (at time tn+1 = tn + �t) from the current solution yn at tn using the formula:

yn+1 = yn + �t

s∑

i=1

biKi,

Ki = f

⎛

⎝t + ci�t, yn + �t

i−1∑

j=1

ai,jKj

⎞

⎠ .

(8)

The method is defined by its coefficients A = {aij }, b = {bi}, and c = {ci}, which can be
conveniently represented in the form of the Butcher tableau [23]

RK = [A,b, c] := c A

bT

c1 = 0 0
c2 a21

c3 a31 a32
...

...
...

. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

. (9)

J Sci Comput (2007) 33: 239–278 243

All RK methods in this paper have the property that ci = ∑i−1
j=1 ai,j . The order conditions

for these methods are

Order I :
s∑

i=1

bi = 1, (10)

Order II :
s∑

i=1

s−1∑

j=1

biai,j =
s∑

i=1

bici = 1

2
. (11)

2.2 Strong Stability Preservation

Strong stability preserving (SSP) integrators are timestepping schemes that ensure that a
certain norm or semi-norm of the solution does not increase:

‖ yn+1 ‖≤‖ yn ‖, (12)

where ‖ • ‖ is some norm (e.g., for ∞ norm we have the maximum principle condition, for
TV semi-norm we have the TVD property, etc.). Spurious oscillations (nonlinear instabili-
ties) can occur in a numerical solution obtained with a TVD or MUSCL spatial discretization
scheme, when time discretization is done with a linearly stable timestepping scheme [18].
When spatial discretizations that are TVD with forward Euler timestepping are combined
with high order SSP timestepping, they compute numerical solutions that do not exhibit
nonlinear instabilities. Hence, SSP timestepping schemes are a critical part of the overall
solution strategy.

The favorable properties of SSP schemes derive from convexity arguments. In particular,
if the forward Euler method is strongly stable (under a certain CFL timestep restriction),
higher-order methods can be constructed as convex combinations of forward Euler steps
with various step sizes [48, 49]. SSP methods preserve the strong stability of the forward
Euler scheme under specific timestep restrictions.

Gottlieb et al. [18] discuss in detail Runge–Kutta and linear multistep SSP schemes.
They derive optimal SSP methods with minimal number of function evaluations, high order,
low storage, and establish that implicit Runge–Kutta or linear multistep SSP methods are
of order one at most. Hundsdorfer et al. [28] provide an analysis of monotonicity proper-
ties for linear multistep methods, and Spiteri and Ruuth [50] extend the SSP Runge–Kutta
class of methods by removing the constraint that the order and the number of RK stages be
equal.

Several examples of SSP Runge–Kutta are given by Shu and Osher [48]. Here we con-
sider the second order method RK2a defined by the Butcher tableau below

0 0 0
1 1 0

1/2 1/2

K1 = f (yn), y(1) = yn + �tK1,

K2 = f (y(1)),

yn+1 = yn + �t

2
(K1 + K2) .

(13)

We use the following compact notation for explicit Euler steps

E (�t, y) := y(t) + �t · f (t, y). (14)

The method (13) can be written as convex combinations of Euler steps [48] and therefore is
SSP:

244 J Sci Comput (2007) 33: 239–278

yn+1 = yn + �t

2
(K1 + K2) , y(1) = yn + �tf (yn) = E (�t, yn) ,

= 1

2
yn + 1

2

(
y(1) + �tK2

)
, y(1∗) = y(1) + �tf (y(1)) = E

(
�t,y(1)

)
,

(15)

= 1

2
yn + 1

2
y(1∗), yn+1 = 1

2

(
yn + y(1∗)

)

= 1

2
E (0, yn) + 1

2
E
(
�t,y(1)

)
.

3 Multirate Time Integration

The idea of multirate timestepping is to take different timesteps for different components to
achieve the target accuracy. Slower components are integrated using larger step sizes. The
large step sizes are integer multiple of the small step sizes: �tslow = m�tfast. All steps are
synchronized every largest timestep �tslow in order to obtain the desired overall accuracy.
Conditions for high orders of accuracy for the multirate integrators (at the synchronization
times) are derived in the literature [22, 24].

Early efforts to develop multirate Runge–Kutta methods are due to Rice [40] and Andrus
[1, 2]. Multirate versions of many of the traditional timestepping schemes have been pro-
posed in the literature, including linear multistep [14, 29], extrapolation [11], Runge–Kutta
[20, 31, 32], Rosenbrock–Wanner [3, 21], waveform relaxation [42], Galerkin [35–37], and
combined multiscale [10] approaches.

Kværnø and Rentrop [31, 32] developed multirate Runge–Kutta (MRK) methods where
the coupling between slow and fast components is done by intermediate stage values. Gün-
ther et al. [20] developed multirate partitioned Runge–Kutta (MPRK) schemes which gener-
alize both partitioned Runge–Kutta and multirate ROW methods [19], and Sand and Burrage
[42] developed the Jacobi waveform relaxation approach.

For the purpose of simplicity (and without the loss of generality), in the follow-
ing sections we restrict our discussion to scalar one-dimensional equations. Multidimen-
sional/multivariable extensions follow by the same arguments.

Consider the system of ordinary differential equations in (2) resulting from the applica-
tion of MOL to (1). Variables are partitioned according to their characteristic times:

y = [yτ(1), . . . , yτ(M)]T , y ′
i = fi(t, yτ(1), . . . , yτ(M)), i = τ (1), . . . , τ (M). (16)

The M subsystems have different characteristic time scales with yτ(1) being the slowest and
yτ(M) the fastest components. Typically, a small number of fast changing components (or a
small number of grid points on the fine grids) restrict the overall timestep of the integration.

3.1 Domain Partitioning

The domain is partitioned into subdomains, with each subdomain being characterized by a
specific time scale. In multirate time integration, different steps are taken on each subsystem
such that the numerical method satisfies global accuracy and stability properties. In this con-
text, the transition among subdomains needs special attention to preserve these properties.
Consequently, in this study we consider a nested domain decomposition of y defined in (16).
First, we split the domain into two partitions: a slow partition and a fast partition that are

J Sci Comput (2007) 33: 239–278 245

Fig. 1 Illustration of the nested
domain decomposition into
subdomains that are
characterized by different
timescales

(a) Fast and slow solution partitioning

(b) The layout of the nested domain decomposition

separated by a fast buffer region to accommodate the transition. Formally, the domain � is
decomposed as

� = �0 = �0
F ∪ �0

FB ∪ �0
S, (17)

where we consider an associated “slow” (S) characteristic time for the slow subdomain (�S),
a “fast” (F) characteristic time for the fast subdomain (�F), and a fast buffer (�FB) that
bridges the transition between them. The need for this buffer region will become apparent
when the SSP properties are analyzed later in the paper. We refer to �’s superscript as the
“level” of the grid and denote with m the ratio between the timesteps associated with the
fast subdomain and the slow subdomain on the same level (e.g., j). The timestep on the next
level (i.e., j + 1) associated with the slow subdomain is the same as the one associated with
the fast subdomain on the current level.

Each solution component in (16) corresponds to variables in a particular subdomain.
Adjacent subdomains have adjacent time scales and the subdomains have buffers between
them to accommodate the time scale transition. The characteristic time scale on the fast
buffer region corresponds to the time scale of the slow domain; however, the solution is
obtained with the small timestep used in the fast region:

y ′
τ(j) = (yS)

′ = f (t, y(x)) , x ∈
{
�

j

S

}
,

y ′
τ(j+1) = (yF)′ = f (t, y(x)) , x ∈

{
�

j

F ∪ �
j

FB

}
, j ≥ 0.

(18)

In Fig. 1a we illustrate this aspect. The variables yF on �
j

F ∪ �
j

FB are fast (evolving) and
integrated with a small timestep. The variables yS on �

j

S are slow and are integrated with a
large timestep.

The partitioning procedure can be extended recursively with �
j

F = �j+1 until the solu-
tion characteristic time requirements for each component yτ(1)···τ(M) are met:

�
j

F = �j+1 = �
j+1
F ∪ �

j+1
FB ∪ �

j+1
S . (19)

An illustration of the nested domain decomposition is shown in Fig. 1b.

246 J Sci Comput (2007) 33: 239–278

We note that the nested partitioning (19) decouples the estimation of f exemplified in
(16) in

(yS)
′ = f (t, yFB, yS) ,

(yF)′ = f (t, yF , yFB) , j ≥ 0.
(20)

In this manner, an efficient domain partitioning with an associated characteristic time that
satisfies the accuracy and stability requirements of the solution in the corresponding partition
is achieved.

Next, we discuss the time integration method applied on different partitions in detail.

3.2 Partitioned Runge–Kutta Methods

Consider a system of ODEs which allows an explicit separation of the fast and the slow
components

(
yF

yS

)′
=
(

fF (yF , yS)

fS (yF , yS)

)
(21)

Partitioned Runge–Kutta (PRK) schemes [22, 24] are used to solve the problem (21) with
two different methods, RKF = [AF , bF , cF] for the fast part, and RKS = [AS, bS, cS] for
the slow part. The PRK solution method reads

yn+1
F = yn

F + �t

s∑

i=1

bF
i K

j

F , yn+1
S = yn

S + �t

s∑

i=1

bS
i K

j

S ,

Y i
F = yn

F + �t

s∑

j=1

aF
ij K

j

F , Y i
S = yn

S + �t

s∑

j=1

aS
ijK

j

S ,

Ki
F = fF

(
Y i

F ,Y i
S

)
, Ki

S = fS

(
Y i

F ,Y i
S

)
.

(22)

The order of the coupled method is the minimum among the orders of the fast and slow
methods and the order of their “coupling”. The first order coupling conditions (

∑
i b

F
i =∑

i b
S
i = 1) are implicitly satisfied since each method is at least first order. The second order

coupling conditions [24, p. 308] are

s∑

i=1

bF
i cS

i = 1

2
,

s∑

i=1

bS
i cF

i = 1

2
. (23)

3.3 Strong Stability Preservation and PRK

We seek to construct PRK methods with the SSP property applied to a partitioning of type
(20). In this section we infer intuitively some conditions for PRK methods to be SSP, while
a rigorous treatment of this property is addressed later in the paper. A necessary condition
for PRK to be SSP is that both RKF and RKS are SSP methods. A natural question is how
to treat the interface region, �FB.

Equation (20) shows the inter-dependency of the flux function on the solution in adjacent
partitions. By construction, the flux function f evaluated on �S depends on part of the
solution on �S and on part on the fast buffer �FB. Also by construction, RKS applied on
�S ∪ �FB is SSP and RKF is SSP with the solution on �FB ∪ �F . In the next section
we investigate the properties of a proposed PRK method formed by RKS and RKF , and
rigorously analyze the interface between them.

J Sci Comput (2007) 33: 239–278 247

Table 1 Order two multirate partitioned Runge–Kutta method (MPRK-2)

c A

bT

(a) Base (RKB)

1
m

c 1
m

A

1
m

1 + 1
m

c 1
m

1bT 1
m

A

.

.

.
.
.
.

. . .
. . .

m−1
m

1 + 1
m

c 1
m

1bT · · · 1
m

1bT 1
m

A

1
m

bT 1
m

bT . . . 1
m

bT

c A

c A

.

.

.
. . .

c A

1
m

bT 1
m

bT . . . 1
m

bT

(b) Fast method (RKF) (c) Slow method (RKS)

To summarize, we consider the partitioned Runge–Kutta method applied in our context
(20) with both methods (RKS and RKF) being SSP on their respective partition. RKS is
applied on �S and RKF is applied on �FB ∪ �F .

Additional requirements (linear stability, TVD, TVB, positivity) of the full method need
to be satisfied by each pair of spatial and temporal discretization. Our experiments indicate
that multirate schemes constructed based on SSP time discretizations preserve the particular
stability features of the spatial discretization. We shall further discuss this in the following
sections.

3.4 A Second Order Multirate PRK Family

Based on the PRK setting and discussion from Sects. 3.2, 3.3, we propose the following
generic family of second order multirate partitioned Runge–Kutta (MPRK) scheme. We
denote this scheme with MPRK-2. Consider a second order accurate SSP RK “base” method
(RK2a, for instance) RKB = [A, b, c] (Table 1a). Using this base method, we extend RKB

to the fast (RKF) and slow (RKS) methods in the manner shown in Table 1. Here we
denote a vector of ones with 1. Note that the fast and slow methods have the same weight
coefficients b, bF = bS (1/mb repeated m times). The reason for this choice will become
clear when we discuss the conservation properties of the full method.

Note that the slow method repeats the same stages m times. The fast method takes m

successive steps of length �t/m with RKB . The slow method takes one step of length �t

with RKB ; this step is formally repeated m times in the Butcher tableau.
The method presented in this section represents a truly multirate approach since the fast

method takes m successive steps of the base method with a timestep of �t/m. This method
can be easily extended from m = 2 to arbitrary m’s. In Appendix 1 we present the same
method for m = 3.

Proposition 3.1 (MPRK-2) The partitioned Runge–Kutta methods defined by the Butcher
tableau in Table 1:

248 J Sci Comput (2007) 33: 239–278

(a) Are second order accurate if the base method (Table 1a) is at least second order accu-
rate, and

(b) Have at most second order accurate coupling regardless of the order of the base method

Proof (a) First, we check the order conditions for each method separately, considering that
the s-stage base method is second order. The first order conditions for (RKS and RKF) are
verified since by (10) we have

m×s∑

i=1

bS
i = m

s∑

j=1

bi

m
= 1,

m×s∑

i=1

bF
i = m

s∑

j=1

bi

m
= 1.

The second order conditions (11) are also satisfied for the slow method (RKS)

m×s∑

i=1

bS
i cS

i =
s∑

i=1

bi
T

m
ci = 1

m

m

2
= 1

2
,

and for the fast method (RKF)

m×s∑

i=1

bF
i cF

i = 1

m2

(
bT c + bT (1 + c) + · · · + bT ((m − 1)1 + c)

)

= 1

m2
bT

(

mc +
(

m−1∑

i=0

i

)

1

)

= 1

m2

(
mbT c + m(m − 1)

2
bT 1

)

= 1

m2

(
m

2
+ m(m − 1)

2

)
= 1

2
.

Since bF = bS , the second order coupling conditions (23) are satisfied directly by the above.
Hence, MPRK-2 is at least second order accurate.

(b) There are over 20 third order coupling conditions that can be found in [24]. Here we
list two that are contradicted by MPRK-2-like schemes

s∑

i=1

bF
i cF

i cS
i = 1

3
,

s∑

i=1

bS
i cS

i cF
i = 1

3
. (24)

Consider that RKB satisfies the third order accuracy conditions. The third order coupling
condition (24) requires the following

(bF)T cF cS = 1

m2

(
bT c2 + bT

(
c + c2

)+ · · · + bT
(
(m − 1)c + c2

))

= 1

m2
bT

(

mc2 +
(

m−1∑

i=0

i

)

c

)

= 1

m2

(
mbT c2 + m(m − 1)

2
bT c

)

= 1

m2

(
m

3
+ m(m − 1)

4

)
= 1

4
+ 1

12m
,

(bF)T cF cS = 1

3
⇒ m = 1

and thus, (at the interface) the coupling reduces to second order accuracy for m > 1. �

J Sci Comput (2007) 33: 239–278 249

To increase the coupling order we need to investigate other schemes that use different
base methods for the fast and for the slow subsystems and have different couplings. Such
methods will be investigated in future studies.

Proposition 3.2 (Conservation) Any partitioned Runge–Kutta method with the same fast
and slow weights (bF = bS) is conservative. In particular MPRK-2 (described by the Butcher
tableau 1) is conservative.

Proof (a) First we consider the preservation of linear invariants. This is a direct consequence
of having chosen equal weights for the fast and for the slow methods, bF = bS and of the
fact that the slow and fast functions are evaluated with the same arguments (also see [45]).
Consider the system (21) with a linear invariant of the form

eT
F fF (yF , yS) + eT

S fS (yF , yS) = 0 ∀yF , yS ⇒ eT
F yF (t) + eT

S yS(t) = const ∀t,

(25)

where eF , eS are fixed weight vectors.
From the method (22) with bF = bS = b∗ we have that

yn+1
F = yn

F + �t

s∑

i=1

b∗
i fF

(
Y i

F ,Y i
S

)
, yn+1

S = yn
S + �t

s∑

i=1

b∗
i fS

(
Y i

F ,Y i
S

)

and therefore

eT
F yn+1

F + eT
S yn+1

S = eT
F yn

F + eT
S yn

S + �t

s∑

i=1

b∗
i

(
eT
F fF

(
Y i

F ,Y i
S

)+ eT
S fS

(
Y i

F ,Y i
S

)

︸ ︷︷ ︸
0

)

= eT
F yn

F + eT
S yn

S .

(b) Next we consider the conservation for hyperbolic PDEs. This property is important
because multirate Runge–Kutta methods, used in conjunction with conservative space dis-
cretizations, lead to conservative full discretizations of the PDE. Consider a one-dimensional
finite volume scheme (in the conservative formulation):

y ′
i = 1

�xi

(
Fi− 1

2
(y) − Fi+ 1

2
(y)

)
, 1 ≤ i ≤ N,

where Fi+ 1
2

is the numerical flux through the i + 1
2 interface. Assuming no fluxes through

the leftmost and the rightmost boundaries (F 1
2

= FN+ 1
2

= 0), the finite volume discretization
is conservative in the sense that
(

N∑

i=1

�xiyi

)′
=

N∑

i=1

�xiy
′
i =

∑

i

(
Fi− 1

2
(y) − Fi+ 1

2
(y)

)
= 0 ⇒

N∑

i=1

�xiyi = const.

The time discretization with a classical (single-rate) Runge Kutta method gives a conserva-
tive fully discrete method. We want to show that the multirate method is also conservative.
For this, assume that the leftmost � − 1 grid cells are the fast domain, and the remaining
cells are the slow domain:

yF = {y1, . . . , y�−1}, yS = {y�, . . . , yN }. (26)

The � − 1 interface separates the fast and the slow domains. Each subdomain is advanced
in time with a classical Runge–Kutta method, therefore the fluxes exchanged between the

250 J Sci Comput (2007) 33: 239–278

Table 2 Order 2 Butcher tableau for the a RK2a base method, and the b fast, and c slow methods for
m = 2

0 0 0

1 1 0

1/2 1/2

0 0

1/2 1/2 0

1/2 1/4 1/4 0

1 1/4 1/4 1/2 0

1/4 1/4 1/4 1/4

0 0

1 1 0

0 0 0 0

1 0 0 1 0

1/4 1/4 1/4 1/4

(a) Base method (b) Fast method (c) Slow method

boundaries of same domain cells are conserved. The question remains whether the fluxes
crossing the fast-slow interface are conserved. We now show that the total flux lost by the
fast domain through the fast-slow interface is exactly the total flux received by the slow
domain through the same interface. From the multirate Runge–Kutta formula it follows that

yn
�−1 = yn

�−1 + �t

�x�−1

s∑

i=1

bF
i

(
F�− 3

2
(Y i) − F�− 1

2
(Y i)

)
, (27)

the total flux lost by the fast domain during one full timestep through the fast-slow interface
is

�t

s∑

i=1

bF
i F�− 1

2
(Y i). (28)

Similarly,

yn+1
� = yn

� + �t

�x�

s∑

i=1

bS
i

(
F�− 1

2
(Y i) − F�+ 1

2
(Y i)

)
, (29)

and the total flux received by the slow domain during one timestep through the fast-slow
interface is

�t

s∑

i=1

bS
i F�− 1

2
(Y i). (30)

At each stage i of the multirate formula the flux functions are evaluated at the same argument
values, Y i . Therefore, a sufficient condition to have conservation of the flux through the fast-
slow interface is that the fast and slow method weights are equal to each other, bS

i = bF
i .

Finally, MPRK-2 has the same coefficients (bS
i = bF

i) by construction and hence is con-
servative. �

We note that conservation is achieved without explicitly storing fluxes at the fast-slow
interface, as it was proposed in earlier works [30].

3.5 A Second Order SSP PRK Method with m = 2

In this section we consider the SSP Runge–Kutta RK2a [48] as the base method in Table 2a,
and extend it to a multirate method with m = 2 using the approach described in Sect. 3.4.

J Sci Comput (2007) 33: 239–278 251

The Butcher tableau for the fast and slow methods for m = 2 are shown in Table 2; together
they form a partitioned RK method. The RK stages are computed as follows:

K1
F = fF (yn

F , yn
S), K1

S = fS(y
n
F , yn

S),

y
(1)
F = yn

F + �t

2
K1

F , y
(1)
S = yn

S + �tK1
S ,

K2
F = fF (y

(1)
F , y

(1)
S), K2

S = fS(y
(1)
F , y

(1)
S),

y
(2)
F = yn

F + �t

4
K1

F + �t

4
K2

F , y
(2)
S = yn

S ,

K3
F = fF (y

(2)
F , yn

S), K3
S = fS(y

(2)
F , yn

S),

y
(3)
F = y

(2)
F + �t

2
K3

F , y
(3)
S = yn

S + �tK3
S ,

K4
F = fF (y

(3)
F , y

(3)
S), K4

S = fS(y
(3)
F , y

(3)
S),

yn+1
F = yn

F + �t

4
(K1

F + K2
F + K3

F + K4
F), yn+1

S = yn
S + �t

4
(K1

S + K2
S + K3

S + K4
S).

(31)

Using the following notation to compactly denote Euler steps

E{F,S} (�t, yF , yS) := y{F,S}(t) + �t · f{F,S}(t, yF , yS), (32)

the MPRK-2 scheme can be written as convex combinations of Euler steps in the following
way:

yn+1
F = 1

2

(
yn

F + yn
F + �t

2
K1

F + �t

2
K2

F y
(1)
F = EF

(
�t

2
, yn

F , yn
S

)
,

+ �t

2
K3

F + �t

2
K4

F

)
,

= 1

2

(
yn

F + yn
F + �t

2
K2

F + �t

2
K3

F + �t

2
K4

F

)
, y

(1∗)
F = EF

(
�t

2
, y

(1)
F , y

(1)
S

)
,

(33)

= 1

2

(
yn

F + y
(1∗)
F + �t

2
K3

F + �t

2
K4

F

)
, y

(2)
F = 1

2
(yn

F + y
(1∗)
F),

= 1

2

(
y

(2)
F + y

(3)
F + �t

2
K4

F

)
, y

(3)
F = EF

(
�t

2
, y

(2)
F , yn

S

)
,

= 1

2
(y

(2)
F + y

(3∗)
F), y

(3∗)
F = EF

(
�t

2
, y

(3)
F , y

(3)
S

)

and

yn+1
S = 1

4

(
2yn

S + yn
S + �tK1

S + �tK2
S + yn

S y
{(1),(3)}
S = ES

(
�t,y

{n,(2)}
F , yn

S

)
,

+ �tK3
S + �tK4

S

)
,

= 1

4

(
2yn

S + y
(1)
S + �tK2

S y
{(1∗),(3∗)}
S = ES

(
�t,y

{(1),(3)}
F , y

{(1),(3)}
S

)
,

+ y
(3)
S + �tK4

S

)
,

= 1

4

(
2yn

S + y
(1∗)
S + y

(3∗)
S

)
.

252 J Sci Comput (2007) 33: 239–278

Table 3 MPRK-2 Euler steps for the fast and slow methods for m = 2. The slow buffer represents a small
region where the solution depends on both fast and slow partitions

Fast method (RKF) Slow method (RKS) Slow method (RKB)

in slow buffer in slow region

yn
F

yn
S

yn
S

y
(1)
F

= EF

(
�t
2 , yn

F
, yn

S

)
y
(1)
S

= ES

(
�t,yn

F
, yn

S

)
y
(1)
S

= E
(
�t,yn

S

)

y
(1∗)
F

= EF

(
�t
2 , y

(1)
F

, y
(1)
S

)
y
(1∗)
S

= ES

(
�t,y

(1)
F

, y
(1)
S

)
y
(1∗)
S

= E
(
�t,y

(1)
S

)

y
(2)
F

= 1
2

(
yn
F

+ y
(1∗)
F

)
y
(2)
S

= yn
S

y
(3)
F

= EF

(
�t
2 , y

(2)
F

, yn
S

)
y
(3)
S

= ES

(
�t,y

(2)
F

, yn
S

)
y
(3)
S

= y
(1)
S

y
(3∗)
F

= EF

(
�t
2 , y

(3)
F

, y
(3)
S

)
y
(3∗)
S

= ES

(
�t,y

(3)
F

, y
(3)
S

)
y
(3∗)
S

= y
(1∗)
S

yn+1
F

= 1
2

(
y
(2)
F

+ y
(3∗)
F

)
yn+1
S

= 1
2 yn

S
+ 1

4 y
(1∗)
S

+ 1
4 y

(3∗)
S

yn+1
S

= 1
2

(
yn
S

+ y
(1∗)
S

)

(34)

The sequence of fast and slow Euler steps and their convex combination that constitute
MPRK-2 are summarized in Table 3. We now show that this timestepping method preserves
the maximum principle and nonlinear stability properties of the discretization. Kirby [30]
has carried out a similar analysis for the multirate explicit Euler method.

Proposition 3.3 (Positivity) If each fast multirate Euler step

y
(n+ �t

m
)

F = EF

(
�t

m
, y

(n)
F , y

(n)
S

)

and each slow multirate Euler step

y
(n+�t)
S = ES

(
�t,y

(n)
F , y

(n)
S

)

preserves positivity properties under a local CFL condition, then the multirate solution also
preserves the positivity.

Proof The method is constructed using convex combinations of forward Euler solutions.
Each Euler step is positivity preserving. More precisely, if we have yn

F ≥ 0 and yn
S ≥ 0, by

applying Euler steps, it follows that the first macrostep of MPRK-2 (see Table 3) is positivity
preserving:

{
y

(1)
F , y

(1)
S

}
≥ 0 ⇒

{
y

(1∗)
F , y

(1∗)
S

}
≥ 0

y
(2)
F = 1

2

(
yn

F + y
(1∗)
F

)
≥ 0

⎫
⎪⎬

⎪⎭
⇒

{
y

(2)
F , yn

S

}
≥ 0. (35)

Using (35) and following the same rationale, we have that all intermediate solution compo-
nents are positive:

J Sci Comput (2007) 33: 239–278 253

{
y

(3)
F , y

(3)
S

}
≥ 0 ⇒

{
y

(3∗)
F , y

(3∗)
S

}
≥ 0

yn+1
F = 1

2

(
y

(2)
F + y

(3∗)
F

)
≥ 0

yn+1
S = 1

4

(
yn

S + y
(1∗)
S

)
+ 1

4

(
yn

S + y
(3∗)
S

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⇒ {
yn+1

F , yn+1
S

}≥ 0, (36)

and hence the full method is positivity preserving. �

Note that intermediate stage solutions of mixed forward Euler steps are not consistent
solutions of the PDE, since the fast subsystem and the slow subsystem are advanced with
different timesteps, and the intermediate solutions are at different intermediate times. For
example {y(1)

F , y
(1)
S } are solutions at �t/2 for the fast component and �t for the slow one.

We call such a step a “mixed Euler step”.

Proposition 3.4 (Maximum principle) If each fast and each slow multirate Euler step sat-
isfies the maximum principle then MPRK-2 also satisfies the maximum principle.

Proof Based again on the properties of the forward Euler method, a quick inspection of
Table 3 shows the following

max{y(1)
F , y

(1)
S } ≤ max{yn

F , yn
S }, max{y(1∗)

F , y
(1∗)
S } ≤ max{y(1)

F , y
(1)
S },

max{y(2)
F , yn

S } ≤ max{yn
F , yn

S },
max{y(3)

F , y
(3)
S } ≤ max{y(2)

F , yn
S }, max{y(3∗)

F , y
(3∗)
S } ≤ max{y(3)

F , y
(3)
S },

and thus, clearly max{yn+1
F , yn+1

S } ≤ max{yn
F , yn

S }. Similarly, using the forward Euler prop-
erties we have min{yn+1

F , yn+1
S } ≥ min{yn

F , yn
S } �

For the next properties we consider finite volume (conservative) spatial discretizations
(2). Specifically, we consider discretizations which assume the following form (when for-
ward Euler timesteps are used)

yn+�t
j = yn

j + �t

�x

(
Fj+ 1

2
− Fj− 1

2

)
= yn

j + �t

�x

(
Cj+ 1

2
�+yn

j − Dj− 1
2
�−yn

j

)
,

�+yn
j = yn

j+1 − yn
j ,�−yn

j = yn
j − yn

j−1,

(37)

where C, D are the spatial discretization coefficients that depend on y. This is the framework
in which most of the total variation related properties are studied [7, 39]. The following
lemma is due to Harten [25].

Lemma 3.5 (Harten [25] (2.1)) If coefficients C and D satisfy the following inequalities

Cj+ 1
2

≥ 0, Dj+ 1
2

≥ 0 and (38)

1 − �t

�x

(
Cj+ 1

2
+ Dj+ 1

2

)
≥ 0 (39)

then scheme (37) is TV non increasing or TVD.

Now consider a discrete solution yn on a bounded domain, �, partitioned in two subdo-
mains (26), and assume that the scheme (37) with a grid ratio of �t/(m�x), m ≥ 1 (“fast”

254 J Sci Comput (2007) 33: 239–278

method) satisfies the TVD conditions (38, 39) for every point in �. Moreover, consider that
the same scheme verifies the TVD conditions for a grid ratio of �t/�x (“slow” method)
for every point of the domain � that has the index larger or equal to � − L, where L > 1 is
the spatial domain of dependency (stencil). More precisely, the TVD conditions (38, 39) are
satisfied by the scheme (37) for the following timesteps:

�t

m
for j ≤ � − L − 1, (40)

�t for j ≥ � − L. (41)

These are essentially the local CFL conditions.
The solution is advanced in time using scheme (37) with a timestep �t on the slow

domain (j ≥ �), and with �t/m on the fast domain (j ≤ � − 1):

yn+�t
j = yn

j + �t

�x

(
Cj+ 1

2
�+yn

j − Dj− 1
2
�−yn

j

)
, j ≥ �, (slow), (42)

y
n+ �t

m

j = yn
j + �t

m�x

(
Cj+ 1

2
�+yn

j − Dj− 1
2
�−yn

j

)
, j ≤ � − 1, (fast). (43)

Obviously, the TVD conditions (38, 39) are satisfied under the local CFL restriction. In this
case, we consider the region between � and �−L as the “fast buffer” where even if the TVD
conditions hold for a large timestep �t , the solution is advanced with the small step �t/m.

The following lemma states that mixed forward Euler steps (42, 43) do not increase the
TV of the solution.

Lemma 3.6 (TV for mixed Euler step) Consider the scheme (37) that satisfies the TVD con-
ditions (38, 39) for timesteps restricted by (40, 41). Then the mixed forward Euler timesteps
defined by (42, 43) do not increase the total variation of the solution.

Proof The forward Euler steps (42) and (43) can be written as

y
n+�t/ξ

j = yn
j + �t

m�x

(
C̃j+ 1

2
�+yn

j − D̃j− 1
2
�−yn

j

)
, j ∈ �, (44)

where

C̃j+ 1
2

=
{

Cj+ 1
2

if j ≤ � − 1,

mCj+ 1
2

if j ≥ �,
D̃j+ 1

2
=
{

Dj+ 1
2

if j ≤ � − 2,

mDj+ 1
2

if j ≥ � − 1,

ξ =
{

m if j ≤ � − 1,

1 if j ≥ �.

Since the TVD conditions are satisfied under (40, 41), the TVD condition (38) is also satis-
fied:

Cj+ 1
2
,Dj+ 1

2
≥ 0, j ∈ � ⇒ C̃j+ 1

2
, D̃j+ 1

2
≥ 0, ∀j ∈ �. (45)

The TVD condition (39) for (44) is

1 − �t

m�x

(
C̃j+ 1

2
+ D̃j+ 1

2

)
≥ 0, j ∈ �, (46)

J Sci Comput (2007) 33: 239–278 255

and in detail we have

1 − �t

m�x

(
Cj+ 1

2
+ Dj+ 1

2

)
≥ 0, j ≤ � − 2, (47)

1 − �t

m�x

(
Cj+ 1

2
+ mDj+ 1

2

)
≥ 0, j = � − 1, (48)

1 − �t

m�x

(
mCj+ 1

2
+ mDj+ 1

2

)
≥ 0, j ≥ �. (49)

The TVD condition (47) applies to the fast method in the fast domain and is satisfied for a
grid ratio of �t/ (m�x) by (40). Condition (49) applies strictly to the slow method and is
locally satisfied for �t/�x by (41).

The condition (48) involves the mixed slow/fast flux approximations on the interface
region. By the fact that the slow method satisfies the TVD conditions on the fast buffer
region (41), the following condition

1 − �t

m�x

(
mCj+ 1

2
+ mDj+ 1

2

)
≥ 0, yj=�−L, (50)

holds. It follows that condition (48) is also satisfied due to the fact that Cj+ 1
2

and Dj+ 1
2

are
positive and m ≥ 1:

1 − �t

m�x

(
Cj+ 1

2
+ mDj+ 1

2

)
≥ 1 − �t

m�x

(
mCj+ 1

2
+ mDj+ 1

2

)
≥ 0,

≥ 1 − �t

�x

(
Cj+ 1

2
+ Dj+ 1

2

)
≥ 0, j = � − 1. (51)

Therefore all TVD conditions (45, 46) are satisfied for the mixed scheme (42, 43). �

The MPRK-2 scheme uses convex combinations of mixed forward Euler timesteps. We
showed that the total variation of solutions of mixed Euler steps is not increased. Now we
investigate the total variation of convex combinations of solutions of forward Euler steps.

We continue by following the traditional framework for the stability analysis of hyper-
bolic conservation laws [46–48]. Let yn ∈ � be a smooth initial solution and yA, yB ∈ � two
solutions obtained through a finite sequence (of O(�t)) time integrations starting with y0

using the forward Euler method. Moreover, consider that all the steps satisfy the CFL con-
dition and the solution remains smooth throughout its integration steps. Using the forward
Euler method properties, we have the following:

{
TV

({
yA
})≤ TV

({
y0
})

,

TV
({

yB
})≤ TV

({
y0
})

,
and

{‖yA − y0‖∞ ≈ O(�t),

‖yB − y0‖∞ ≈ O(�t).
(52)

Consider the mixed convex combinations of solutions yA and yB :

{
αyA

j≤�−1 + βyB
j≤�−1, γyA

j≥� + δyB
j≥�

}
, (53)

where 0 ≤ α, β, γ, δ ≤ 1, and α + β = 1, γ + δ = 1. Note that different combinations of
coefficients are allowed on different subdomains. This situation corresponds to some of the
MPRK-2 steps. The next lemma quantifies the TV increase of (53) from TV ({y0}).

256 J Sci Comput (2007) 33: 239–278

Lemma 3.7 (TV for convex combinations of solutions) Convex combinations of TVD for-
ward Euler steps of smooth solutions defined by (53) with the TVD and smoothness condi-
tions (52) satisfied have at most a bounded TV increase of O(�t):

TV
({

αyA
j≤�−1 + βyB

j≤�−1, γyA
j≥� + δyB

j≥�

})≤ TV
({

y0
})+O(�t). (54)

Proof The TV semi-norm satisfies the triangle inequality, and in particular

TV
({

νyA + ωyB
})≤ νTV

({
yA
})+ ωTV

({
yB
})

,

where yA and yB are solutions defined on the same domain, and ν,ω ∈ R
+.

We can expand (53) as follows

T V = TV
({

αyA
j<� + βyB

j<�, γyA
j≥� + δyB

j≥�

})

=
∑

j≤�−1

∣∣αyA
j+1 + βyB

j+1 − (
αyA

j + βyB
j

)∣∣

+ ∣
∣γyA

� + δyB
� − (

αyA
�−1 + βyB

�−1

)∣∣+
∑

j≥�

∣
∣γyA

j+1 + δyB
j+1 − (

γyA
j + δyB

j

)∣∣ , (55)

≤ α
∑

j≤�−1

∣∣yA
j+1 − yA

j

∣∣+ ∣∣γyA
� − αyA

�−1

∣∣+ γ
∑

j≥�

∣∣yA
j+1 − yA

j

∣∣

+ β
∑

j≤�−1

∣
∣yB

j+1 − yB
j

∣
∣+ ∣

∣δyB
� − βyB

�−1

∣
∣+ δ

∑

j≥�

∣
∣δyB

j+1 − yB
j

∣
∣ . (56)

In (56) we regrouped the terms and factored out the linear combination coefficients. We also
have that the coefficients are positive and β = 1 − α and δ = 1 − γ :

∣∣γyA
� − αyA

�−1

∣∣= ∣∣γyA
� − γyA

�−1 + γyA
�−1 − αyA

�−1

∣∣

≤ γ
∣
∣yA

� − yA
�−1

∣
∣+ |γ − α| ∣∣yA

�−1

∣
∣ , (57)

∣∣δyB
� − βyB

�−1

∣∣= ∣∣δyB
� − δyB

�−1 + δyB
�−1 − βyB

�−1

∣∣

≤ δ
∣∣yB

� − yB
�−1

∣∣+ |δ − β| ∣∣yB
�−1

∣∣ . (58)

We introduce (57) and (58) in (56), and substitute δ − β with α − γ :

T V ≤ α
∑

j≤�−1

∣∣yA
j+1 − yA

j

∣∣+ β
∑

j≤�−1

∣∣yB
j+1 − yB

j

∣∣

+ γ
∑

j≥�−1

∣∣yA
j+1 − yA

j

∣∣+ δ
∑

j≥�−1

∣∣δyB
j+1 − yB

j

∣∣+ |γ − α| ∣∣yA
�−1 − yB

�−1

∣∣ . (59)

Since each solution is obtained through a TVD method (52), and the linear combination is
convex, we have that

T V ≤ TV ({y0}) + |γ − α| ∣∣yA
�−1 − yB

�−1

∣∣ , (60)

and thus, by using the assumptions in (52), we have that the maximum total variation in-
crease is of order �t . �

J Sci Comput (2007) 33: 239–278 257

Next we use Lemmas 3.6 and 3.7 to show that MPRK-2 is TVB if each Euler step is
TVD.

Proposition 3.8 (TVB) If each fast and each slow multirate Euler steps are TVD under the
local CFL condition and if the solution is smooth then MPRK-2 is TVB.

Proof We consider MPRK-2 (see Table 3) applied to a bounded domain that has one fast
region, a fast buffer, and one slow region (� = �F ∪ �FB ∪ �S). Since each Euler step
is considered to be TVD, the TVD conditions assumed in Lemma 3.6 are satisfied by the
MPRK-2 construction (i.e., we allow for a buffer between the fast and the slow regions, in
which the fast method is used, albeit the slow method is also TVD). In what follows we find
an upper bound to the additional total variation that may be introduced by MPRK-2 in one
(full) timestep. We consider each step in Table 3 and quantify the TV increase.

By Lemma 3.6, the first two steps ({y{(1),(1∗)}
F , y

{(1),(1∗)}
S }) do not increase the TV of the

initial solution (yn):

TV
({

y
(1∗)
F , y

(1∗)
S

})
≤ TV

({
y

(1)
F , y

(1)
S

})
≤ TV

({
yn

F , yn
S

})
. (61)

The third step, {y(2)
F , y

(2)=n
S }, represents a convex combination of Euler steps, and by using

Lemma 3.7 together with the previous relations (61), we have that

TV

({
y

(2)
F = 1

2
yn

F + 1

2
y

(1∗)
F , y

(2)
S = 1yn

F + 0y
(1∗)
F

})
≤ TV

({
yn

F , yn
S

})+O(�t). (62)

The first two steps of the second macro step {y{(3),(3∗)}
F , y

{(3),(3)∗}
S } do not increase the TV.

Using Lemma 3.6 and the results from the previous Euler steps, we have the following TV
bounds:

TV
({

y
(3)
F , y

(3)
S

})
≤ TV

({
y

(2)
F , yn

S

})
≤ TV

({
yn

F , yn
S

})+O(�t), and

TV
({

y
(3∗)
F , y

(3∗)
S

})
≤ TV

({
y

(3)
F , y

(3)
S

})
≤ TV

({
yn

F , yn
S

})+O(�t).

The last step, {yn+1
F , yn+1

S }, is a convex combination of previous Euler steps, and hence,
using Lemma 3.7 we have an increase in the TV of at most O(�t).

TV

({
yn+1

F = 1

2

(
y

(2)
F + y

(3∗)
F

)
, yn+1

S = 1

2

(
yn

S + y
(1∗)
S

)
+ 1

2

(
yn

S + y
(3∗)
S

)})

≤ TV
({

yn
F , yn

S

})+O(�t). (63)

The last relation proves the TVB result for MPRK-2

TV
({

yn+1
F , yn+1

S

})≤ TV
({

yn
F , yn

S

})+O(�t).

This proof can be extended to multiple subdomains and interfaces, and to arbitrary step size
ratios. �

Forms (33, 34) represent a convex combination of Euler steps using the MPRK-2 con-
struction “algorithm” presented in Sect. 3.4. The method (33, 34) with partitioning (20) is
second order accurate in time and SSP (i.e., preserves the stability properties of the spatial
method).

258 J Sci Comput (2007) 33: 239–278

Table 4 The Butcher tableau for the two, slow and fast methods for Kirby’s [30] first order multirate forward
Euler step method

0 0

1

0 0

η1 σ1 0

η2 σ1 σ2 0
.
.
.

.

.

.
.
.
.

. . .
. . .

ηm−1 σ1 σ2 · · · σm−1 0

σ1 σ2 · · · σm−1 σm

0 0

0 0 0

0 0 0 0
.
.
.

.

.

.
.
.
.

. . .
. . .

0 0 0 · · · 0 0

σ1 σ2 · · · σm−1 σm

(a) Base (b) Fast method (c) Slow method

method

3.6 Other Multirate Explicit Methods

In this section we present other multirate forward Euler methods. First, we show the first
order multirate Euler steps method proposed by Kirby [30] written in our framework and
second, we construct other second order PRK configurations.

3.6.1 First Order Multirate Explicit Methods

Kirby [30] proposed a first order multirate method based on Euler steps. Using our notation
this method can be written in the following way

y
ηk

F = EF

(
σk�t, y

ηk−1
F , yn

S

)
, k = 1,2, . . . ,m − 1,

yn+1
F = EF

(
σm�t,y

ηm−1
F , yn

S

)
,

yn+1
S = ES

(
�t,yn

F , yn
S

)
,

where

m∑

k=1

σk = 1, 0 < σk ≤ 1, 1 ≤ k ≤ m; ηk =
m−1∑

k=1

σk, η0 = 0.

Kirby [30] proves that the above scheme is TVD (i.e., TV({yn+1
F , yn+1

S }) ≤ TV({yn
F , yn

S })),
satisfies the maximum principle and the entropy condition; however, it is only first order
accurate. A Butcher tableau representation of this method is shown in Table 4.

3.6.2 Other Second Order PRK Configurations

Other second order PRK configurations are possible. Using the fast method from our
MPRK-2 example for m = 2, we define another family of second order PRK methods. The
Butcher tableau is shown in Table 5. These methods can be written in convex combinations
of Euler steps for 0 ≤ μ ≤ 1. The slow method is further discussed in Appendix 2 where we
show that the Euler steps that form the method are in convex combinations. The properties
proved for MPRK-2 also extend to this family.

J Sci Comput (2007) 33: 239–278 259

Table 5 The Butcher tableau for the two, slow and fast methods for another family of second order PRK for
m = 2. Here we consider 0 ≤ μ ≤ 1

0 0

1/2 1/2 0

1/2 1/4 1/4 0

1 1/4 1/4 1/2 0

1/4 1/4 1/4 1/4

0 0

0 0 0

1 μ 1 − μ 0

1 1 − μ μ 0 0

1/4 1/4 1/4 1/4

(a) Fast method (b) Slow method

3.7 Order Two MPRK Methods for Multiple Partitions

The MPRK-2 method described in a previous section (3.5) along with its properties can
be extended to multiple levels of refinement. The procedure is illustrated in Table 6 for
three levels of partitioning (S—slow, M—medium, and F —fast). The construction is as
follows. Start with the base method for level zero, RKB (in Table 1a). Then construct the
slow method with A’s on the diagonal. The top left quadrant in Table 6c becomes the base
method for the medium partition, and so on.

For multiple levels, each method depends on its corresponding partition and only on the
neighboring partitions. The neighboring partitions are characterized by adjacent time scales
(there is no direct transition between the fast and the slow subdomains). In this case, the
dependency of f{F,M,S} on y{F,M,S} is the following

y ′
F = fF (yF , yM),

y ′
M = fM(yF , yM,yS),

y ′
S = fS(yM,yS).

We note that there is no direct dependency between flux functions fF and fS . The transition
between the fast and the slow methods is smoothly resolved in this context.

The order conditions for each method and for the coupling are satisfied pairwise: (F , M)
and (M , S). This is sufficient to guarantee the global accuracy of the method. Moreover, on
level zero, RKS

0 reduces to the base method on �0
S (away from the interface), and in turn,

RKS
1 reduces to the top left quadrant of RKS

0 on �
(1)
S , which becomes the base method for

the medium partition. Thus, we have a systematic way to extend methods to increasingly
faster partitions.

3.8 Implementation Aspects

We describe the implementation of MPRK-2 in a general framework. For simplicity, we con-
sider a solution that has two characteristic time scales that require two integration timestep
lengths: large (for slow) and small (for fast). The domain is partitioned as follows: the fast
solution together with the fast buffer form the fast domain (recall that variables in the fast
buffer are characterized by a slow timescale, but are resolved with a small timestep). An
additional slow buffer at the fast-slow interface is considered as illustrated in Fig. 2 to com-
putationally decouple the fast and slow solutions. The rest of the slow solution forms the
slow domain. The size of the slow buffer is the “largest” half of the maximum stencil size
(denoted with �) times the ratio between the fast-slow subdomains m. For instance, in our
experiments the spatial stencil has five points, and in this case we choose the slow buffer to

260 J Sci Comput (2007) 33: 239–278

Table 6 Multirate partitioned Runge–Kutta method (MPRK-2) with 3 levels of refinement and an example
for the nested domain decomposition

1
4 c 1

4 A

1+c
4

1
4 b 1

4 A

2·1+c
4

1
4 b 1

4 b 1
4 A

3·1+c
4

1
4 b 1

4 b 1
4 b 1

4 A

1
4 bT 1

4 bT 1
4 bT 1

4 bT

c
2

1
2 A

c
2

1
2 A

1+c
2

1
4 b 1

4 b 1
2 A

1+c
2

1
4 b 1

4 b 1
2 A

1
4 bT 1

4 bT 1
4 bT 1

4 bT

(a) Fast method (m = 4) (b) Medium method (m = 2)

c A

c A

c A

c A

1
4 bT 1

4 bT 1
4 bT 1

4 bT

(c) Slow method (m = 1) (d) Nested partitioning example

Fig. 2 The efficient
implementation of MPRK treats
separately the variables in the
slow buffer

be two grid points (� = 2). It is easy to see that this condition guarantees sufficient solution
decoupling between the fast and the slow such that the base method can be applied for the
slow partition. The size of the fast buffer is � according to Proposition 3.8. To illustrate
the implementation we consider the MPRK-2 (RKa) method described in Table 3. The fast
method (RKF) is applied in the fast domain (with step size �t/m), the slow (buffer) method
(RKS) is applied in the slow buffer, and the base method (RKB) in the slow domain. Note
that inside the slow buffer m large steps are taken with a stepsize �t ; but since the slow
buffer is narrow the associated computational cost is only O(m�). Outside the slow buffer
a single large step of length �t is taken with the base method to advance the slow solution
in the large slow domain. A representation of the procedure described above is shown in
Fig. 2. This analysis can be extended to any MPRK-2 setting.

Optimal (in terms of CFL) single rate SSP Runge–Kutta methods expressed directly in
forward Euler steps can be found in [18] and are very good candidates for the base method in
the multirate approach. The multirate sequence of Euler steps can be inferred directly from

J Sci Comput (2007) 33: 239–278 261

the base method as the multirate (m × base method stages) stages have a repetitive pattern.
An example is shown in Appendix 1 for m = 3.

In practice the timestep refinement criterion is imposed by stability restrictions (CFL) due
to the fact that the spatial discretization errors typically dominate the temporal discretization
errors (i.e., the time step is restricted by stability and not by accuracy requirements). It
is nevertheless possible to choose an adaptive timestep for the time integration based on
temporal error control [12, 44].

3.9 Computational Efficiency

There is no additional computational overhead away from the interface regions which are
typically very small (narrow) compared to the fast and slow partitions. Even if the slow
method has formally as many stages as the fast method, these stages are identical away from
the interface, and thus no additional calculations are necessary. This means that the slow
method really uses large steps.

We now estimate the efficiency of the multirate method under the assumption that the
Euler steps (and in particular the flux function evaluations) carry the bulk of the compu-
tational cost. We define the multirate integration speedup as the ratio of the workload for
single rate scheme with fast steps used throughout the domain, to the workload of the mul-
tirate scheme. Consider the multirate scheme applied on a fast domain with LF grid points,
a slow domain with LS grid points, and with b interfaces among them. The speedup of the
MPRK-2 is

S = m(LF + LS)

m(LF + bm�) + LS − bm�
. (64)

The speedup depreciates as m grows; however, this is not of concern in practical applica-
tions since large m can be avoided through the nested partitioning. In practice we have that
bm� � min(LS,LF) and therefore

S ≈ m(LF + LS)

mLF + LS

.

The speedup is close to the ideal value of m if LF � LS . For k nested grids the ideal
speedup is mk . We expect the speedup to be considerable for multi-dimensional problems.
A numerical experiment that validates this theoretical speedup considerations for Burgers’
equation is shown in Sect. 4.2.3.

4 Numerical Results

We illustrate the theoretical findings using two standard test problems: the advection equa-
tion and the inviscid Burgers’ equation. Since TVD methods in multiple dimensions are
at most first order accurate [16], we look at one-dimensional problems. Accurate multiple
dimension problems can be solved using dimension splitting. The solutions are computed
using the method of lines approach. The linear advection spatial discretization is a second
order limited finite volume scheme on nonuniform grids that is both conservative and posi-
tive (described in Sect. 4.1). Burgers’ equation, presented in Sect. 4.2, is implemented on a
fixed grid, using the third order scheme of Osher and Chakravarthy [39].

262 J Sci Comput (2007) 33: 239–278

4.1 The Advection Equation

The one-dimensional advection equation (4.1) models the transport of a tracer y with the
constant velocity u along the x

∂y(t, x)

∂t
+ u · ∂y(t, x)

∂x
= 0.

4.1.1 Positive Spatial Discretization

In what follows, we describe the positive (7) flux limited spatial discretization scheme [27,
53]. We start by introducing the flux limited formulation of Hundsdorfer et al. [27] on uni-
form grids, and extend the scheme to nonuniform grids.

The numerical flux is defined as

Fi+ 1
2

= fi + 1

2
φi+ 1

2
(fi − fi−1), (65)

where φ is a nonlinear limiter function. The scheme (2) becomes

y ′
i = −

(
1 + 1

2φi+ 1
2

)
(fi − fi−1) − 1

2φi− 1
2
(fi−1 − fi−2)

�x
. (66)

Define the flux slope ratio as

ri− 1
2

= fi − fi−1

fi−1 − fi−2
. (67)

If ri− 1
2

	= 0, from (66) and (67) we have

y ′
i = − 1

�x

[(
1 + 1

2
φi+ 1

2

)
−

1
2φi− 1

2

ri− 1
2

]

(fi − fi−1). (68)

The positivity requirement (7) applied to the scheme (68) yields the following condition

φi− 1
2

ri− 1
2

− φi+ 1
2

≤ 2. (69)

This condition is used to impose bounds on the limiter φ for the numerical flux defined by
(65) in order to preserve positivity for the scheme (2).

Next we extend the scheme to a nonuniform grid by redefining the numerical flux (and
the limiter). Consider a quadratic (spatial) flux interpolant for the numerical flux function F

at i + 1
2 , using the flux function f , evaluated at gridpoints i − 1, i, i + 1, and a nonuniform

spatial grid spacing, �x[•], in the following form:

Fi+ 1
2

= fi + αifi−1 + βifi + γifi+1,

where

αi = − �xi�xi+1

(�xi−1 + �xi)(�xi+1 + 2�xi + �xi−1)
,

J Sci Comput (2007) 33: 239–278 263

(a) m = 2

(b) m = 3

Fig. 3 Representation of the discretization leading order error term for two instances of m as the wave passes
through the interfaces

βi = − �xi(�xi−1 + �xi − �xi+1)

(�xi−1 + �xi)(�xi + �xi+1)
,

γi = �xi(�xi−1 + 2�xi)

(�xi + �xi+1)(�xi+1 + 2�xi + �xi−1)
.

The flux can be written in terms of (fi − fi−1) and ri+ 1
2

as

Fi+ 1
2

= fi + (−αi + γiri+ 1
2
)(fi − fi−1). (70)

Define K as

K(r) = 2(−αi + γir). (71)

264 J Sci Comput (2007) 33: 239–278

Fig. 4 Fixed grid advection solution with three function profiles that pass through a fixed fine (�x/m, �t/m)
region (between 1 and 2). The initial profile (dashed line) is advected from the left to right part of the domain

Then, the numerical flux can be expressed as

Fi+ 1
2

= fi + 1

2
K(ri+ 1

2
)(fi − fi−1). (72)

Define the following flux limiter [27, 51]

φ(r) = max(0,min(2r,min(2,K(r)))). (73)

Hundsdorfer et al. [27, Sect. 3.2] show that forward Euler timestepping used to integrate the
semi-discrete form (2) using the numerical flux defined by (67) and the limiter (69) leads to
a positive, limited second order (in space) scheme under a CFL restriction. We extend this
scheme to nonuniform grids by using the numerical flux defined by (72) with the limiter
(73). This extension preserves the positivity and accuracy properties (the proof follows im-
mediately from [27]). In addition, if the timestepping scheme is positivity preserving, then
the entire method (each multirate step, in our case) is positivity preserving as discussed in
Sect. 3.5.

Figure 3 shows that the leading order truncation error of the spatial discretization using
the unlimited numerical flux (70), i.e., the coefficient that multiplies ∂3f/∂x3, increases with
increased mesh ratio.

J Sci Comput (2007) 33: 239–278 265

Fig. 5 Moving grid advection solution with three initial profiles (marked with dashed lines). The solution is
advected to the right part of the domain. The fine grid (�x/m, �t/m) delimited by two vertical dotted thin
lines (at the final time) follows the profile. The dotted line represents the exact solution at the final time

4.1.2 Numerical Experiments

In this section we apply the MPRK-2 time integration for the linear advection equation. The
spatial discretization is positive and the time integration scheme is SSP, which results in an
overall positive scheme.

Our test cases include three different initial conditions (of different regularity): a step
function, a triangular shape, and an exponential shape.

The computational domain has three distinct regions. The middle region is discretized
using a fine grid with spacing �x/m, while the left and right regions are covered by a
coarse mesh with spacing �x. For simplicity we consider periodic boundary conditions. The
timestepping interval is proportional with the grid size in order to satisfy the CFL restriction,
i.e., we take �t wherever we have �x grid spacing and �t/m wherever we have �x/m.

Figure 4 shows the advection numerical solution with the three function profiles that
pass through a fixed fine (�x/m) region (located between x = 1 and x = 2). The dashed
line represents the exact solution and solid line corresponds to the solution evolved with
unit wave speed (u = 1) in time (at two different times). The solution is not qualitatively
affected by the interface. Moreover, with the higher spatial resolution, the solution improves
qualitatively (as m is increased), and the wave is not distorted by passing through the fast-

266 J Sci Comput (2007) 33: 239–278

Table 7 The moving grid advection experiment values for: �1 error norm, the ratio between the initial and
final mass, and the solution minimum and maximum over all timesteps (all). The initial solution minimum is
zero and maximum is one

Type

m = 1 m = 2 m = 3

mass final mass final mass final

min all min all min all

max all max all max all

Step

�1 = 0.1085 �1 = 0.1069 �1 = 0.1021

9.9999999e-01 1.0e+00 9.99999999e-01

1.4966e-17 4.4738e-19 9.3703e-20

0.9938 0.9999 1

Triangular

�1 = 0.0401 �1 = 0.0224 �1 = 0.0154

1 1 9.99999999e-01

1.2242e-17 9.2255e-19 3.3607e-19

0.8272 0.8969 0.9209

Exponential

�1 = 0.0466 �1 = 0.0344 �1 = 0.0270

9.99999999e-01 9.99999999e-01 9.99999999e-01

1.0845e-17 5.7082e-19 1.489e-19

0.9659 0.9880 0.9904

Table 8 Effective order for RK2a (i.e., MPRK-2 with m = 1) in time for the advection equation with respect
to (left columns) the exact solution and (right columns) a high order time discretization method

Space and time refinement Time refinement only (ODE coarse)

Level �1 �2 EO1 EO2 �ODE
1 �ODE

2 EOODE
1 EOODE

2

1 8.10e-02 5.62e-02 2.04e-03 1.33e-03

2 2.00e-02 1.64e-02 2.018 1.775 4.88e-04 3.21e-04 2.063 2.056

4 4.00e-03 4.31e-03 2.322 1.929 1.22e-04 8.21e-05 1.992 1.968

8 8.21e-04 1.13e-03 2.284 1.933 3.09e-05 2.06e-05 1.991 1.991

16 1.66e-04 2.99e-04 2.303 1.915 7.68e-06 5.18e-06 2.008 1.995

32 3.00e-05 7.25e-05 2.471 2.048 1.92e-06 1.30e-06 2.001 1.994

64 5.77e-06 1.81e-05 2.379 2.002 4.78e-07 3.20e-07 2.005 2.023

slow interface. To further quantify the benefits of having a finer region in this setting, we
investigate a moving fine mesh that is centered around the “interesting region,” where the
large gradients occur in the solution. Figure 5 shows the advection solution for the three
corresponding initial profiles (marked with dashed lines). The fine (�x/m) mesh travels
with the solution from the left to the right part of the domain with constant speed. The
figures show the final state of the solution with the exact solution superimposed (marked
with dotted lines), and vertical dotted lines that delimit the fine domain. Table 7 shows
the �1 error norm at the final time, minimum, maximum, and the total mass ratio for the
profiles shown in Fig. 5 at the initial and final time. Clearly, the solution is improved both
qualitatively and quantitatively with higher spatial resolution. Moreover, every timestep is

J Sci Comput (2007) 33: 239–278 267

conservative, and the solutions are positive, obey the maximum principle, and are wiggle
free.

All the results for the advection equation presented in this section show that this specific
finite volume approach and MPRK-2 yield a conservative multirate solution on a nonuniform
grid that is positive and non-oscillatory as discussed in Sect. 3.5.

4.1.3 Numerical Error Analysis

In this section we analyze the effective (numerical) order of accuracy of the multirate time
integration method. For this investigation we use the experiment setting (i.e., space dis-
cretization, grid, etc.) described above and consider the following elements.

Given the reference (or exact) solution yref, �q error norms of the numerical solution y,
on a variable (or fixed) grid are computed as

�q(y) =
(
∑

i

�xi

∣
∣y(xi) − yref(xi)

∣
∣q
) 1

q

.

The effective order of the discretization EOq in q norm is estimated from two numerical
solutions with different time resolutions: h and h/γ , γ > 1, as follows:

EOq = log

(
�q(y

[h/γ])
�q(y[h])

)/
log

(
1

γ

)
,

In our numerical experiments, we use the �1 and �2 norms and consider the sine initial
solution shown in Fig. 6a that is advected half of its period (i.e., 1.5 units in the spatial
dimension).

For the numerical order validation we use two space-time grids. In the first case, we
consider space-time refinement for the fine region and compute the error norms �1 and �2

with respect to the exact solution. They are used to determine the corresponding effective
order of the (space/time) method EO1 and EO2, respectively. In the second case, we consider
only time refinement while keeping the space grid fixed and compute the error norms �ODE

1
and �ODE

2 . The reference solution in the fixed grid is obtained with respect to a high order
numerical approximation, RK45. RK45 is obtained using explicit Runge–Kutta (4, 5) with
RelErr = AbsErr = 1E-08 [9]. The spatial discretization is the same in both MPRK-2 and
RK45. The error norms are used to approximate directly the time accuracy order EOODE

1 and
EOODE

2 for MPRK-2, masking the spatial errors.
First, we consider the single rate RK2a method (Table 8). The results subscribe to the

well-known second order of accuracy. Next, we show the order estimation for MPRK-2 with
m = 2 in Table 9 and with m = 3 in Table 10. The second order of accuracy is not affected
by the time refinement in the MPRK-2 method and confirms the theoretical findings.

We remark that the errors (in norm) decrease as we increase m. Moreover, the errors with
respect to the exact solution (left columns) that also include the spatial discretization errors
are orders of magnitude larger than the “ODE” errors (right columns). This shows that the
spatial discretization errors dominate, as expected.

4.2 Burgers’ Equation

The simplified (inviscid) Burgers’ equation is

∂y(t, x)

∂t
+ ∂

∂x

(
1

2
y(t, x)2

)
= 0. (74)

268 J Sci Comput (2007) 33: 239–278

Table 9 Effective order for MPRK-2 (RK2a) with m = 2 in time for the advection equation with respect to
(left columns) the exact solution and space-time refinement and (right columns) a single rate high order time
discretization method with time refinement for MPRK-2

Space and time refinement Time refinement only (ODE coarse)

Level �1 �2 EO1 EO2 �ODE
1 �ODE

2 EOODE
1 EOODE

2

1 6.49e-02 4.75e-02 1.62e-03 1.12e-03

2 1.57e-02 1.41e-02 2.047 1.753 3.91e-04 2.70e-04 2.052 2.061

4 3.27e-03 3.61e-03 2.264 1.963 9.76e-05 6.84e-05 2.003 1.982

8 7.12e-04 9.37e-04 2.201 1.948 2.43e-05 1.71e-05 2.003 1.995

16 1.52e-04 2.47e-04 2.221 1.924 6.11e-06 4.31e-06 1.994 1.990

32 3.04e-05 6.14e-05 2.326 2.008 1.53e-06 1.08e-06 1.994 1.993

64 6.24e-06 1.55e-05 2.287 1.980 3.74e-07 2.64e-07 2.037 2.034

Table 10 Effective order for MPRK-2 (RK2a) with m = 3 in time for the advection equation with respect to
(left columns) the exact solution and space-time refinement and (right columns) a single rate high order time
discretization method with time refinement for MPRK-2

Space and time refinement Time refinement only (ODE coarse)

Level �1 �2 EO1 EO2 �ODE
1 �ODE

2 EOODE
1 EOODE

2

1 4.12e-02 3.40e-02 1.61e-03 1.13e-03

2 1.00e-02 9.79e-03 2.041 1.795 3.87e-04 2.70e-04 2.059 2.068

4 2.23e-03 2.49e-03 2.165 1.973 9.59e-05 6.81e-05 2.013 1.987

8 5.05e-04 6.58e-04 2.144 1.922 2.39e-05 1.70e-05 2.006 1.996

16 1.08e-04 1.73e-04 2.220 1.927 6.00e-06 4.30e-06 1.993 1.990

32 2.24e-05 4.41e-05 2.269 1.973 1.50e-06 1.08e-06 1.995 1.993

64 4.75e-06 1.16e-05 2.241 1.919 3.67e-07 2.63e-07 2.037 2.035

Burgers’ equation numerical experiments are based on the third order upwind-biased TVD
flux limited scheme described below for the spatial discretization, and MPRK-2 for the time
integration.

4.2.1 TVD Spatial Discretization

This section is based on the work of Osher and Chakravarthy [6, 38, 39]. A generic recipe
for high order TVD finite volume schemes can be found in [7]. In what follows, we briefly
present their method.

Consider the flux F(yj+1, yj) to be a scalar numerical flux defined for an E-scheme [7].
The following

df −
j+ 1

2
= F(yj+1, yj) − f (yj), and (75)

df +
j+ 1

2
= f (yj+1) − F(yj+1, yj), (76)

represent the positive and negative flux difference on the cell face.

J Sci Comput (2007) 33: 239–278 269

Fig. 6 Representation of the initial (dashed) and final (solid) solutions for: a the advection equation used in
the numerical accuracy analysis, and b Burgers’ equation used in the numerical efficiency experiments. The
dashed vertical lines denote the fast-slow interface

With (75, 76), consider the following numerical flux

Fj+ 1
2

= F(yj+1, yj) −
[

1 − κ

4
d̃f −

j+ 3
2
+ 1 + κ

4
df −

j+ 1
2

]
+
[

1 + κ

4
d̃f +

j+ 1
2
+ 1 − κ

4
df +

j− 1
2

]
,

(77)

F(yj+1, yj) = 1

2
(f (yj+1) + f (yj)) − 1

2

(
df +

j+ 1
2
+ df −

j+ 1
2

)
, (78)

where f ± are the negative and positive flux contributions, d̃f ± and df ± show that they are
in flux limited form and are defined below. The scheme defined by (77) is called a κ-scheme.
If κ = 1/3, (77) becomes a limited third order scheme. If we consider df ± = df ± and
d̃f ± = df ±, we have the unlimited scheme. The limited fluxes are defined as follows

d̃f −
j+ 3

2
= minmod

[
df −

j+ 3
2
, bdf −

j+ 1
2

]
, df −

j+ 1
2

= minmod

[
df −

j+ 1
2
, bdf −

j+ 3
2

]
, (79)

d̃f +
j+ 1

2
= minmod

[
df +

j+ 1
2
, bdf +

j− 1
2

]
, df +

j− 1
2

= minmod

[
df +

j− 1
2
, bdf +

j+ 1
2

]
, (80)

where

minmod[x, y] = sign(x) · max[0,min[|x|, y sign(x)]], 1 ≤ b ≤ 3 − κ

1 − κ
. (81)

Using forward Euler steps in time to discretize form (2) with the numerical flux defined by
(79) and κ = 1/3 leads to a linearly stable, TVD, third order spatially accurate method (when
the limiter is not “active”, otherwise the order is degraded) under a CFL restriction, as shown
in [39]. Additional information can be found in [7, 33]. Our numerical experiments confirm
that that these properties extend to MPRK-2 (with RK2a) as predicted by our theoretical
results in Sect. 3.5.

270 J Sci Comput (2007) 33: 239–278

Fig. 7 Burgers’ solution with the initial profile (dashed), dx = 0.025, dtcoarse = 0.022 (CFL = 0.9), and
a m = 1, using RK2a; b m = 2, solved with MPRK-2. Second row shows the solution at t = 0.225 s solved
with MPKR2 and same grid with c m = 2; d m = 3. CFL condition is violated in (a) and (c) and are unstable.
Figures (b) and (d) satisfy the CFL condition and are stable

4.2.2 Numerical Experiments

The computational domain has three distinct regions. The middle region (x ∈ [1,2]) is dis-
cretized using a fast method with the timestep of �t/m, while the left (x ∈ [0,1]) and right
(x ∈ [2,3]) form the slow regions and are solved with a time step of �t . Again, for simplic-
ity, we consider periodic boundary conditions. The time integration is done with MPRK-2.

Results for MPRK-2 that use smaller local timesteps for Burgers’ equation are presented
in Fig. 7. The local CFL condition is violated for Fig. 7a, c, and in these cases the solution
becomes unstable. In Fig. 7b, d. the CFL condition is locally satisfied, and the solution is
stable. More exactly: The solution in Fig. 7a uses the same timestep everywhere (m = 1);
however, in the fast region (x = [1,2]), the CFL condition is violated (for y > 1.11) and the
method becomes unstable. In Fig. 7b we use a smaller timestep in the fast region (m = 2)
and the local CFL condition is now satisfied, and the oscillations present in Fig. 7a are
avoided. Similarly, the solution in Fig. 7c is oscillatory for m = 2 due to a violation of
the CFL condition. Increasing the time ratio to m = 3 stabilizes the solution, and hence,
the solution (shown in Fig. 7d) is non-oscillatory. This approach with different m can be
employed in order to dynamically stabilize the schemes by choosing step sizes that locally
satisfy the CFL condition. Figure 8a, b shows the Burgers’ solution obtained using two

J Sci Comput (2007) 33: 239–278 271

Fig. 8 Burgers’ solution with the initial profile (dashed), dx = 0.025, dtfine = 0.019 (CFL = 0.75) and
solved with MPRK-2 for a the step profile, and b exponential profile, for m = 2 at different time locations.
For each profile we show the TV variation of the solution: in c for the a setting, and in d for the b setting

initial profiles that pass through the fine (�t/2) region at different times. In both cases the
solution is not qualitatively affected by the wave passing through the interfaces. The spatial
discretization scheme is TVD and stable under a CFL-like condition. The time integration
scheme, MPRK-2, with m = 2,3 keeps a bounded total variation. Figure 8c, d shows the
TV difference (between successive steps), i.e., TV(y(t = ti)) − TV(y(t = ti−1)), for the
solutions presented in Fig. 8a, b. This difference is always negative, and thus the scheme is
TVD on this particular example.

4.2.3 Computational Efficiency

In this section we validate the theoretical speedup results computed in Sect. 3.9. We consider
Burgers’ equation (74) with the solution shown in Fig. 6b using the Osher–Chakravarthy
spatial discretization (77) described above.

We consider a fast region with ratios m = 2 or 3 that covers 10% of the entire grid in
order to preserve the stability of the method for the given initial solution. We choose: LF =
100, LS = 900, � = 2 with CFL (fine) = 0.75 and two interfaces (b = 2): fast-slow and
slow-fast. In Table 11 we show the CPU time for 45 integration timesteps and compare the
multirate solutions with m = 2 and 3 with the single rate solutions. The experimental results

272 J Sci Comput (2007) 33: 239–278

Table 11 Effective and theoretical computational speedup for MPRK-2 with (m = 2 and 3). The fast region
covers 10% of the entire domain. A considerable speedup increase can be obtained for multidimensional
applications

Time Single rate Multirate Experimental Theoretical

ratio time [sec] time [sec] speedup speedup

m = 2 25.28 13.71 1.84 1.80

m = 3 36.73 15.07 2.43 2.45

confirm a speedup of about 1.8 for m = 2 and 2.43 for m = 3, as predicted by the theoretical
calculation.

We note that in 2-D and 3-D applications the speedup is expected to be considerably
larger, as discussed in Sect. 3.9. Similarly, more impressive speedups are expected for nested
grids.

5 Conclusions and Future Work

Adaptive simulations of hyperbolic conservation laws refine the spatial grid to obtain the tar-
get accuracy. Due to the CFL restrictions, finer local grids lead to smaller global timesteps
for the entire simulation. Therefore mesh refinement is accompanied by a considerable in-
crease in the computational time. Moreover, even for fixed grid simulations, the wave speeds
may vary considerably across the entire domain and the global timestep is restricted by the
fastest wave speed. In both cases, the majority of the variables are solved with a timestep
much smaller than necessary.

Multirate integration schemes use different timesteps for distinct components of the solu-
tion; in particular, they allow to use different timesteps in different parts of the domain when
simulating hyperbolic systems. In this paper we present a multirate approach that allows to
solve each subdomain with a timestep that matches the local characteristic time scale of the
solution. The proposed multirate schemes have high order of accuracy and have nonlinear
stability properties.

We have developed a systematic way to extend SSP Runge–Kutta schemes to multi-
rate integration methods. Our approach is rooted in the theory of partitioned Runge–Kutta
methods. The proposed time discretizations are (1) second order accurate, (2) conserva-
tive, and (3) nonlinearly stable under local CFL timestep restrictions. Nonlinear stability
properties include positivity, maximum principle preserving, and TVB. Note that current
multirate methods with these properties, available in the literature, are at most first order
accurate. The proposed multirate family of schemes can be extended to accommodate an
arbitrary number of partitions (time scales), with arbitrary step size ratios between parti-
tions.

Two test problems are used to illustrate the theory. In both problems we used MPRK-
2 with different timestep ratios. The first test is the linear advection equation with
mesh refinement. Distinct timesteps are used in areas of different mesh sizes. Under
local CFL conditions, the integration is linearly stable and conservative, and the so-
lution remains positive and free of spurious oscillations. The second test is the invis-
cid Burgers’ equation. The grid size is fixed but the wave speed varies significantly

J Sci Comput (2007) 33: 239–278 273

Table 12 MPRK order 2 Butcher tableau for m = 3

0 0 0

1 1 0

1/2 1/2

(a) Base method

0 0

1/3 1/3 0

1/3 1/6 1/6 0

2/3 1/6 1/6 1/3 0

2/3 1/6 1/6 1/6 1/6 0

1 1/6 1/6 1/6 1/6 1/3 0

1/6 1/6 1/6 1/6 1/6 1/6

0 0

1 1 0

0 0 0 0

1 0 0 1 0

0 0 0 0 0 0

1 0 0 0 0 1 0

1/6 1/6 1/6 1/6 1/6 1/6

(b) Fast method (c) Slow method

in different parts of the domain. Different timesteps that obey the local CFL condi-
tions are used. The numerical solution is conserved and its total variation decreases with
time.

A check for the entropy inequality in the multirate context will be addressed in future
studies. We plan to extend the proposed framework to construct methods of third or higher
order. Adaptive and automated partitioning methods need to be investigated in order to thor-
oughly take advantage of the these multirate methods. Further, we plan to develop multi-
rate SSP time integrators based on linear multistep methods. We shall apply these multirate
timestepping algorithms to the solution of large scale 3-D PDEs arising in air quality mod-
eling.

Appendix 1: An Order Two MPRK with m = 3

Here we present the MPRK-2 using a factor of three (m = 3) between the fast and slow
partitions using the same construction algorithm described for m = 2 (see Sect. 3.5). The
method showed here takes advantage of the repetition pattern which is inherent for MPRK-
2. Note that the base method is repeated in various combinations. The Butcher tableau for
this method is shown in Table 12. The method can be written as follows (k = 0,1,2):

K1+2k
F = fF (yn+2k

F , yn
S), K1+2k

S = fS(y
n+2k
F , yn

S),

y
(1+2k)
F = yn+2k

F + �t

3
K1+2k

F , y
(1+2k)
S = yn

S + �tK1+2k
S ,

K2+2k
F = fF (y

(1+2k)
F , y

(1+2k)
S), K2+2k

S = fS(y
(1+2k)
F , y

(1+2k)
S),

(82)

y
(2+2k)
F = yn+2k

F + �t

6
K1+2k

F + �t

6
K2+2k

F , y
(2+2k)
S = yn

S ,

yn+1
F = yn

F + �t

6

6∑

j=1

K
j

F , yn+1
S = yn

S + �t

6

6∑

j=1

K
j

S .

274 J Sci Comput (2007) 33: 239–278

The above MPRK-2 can be written in Euler steps in the following way (k = 0,1,2):

y
(1+2k)
F = EF

(
�t

3
, y

n(+2k)
F , y

n(+2k)
S

)
, y

((1+2k)∗)
F = EF

(
�t

3
, y

(1+2k)
F , y

(1+2k)
S

)
,

y
(2+2k)
F = 1

2
y

n(+2k)
F + 1

2
y

((1+2k)∗)
F ,

yn+1
F = 1

2

(
yn

F + yn
F + �t

3
K1

F + �t

3
K2

F + �t

3
K3

F + �t

3
K4

F + �t

3
K5

F + �t

3
K6

F

)
,

= 1

2

(
yn

F + y
(1)
F + �t

2
K2

F + �t

3
K3

F + �t

3
K4

F + �t

3
K5

F + �t

3
K6

F

)
,

= 1

2

(
yn

F + y
(1∗)
F + �t

3
K3

F + �t

3
K4

F + �t

3
K5

F + �t

3
K6

F

)
,

= 1

2

(
y

(2)
F + y

(2)
F + �t

3
K3

F + �t

3
K4

F + �t

3
K5

F + �t

3
K6

F

)
,

(83)

= 1

2

(
y

(2)
F + y

(3)
F + �t

3
K4

F + �t

3
K5

F + �t

3
K6

F

)
,

= 1

2

(
y

(2)
F + y

(3∗)
F + �t

3
K5

F + �t

3
K6

F

)
,

= 1

2

(
y

(4)
F + y

(4)
F + �t

3
K5

F + �t

3
K6

F

)
,

= 1

2

(
y

(4)
F + y

(5∗)
F

)
,

and

yn+1
S = 1

6

(
6yn

S + �tK1
S + �tK2

S + �tK3
S + �tK4

S + �tK5
S + �tK6

S

)
,

y
(1+2k)
S = ES

(
�t,y

n(+2k)
F , yn

S

)

= 1

6

(
3yn

S + y
(1)
S + �tK2

S + y
(3)
S + �tK4

S + y
(5)
S + �tK6

S

)
,

(84)

y
(1+2k)∗
S = ES

(
�t,y

(1+2k)
F , y

(1+2k)
S

)
= 1

6

(
3yn

S + y
(1∗)
S + y

(3∗)
S + y

(5∗)
S

)
.

The Euler steps for the fast and the slow methods are summarized in Table 13.

Appendix 2: The Slow Method as Convex Combination of Euler Steps

In Sect. 3.6.2 we showed a multirate PRK method family and argued that it can be ex-
pressed as convex combinations of Euler steps. The sequence of forward Euler steps of the
fast method has already been presented in Sect. 3.5. Here we show that the slow method

J Sci Comput (2007) 33: 239–278 275

Table 13 MPRK-2 Euler steps for the fast and slow methods for m = 3

Fast method (RKF) Slow method (RKS) Slow method (RKB)

yn
F

in slow buffer yn
S

in slow region yn
S

y
(1)
F

= EF

(
�t
3 , yn

F
, yn

S

)
y
(1)
S

= ES

(
�t,yn

F
, yn

S

)
y
(1)
S

= ES

(
�t,yn

F
, yn

S

)

y
(1∗)
F

= EF

(
�t
3 , y

(1)
F

, y
(1)
S

)
y
(1∗)
S

= ES

(
�t,y

(1)
F

, y
(1)
S

)
y
(1∗)
S

= ES

(
�t,y

(1)
F

, y
(1)
S

)

y
(2)
F

= 1
2

(
yn
F

+ y
(1∗)
F

)
yn+1
S

= 1
2

(
yn
S

+ y
(1∗)
S

)

y
(3)
F

= EF

(
�t
3 , y

(2)
F

, yn
S

)
y
(3)
S

= ES

(
�t,y

(2)
F

, yn
S

)

y
(3∗)
F

= EF

(
�t
3 , y

(3)
F

, y
(3)
S

)
y
(3∗)
S

= ES

(
�t,y

(3)
F

, y
(3)
S

)

y
(4)
F

= 1
2 t
(
y
(2)
F

+ y
(3∗)
F

)

y
(5)
F

= EF

(
�t
3 , y

(4)
F

, yn
S

)
y
(5)
S

= ES

(
�t,y

(4)
F

, yn
S

)

y
(5∗)
F

= EF

(
�t
3 , y

(5)
F

, y
(5)
S

)
y
(5∗)
S

= ES

(
�t,y

(5)
F

, y
(5)
S

)

yn+1
F

= 1
2

(
y
(4)
F

+ y
(5∗)
F

)
yn+1
S

= 1
6

(
3yn

S
+ y

(1∗)
S

+ y
(3∗)
S

+ y
(5∗)
S

)

Table 14 The Butcher tableau for the slow methods for another family of second order PRK for m = 2. Here
we consider 0 ≤ μ ≤ 1.

0 0

0 0 0

1 μ 1 − μ 0

1 1 − μ μ 0 0

1/4 1/4 1/4 1/4

0 0

0 0 0

1 a
3,1
S

a
3,2
S

0

1 a
4,1
S

a
4,2
S

0 0

1/4 1/4 1/4 1/4

(a) Slow method in Table 5 (b) Slow method (in generic terms)

described in Table 5 can also be represented as convex combinations of Euler steps. The RK
stages for the slow method in Table 14b are as follows:

K1
S = fS(y

n
F , yn

S), y
(1)
S = yn

S ,

K2
S = fS(y

(1)
F , yn

S), y
(2)
S = yn

S + a
3,1
S �tK1

S + a
3,2
S �tK2

S ,
(85)

K3
S = fS(y

(2)
F , y

(2)
S), y

(3)
S = yn

S + a
4,1
S �tK1

S + a
4,2
S �tK2

S ,

K4
S = fS(y

(3)
F , y

(3)
S), yn+1

S = yn
S + �t

4

(
K1

S + K2
S + K3

S + K4
S

)
.

The above RK stages can be expressed in the following way:

yn+1
S = 1

4

(
4yn

S + �tK1
S + �tK2

S + �tK3
S + �tK4

S

)

= 1

4

((
yn

S + a
3,1
S �tK1

S + yn
S + a

3,2
S �tK2

S

)

+
(
yn

S + a
4,1
S �tK1

S + yn
S + a

4,2
S �tK2

S

)
+ �tK3

S + �tK4
S

)
. (86)

276 J Sci Comput (2007) 33: 239–278

From (86), by convexity we have that

a
3,1
S + a

4,1
S ≤ 1 and a

3,2
S + a

4,2
S ≤ 1. (87)

By construction we have

0 ≤ a
3,1
S , a

3,2
S , a

4,1
S , a

4,2
S ≤ 1 and a

3,1
S + a

3,2
S = 1, a

4,1
S + a

4,2
S = 1. (88)

Note that the second order (coupling) conditions:

a
3,1
S + a

3,2
S + a

4,1
S + a

4,2
S = 2

are satisfied automatically.
Using (87, 88) the scheme in Table 14b can be written as in Table 14a, and using

0 ≤ μ ≤ 1, it can be expressed as convex combinations of Euler steps.

References

1. Andrus, J.: Numerical solution for ordinary differential equations separated into subsystems. SIAM J.
Numer. Anal. 16, 605–611 (1979)

2. Andrus, J.: Stability of a multi-rate method for numerical integration of ODEs. Comput. Math. Appl. 25,
3–14 (1993)

3. Bartel, A., Günther, M.: A multirate W-method for electrical networks in state-space formulation. J.
Comput. Appl. Math. 147, 411–425 (2002)

4. Berkvens, P., Botchev, M., Lioen, W., Verwer, J.: A zooming technique for wind transport of air pollution.
Tech. report, Centrum voor Wiskundeen Informatica, 1999

5. Boris, J., Book, D.: Flux-corrected transport I. SHASTA, a fluid transport algorithm that works. J. Com-
put. Phys. 135, 172–186 (1997)

6. Chakravarthy, S., Osher, S.: Numerical experiments with the Osher upwind scheme for the Euler equa-
tions. AIAA J. 21, 241–1248 (1983)

7. Chakravarthy, S., Osher, S.: Computing with high-resolution upwind schemes for hyperbolic equations.
Lect. Appl. Math. 22, 57–86 (1985)

8. Dawson, C., Kirby, R.: High resolution schemes for conservation laws with locally varying time steps.
SIAM J. Sci. Comput. 22, 2256–2281 (2001)

9. Dormand, J., Prince, P.J.: A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6,
19–26 (1980)

10. Engquist, B., Tsai, R.: Heterogeneous multiscale methods for stiff ordinary differential equations. Math.
Comput. 74, 1707–1742 (2005)

11. Engstler, C., Lubich, C.: Multirate extrapolation methods for differential equations with different time
scales. Computing 58, 173–185 (1997)

12. Ferm, L., Lötstedt, P.: Space–time adaptive solution of first order PDES. J. Sci. Comput. 26, 83–110
(2006)

13. Ferracina, L., Spijker, M.: Stepsize restrictions for total-variation-boundedness in general Runge–Kutta
procedures. Appl. Numer. Math. 53, 265–279 (2005)

14. Gear, C., Wells, D.: Multirate linear multistep methods. BIT 24, 484–502 (1984)
15. Godunov, S.: A finite difference method for the numerical computation of discontinuous solutions of the

equations of fluid dynamics. Mat. Sb. 47, 271–290 (1959)
16. Goodman, J., LeVeque, R., Randall, J.: On the accuracy of stable schemes for 2D scalar conservation

laws. Math. Comput. 45, 15–21 (1985)
17. Gottlieb, S., Shu, C.-W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67, 73–85

(1998)
18. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods.

SIAM Rev. 43, 89–112 (2001)
19. Günther, M., Hoschek, M.: ROW methods adapted to electric circuit simulation packages. In: ICCAM

’96: Proceedings of the 7th International Congress on Computational and Applied Mathematics, pp.
159–170. Elsevier, Amsterdam (1997)

J Sci Comput (2007) 33: 239–278 277

20. Günther, M., Kværnø, A., Rentrop, P.: Multirate partitioned Runge–Kutta methods. BIT 41, 504–514
(2001)

21. Günther, M., Rentrop, P.: Multirate ROW-methods and latency of electric circuits, Appl. Numer. Math.
(1993)

22. Hairer, E.: Order conditions for numerical methods for partitioned ordinary differential equations. Nu-
mer. Math. 36, 431–445 (1981)

23. Hairer, E., Norsett, S., Wanner, G.: Solving Ordinary Differential Equations I. Nonstiff Problems.
Springer, Berlin (1993), Chapter II. 1

24. Hairer, E., Norsett, S., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems.
Springer, Berlin (1993) Chapter. II. 15

25. Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393
(1983)

26. Higueras, I.: On strong stability preserving time discretization methods. J. Sci. Comput. 21, 193–223
(2004)

27. Hundsdorfer, W., Koren, B., van Loon, M.: A positive finite-difference advection scheme. J. Comput.
Phys. 117, 35–46 (1995)

28. Hundsdorfer, W., Ruuth, S., Spiteri, R.: Monotonicity-preserving linear multistep methods. SIAM J.
Numer. Anal. 41, 605–623 (2003)

29. Kato, T., Kataoka, T.: Circuit analysis by a new multirate method. Electr. Eng. Jpn. 126, 55–62 (1999)
30. Kirby, R.: On the convergence of high resolution methods with multiple time scales for hyperbolic con-

servation laws. Math. Comput. 72, 1239–1250 (2002)
31. Kværnø, A.: Stability of multirate Runge–Kutta schemes. Int. J. Differ. Equ. Appl. 1, 97–105 (2000)
32. Kvæ rnø, A., Rentrop, P.: Low order multirate Runge–Kutta methods in electric circuit simulation (1999)
33. Laney, C.: Computational Gasdynamics. Cambridge University Press, Cambridge (1998)
34. LeVeque, R.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge

(2002)
35. Logg, A.: Multi-adaptive Galerkin methods for ODEs I. SIAM J. Sci. Comput. 24, 1879–1902 (2003)
36. Logg, A.: Multi-adaptive Galerkin methods for ODEs II: Implementation and applications. SIAM J. Sci.

Comput. 25, 1119–1141 (2003)
37. Logg, A.: Multi-adaptive Galerkin methods for ODEs III: A priory estimates. SIAM J. Numer. Anal. 43,

2624–2646 (2006)
38. Osher, A., Chakravarthy, S.: High resolution schemes and the entropy condition. SIAM J. Numer. Anal.

21, 955–984 (1984)
39. Osher, A., Chakravarthy, S.: Very high order accurate TVD schemes. In: Oscillation Theory, Computa-

tion, and Methods of Compensated Compactness. IMA Vol. Math. Appl., vol. 2, pp. 229–274. Springer,
Berlin (1986)

40. Rice, J.: Split Runge–Kutta methods for simultaneous equations, J. Res. National Inst. Standards Tech-
nol. 60 (1960)

41. Roe, P.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43,
357–372 (1981)

42. Sand, J., Burrage, K.: A Jacobi waveform relaxation method for ODEs. SIAM J. Sci. Comput. 20, 534–
552 (1998)

43. Savcenco, V., Hundsdorfer, W., Verwer, J.: A multirate time stepping strategy for parabolic PDE. Tech.
Report MAS-E0516, Centrum voor Wiskundeen Informatica, 2005

44. Savcenco, V., Hundsdorfer, W., Verwer, J.: A multirate time stepping strategy for stiff ODEs. BIT (2006,
to appear)

45. Shampine, L.: Conservation laws and the numerical solution of ODEs. Comput. Math. Appl. B 12, 1287–
1296 (1986)

46. Shu, C.-W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084
(1988)

47. Shu, C.-W., Osher, S.: TVB uniformly high-order schemes for conservation laws. Math. Comput. 49,
105–121 (1987)

48. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes.
J. Comput. Phys. 77, 439–471 (1988)

49. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes
II. J. Comput. Phys. 83, 32–78 (1989)

50. Spiteri, R., Ruuth, S.: A new class of optimal high-order strong-stability-preserving time discretization
methods. SIAM J. Numer. Anal. 40, 469–491 (2002)

51. Sweby, P.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer.
Anal. 21, 995–1011 (1984)

278 J Sci Comput (2007) 33: 239–278

52. Tang, H.-Z., Warnecke, G.: A class of high resolution schemes for hyperbolic conservation laws and
convection-diffusion equations with varying time and space grids. J. Comput. Math. 24, 121–140 (2006)

53. Vreugdenhil, C., Koren, B. (eds.): Numerical Methods for Advection–Diffusion Problems, vol. 45.
Vieweg, Wiesbaden (1993)

54. Zalesak, S.: Fully multidimensional flux corrected transport algorithms for fluids. J. Comput. Phys. 31,
335–362 (1979)

	Multirate Timestepping Methods for Hyperbolic Conservation Laws
	Abstract
	Introduction
	Hyperbolic Conservation Laws
	Maximum principle
	TVD
	TVB
	Monotonicity-preservation
	Positivity
	Explicit Runge-Kutta Methods
	Strong Stability Preservation

	Multirate Time Integration
	Domain Partitioning
	Partitioned Runge-Kutta Methods
	Strong Stability Preservation and PRK
	A Second Order Multirate PRK Family
	A Second Order SSP PRK Method with m=2
	Other Multirate Explicit Methods
	First Order Multirate Explicit Methods
	Other Second Order PRK Configurations

	Order Two MPRK Methods for Multiple Partitions
	Implementation Aspects
	Computational Efficiency

	Numerical Results
	The Advection Equation
	Positive Spatial Discretization
	Numerical Experiments
	Numerical Error Analysis

	Burgers' Equation
	TVD Spatial Discretization
	 Numerical Experiments
	Computational Efficiency

	Conclusions and Future Work
	Appendix 1: An Order Two MPRK with m=3
	Appendix 2: The Slow Method as Convex Combination of Euler Steps
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

